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Abstract

This thesis investigates the precise kind of randomness generated by quantum mea-
surements. First a rigorous definition of randomness is given using the theory of algo-
rithmic randomness. Thereafter it is investigated if there are quantum measurements
of which it can be shown that they can be used to generate random finite or infinite bi-
nary strings. First, no go theorems from quantum theory are discussed. Second, articles
attempting to answer this are studied. Third, the justifications given by a manufacturer
of quantum random number generators are reviewed. Finally, this thesis considers an
experimental method for validating the randomness of quantum measurements.
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1 Introduction

Randomness has become of vital importance to our modern style of living. We use
it for our entertainment, for example in the casino or in computer games. We use en-
cryption software based on randomness every time we send a WhatsApp text, receive
an email or manage your finances online. Since randomness has become so important,
there are two questions we might ask ourselves: what exactly are random numbers and
how can we generate them?

Defining randomness is not exactly an easy task. When we have a finite binary string
consisting of only ones, it feels less random than a string such as 001010001110010011,
generated by throwing a coin. However, the probability of generating each string is ex-
actly the same, namely 2−n , where n is the length of the string. The mathematical theory
of algorithmic randomness is concerned with defining randomness in a manner con-
sistent with both our intuition and probability theory. In this thesis we will look at the
definition of randomness given by this field of mathematics and apply it to quantum
mechanics.

Probably the best known example of a randomness generator is a coin flip. Like other
methods such as a roulette wheel, a coin flip generates randomness because it is a (clas-
sical) system that is very sensitive to the initial conditions and is therefore hard to pre-
dict. However, the coin flip is not perfectly random. A coin being flipped behaves ex-
actly according to Newtonian mechanics. Therefore it is, in principle, possible to per-
fectly predict the outcome of the coin toss. In practice this is very difficult, but it has
been shown that there are ways to slightly influence the statistics of a coin flip [6]. Fur-
thermore, it is very difficult to generate the huge amount of random numbers that are
required for encryption using a coin.

One other method of generating random numbers is actually not a method of gener-
ating random numbers at all. For many purposes so called pseudo-random numbers are
used. These are numbers generated by pieces of software or algorithms called pseudo-
random number generators (pseudo-RNGs). While pseudo-RNGs are designed to pro-
duce numbers which resemble random numbers as well as possible, they are ultimately
deterministic computer programs. Therefore, their output can be perfectly predicted by
reverse-engineering the algorithm. This makes them a risk factor when used for the en-
cryption of sensitive information. This is expressed by von Neumann’s famous quote:
"Any one who considers arithmetical methods of producing random digits is, of course,
in a state of sin." [19] In an effort to make pseudo-RNGs less vulnerable against reverse
engineering opponents, some of them take system data such as the time of the day
or fluctuations in cursor movement as an input and generate randomness from them.
However, this does still not guarantee the complete safety of the encrypted data. One
example of this is a security flaw found in a Netscape protocol in 1995. Two students re-
verse engineered the code and discovered it was based on the clock of the system which
was relatively easy to guess. This allowed them to reduce the time necessary to break
into the protocol to mere minutes. [17]

One recent method for generating random numbers is to use quantum measure-
ments. The physical theory of quantum mechanics is often said to be fundamentally
random. One advantage quantum generated randomness would have over randomness
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generated by classical physical systems is that it is easier to perform a large number of
quantum measurements in a short time than it is to throw a similar number of coins
in a short time. Additionally, since quantum measurements are fundamentally inde-
terministic, it does not suffer from the problem classical systems have that complete
knowledge would allow for perfect predictions. This is also an advantage quantum-
generated randomness has over computer generated randomness. For these reasons,
commercial companies have tried to make systems that can quickly perform quantum
measurements in order to generate randomness form these. Systems like this are known
as quantum random number generators (QRNGs).

But how can we guarantee that numbers generated by these QRNGs are actually ran-
dom? One example of a system that is not deterministic but also certainly not random
is a box that for every even output gives a 1 and for every odd output flips a coin and
outputs the result. Clearly, quantum mechanics being indeterministic is by itself not
enough to guarantee randomness.

In this thesis we will first give a mathematically precise definition of randomness. We
will then look at results from quantum theory showing its fundamental indeterministic
behaviour. After that, we will turn our attention to attempts to prove that the outcomes
of certain quantum measurements must be random. We will also look at justifications
given by a manufacturer of quantum random number generators that their devices out-
put random numbers. Finally, we will look at a method to experimentally verify the ran-
domness of quantum random number generator outputs.

2 Preliminaries

This section gives a very brief overview of the preliminary knowledge required to
understand algorithmic randomness and quantum mechanics. The part about quan-
tum mechanics is mostly based on Foundations of Quantum Theory by Klaas Landsman
[13, ch. 2]. For the other parts I have based myself on Algorithmic Randomness and
Complexity by Rodney Downey and Denis Hirschfeldt [7, ch. 1-7], an Introduction to
Kolmogorov Complexity and its Applications by Ming Li and Paul Vitányi [16] and Cali-
brating Randomness by Rodney Downey, Denis Hirschfeldt, André Nies and Sebastiaan
Terwijn [8].

2.1 The space of infinite binary sequences

The field of algorthmic randomness defines and studies the randomness of elements
of the so called Cantor space 2ω. Elements X ∈ 2ω are often associated with the set

X = {n : X (n) = 1}

and are thus sometimes referred to as sets in the literature. The Cantor space is endowed
with the tree topology with basic clopens [σ] := {X ∈ 2ω :σ≺ X }, whereσ is a finite binary
string. The symbol ≺ denotes that σ is a prefix of X , so [σ] contains all infinite binary
strings that have σ as a prefix.
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We can define the uniform Lebesgue measure on 2ω by defining the measure of any
basic clopen set as µ([σ]) := 2−|σ|, where |σ| denotes the length of σ. It turns out that
the Cantor space with this measure is measure-theoretically isomorphic to the interval
[0,1] which is why elements X ∈ 2ω are sometimes referred to as reals. In short, there
are three names for elements X ∈ 2ω: infinite binary strings, sets and reals. In order to
avoid confusion with other sets or other reals I will refer to elements of the Cantor space
as infinite binary strings.

We will also review randomness of finite binary strings. The set of all finite binary
strings is written as 2<ω. For any σ ∈ 2<ω and τ ∈ 2<ω we write |σ| for the length of σ and
στ for the concatenation of τ and σ. For any infinite binary string X ∈ 2ω we write X � n
for the finite binary string obtained by taking only the first n digits of X .

2.2 Turing machines and the halting problem

Turing machines were first introduced by Alan Turing, who called them automatic
machines [30]. The exact definition of a Turing machine is too involved to go into here,
but they are easy to understand intuitively as a computer executing a given program.
A Turing machine takes a natural number, or, equivalently, a finite binary string as an
input and starts computing. It then either finishes running and gives an output. We call
this halting. A Turing machine can also not stop and keep running forever, in which case
we say it does not halt. We write T (σ) ↓ if Turing machine T with input σ halts and write
T (σ) ↑ if it does not halt. The famous unsolvability of the halting problem states that no
algorithm exists that for every Turing machine with any input determines if it halts or
not.

For any finite binary stringσ ∈ 2<ω we write T (σ) for the output of the Turing machine
T with this input (think of a computer executing some algorithm with inputσ). A Turing
machine U is called universal if it can simulate any other Turing machines. That is, for
any Turing machine T there exist a ρ ∈ 2<ω such that for any σ ∈ 2<ω we have T (σ) =
U (ρσ).

2.3 Computability and computable enumerability

The theory of algorithmic randomness is based on the notions of computability and
computable enumerability. We say a partial function f : 2<ω → 2<ω is partial com-
putable if there exists a Turing machine T such that for everyσ ∈ dom( f ) we have T (σ) ↓
and T (σ) = f (σ). We also require that for all σ ∉ dom( f ) we have T (σ) ↑. If f is total, that
is, if dom( f ) = 2<ω, we simply say that f is computable. A family of functions f0, f1, . . . is
called uniformly (partial) computable if there is a (partial) computable function f such
that f (n, x) = fn(x) for all n and x.

We can also put a time bound on the computability of f . If we have a time function
T :N→N we say that f is computable in O(T (n))-time if there exists a Turing machine
M computing f and a constant c such that for almost all σ ∈ 2<ω, M computes σ within
c ·T (|σ|) time steps.

