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Abstract

This is a thorough exposition [initially motivated by a course on matrix Lie groups that I am teaching, but
things got a bit out of hand] of many proofs for the Baker-Campbell-Hausdorff (BCH) theorem according to
which log(eXeY ), where X,Y are non-commuting variables, is a Lie series, and of several for Dynkin’s explicit
formula for this Lie series. We begin with analytic approaches, extensively discussing the derivative of the
exponential function in a Banach algebra, and proving the BCH theorem and Dynkin’s formula for small enough
X,Y . We then turn to purely algebraic approaches in the framework of formal non-commutative power and
Lie series over any field of characteristic zero, giving Eichler’s elegant proof of BCH and the classical proof of
BCHD based on the criteria of Friedrichs and Dynkin-Specht-Wever, for which we give a slick proof. Apart from
the standard Dynkin expansion of the BCH series we prove several others, increasingly combinatorial, due to
Reinsch, BCH, Dynkin (not the well-known one!) and Goldberg.

None of the results is new, but I make a point of giving a complete exposition of a sadly neglected pioneering
paper by Dynkin (1949), and I have tried hard to make the proofs technically and conceptually accessible.
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1 Introduction

Let A be an associative algebra over a field F and X ∈ A. In order to make sense of eX ≡ exp(X) =
∑∞
n=0

Xn

n! ,
we surely want F to have characteristic zero and A to be unital (so that we can put X0 = 1). The question of
convergence of the series can be studied in a setting of formal power series or of Banach algebras, and we will
do this later. For now we ignore all questions of convergence.

If X,Y ∈ A commute, then the following well known computation holds:

eX+Y =

∞∑
n=0

(X + Y )n

n!
=

∞∑
n=0

n∑
k=0

(n
k

) XkY n−k

n!
=

∞∑
n=0

n∑
k=0

XkY n−k

k! (n− k)!
=

∞∑
r,s=0

XrY s

r! s!
= eXeY . (1.1)

(For a partial converse see Lemma D.1.) If XY 6= Y X then the step (X + Y )n =
∑n
k=0

(
n
k

)
XkY n−k breaks

down. But one may wonder whether there still exists a Z ∈ A such that eXeY = eZ , and a natural attempt is
to put Z = log(eXeY ) using the power series

logX =

∞∑
k=1

(−1)k−1

k
(X − 1)k. (1.2)

Replacing X by eXeY herein, we obtain the BCH series, denoted H(X,Y ) or just H,

H(X,Y ) = log(eXeY ) =

∞∑
k=1

(−1)k−1

k

( ∞∑
m,n=0

XmY n

m!n!
− 1

)k

=

∞∑
k=1

∑
m1+n1>0

· · ·
∑

mk+nk>0

(−1)k−1

k

Xm1Y n1 · · ·XmkY nk

m1!n1! · · ·mk!nk!
(1.3)

= (X + Y +XY +
X2 + Y 2

2
+ · · · )︸ ︷︷ ︸

k=1

−1

2
(X2 + Y 2 +XY + Y X + · · · )︸ ︷︷ ︸

k=2

+ · · ·

= X + Y +
1

2
[X,Y ] + · · · ,

where we have worked out the terms of order one and two (which requires considering k ∈ {1, 2}) and [X,Y ] :=
XY − Y X is the commutator. We notice the following: The terms in the infinite sum (1.3) corresponding to
some k all have order ≥ k in X,Y , due to the condition mi + ni > 0. And the contribution that a certain k in

the sum makes to the order k part of log(eXeY ) is easy to determine: It is just (−1)k−1

k times the sum of all 2k

words in X,Y of length k. But all the k < ` also contribute terms of order `, and determining those is tedious
and error-prone.

1.1 Exercise Compute the contribution of order 3 and show that it equals 1
12 ([X, [X,Y ]] + [Y, [Y,X]]).
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Solution. The order 3 contribution in (1.3) is(
X2Y +XY 2

2
+
X3 + Y 3

6

)
︸ ︷︷ ︸

k=1

−1

2

(
XYX +XY 2 +X2Y + Y XY +

X3 +X2Y + Y 2X + Y 3 +X3 + Y X2 +XY 2 + Y 3

2

)
︸ ︷︷ ︸

k=2

+
1

3
(X3 +X2Y +XYX +XY 2 + Y X2 + Y XY + Y 2X + Y 3)︸ ︷︷ ︸

k=3

.