A subset A ⊆ 2<ω is called computably enumerable, often abbreviated as c.e., if it is
the domain of some partial computable function. Equivalently, a subset A ⊆ 2<ω is com-
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putably enumerable iff either A =; of there exists a (total) computable function f from
2<ω onto A. If A is infinite this function can be chosen to be injective. A collection of sets
A0, A1, . . . is called uniformly computably enumerable if each An = dom( fn) for a collec-
tion f0, f1, . . . of uniformly partial computable functions. Computably enumerable sets
are often called Σ0

1 sets. If both A and 2<ω\A are computably enumerable we say that A
is computable. Similarly, if both A0, A1, . . . and their complements are uniformly c.e. we
say that they are uniformly computable. Intuitively, you can think about a computably
enumerable set as being a set of which we can enumerate all elements that are in the set,
but of which we cannot necessarily enumerate all the elements that are not in the set. If
we can also enumerate all elements not in the set, it is a computable set.

Example 1. Probably the most famous example of a set that is computably enumerable
but not computable is diagonal the halting set K = {Tn : Tn(n) ↓}, i.e. the set of all Turing
machines in some enumeration of Turing machines such that the n-th machine halts on
input n. It can be proven that this set in not computable. In fact, this can be used to prove
the uncomputability of the halting problem. However, we can make an enumeration of
K by first enumerating all Turing machines Tn that halt on n in 1 time step, then all
Turing machines that halt in 2 timesteps and so on. But since the set is not computable
we cannot make an enumeration of the complement of K .

2.3.1 Complexity of reals and real valued functions

One can also define the complexity of real numbers, and even real valued functions.
As we will need notions of complexity for real valued functions later we will discuss these
here. For each real α we can define the left cut of α as L(α) = {q ∈Q : q < α}. These left
cuts can be used to uniquely identify each real. We can now define a real α to be com-
putable if L(α) is computable. If L(α) is c.e. we define α to be left computably enumer-
able (left-c.e.). For a function f : D → R we say it is computably enumerable (c.e.) if the
set {(x, q) ∈ D ×Q : q < f (x)} is computably enumerable. If this set is computable, then
we say f is computable.

2.4 Martingales

One tool that will be important for the discussion of randomness of infinite binary
strings is the martingale. A martingale is a function d : 2ω → R≥0 with the property that
for every σ ∈ 2<ω we have

d(σ) = 1

2

(
d(σ0)+d(σ1)

)
. (1)

This property is known as the averaging condition. We call d a supermartingale by
relaxing the equality to a ≥ sign. One intuitive way to think about a martingale is as a
betting strategy. We start with a certain amount of money and at every step we bet some
part of our money on the next digit of the infinite sequence being a one and the rest on
it being a zero. The money we bet on the correct digit is doubled and the rest is lost. The
outcome d(σ) of a martingale is the amount of money we have after applying the betting
strategy corresponding to d and the outcomes having been σ.
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We say that a (super)martingale succeeds on a infinite binary sequence X ∈ 2ω if

limsup
n→∞

d(X � n) =∞. (2)

Formulated using our betting analogy: a martingale succeeds on an infinite binary se-
quence X if the betting strategy corresponding to it will allow us to make arbitrary amounts
of money when betting on the digits of X . We require arbitrary amounts of money for
our notion of success because we want the strategy to consistently and correctly predict
digits of X . The set of all X ∈ 2ω on which a martingale d succeeds is denoted by Sd .

Example 2. To illustrate the relation between betting strategies and martingales con-
sider the following scenario: We are in a casino playing a game of betting on the digits of
a binary string. At every stage we divide our capital betting a certain portion of it on the
next digit being a 1 and the rest on the next digit being a 0. The amount of money we bet
on the digit that shows up is doubled and the rest is lost.
We have devised the strategy of, at every stage, betting 70% of our capital on the next
digit being a 1 and 30% on the next digit being a 0. Suppose we start out with a capi-
tal of 1$. Following our strategy, we bet 0.7$ on the first digit being a 1 and 0.3$ on the
first digit being a 0. If the first digit turns out to be a 1, we will have 1,4$ after the first
stage, but if the first digit is a 0 we will only have 0.6$. The money we have after a cer-
tain string has been revealed is exactly the value of the martingale of that string. So in
this case d(1) = 1.4 and d(0) = 0.6. Continuing we get that d(11) = 1.4 ·0.7 ·2 = 1.96 and
d(110) = 1.96 · 0.3 · 2 = 1.176. It is clear that this betting strategy can make an infinite
amount of money if the string we are betting on ends in infinitely many ones. Therefore
this martingale succeeds on such strings.

The following important theorem by Ville [31] relates the concept of martingales with
measure theory:

Theorem 1. (Ville 1939 [31]) For any subset A ⊆ 2ω the following two statements are
equivalent:

1. A has Lebesgue measure 0;

2. There exists a martingale d such that A ⊆ Sd .

2.5 The quantum mechanical formalism

The quantum-mechanical formalism models the state space of a physical system as a
Hilbert space H (a complex vector space with an inner product denoted by 〈., .〉). For our
purposes it is enough to consider finite dimensional Hilbert spaces, so we restrict our
attention to those. The state of the system is described by a unit vectors of this Hilbert
space but it can also be a statistical mixture of unit vectors. These correspond to density
operators. A density operator ρ is a positive operator on H with Tr(ρ) = 1. (Being a
positive operator means that 〈ρψ,ψ〉 ≥ 0 for all ψ ∈ H .) Here Tr() denotes the trace
function which is unproblematic for operators on a finite dimensional Hilbert space.

In the formalism of quantum mechanics, the probabilities to obtain measurement
outcomes are described by the Born rule. This rule is single-handedly responsible for all
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predictions made by quantum mechanics. Quantum mechanical observables are repre-
sented by self-adjoint operators on the Hilbert space H . The spectrum of a self-adjoint
operator a is defined as the set of all eigenvalues of a (since we only consider finite di-
mensional Hilbert spaces) and is denoted as σ(a). We can make a spectral decomposi-
tion of each self-adjoint operator a = ∑

λ∈σ(a)λΠλ where Πλ is the projection onto the
eigenspace corresponding with eigenvalue λ. According to the Born rule, the probabil-
ity that, upon measurement of a on a state described by a density operator ρ, we obtain
the value λ is given by: pa(λ) = Tr(Πλρ). If we assume that ρ = |ψ〉〈ψ| (this is Dirac’s
"bra-ket" notation where |ψ〉〈φ|χ= 〈φ,χ〉ψ) and that λ ∈σ(a) is non-degenerate we ob-
tain the perhaps better known form of the Born rule: PΨa (λ) = |〈Ψ, vλ〉|2, where vλ is the
eigenvector corresponding to the eigenvalue λ, that is avλ =λvλ.

In quantum theory measuring a state often changes that state. It tells us that if we
perform a measurement and obtain a value λ, the state ρ changes to ρ′ = 1

Tr (Πλρ)ΠλρΠλ.
You can think about performing a measurement of a on a particle as asking the parti-

cle in which of the eigenspaces of a it is. For each orthonormal basis B= {|0〉, . . . , |n −1〉}
of H we can define an operator AB =∑n−1

i=0 ai |i 〉| with all the ai different. The eigenspaces
of this observable will each be the span of a single basis vector. If we measure this ob-
servable we say that we measure with respect to the basis B.

One system we will look at is the qubit. The qubit is the simplest non-trivial quan-
tum system and has Hilbert space C2. One physical example of a qubit is the spin of an
electron. The standard basis on C2 is denoted by {|0〉, |1〉}. However, we can also define
another basis {|+〉, |−〉}, where |±〉 = |0〉±|1〉p

2
. Using these bases we can define the Pauli ob-

servables which will be important for our purposes. They are given in matrix form and
spectral decomposition as:

σx =
(
0 1
1 0

)
= |+〉〈+|− |−〉〈−| (3)

σz =
(
1 0
0 −1

)
= |0〉〈0|− |1〉〈1| (4)

According to the Born rule described above, when we prepare the spin of an electron in
the |−〉 state and perform a measurement of σz we will either obtain +1 or −1, both with
probability 1

2 . If we obtain +1, the particle will be in the |0〉 state after the measurement
and if we measure −1 it will be in the |1〉 state. We will be looking at a situation where we
keep repeating these measurements to generate a binary string and then look at what we
can say about the randomness of this string using the theory of algorithmic randomness.

One important feature unique to quantum theory is entanglement. Essentially, we
say that two systems are entangled if they cannot be described independently of each
other. If we have two systems with Hilbert spaces H A and HB , then the composite
system is described by the tensor product of these two Hilbert spaces H A ⊗HB . We will
often write |v w〉 instead of |v〉⊗|w〉. There are many vectors in H A ⊗HB that cannot be
expressed as v A ⊗ vB for some v A ∈H A and vB ∈HB . One example of this is
(|10〉− |01〉)/

p
2 ∈ C2 ⊗C2. If a state in a composite system cannot be described as the

tensor product of two vectors, we say that the subsystems are entangled.
One other system we will look at is a system made up of two qubits in an entangled

state (|1A0B 〉 − |0A1B 〉)/
p

2 ∈ C2 ⊗C2. Suppose that Alice and Bob both have access to
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one of these entangled qubits and that both perform a measurement of σz . Quantum
theory tells us that Alice will obtain value −1 with probability 1

2 and that the system will
then be in the |1A0B 〉 state. Also with probability 1

2 , she will measure +1 and the system
will be in the |0A1B 〉 state. Let us assume that she measures +1. Since the system is
now in the |0A1B 〉 state Bob is required to measure −1. Similarly, if Alice obtains the
value −1, Bob will necessarily get the value +1. This correlation holds regardless of the
distance separating Alice and Bob. However, since Bob is not able to determine if he
measured −1 because the probabilities turned out that way or because Alice performed
a measurement and measured +1 this correlation cannot be used for faster than light
communication.

3 Algorithmic randomness

While everybody has an idea of what randomness means, it is not easy to define ran-
domness rigorously. One attempt you might make at defining randomness is to define
something as random if it is not the result of a deterministic process. However, this runs
into problems. Suppose we generate an infinite binary string which is not a result of a
deterministic process and then program a computer to output the digits of this string.
Then the outputs of this computer are deterministic in the sense that if we look at the
code, we know exactly what the computer will output next. But now the string is both
random because we generated it without it being the result of a deterministic process
and not random because it is also generated deterministically by the computer we pro-
grammed to do so. This would mean the randomness of a binary string is dependent on
the process that generated it, but we would like to say something about its randomness
independently of the process that generated it. Furthermore, if we have a string that
was not generated by a determinsitic process, we can dilute it by adding 1 at every even
position. The resulting string still is not the result of a deterministic process, but is not
random either.

One other attempt at defining randomness is the more statistical approach of defin-
ing an infinite binary string as random if it contains as many zeroes as ones. This is
known as the law of large numbers. We can extend this by requiring all n-bit fragments
to occur with their expected frequency 2−n . This property is called normal. It is a good
start to require this from random numbers. However, it is not enough as that would
mean that Champernowne’s number C = 0100011011000001. . . is also random. Cham-
pernowne’s number is generated by first concatenating all possible 1-bit fragments, then
all 2-bit fragments and so on. One might feel that since there is such a clear and short
way to describe the process of generating the string it should not be random.

Clearly, defining randomness is not a trivial task. The mathematical theory of algo-
rithmic randomness uses tools and concepts from computability theory to define ran-
domness. Within the field there are several paradigms one can use to come to a def-
inition of randomness. We will look at the main three paradigms, which all arrive at
the same definition of randomness, called 1-randomness. We will then proceed by con-
sidering some other weaker notions of randomness. Defining randomness using these
three paradigms was first done in Calibrating Randomness by Rodney Downey, Denis

9



Hirschfeldt, André Nies and Sebastiaan Terwijn [8]. I will follow this article closely in the
following section.

3.1 Paradigm 1: the incompressibility paradigm

The first paradigm for defining randomness states that a random string should be
incompressible: it should be impossible to give a description of the string that is signif-
icantly shorter than the string itself. To formalise this idea we introduce Kolmogorov
complexity. We will first apply this concept to finite binary strings and then extend it to
infinite binary strings.

Example 3. To understand the concept behind Kolmogorov complexity, let us consider
the following three finite binary strings:

1. 101010101010101010101010101010

2. 110010010000111111011010101000

3. 100001101100111101001011111011

Obviously, the first string should not be called random since it is simply 10 repeated
15 times. The second string might look random on first sight but actually is the first
30 digits of π in binary and should therefore not be called random either. The third
string, however, was generated by flipping a coin 30 times. We should therefore at least
expect the third string to be random. One way to formalise this intuition is to use the
idea of Kolmogorov complexity. Both the first and the second strings can be described
is a shorter way as "10 repeated 15 times" and "first 30 binary digits of π" respectively.
Of course, for these short strings, the difference between the length of the description
and the length of the string itself quite small. However, the description of 10 repeated
500000 times or the first one million digits of π is significantly shorter than the strings
themselves. For the third string there is no short description. Therefore we can call the
third string random.

Given a fixed universal Turing machine U , the plain Kolmogorov complexity of a
finite binary string σ ∈ 2<ω is defined to be:

C (σ) = min{|τ| : U (τ) =σ}

Note that a different choice for the universal Turing machine will result in a different
plain Kolmogorov complexity. However, since the machines are universal and can there-
fore imitate each other, the difference will only be a fixed constant.

We can now define σ ∈ 2<ω to be Kolmogorov k-random, where k ∈ N, if C (σ) ≥
|σ|−k. We will often leave the constant unspecified and simply talk about Kolmogorov
randomness.

One property of Kolmogorov randomness, which can be seen as a weakness, is that
we can only prove the Kolmogorov randomness of finitely many finite binary strings,
although infinitely many are in fact random This follows from the immunity of the set
of Kolmogorov random strings, which was shown by Barzdin[1]. Immunity means that
there is no infinite c.e. subset of the set of Kolmogorov random strings. To see that the set
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of Kolmogorov random strings is immune, we assume that there does exist a c.e. subset
and derive a contradiction. If there exists a c.e. subset, then there exists an injective
computable function ψ : N→ 2<ω such that ψ(n) is Kolmogorov random for all n. We
can now obtain a sequence φ(0),φ(1),φ(2), . . . such that there are infinitely many m ∈N
with |φ(m)| ≥ m and hence C (φ(m)) ≥ m. Clearly, ψ and m together give a description
of ψ(m) and therefore C (ψ(m)) ≤ log(m)+k for some constant k independent of m. We
now have m ≤C (φ(m)) ≤ log(m)+k for infinitely many m. But this can only be true for
finitely many m so we obtain a contradiction and conclude that the set of Kolmogorov
random strings is indeed immune.

It is possible to enumerate all possible proofs and check if they proof that some string
is Kolmogorov random. Because of this, if there were infinitely many strings that are
provably Kolmogorov random, we could enumerate infinitely many Kolmogorov ran-
dom strings. We have just seen that this is impossible, so it cannot be possible to prove
Kolmogorov randomness of infinitely many strings.

3.1.1 Prefix free complexity

An issue with plain Kolmogorov complexity is that is does not extend to infinite strings.
One would like to call an infinite string X random if and only if there exists a constant k
such that every finite prefix of X is k-random. However, Martin-Löf showed that infinite
strings with this property do not exist.

Theorem 2. (Martin-Löf 1966, see also Downey Hirschfeldt[7, p 113].) For any constant
k, if µ is a binary string of sufficient length, then there exists a initial segment σ of µ with
C (σ) < |σ|−k.

Proof. Consider an initial segment ν of µ. Choose n such that ν is the nth string of 2<ω

under some ordering, for example the length-lexicographic ordering. Let ρ be the next
n digits of µ after ν and let σ = νρ. To describe σ we only need ρ since the length of ρ
combined with the ordering gives us ν. Therefore, C (σ) ≤ |ρ| + c for some constant c.
This c is independent of ρ or ν because it only describes the process of taking the string
corresponding to the length of the input from the ordering. We also have |σ| = |ν|+ |ρ|.
If we now choose |ν| > c +k we have C (σ) < |σ|−k.

Martin-Löf’s proofs works because not just the bits, but also the length of ρ encodes
information. To fix the issue that the lenght of the input string encodes additional infor-
mation, Chaitin and Levin [15][14][3] introduced a new measure of complexity that only
takes the bits of a string into account and not the length. This new measure is called
the prefix-free complexity K . To understand it, we first need to introduce the notions of
prefix-free sets and prefix free Turing machines. We define a set of finite binary strings
X to be prefix-free if for all σ ∈ X and τ ∈ X with σ 6= τ, σ is not a prefix of τ and τ is
not a prefix of σ. A Turing machine T is prefix-free or a prefix machine if its domain is
prefix-free. Usually, these machines are considered to be self delimiting . This means
that the read head can only move one way. The machine is forced to accept strings with-
out knowing if there are any more bits on the input tape. This automatically makes the
domain prefix-free.
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Analogusly to a universal Turing machine, a universal prefix machine can be con-
structed by enumerating all prefix machines T1,T2,T3, . . . and then defining U (1nσ) =
Tn(σ). This U is clearly universal and prefix-free.