Collecting like terms, we obtain

1

12

(
X2Y − 2XYX +XY 2 + Y X2 − 2Y XY + Y 2X

)
=

1

12
(X(XY − Y X)− (XY − Y X)X + Y (Y X −XY )− (Y X −XY )Y )

=
1

12
([X, [X,Y ]] + [Y, [Y,X]]).

�

1.2 Exercise Compute the contribution of order 4 and show that it equals 1
24 [Y, [X, [Y,X]]].

These results suggest that log(eXeY ) can be written as a (formal, possibly convergent) series X + Y + · · · ,
where all order ≥ 2 terms can be expressed as linear combinations of (iterated) commutators [·, ·]. In this case,
one speaks of a Lie series. Indeed, we will give many12 different proofs of the first statement of the following
theorem and two for the second, plus several other expansions.

1.3 Theorem (Campbell-Baker-Hausdorff-Dynkin) 3 Let A be a unital algebra over a field of charac-
teristic zero and let X,Y ∈ A. Then

• (BCH) log(eXeY ) is given by a Lie series

• (D) with the concrete series representation

H(X,Y ) = log(eXeY ) =

∞∑
k=1

∑
m1+n1>0

· · ·
∑

mk+nk>0

(−1)k−1

k
∑k
i=1(mi + ni)

1

m1!n1! · · ·mk!nk!

m1︷ ︸︸ ︷
[X, [· · · , [X,

n1︷ ︸︸ ︷
[Y, [· · · , [Y , [. . .

mk︷ ︸︸ ︷
[X, [· · · , [X,

nk︷ ︸︸ ︷
[Y, [· · · , [Y, [· · · ] · · · ] (1.4)

with the understanding that [X] := X.

1An entire book [6] of 550 pages is dedicated to BCHD theorem, its history and at least six proofs and several variations.
2Michael Atiyah (1929-2019, British mathematician, Fields medal and Abel prize): “I think it is said that Gauss had ten different

proofs for the law of quadratic reciprocity. [By now, more than 200 have been published!] Any good theorem should have several
proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalize in
different directions – they are not just repetitions of each other. And that is certainly the case with the proofs that we came up with
[of the Index Theorem]. There are different reasons for the proofs, they have different histories and backgrounds. Some of them are
good for this application, some are good for that application. They all shed light on the area. If you cannot look at a problem from
different directions, it is probably not very interesting; the more perspectives, the better!” [46]

3John Edward Campbell (1862-1924), Irish mathematician. Henry Frederick Baker (1866-1956), British mathematician. Felix
Hausdorff (1868-1942), German mathematician who contributed to many areas, particularly point-set topology. Eugene Borisovich
Dynkin (1924-2014), Soviet, then American mathematician. Many important contributions to Lie group theory (Dynkin diagrams!)
and to probability.
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1.4 Remark 1. In the statement of the above theorem we have been deliberately vague. The reason is that it
can be formulated in different settings. In the sections that follow we will give precise formulations and proofs
in the context of non-commutative formal power and Lie series over a field of characteristic zero, and as an
analytic statement in a unital Banach algebra over R or C.

2. For the history of the theorem see [53, 15, 1, 6]. We limit ourselves to citing the papers [4, 8, 33] that
gave rise to the abbreviation BCH (which neglects the contributions of Poincaré4, Pascal5 and F. Schur6). In
any case, Dynkin [18] was the first to give a semi-explicit expansion. Since then there has been a flood of both
theoretical approaches of considerable sophistication (e.g. [7, 49]) and computational/algorithmic studies.

3. Evaluating Dynkin’s formula (1.4) is unpleasant, even at relatively low order, as already Exercises 1.1,
1.2 demonstrate. (This involved the different formula (1.3), but the combinatorics is the same.) Computational
improvements will be provided by Theorem A.1 due Reinsch and by Theorem 9.3, also due to Dynkin.

4. Note that summands in Dynkin’s formula with nk ≥ 2 vanish since [Y, Y ] = 0, and the same happens if
nk = 0 and mk ≥ 2. If nk = 1, then any mk ≥ 0 is allowed, and if nk = 0 then we must have mk = 1 due to
mk + nk > 0. Taking this into account, and writing adX(Y ) = [X,Y ], the formula takes the following form:

H(X,Y ) =

∞∑
k=1

(−1)k−1

k

∑
m1+n1>0

· · ·
∑

mk−1+nk−1>0

(
1∑k−1

i=1 (mi + ni) + 1

adm1

X adn1

Y · · · ad
mk−1

X ad
nk−1

Y (X)

m1!n1! · · ·mk−1!nk−1!