Definition 1. Let x be a finite binary string. The prefix-free complexity of σ is defined to
be K (σ) = min{|τ| : U (τ) =σ}, where U is a universal prefix machine.

Using the notion of a universal prefix machine we can define Chaitin’s Omega[3] as

ΩU = ∑
σ:U (σ)↓

2−|σ|.

This number is also sometimes referred to as the halting probability of U . It can be
proven that ΩU is an example of a 1-random infinite binary string [3]. Also, it turns
out that if one has access to the first n digits of ΩU that one can then solve the halting
problem for all inputs shorter than n on Turing machine U [16].

3.1.2 Prefix-free randomness

Using this definition we can give an improved notion of randomness. The notion
follows what we did with Kolmogorov randomness by defining a string σ ∈ 2<ω to be
prefix-free random if K (σ) ≥ |σ|. We relax this definition by a constant d and obtain the
following definition:

Definition 2. A finite binary string σ ∈ 2ω is prefix free d-random if K (σ) ≥ |σ|−d .

Theorem 3. (Barzdin 1968 [1] The set of K-random finite strings is immune i.e. it has no
c.e. subset.

A consequence of this theorem is that there exists an upper bound such that strings
longer than that bound cannot be proven to be K-random although most, in fact, are.

Proof. This proof is analogous to the result we have seen before by Barzdin that the set of
Kolmogorov random strings is immune. Suppose that {σ : K (σ) ≥ |σ|−d} is not immune.
Then it has a c.e. subset. Therefore we can find a computable injective function φ :N→
{σ : K (σ) ≥ |σ|−d} such that |φ(n)| ≥ n. Because φ and n together give a description of
φ(n), we have K (φ(n) ≤ K (n)+O(1) ≤ 2log (n)+O(1). But now we have n−d ≤ |φ(n)|−d ≤
K (φ(n)) ≤ 2log (n)+O(1), which can only hold for finitely many n. This contradicts our
assumption. Therefore, {σ : K (σ) ≥ |σ|−d} is indeed immune.

Using the notion of K-randomness we can do what we could not do with the plain
Kolmogorov complexity and give a randomness for infinite strings. With the plain com-
plexity we ran into the problem that the length of the string could be used to encode
additional information. In the prefix free case we do not run into the problem because
the length of the string does not give additional information. This is because the domain
is prefix free. After the machine has read and accepted the stringσ there can be no more
digits succeeding σ. The length of the input is known since σ is the only string starting
with σ in the domain of the machine.

Definition 3. An infinite binary string X is called Levin-Chaiting random if there exists
a constant c such that for every natural number n K (X � n) ≥ n − c
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3.2 Paradigm 2: the measure theoretic paradigm

The second paradigm we will consider is the measure-theoretic paradigm. It states
that a random infinite binary string should have certain statistical properties. For exam-
ple, we expect a random string to have approximately as many 0’s as 1’s and a 0 should
be followed by a 1 about as often as it is followed by a 0. It was noted by Von Mises [18]
that when considering a countable collection of statistical tests, a nonempty definition
of randomness for reals exists. It was Church who later suggested that one should look at
the collection of computable statistical tests. Martin-Löf noted that these statistical tests
are special cases of measure 0 sets on the space of infinite binary strings 2ω and stated
that random infinite binary strings should be those that are not elements of effective
(meaning c.e.) measure 0 subsets of 2ω [20]. This idea gives us the following definition:

Definition 4. (Martin-Löf [20]) A collection of infinite binary strings A is called Martin-
Löf null (or Σ0

1-null) if there exists a uniformly c.e. sequence {Un}n∈ω of Σ0
1 subsets Un ⊆

2ω withµ(Un) ≤ 2−n and A ⊆⋂
n Un . Such a sequence {Un}n∈ω is called a Martin-Löf test.

An infinite binary string X ∈ 2ω is called 1-random if {X } is not Martin-Löf null.

This definition gives the same notion of randomness as the definition by Levin and
Chaitin above. This was proven by Schnorr [27].

Theorem 4. Schnorr 1973 [27] An infinite binary string X ∈ 2ω is 1-random if and only if
it is Levin Chaitin random.

The proof is too lengthy to go into here but can be found in the book Algorithmic
Randomness and Complexity by Downey and Hirschfeldt [7, p 232, 233]. From this point
on I will refer to this notion of randomness as 1-randomness. Note that this is not the
same as the previously introduced Kolmogorov k-randomness.

One interesting feature of Martin-Löf randomness is that there exists a universal Martin-
Löf test. This is a test {Un}n∈ω such that an infinite binary string X is Martin-Löf random
if and only if X ∉⋂

n Un . To define such a universal test, consider a computable enumer-
ation of all Martin-Löf tests {V m

i }m,i∈ω where {V m
i }i∈ω denotes the m-th test. By defining

Un =⋃
k V k

k+n+1 we obtain a universal test since measures are countably additive. [20]
To motivate Martin-Löf’s idea to consider statistical tests as measure 0 sets let us con-

sider the following example which is due to Downey and Hirschfeldt [7, p 231]:

Example 4. Consider the subset C ⊆ 2ω of all infinite binary sequences X such that for all
k ∈N we have that X (2k ) = 0. These infinite binary strings are clearly not random. If we
are given an infinite binary string Y we can test its membership C within a confidence
level of 2−n by checking if for all k < n we have Y (2k ) = 0. If this is the case we have a
reason to believe that Y ∈ C and if this is not the case we are sure that Y ∉ C . We might
of course be wrong but the measure of the set of all the infinite binary strings that can
be elements of C according to our test is 2−n . As a result we can be more and more
confident that an infinite binary sequence is indeed in C if we increase n. If we define
Un = {X ∈ 2ω : ∀k < n X (2k ) = 0} then {Un}n indeed defines a Martin-Löf test and only
the elements of C , which are clearly not random, fail this test.

You can think of a set Un which is part of a Martin-Löf test as all the infinite binary
strings that fail some computably enumerable statistical test with confidence 2−n . We
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want to be sure that only the infinite binary strings that actually fail the statistical test
are elements of the Martin-Löf test. Therefore we want to have n go to infinity. This is
done in a mathematically clean way by taking the intersection of all the {Un}n∈N. This im-
proves on the statistical approach of the previous section because we are not considering
only one statistical property (normality) but in fact all effective statistical properties.

3.3 Paradigm 3: the unpredictability paradigm

The final way to define randomness we will consider, and perhaps the most intu-
itive, is that a random infinite binary string should be unpredictable. In common lan-
guage, randomness is sometimes even used as a synonym for unpredictability. An event
is called random if there is no way to predict its outcome. Similarly, an infinite binary
string X = x0, x1, x2, x3, . . . should be random if there is no way to predict one of its bits
given any other bits. Another way to think about this is that one should not be able to
win unlimited amounts of money when betting on the digits of a random infinite string.
Below this intuition is formalised using martingales.

The unpredictability paradigm defines randomness by stating that an infinite binary
string X ∈ 2ω is not random if a martingale from some specific class of martingales suc-
ceeds on X . Of course, when considering all martingales, there will be a martingale
succeeding on every infinite binary string and there will be no random sets left which
is why we have to restrict the class of all martingales. Schnorr [26] therefore proposed
considering only c.e. martingales. It was proven by Schnorr [26] that an infinite binary
string X ∈ 2ω is 1-random if and only if there is no c.e. martingale succeeding on it. A c.e.
martingale is a martingale which is c.e. in the sense of paragraph 2.3.1.

Example 5. As an example of how we can use martingales to classify an infinite binary
string as not 1-random, let us consider an infinite binary string X that has twice as many
1’s as 0s. With this we mean that limn→∞

∑
i<n X (i )

n = 2
3 . Such a string does not satisfy the

law of large number and therefore we expect it to not be random. To illustrate why this
string is not random using the unpredictability paradigm, let us define a betting strategy
where we, at every stage of the game, bet 70% of our capital on the next digit being a 1
and the rest on the next digit being a 0. For every finite binary string σ the value of the
martingale corresponding to our betting strategy is given by d(σ) = 0.3σ0 0.7σ1 2|σ| where
σ0 and σ1 denote the number of zeroes and ones in σ respectively. Since X contains
twice as many ones as zeroes we then have that for large enough n,

d(X � n) = (0.7 ·0.7 ·0.3)
n
3 2n = 1.176

n
3 2n .

Therefore limn→∞ d(X � n) = ∞ which means that the martingale succeeds on X and
that X is therefore not random.

3.4 Other notions of randomness

While the notion of 1-randomness is appealing because the three main paradigms
agree on it, there are many other possible definitions of randomness. Here we will review
some of those.
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As the name implies, 1-randomness can be extended to n-randomness for any n ∈
Z>0 which uses generalisations of c.e. sets in its definition. However, if an infinite binary
is not n-random then it is also not 1-random. Therefore it is only worth looking at the n-
randomness of quantum mechanics after its 1-randomness has been established. Also,
one could argue that 1-randomness is "random enough" and that it is not worth looking
at stronger degrees of randomness. For these reasons, we will not go into n-randomness
here but a full explanation can be found in chapter 6.8 of Algorithmic Randomness and
Complexity [7].

Proving the randomness of quantum mechanics for a weaker randomness notion
than 1-randomness would still be very interesting and worthwhile. Therefore, we will
examine some of these weaker notions. The first weaker randomness definition we will
consider, known as Schnorr randomness, uses the measure-theoretic paradigm in its
definition. Schnorr randomness defines a modification of the Martin-Löf test, a Schnorr
test, by requiring that µ(Un) = 2−n instead of µ(Un) ≤ 2−n . We then get the following
definition:

Definition 5. (Schnorr [28]) A collection A ⊆ 2ω is called Schnorr null if there exists a
uniformly c.e. sequence {Un} with µ(Un) = 2−n such that A ⊆ ⋂

n Un . An infinite binary
sequence X is Schnorr random if {X } is not Schnorr null.

Schnorr randomness can also be defined using the unpredictability paradigm as was
done by Schnorr [28]. This uses the concept of an order. This is a non-decreasing, un-
bounded function h : N→ N. We say a martingale d h-succeeds on an infinite binary
string X if

limsup
n→∞

d(X � n)

h(n)
=∞.

An infinite binary string X is Schnorr random if there exist a computable martingale d
and a computable order h such that d h-succeeds on X .

More generally, one convenient way to define other notions of randomness is by us-
ing the unpredictability paradigm and varying the complexity of the martingales that
are considered. If there is no computable martingale that succeeds on an infinite binary
string X then we call X computably random. We call X O(T (n))-random if there is no
martingale computable in O(T (n))-time that succeeds on X . By varying the complex-
ity of the martingales we obtain a spectrum of randomness degrees. It is interesting to
investigate where quantum generated randomness fits in this spectrum.

4 Algorithmic randomness of the results of quantum
mechanics

Suppose we consider an electron with its spin in the state |+〉 = 1p
2

(|0〉+|1〉) and sup-

pose we measure σz = |0〉〈0| − |1〉〈1|. Most physicists would tell us that we would ran-
domly measure the spin to either be in the |0〉 or in the |1〉 direction. But if we repeat this
procedure and generate a binary string by writing down in which direction we measure
the particle, where will the randomness of this string then fit in the spectrum of ran-
domness definitions from algorithmic randomness? Of course, algorithmic randomness
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is concerned with infinite binary strings. Let us therefore consider a situation where we
keep measuring these kinds of electrons and assign a 0 to a measurement of −1 (parti-
cle in the |1〉 state) and a 1 to a measurement of +1 (particle in the |0〉 state) to obtain
an infinite binary string. If one does not want to work with this infinite binary string
because only a finite number of measurements is possible, one can still wonder if the
Kolmogorov complexity of a string of length N generated in this way is large or not.

According to the Born rule, the probability of measuring a 0 in the setting described
above equals 1

2 . If one accepts these probabilities and assumes that they are the same
and independent for each measurement, then one obtains that the infinite binary string
is 1-random with probability 1. This is because, as a consequence of the existence of
a universal Martil-Löf test, the set of infinite binary strings that are not 1-random has
measure 0. If one considers the Kolmogorov complexity of an N bit string then the prob-
ability that this is Kolmogorov random approaches 1 as N approaches infinity because
almost all strings have high Kolmogorov complexity [3].

However, one can also interpret the Born rule as giving the relative frequency of the
possible measurement outcomes and not the probabilities, as this relative frequency is
all that is experimentally measurable. Then the Born rule only describes the fraction
of the measurements that give a certain outcome if one repeats the same measurement
a large number of times. This interpretation of the Born rule allows the outcomes to be
described by a pseudo-random number generator provided it gives the correct statistics.
If one allows this as possible or if one wants to avoid the use of the Born rule altogether,
one might wonder if there are other methods to prove the randomness of the string de-
scribed above. Below we will look at some literature in that direction. We will see that a
large part of the literature tries to derive randomness purely from entanglement and the
property of no signalling. This property states that it should not be possible to devise a
method to communicate faster than light.

As we have seen in the previous section, there are many different degrees of ran-
domness. For different purposes, different definitions of randomness can be applicable.
While 1-randomness has the nice property of being defined using the three paradigms,
the does not mean it is the right randomness notion for quantum mechanics. For this
reason we will also look at results from the literature attempting to show that quantum
mechanics is random for weaker randomness definitions.

4.1 No go theorems in quantum mechanics

The question if there can be hidden variables reproducing the outcomes of quantum
mechanics has been around for a long time. In order to answer this question several so
called no-go theorems where proven. These no go theorems exclude some class of func-
tions from reproducing the results of quantum mechanics. Here we will briefly review
the most important of these no go theorems. A far more exhaustive explanation of these
theorems can be found in Landsman [13, ch 6].
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4.1.1 The Kochen Specker theorem

The first no go theorem we will look at is the Kochen Specker theorem [12] The KS
theorem looks at a situation where we presume the existence of additional hidden states
x ∈ X . These states determine the outcome of the measurement of an observable. This
is described by functions Vx : Hn(C) → R. Here Hn(C) denotes the set of all self adjoint
complex n ×n matrices (operators on a finite dimensional Hilbert space). We have al-
ready made our first limitation on the class of hidden variable functions we are consid-
ering by having them only depend on the observable itself and not on other observables
being co measured. This class of functions is called non-contextual.

The Kochen Specker theorem is concerned with non-contextual quasi-linear hid-
den variables. These non-contextual quasi-linear hidden variables are functions V :
Hn(C) →Rwith the following properties:

1. V (a)2 =V (a2) that is, V is dispersion-free

2. V (I ) 6= 0, where I is the unit. V is normalised

3. For all a,b ∈ Hn(C ) that commute (i.e. ab = ba) and for all s, t ∈R we have V (sa+
tb) = sV (a)+ tV (b). This property is called quasi-linearity.

The KS theorem states that if the Hilbert space dimension is larger than 2, no non-
contextual quasi-linear hidden variables exist. The proof of this can for example be
found in [13].

The Kochen Specker theorem is often formulated in another equivalent way. For this
we look at P1(H ), the set of all one-dimensional projectors on H . Recall that one di-
mensional projectors are of the form |ψ〉〈ψ| for some ψ ∈ H . This equivalent formu-
lation looks at functions V : P (H ) → {0,1} with the property that if M ⊆ P1(H ) is a
measurement, that is

∑
P∈M P = I and the vectors |ψ〉 generating these projectors are

perpendicular to each other, we have that
∑

P∈M V (P ) = 1. You can think about this set-
ting in the following way: a projector operator |ψ〉〈ψ| as asking the system if it is in state
|ψ〉. The map V will predict if the particle will answer yes to this question, in this case V
gives 1, or no in which case V gives 1. For each measurement the values V (P ) must sum
to 1 because the particle can be in only one state at the same time and therefore only par-
allel to one of the |ψ〉 since those are perpendicular to each other. In this formulation,
measurement non-contextuality implies as that V (P ) must be the same regardless of the
other projector operators in the measurement with P . The Kochen Specker theorem now
states that if the Hilbert space dimensions is greater that 2, maps V : P1(H ) → {0,1} that
are measurement non-contextual do not exist. This can be interpreted as the impossi-
bility to predict along which basis vector of some orthonormal basis the system will be
found after measurement.

4.1.2 The free will theorem

The free will theorem is a no-go theorem which replaces the non-contextuality as-
sumption of the Kochen Specker theorem by certain locality assumptions. The theorem
considers a situation with physicists, Alice and Bob, who are both measuring one half of
an entangled state ψ = 1p

2
(|0A0B 〉+ |1A1B 〉+ |2A2B 〉). We consider two entangled three
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dimensional qutrits instead of the simpler qubits because the Kochen Specker theorem
needs a Hilbert space dimension of at least 3 to hold. Alice and Bob both choose a ba-
sis to measure in, which we denote by x and y respectively. The free will theorem now
modifies the assumptions of the Kochen Specker theorem to the following four:

1. Determinism states that there is a state space S and functions which describes the
setting and the outcome of the experiment according to the following functions:

A : S → X A ;

B : S → XB ;

Z : S → XZ ;

F : S → XG ;

G : S → XF .