+
∑
mk≥0

1∑k
i=1mi +

∑k−1
i=1 ni + 1

adm1

X adn1

Y · · · ad
mk−1

X ad
nk−1

Y admkX (Y )

m1!n1! · · ·mk−1!nk−1!mk!

 . (1.5)

5. We will not discuss at all how the BCH(D) theorem is applied in the theory of Lie groups (or elsewhere).
For this, see e.g. [17, 29, 32, 36, 50]. 2

Acknowledgment. I thank Darij Grinberg for countless suggestions and corrections, like exposing a hole in my
original proof of Proposition B.7, which led to a much better alternative proof. I am grateful to the authors of
[1] for saving [19] from oblivion.

2 Standard analytic proof of BCHD

In this section we give an analytic proof of BCH that was known in essentially this form by 1900. We will then
give a straightforward deduction of Dynkin’s formula (1.4), which strangely enough was proven only 50 years
later, by different methods. Throughout, we will work in a Banach algebra of arbitrary dimension.

2.1 Preparations

2.1 Lemma Let A be a unital Banach algebra. (We do not require ‖1‖ = 1.)

(i) If a sequence {Xn}n∈N0
in A satisfies

∑
n ‖Xn‖ <∞ then

∑N
n=0Xn converges to some X ∈ A as N →∞

and ‖X‖ ≤
∑
n ‖Xn‖.

(ii) If the power series f(z) =
∑∞
n=0 anz

n (where {an} ⊂ C) has convergence radius R > 0 and X ∈ A satisfies
‖X‖ < R then we can define f(X) ∈ A by

∑∞
n=0 anX

n. (It actually suffices if r(X) < R, where r(X) is
the spectral radius of X. One always has r(X) ≤ ‖X‖, but the inequality may be strict.)

Proof. (i) This is a well known consequence of completeness.
(ii) The hypothesis ‖X‖ < R implies that

∑
n |an|‖X‖n <∞. Now apply (i). For the parenthetical remark

we observe that for convergence of
∑
n anX

n it suffices that lim supn ‖Xn‖1/n < R. Now the claim follows from
the Beurling-Gelfand formula r(X) = limn→∞ ‖Xn‖1/n. �

If A is a unital algebra and A ∈ A is invertible, we write AdA(B) = ABA−1.

4Henri Poincaré (1854-1912), French mathematician and mathematical physicist.
5Ernesto Pascal (1865-1940). Italian mathematician.
6Friedrich Heinrich Schur (1856-1932). German mathematician ( 6= Issai Schur).
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2.2 Proposition Let A be a unital Banach algebra. For all X ∈ A, define eX = exp(X) =
∑∞
n=0X

n/n!.

(i) If X,Y ∈ A satisfy [X,Y ] = 0, i.e. XY = Y X, then eX+Y = eXeY = eY eX .

(ii) For every X ∈ A we have that eX is invertible with (eX)−1 = e−X .

(iii) For all X,Y ∈ A we have the following connection between ad and Ad:

AdeX (Y ) = eadX (Y ). (2.1)

Proof. (i) This is just the computation of (1.1), which is rigorous since everything converges absolutely.
(ii) Since [X,−X] = 0, (i) implies eXe−X = eX−X = e0 = 1 and similarly e−XeX = 1.
(iii) For X,Y, Z ∈ A, define LX(Z) = XZ and RY (Z) = ZY . Now LX , RY : A → A are bounded

linear maps, thus elements of the unital algebra B(A), which is complete and thus Banach. Quite trivially,
LX(RY (Z)) = XZY = RY (LX(Z)), so that [LX , RY ] = 0. Thus by (i) we have the identity eLXeR−X = eLX−RX .
Furthermore (LX −RX)(Y ) = XY − Y X = [X,Y ] = adX(Y ), thus LX −RX = adX . Now

AdeX (Y ) = eXY e−X = LeXRe−X (Y ) = eLXeR−X (Y ) = eLX−RX (Y ) = eadX (Y ),

where we have also used the triviality (LX)n = LXn , which implies LeX = eLX , and similarly for ReX . �

2.3 Remark Alternatively, one can prove (2.1) by a differential equation approach, see e.g. [34, p. 66] or [50,
p. 14]: Differentiating U : R→ A, t 7→ etXY e−tX gives

U ′(t) = XetXY e−tX − etXY e−tXX = XU(t)− U(t)X = adX(U(t)).