Here X A and XB are the sets of Alice’s and Bob’s measurement inputs, which in
this case are the bases they can measure in. XF and XG are the output spaces.
The function Z describes possible hidden variables. The first three functions then
describe the outcome of the experiment according to the following functions:

F̂ : X A ×XB ×XZ → XF ;

Ĝ : X A ×XB ×XZ → XG ,

which give the values of F and G according to F (s) = F̂ (A(s),B(s), Z (s)) and G(s) =
Ĝ(A(s),B(s), Z (s)).

2. Freedom means that the functions A, B and Z are independent. This means that
for every triple (x, y, z) ∈ X A×XB×XZ there is some s ∈ S such that A(s) = x, B(s) = y
and Z (x) = z. This requirement allows Alice and Bob to freely choose their mea-
surement inputs and tells us that the hidden variable being used to describe the
outputs of a certain measurement run does not depend on the measurement set-
tings being used in that run.

3. Nature models the quantum mechanical predictions for the experiment. The sys-
tem will be measured in only one of the basis vectors therefore XF = XG = {1,2,3}.
The values of F and G denote in along which vector of the basis that is being mea-
sured in the system is found i.e. the first, second or third basis vector. Furthermore,
if Alice or Bob changes only the sign of some of the basis vector this does not af-
fect the outcome. This is because a projection operator does not change with a
change of sign of the vector. Lastly, nature states that if Alice and Bob measure in
the same basis, they will get the same result. This is because of the entangled state
the system is in.

4. Locality is the assumption that replaces non-contextuality. It states that the out-
come of Alice’s experiment should be independent of Bob’s measurement setting
and vice versa. This can be described mathematically with a slight abuse of nota-
tion as F (s) = F̂ (A(s), Z (s)) and G(s) = Ĝ(B(s), Z (s)).

The Free will theorem now states that determinism, freedom, nature, and locality are
contradictory. This means that at least one of them must be false. For the proof I again
refer to Landsman [13].
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Figure 1: A schematic drawing of the situation being considered in Bell inequalities.

4.1.3 Bell inequalities

Finally, we discuss Bell inequalities, which are also exclude the existence of hidden
variables in quantum mechanics. But Bell inequalities do more, they provide a criterion
on hidden variables independent from quantum theory. A far more thorough explana-
tion of Bell inequalities than will be given below can be found in [24].

The setting of Bell inequalities is a situation with two agents, Alice and Bob, who are
at different locations. Both have on them a measurement device which is treated as a
black box. Alice’s box takes an input x ∈ X and gives an output a ∈ A and Bob’s box takes
an input y ∈ Y and then outputs b ∈ B . The situation is displayed in figure 1. We can
look at the probabilities P (a,b|x, y), the probability that the outputs of the two boxes are
a and b given that the inputs where x and y . Without making any assumptions we can
write

P (a,b|x, y) =
∫
ρ(λ|x, y)P (a,b|x, y,λ)dλ.

Here λmathematically describes the process we use to describe the outcomes of the box
and ρ is some positive function which integrates to 1. We assume that for each run of the
experiment λ cannot use information about the inputs (x, y) used in that round. This is
called measurement independence and is mathematically described by ρ(λ|x, y) = ρ(λ).
We call the boxes local if P (a,b|x, y,λ) = P (a|x,λ)P (b|y,λ). This means that the output of
box A can only depend on the input of box A and on λ but, importantly, cannot depend
on the input and output of box B . We say the boxes are deterministic if the probabilities
P (a,b|x, y,λ) are either zero or one. If we want to prevent the boxes from being able to
signal we need that P (a|x, y,λ) = P (a|x,λ) for all a and that P (b|x, y,λ) = P (b|y,λ) for all
b.

Let us now look at the simplest non trivial case, where X = Y = A = B = {0,1}. Under
the constraints of measurement independence, locality and non-signalling described
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above, one can derive the so called CHSH inequality, named after Clauser, Horne, Shi-
mony and Holt [5]. This inequality is given by

I = E00 +E01 +E10 −E11 ≤ 2

where Ex y = P (a = b|x, y) − P (a 6= b|x, y). Ex y is often called the correlation coeffi-
cient. Under the assumption of measurement independence, all local non-signalling
boxes will satisfy this inequality. In particular all deterministic boxes satisfy this inequal-
ity, since all non-local deterministic boxes can signal. However, the mathematical for-
malism of quantum theory predicts an upper bound of 2

p
2 [4], which is bigger than

2. Therefore, quantum measurements can in principle violate the CHSH inequality. In
fact, Gisin [9] proved that if Alice and Bob are performing measurements on an entan-
gled quantum systems of the form |ψ〉 =∑d−1

k=0 ck |k〉 they will then necessarily violate the
CHSH inequality.

Example 6. As an example of how quantum theory predicts measurements that violate
the CHSH inequality, let us consider the following state of two entangled qubits

|ψ〉 = |0〉⊗ |1〉− |1〉⊗ |0〉.
Suppose that Alice measures in an orthonormal basis including ~x and Bob in an or-
thonormal basis including~y . We then have

E~x~y = P
(
(a,b) = (1,1)|~x,~y

)
+P

(
(a,b) = (0,0)|~x,~y

)
−P

(
(a,b) = (1,0)|~x,~y

)
−P

(
(a,b) = (0,1)|~x,~y

)
We can write this as

E~x~y = P (a = 1|~x,~y)
(
P (b = 1|~x,~y , a = 1)−P (b = 0|~x,~y , a = 1)

)
+P (a = 0|~x,~y)

(
P (b = 0|~x,~y , a = 0)−P (b = 1|~x,~y , a = 0)

)
We have that

P (b = 1|~x,~y , a = 1)−P (b = 0|~x,~y , a = 1) =−~x~y
and a similar expression for a = 0. Together with

P (a = 1|~x,~y)+P (a = 0|~x,~y) = 1

we end up at E~x~y =−~x~y
Now choosing ~x1 = (

1
0

)
, ~x2 = (

0
1

)
, ~y1 =

(
−p1/2
−p1/2

)
, and ~y2 =

(
−p1/2p

1/2

)
gives us I = 2

p
2

which violates the CHSH inequality.

4.2 Previous results about the algorithmic randomness of quan-
tum mechanics

In this section we will look at previous results concerning the algorithmic random-
ness of quantum measurement outcomes. Unfortunately, there is no definite proof of
the algorithmic randomness of quantum measurement outcomes yet. However, there
are results in the right direction. We will look at these and investigate what they do tell
us.
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4.2.1 Senno’s thesis

Perhaps one of the most promising results so far is Senno’s thesis [29], in which he
proves that faster than light communication is possible if we assume quantum mechan-
ics to be computable and non-local. While interesting, this result is very weak result.

Senno starts out from a Bell like scenario with two observers, Alice and Bob, who were
once together but then flew away in their spaceships in opposite directions. He supposes
that both have access to a box. Alice’s box takes inputs in X and then gives an output
in A whereas Bob’s box has inputs in Y and outputs in B . Senno only considers the
simplest non trivial case, namely A = B = X = Y = {0,1}. He then assumes that there are
computable functions A : X ×Y ×N→ A and B : X ×Y ×N→ A that give the output of the
n-th round of Alice’s and Bob’s box respectively. He also assumes that the boxes are non-
local, which means that there are are infinitely many n for which there is a y such that
B(0, y,n) 6= B(1, y,n) and that there are infinitely many n for which there is an x such
that A (x,0,n) 6= A (x,1,n). This non-locality is required because no local theory can
reproduce the results of quantum mechanics as we have seen in the previous section. Of
course, if Alice and Bob knew how to compute A and B they could signal. However, they
do not know how to do that yet.

Senno gives a protocol with which Alice and Bob can learn how to compute these
functions. The protocol works by O(T (n))-randomly switching between learning rounds
and signalling rounds. Here T (n) is such that A and B are computable in O(T (n)) time.
In the learning rounds, Alice and Bob give inputs they agreed upon before they left each
other to improve their guesses of A and B. In the signalling rounds they try to signal
part of their message using their guesses of A and B. The protocol is too complicated
to explain here fully, but it results in Alice and Bob being able to reliably signal.

The first issue that appears, as also noted by Senno himself, is that the proof assumes
a time computational complexity bound on the computable function that is supposed
to compute all the box outputs. The method described by Senno to achieve faster than
light communication no longer works if the time computational complexity is higher
than some fixed bound that two persons attempting to signal to each other agreed on.
It must be noted that there is no limit on this bound which the persons attempting to
signal agree on. However, as long as the time computational complexity of the function
describing quantum mechanics is unknown, they will not be able to tell in advance if
their bound is good enough.

A second issue is that non-computable functions do not necessarily output 1-random
(or computationally random) sequences. We will illustrate this using an example I found
in Calude and Svozil [2]:

Example 7. Let T1,T2,T3, . . . be an enumeration of all Turing machines. Let us now
define an infinite binary sequence H = h1h2h3 . . . where hi = 1 if Turing machine Ti

halts on input i and hi = 0 if it does not. Since the halting problem is uncomputable,
so will be H . However, we can define a martingale that succeeds on H . To do this,
consider a infinite sequence U1,U2,U3, . . . of Turing machines known to halt (for ex-
ample the Turing machines implementing addition by a fixed constant). Now define
a martingale d by letting d be constant unless Ti =U j for some j , in which case we set
d(h1 . . .hi−11) = 2d(h1 . . .hi−1) and d(h1 . . .hi−10) = 0. In other words, we split our bets

21



to make sure we neither win nor lose money, unless we are sure that the next Turing
machine will halt, in which case we bet all our money that it will halt. Since there are
infinitely many Turing machines of which we are sure they will halt, we can make an
arbitrary amount of money using this strategy, so H cannot be 1-random. Effectively,
since H is essentially the halting problem which is c.e. and therefore contains an infinite
computable subset, it is not 1-random.

Another example of a string that is not computable but also not 1-random is a diluted
random string. If we take a 1-random string and insert a zero at every even location it
will no longer be 1-random. However, it will also not be computable as the odd digits
form a 1-random string.

However, one could consider the property of not being the output of a computable
function a very weak notion of randomness. Senno’s proof is not a proof of 1-randomness,
but it is definitely a step in the right direction.

4.2.2 Yurtsever’s article

Another interesting paper regarding our question is a paper by Yurtsever [32]. In his
article Yurtsever claims to prove that a bit string generated by measurements on a certain
quantum mechanical system is Kolmogorov random with a probability approaching 1 as
the length of the string approaches infinity. However, the proof that is given in the article
is lacking in several points. I will first give a brief overview of Yurtsever’s sketch of proof,
and then point out where it is lacking.

Yurtsever considers entangled spin- 1
2 particles with a quantum state

∣∣ψ〉
given by∣∣ψ〉=α |↑1〉 |↓2〉+β |↓1〉 |↑2〉 ,

where |α|2 +|β|2 = 1.
Yurtsever considers the general case, and uses the notion of p-compressability to do

so. This notion is too involved to go into here but it reduces to the plain Kolmogorov
complexity in the case where α = −β = 1p

2
. For this reason I will only discuss the case

where this holds.
Yurtsever considers a stream of such particles being produced by a (stationary) source.

Of each pair in the stream, the two particles fly off in opposite directions and are then
measured with respect to the up-down basis by Alice or Bob. Alice and Bob are both
generating a binary string from their measurements. They have agreed that when Alice
measures spin up she adds a 1 to her string, and otherwise a 0. Bob does the oppo-
site: when he measures spin up he adds a 0 to his string, and otherwise a 1. Because of
the entanglement, when Bob measures spin up he is sure that Alice will measure spin
down, and vice versa. A consequence of this is that Alice and Bob will both generate the
same binary string. What Yurtsever tries to do is use the entanglement together with the
assumption that quantum mechanics is not random to create a faster than light com-
munication channel between Alice and Bob.

To construct this communication channel, Yurtsever considers the probability pN

that an N -bit segment of Bob’s or Alice’s string is Kolmogorov random. In order to trans-
fer bits of information from Bob to Alice, Alice and Bob agree to interpret an N -bit seg-
ment as a 1 if it is Kolmogorov random and as a 0 if it is not. In order to send Alice a 1,
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Yurtsever says that Bob should do nothing and keep measuring his stream of particles
with respect to the up-down basis. This will result in a 1 being sent with a probability
pN . To send a 0, Bob should "scramble" his string: He should use some method (Yurt-
sever suggests a roulette wheel) to generate a random "template" sequence of length T
larger than N . This template should almost surely be Kolmogorov random. Bob should
then prepare a sequence of N measurement directions using this template sequence as a
random number generator. He then performs his next N measurements along the bases
associated with the directions from the random sequence. Yurtsever now claims that
the string measured by Bob using the "scrambling" process is almost surely Kolmogorov
random and that Alice’s string, which is now different from Bob’s, will also be almost
surely Kolmogorov random.

This last claim is the point of the argument which is most in need of clarification. It
is not obvious, and possibly not even true, that Bob’s string will (almost surely) be Kol-
mogorov random after the scrambling, especially since it was just assumed that quan-
tum measurements will in general not give a Kolmogorov random string. It is also un-
clear how this scrambling would affect Alice’s string, as it will then be different from
Bob’s. This becomes even stranger when you consider that quantum mechanics is non-
signalling and that thus when Bob changes his measuring basis it will not affect the
statistics of Alice’s experiment. This is also noted by Yurtsever but he does not explain
how this is circumvented by considering the complexity of the measured strings. In the
article, Yurtsever refers to a manuscript in preparation which was supposed to provide a
more detailed rigorous analysis. Unfortunately, this manuscript has never appeared.

After this insufficiently supported part of his sketch of proof, Yurtsever continues by
stating that Alice could use an approximation of Chaitin’s Ω to determine if her N -bit
string segment is Kolmogorov random or not. Because Alice uses an approximation of
Ω there is a chance that she incorrectly characterises a non Kolmogorov random string
segment as Kolmogorov random, but according to Yurtsever this does not disrupt the
possibility of communication. If Bob scrambling his measurements does change the
probability that Alice receives a Kolmogorov random N -bit string segment, then this
makes up a (noisy) communication channel. Yurtsever then proceeds by stating that
the principles of special relativity forbid such a channel and that therefore any N -bit
string segment must almost surely be Kolmogorov random.

To conclude, Yurtsever approaches the problem from a different angle by considering
the probability that a finite bit segment is Kolmogorov random. Unfortunately, he uses
claims that are insufficiently supported by proofs to derive his result. The manuscript in
preparation he uses as a reference to support his claims has not appeared. Consequently,
his paper does not answer our question, although it could serve as a starting point for
future attempts at proving quantum mechanics to be random.

4.2.3 Calude & Svozil

Another article which claims to prove that the results of quantum measurements are
random is an article by Calude and Svozil [2]. In the article, the authors consider a quan-
tum experiment which at each stage generates a 1 or a 0 with equal probability. This is
repeated to obtain an infinite binary sequence X = x1x2x3 . . . . The randomness of this
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string is studied.
First, they apply the second formulation of the Kochen Specker theorem above. They

reason that, if the Hilbert space dimension is greater that three, there is no non-contextual
way to predict in which one dimensional subspace a system will be found. Therefore, if
a bit string is generated by measurement of a quantum system the bit string cannot be
the output of a non-contextual function since if it where it would violate the KS theorem.
They then conclude that an infinite binary string generated by quantum measurements
cannot be the output of a non-contextual computable function.

One issue with their proof is that it only considers non-contextual deterministic com-
putations. It would still be possible for quantum mechanics to be the output of a con-
textual computation. The authors do not go into detail about this possibility. One way
around this would be to use the free will theorem which drops the non-contextuality as-
sumption. However, it introduces other assumptions which can be dropped. For exam-
ple, the free will theorem does not exclude a non-local deterministic theory from repli-
cating the results of quantum mechanics.

Furthermore, the argument from Calude and Svozil suffers from the same problem as
Senno’s argument: non-computability does not imply randomness. Calude and Svozil
admit this and give the example that was also used above to show this fact.

4.2.4 Rogers

The last theoretical contribution on the randomness of quantum measurements we
will consider is a paper by C. Rogers [23]. This paper is different from the papers we
looked at above in that it does not try to prove the randomness of quantum measure-
ment outcomes. Instead, Rogers argues that it is impossible to prove the randomness of
quantum mechanics. She states that it is not possible to prove the Kolmogorov random-
ness of infinitely many finite binary strings. We have already seen this fact in Barzdin’s
theorem [1]. Rogers gives a proof very similar to Barzdin’s, but does not cite him. She
then argues that because of this it is impossible to prove the randomness of quantum
measurements. She notes that this does not mean that measurements in quantum the-
ory are not random but she does suggest that this might favour interpretations of quan-
tum mechanics that do not claim measurement outcomes are random over interpreta-
tions that do such as the "textbook" interpretation.