Since adX is a constant bounded linear operator on A, this linear differential equation can be solved readily for
the initial condition U(0) = Y , yielding U(t) = et adX (Y ). Putting t = 1 gives AdeX (Y ) = U(1) = eadX (Y ).

The first proof is slightly more elementary in that it does not use a differential equation. 2

In Appendix D we collect several further results related to the fact that in general eX+Y 6= eXeY in a
non-commutative setting, which however are somewhat tangential to the subject of this paper.

Having discussed the exponential function to some extent, we turn to the logarithm:

2.4 Proposition Let A be a unital Banach algebra and X,Y ∈ A.

(i) If X ∈ A satisfies ‖X − 1‖ < 1 then W = log(X) defined by (1.2) satisfies eW = X.

(ii) If ‖X‖+ ‖Y ‖ < log 2 then the series (1.3) for Z = log(eXeY ) converges absolutely and eZ = eXeY .

(iii) If ‖X‖ < log 2 then ‖eX − 1‖ < 1 and log eX = X.

Proof. (i) Since the power series (1.2) (around X = 1) has convergence radius R = 1, we can use Lemma
2.1(ii) to define W = log(X) for X ∈ A with ‖X − 1‖ < 1. Now eW makes sense unconditionally. Recall that
exp(log z) = z if |z − 1| < 1. (For a purely algebraic proof of the fact that the composite series exp ◦ log is the
identity cf. Appendix C.) Now the claim eW = X follows from the equality exp(log(X)) = (exp ◦ log)(X), which
is essentially tautological.

(ii) We have

‖eXeY − 1‖ =

∥∥∥∥∥∥∥
∑
n,m≥0
n+m>0

XnY m

n!m!

∥∥∥∥∥∥∥ ≤
∑
n,m≥0
n+m>0

‖X‖n‖Y ‖m

n!m!
= e‖X‖+‖Y ‖ − 1.

Since the assumption ‖X‖+ ‖Y ‖ < log 2 is equivalent to e‖X‖+‖Y ‖ − 1 < 1, we can apply (i).
(iii) Arguing as before, ‖eX − 1‖ = ‖

∑∞
n=1X

n/n!‖ ≤
∑∞
n=1 ‖X‖n/n! = e‖X‖ − 1, the hypothesis implies

‖eX − 1‖ < 1 so that log eX is defined, and this equals X by the same argument as in (i). �

2.5 Remark 1. Note that the assumption in (iii) cannot be replaced by ‖eX − 1‖ < 1: If X = 2πi then eX = 1
so that log eX = 0 6= X.

2. Since we do not know yet that the formulae (1.3) and (1.4) coincide, we haven’t proven yet that the r.h.s.
of (1.4) converges for ‖X‖+ ‖Y ‖ < log 2. A similar argument, but using ‖adX‖ ≤ 2‖X‖, gives this convergence
of (1.4) for ‖X‖+ ‖Y ‖ < log 2

2 . (This condition will turn out to be sufficient for equality of the series (1.3) and
(1.4), see Theorem 2.14.) 2
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2.2 The derivative of the exponential function: Three proofs

Let A be a unital Banach algebra and A,B ∈ A. If [A,B] = 0 then

d

dt
eA+tB

∣∣∣∣
t=0

=
d

dt
eAetB

∣∣∣∣
t=0

= eAB = BeA. (2.2)

But if A and B do not commute, the first step above is not justified. As a first observation one has:

2.6 Lemma Let A be a unital Banach algebra and A,B ∈ A. Then exp has all directional derivatives

d

dt
eA+tB

∣∣∣∣
t=0

=

∞∑
n=1

1

n!

n∑
`=1

An−`BA`−1 =

∞∑
r,s=0

ArBAs

(r + s+ 1)!
, (2.3)

and the map B 7→ d
dte

A+tB
∣∣
t=0

is bounded. This map also is the Fréchet derivative deA

dA .

Proof. By absolute convergence, we may rearrange:

eA+tB =

∞∑
n=0

(A+ tB)n

n!
=

∞∑
n=0

An

n!
+ t

∞∑
n=1

1

n!

n∑
`=1

An−`BA`−1 +O(t2),

from which the first equality in the lemma is immediate. For the second, one uses that (n, `) 7→ (r, s) =
(n − `, ` − 1) is a bijection from {1 ≤ ` ≤ n < ∞} to N2

0. This proves the existence of directional derivatives.
We have ∥∥∥∥∥

∞∑
r,s=0

ArBAs

(r + s+ 1)!

∥∥∥∥∥ ≤ ‖B‖
∞∑

r,s=0

‖A‖r+s

(r + s+ 1)!
= ‖B‖

∞∑
n=0

(n+ 1)
‖A‖n

(n+ 1)!
= e‖A‖‖B‖,

thus B 7→ d
dte

A+tB
∣∣
t=0

is bounded. For the last claim one must show that

lim
B→0

‖eA+B − eA − deA

dA (B)‖
‖B‖

= 0,

which again is evident. (From the higher perspective of complex analysis in possibly infinite dimensional Banach
spaces, the Fréchet differentiability is obvious since exp is an analytic function.) �

On its own, the preceding result is not very useful. But combined with further algebraic arguments it will
actually lead to one (the third) of the proofs of the following important result:

2.7 Proposition Let A be a unital Banach algebra.7

(i) If A,B ∈ A then

d

dt
eA+tB

∣∣∣∣
t=0

= eA
∞∑
n=0

(−1)n

(n+ 1)!
adnA(B) = eA

1− e−adA
adA

(B). (2.4)

(ii) Let I be some interval and I → A, t 7→ X(t) a differentiable map. Then

d

dt
eX(t) = eX(t)

∞∑
n=0

(−1)n

(n+ 1)!
adnX(t)

(
dX(t)

dt

)
= eX(t) 1− e−adX(t)

adX(t)

(
dX(t)

dt

)
. (2.5)

2.8 Remark 1. The statements are equivalent: (i) is just the special case X(t) = A + tB of (ii), and (ii) is
recovered from (i) by combination with the chain rule for Fréchet derivatives, see e.g. [9, Theorem 2.1.1]. (As
noted above, exp : A → A is Fréchet differentiable, and for maps R ⊃ I → A the Fréchet derivative is just the
ordinary one.)

2. If [A,B] = 0 then all summands n 6= 0 in (2.4) vanish and we recover (2.2).

7We will not consider the derivative of the exponential map in an abstract Lie group, which would take us too far from our main
goals. See e.g. [64, Sect. 2.14].
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3. Formal expressions like 1−e−X
X , which will we encounter frequently, simply mean that we replace z by X

in the Taylor series expansion at 0 of a function like f(z) = 1−e−z
z that is analytic in a neighborhood of 0. (Of

course in a Banach algebra setting this means invoking Lemma 2.1 so that one needs to check that f is analytic
on an open disc around zero of radius R > ‖X‖.) With this convention, the respective second equalities in (2.4)
and (2.5) are true by definition and only the first ones need to be proven.

4. The function f(z) = 1−e−z
z appearing here is not particularly mysterious: It arises as

∫ 1

0
e−ztdt. Its

appearance is one (but not the only) reason why some approaches to the BCH series make contact with the
complex of ideas involving difference and umbral calculus and the Bernoulli numbers. But this connection will
only become manifest from Section 8 on.

5. Using (2.1), one deduces from (2.4) the equivalent dual formula

d

dt
eA+tB

∣∣∣∣
t=0

= AdeA

(
1− e−adA

adA
(B)

)
eA = eadA

(
1− e−adA

adA
(B)

)
eA =

eadA − 1

adA
(B)eA.

2

Since the proposition is quite important, we give three proofs!

First proof of Proposition 2.7. With the aim of proving version (ii), we follow Rossmann [50] defining

Y (s, t) = e−sX(t) ∂

∂t
esX(t).

Differentiating w.r.t. s gives

∂Y

∂s
= e−sX(t)(−X(t))

∂

∂t
esX(t) + e−sX(t) ∂

∂t

(
X(t)esX(t)

)
= e−sX(t)(−X(t))

∂

∂t
esX(t) + e−sX(t)

(
dX(t)

dt
esX(t) +X(t)

∂

∂t
esX(t)

)
= e−sX(t) dX

dt
esX(t) = Ade−sX(t)

(
dX

dt

)
= e−s adX(t)

(
dX

dt

)
,

where we used (2.1) in the last step. With Y (0, t) = 0 we obtain by integration

e−X(t) d

dt
eX(t) = Y (1, t) =

∫ 1

0

∂

∂s
Y (s, t)ds =

∫ 1

0

e−s adX(t)

(
dX

dt

)
ds =

(∫ 1

0

e−s adX(t)ds

)(
dX

dt

)
, (2.6)

where the last integral is in the Banach algebra B(A) of bounded linear operators on A. Now the following
lemma, applied to B = B(A) and B = adX(t), immediately gives the proposition in its general form (ii). �

2.9 Lemma Let B be a unital Banach algebra and B ∈ B. Then∫ 1

0

e−sBds =

∞∑
n=0

(−B)n

(n+ 1)!
.