While it is true that it is impossible to prove the randomness of infinitely many finite
binary strings, that does not mean we should give up. Results about the probability to
obtain a Kolmogorov random string, like Yurtsever tried to give, are not impossible. Nei-
ther are results about the probability to obtain a 1-random string. We already saw that
this probability is 1 in the case were we interpret the Born rule as giving probabilities.
However, results like these still have to be proven if we interpret the Born rule as only
describing the statistics of the measurement outcomes.

To conclude, Rogers is right in her claim that we cannot prove the randomness of in-
finitely many finite bit strings generated by some quantum measurement. However, this
does not mean it is also impossible to derive meaningful results about the randomness
of strings generated by quantum measurements. Therefore, interpretations of quantum
mechanics that do no make any statements about randomness should not be favoured
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over interpretations that do.

5 Randomness of quantum random number genera-
tors

5.1 ID quantique’s quantis

In the previous section we saw that the literature does not prove quantum mechanics
to be random from its entanglement and non-signalling properties. However, in prac-
tice the supposed randomness of quantum mechanics is still used. In this section we
will investigate its use in quantum random number generators. We will also consider
justifications for the randomness of these generators.

Random numbers are of vital importance for many applications, such as cryptogra-
phy. While pseudo-random number generators work for many of such purposes, there
are also many situations in which these do not suffice, as they can lead to security breaches.
For this reason it is important to look at other methods of generating random numbers.
One company with the name ID quantique (IDQ) is selling random number generators
based on quantum mechanics. These provide random numbers used in many appli-
cations including the Swiss national lottery. But how do they know that the quantum
random numbers their machines generate are actually random? That is the question we
will investigate below.

ID quantique has published a white paper [22] in which they justify their claim that
their quantum random number generator is superior to software based pseudo random
number generators and generators based on classical physics. In this paper they start
out claiming that an infinite binary sequence is random if there is no finite computer
program producing the sequence. This definition makes no sense from an algorithmic
randomness perspective. Suppose we have an infinite binary string whose even digits
are always a 0 and whose odd digits are not computable. According to quantis’ definition
this is a random sequence but is it easy to see that there is a betting strategy succeeding
on this string. They then discard this definition as useless because it is impossible to
produce and process infinite sequences. They also discard the notion of Kolmogorov
randomness (which they formulate in their own way) because it is formally impossible
to check the randomness of a finite string (they are probably referring to the immunity
of the set of Kolmogorov random finite strings here). To avoid these difficulties, ID quan-
tique turns to "practical" definitions of randomness. They give two different definitions
of this, one by Knuth[11] and one by Schneier[25]. Knuth’s view is that a sequence of ran-
dom numbers is a sequence of independent numbers with a specified distribution and
a specified probability of falling into any given range of values. According to Schneier,
a sequence of random number should have the same statistical properties as random
bits, be unpredictable, and it should be impossible to reproduce such a sequence. IDQ
emphasises that the numbers in a random sequence should not be correlated. Knowing
any number of the digits should not help in predicting any other digit. IDQ states that
when they mention random numbers they mean numbers satisfying these "practical"
definitions of randomness.
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IDQ proceeds by reviewing the randomness of software based random number gen-
erators or pseudo-random number generators. These are algorithms which, when fed
with an initial value (called a seed), produce a sequence of numbers. The idea with
pseudo-random number generators is that this resulting sequence appears to be ran-
dom, which gives it the name pseudo-random. Of course, full knowledge of the seed and
the algorithm is all we need to know the output string, so it is definitely not 1-random.
Nevertheless, pseudo-random number generators are designed to imitate randomness
as closely as possible. That is, they pass most statistical tests. However there will always
be a test at which a pseudo-random number generator fails.

IDQ then turns to their quantum random number generator, the quantis. They claim
that this machine does, in contrast to software-based (i.e. algorithmic) random number
generators, output truly random numbers. They justify this claim in two ways.

First, they state that quantis’ output must be random because it is based quantum
on mechanics, which they claim is intrinsically random. As this claim is exactly what we
are investigating, this does not help.

Second, they state that quantis passes all statistical tests but they give no justification
to why this would be the case. Presumably, they only mean that quantis has passed all
statistical tests it has been exposed to so far. Admittedly, it has passed all the tests it was
exposed to by the Swiss Federal Bureau of Metrology (METAS) and other institutions.
However it is not impossible that it will fail some other statistical test. Additionally, it is
also possible to design a software based random number generator passing all the test
quantis has passed. Therefore this is no proof of the randomness of quantis.

5.2 Random numbers certified by Bell’s theorem

One article which proposes an experimental way to test the randomness of an quan-
tum random number generator is ’Random number certified by Bell’s theorem’ by Piro-
nio et al. [21]. In the article, the authors state that an experiment violating a Bell inequal-
ity guarantees that the outcomes where not predetermined.

The authors look at the simplest case, the case of the CHSH inequality which we have
looked at above. Recall that this inequality holds for all local theories and that all deter-
ministic theories that are non-local could in principle allow for signalling. The inequality
is given by

I = E00 +E01 +E10 −E11 ≤ 2

where Ex y = P (a = b|x, y)−P (a 6= b|x, y). The authors suggest performing an experiment
to find the values of these Ex,y . They suggest to generate the the measurement inputs
(x, y) using by an independent and identically distributed (i.i.d.) probability distribution
P (x, y). One can then approximate Ex y as (N (a = b|x, y)−N (a 6= b|x, y))/P (x, y). Here
N (a = b|x, y) is the amount of times that the outputs a and b where equal and the inputs
where x and y . N (a 6= b|x, y) is defined analogously.

Let us look at a situation with two quantum random number generators which each
generate their random numbers from an binary input and by measuring one part of an
entangled system. We can calculate the approximations to Ex,y . If these violate a Bell
inequality, then the two quantum random number generators cannot be generated by a
local deterministic process. Violations of the Bell inequality have been observed (see for
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example [10]). Therefore, one can conclude that no local deterministic theory can fully
describe quantum mechanics.

The authors state that while the string itself might not pass one of the usual statistical
tests, it still contains randomness that can be extracted by a randomness extractor to
generate randomness. These extractors are pieces of software that make a string of bits
appear more random. However, one issue is that randomness extractors are ultimately
algorithms, fully deterministic and therefore cannot produce a 1-random string from a
non 1-random string. For this reason the described method cannot be reliably used to
generate a 1-random string.

Another issue one could have with this method is its circular nature. To generate ran-
dom numbers we need an i.i.d. probability distribution to choose our inputs. This is also
what the authors say. According to them their method is a randomness amplification
method that can be used to generate more randomness from some initial randomness.
However, one could argue that if randomness is fundamentally unavailable this method
cannot be used to generate randomness.

6 Conclusion

We have seen that if we interpret the Born rule it a naive way and believe that it tells
us the probabilities for each individual measurement, there will definitely be quantum
measurements that, when repeated, generate random strings. However, if we do not
have this naive approach to the Born rule, but instead see it as description of the statis-
tics of the measurement outcomes, or refuse to use it altogether, it is not so easy to show
that these measurements exist. We also looked at proving the existence of these mea-
surements only from the entanglement and the non-signalling properties of quantum
theory. Finally, we looked at an experimental method to support the randomness of
some quantum measurements.

Senno proved that if there were a deterministic and non-signalling quantum the-
ory the deterministic function giving the predictions would have to be non-computable
[29]. This means that every infinite binary sequence generated by repeatedly perform-
ing some quantum measurement cannot be the output of a computable function. While
this does not imply randomness according to the definitions of randomness we looked
at, it can be seen as a proof of a very weak form of randomness.

This result by Senno is supported by Calude and Svozil [2]. Additionally, experimen-
tal observations of violations of Bell inequalities [10] support the idea that the outcome
of some quantum measurements definitely cannot be described by a deterministic pro-
cess. However, we also saw that not being the result of a deterministic function is not
enough to be random in the sense of any of the randomness definitions given by algo-
rithmic randomness.

An attempt at proving a stronger result about the randomness of quantum measure-
ments was made by Yurtsever. He tried to prove that a finite binary string generated by
measurements on a qubit entangled with another qubit is Kolmogorov random with a
probability approaching 1 as the length of the string approaches infinity. Unfortunately,
he made two insufficiently supported claims which render his proof incomplete.
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All in all, we can conclude that there are quantum measurements that cannot be the
result of a deterministic process. We even have a method to experimentally check this
for some setup. However, this is not enough to guarantee randomness in an algorithmic
sense. More work is needed to show if there are quantum measurements that can be
used to generate algorithmically random sequences.
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