Proof. Expanding the exponential function, we have∫ 1

0

e−sBds =

∫ 1

0

∞∑
n=0

(−sB)n

n!
ds =

∞∑
n=0

(−B)n

n!

∫ 1

0

snds =

∞∑
n=0

(−B)n

n! (n+ 1)
=

∞∑
n=0

(−B)n

(n+ 1)!
.

Here the exchange of integration and summation is allowed due to the uniform norm convergence of the series
on the bounded interval [0, 1]. �

7



2.10 Remark 1. From (2.6) one easily derives another frequently encountered, beautifully symmetric formula
for the derivative of the exponential function, going back at least to Feynman’s [22, (6)] (cf. also [58, (B5)]):

d

dt
eX(t) = eX(t)

∫ 1

0

e−s adX(t)

(
dX

dt

)
ds = eX(t)

∫ 1

0

Ade−sX(t)

(
dX

dt

)
ds =

∫ 1

0

e(1−s)X(t)

(
dX

dt

)
esX(t)ds.

2. Expanding the exponential functions in the formula just derived into series and using the second identity
of (9.12) to evaluate the integral, we again obtain the final expression of (2.3) (or its generalization where

A ← X(t), B ← dX(t)
dt ). (Denominators like (r + s + 1)! coming from Euler’s B-function evaluated at positive

integers will reappear later.)
3. If B is finite dimensional, the operator valued integrals above can be defined coordinate-wise, but if B is

infinite dimensional, they should be understood as a Banach-valued Riemann integrals (or as Bochner integrals).
This complication is avoided in the next proof due to Tuynman [63], cf. also [32], which can be regarded as a
discretization of the previous proof, the continuous auxiliary variable s being replaced by a discrete one. 2

Second proof of Proposition 2.7. We will prove version (i) of the proposition. Define

∆(A,B) =
d

dt
eA+tB

∣∣∣∣
t=0

.

We have ∆(A,B) = deA

dA (B), thus B 7→ ∆(A,B) is linear. (Cf. also Lemma 2.6.) Since the exponential function
is infinitely differentiable, ∆(A,B) is jointly continuous in A,B. For each m ∈ N we have

eA+tB =

(
exp

(
A

m
+ t

B

m

))m
,

and differentiating w.r.t. t at t = 0 gives, using the product rule,

d

dt
eA+tB

∣∣∣∣
t=0

=

m−1∑
k=0

e
m−k−1
m A d

dt
exp

(
A

m
+ t

B

m

)∣∣∣∣
t=0

e
k
mA

= e
m−1
m A

m−1∑
k=0

e−
k
mA∆

(
A

m
,
B

m

)
e
k
mA.

In view of (2.1) and the linearity of ∆(A,B) w.r.t. B, this equals

e
m−1
m A

[
1

m

m−1∑
k=0

e−
k
m adA

](
∆

(
A

m
,B

))
.

As m→∞, the factor on the left converges to eA and ∆(A/m,B) converges to ∆(0, B) = B (both w.r.t. ‖ · ‖).
Now the proof of (2.4) is completed by the following lemma, applied to B = B(A) and B = adA, which gives

convergence of the linear operator in square brackets to 1−e−adA

adA
. �

2.11 Lemma Let B be a unital Banach algebra and B ∈ B. Then

lim
m→∞

1

m

m−1∑
k=0

e−B
k
m =

∞∑
`=0

(−B)`

(`+ 1)!
=

1− e−B

B
.

Proof. We have

1

m

m−1∑
k=0

e−B
k
m =

1

m

m−1∑
k=0

∞∑
`=0

(−Bk/m)`

`!
=

∞∑
`=0

(−B)`

`!

1

m

m−1∑
k=0

(
k

m

)`
. (2.7)

Now 1
m

∑m−1
k=0

(
k
m

)`
is a Riemann sum approximation to the integral

∫ 1

0
x`dx, so that

lim
m→∞

1

m

m−1∑
k=0

(
k

m

)`
=

∫ 1

0

x`dx =
1

`+ 1
.
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We may take the limit m→∞ in (2.7) within the `-sum since (k/m)` ≤ 1 for all `,m and 0 ≤ k ≤ m. (Cf. also
Lemma D.5.) We obtain

lim
m→∞

1

m

m−1∑
k=0

e−B
k
m =

∞∑
`=0

(−B)`

`!

1

`+ 1
=

∞∑
`=0

(−B)`

(`+ 1)!
=

1− e−B

B
.

�

Third proof of Proposition 2.7. Combine Lemma 2.6 with the following one. �

2.12 Lemma Let A be a unital Banach algebra and A,B ∈ A. Then

∞∑
n=1

1

n!

n∑
`=1

An−`BA`−1 = eA
∞∑
s=0

(−adA)s

(s+ 1)!
(B). (2.8)

Proof. We will first prove that the following holds for all n ∈ N:

n∑
`=1

An−`BA`−1 =

n∑
k=1

(n
k

)
An−kadk−1−A (B). (2.9)

For n = 1 this is just B = B. Assume (2.9) holds for n. Since Xn :=
∑n
`=1A

n−`BA`−1 is the sum of all words
w ∈ {A,B}n containing B exactly once, XnA is the sum of all w ∈ {A,B}n+1 containing B exactly once, except
for AnB. Thus Xn+1 = AnB +XnA, so that

n+1∑
`=1

An+1−`BA`−1 = AnB +

(
n∑
`=1

An−`BA`−1

)
A

= AnB +

(
n∑
k=1

(n
k

)
An−kadk−1−A (B)

)
A

= AnB +

n∑
k=1

(n
k

)
An−kadk−A(B) +

n∑
k=1

(n
k

)
An+1−kadk−1−A (B)

=

n+1∑
k=1

[(
n

k − 1

)
+
(n
k

)]
An+1−kadk−1−A (B)

=

n+1∑
k=1

(
n+ 1

k

)
An+1−kadk−1−A (B),

where we used XA = ad−A(X) + AX with X = adk−1−A (B) in the third step,
(

n
n+1

)
= 0 in the fourth and(

n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
for 1 ≤ k ≤ n+ 1 in the fifth, completing the inductive proof of (2.9).

Multiplying (2.9) by 1/n! and summing over n ∈ N we have

∞∑
n=1

1

n!

n∑
`=1

An−`BA`−1 =

∞∑
n=1

1

n!

n∑
k=1

(n
k

)
An−kadk−1−A (B)

=
∑

1≤k≤n<∞

1

k! (n− k)!
An−kadk−1−A (B)

=

∞∑
r=0

Ar

r!

∞∑
s=0

ads−A
(s+ 1)!

(B) = eA
∞∑
s=0

ads−A
(s+ 1)!

(B),

where we again used the bijection {1 ≤ k ≤ n <∞} → N2
0, (k, n) 7→ (r, s) = (n− k, k − 1). �

2.13 Remark Except for the infinite summation over n, Lemma 2.12 is entirely algebraic, and indeed it will
be used again to prove an algebraic version of Proposition 2.7, see Proposition 7.5. 2
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2.3 Proof(s) of BCHD

2.14 Theorem Let A be a Banach algebra over R or C. Let X,Y ∈ A such that ‖X‖ + ‖Y ‖ < log 2
2 . Then

Dynkin’s Lie series (1.4) converges absolutely to log(eXeY ).

Proof. Let X,Y ∈ A with ‖X‖+ ‖Y ‖ < log 2 so that (1.3) converges by Proposition 2.4, so that there is H ∈ A
with eH = eXeY . Then clearly for all t ∈ [0, 1] there is H(t) ∈ A with eH(t) = etXetY . Since the power series are
infinitely differentiable on the domain ‖X‖+‖Y ‖ < log 2, the function H(t) is differentiable in t. Differentiating
both sides of eH(t) = etXetY and applying (2.5) on the l.h.s., we obtain

eH(t) 1− e−adH(t)

adH(t)

(
dH(t)

dt

)
= XetXetY + etXetY Y = XeH(t) + eH(t)Y.

Multiplying with e−H(t) on the right and using AdeH(t) = eadH(t) (Eq. (2.1)) this becomes

eadH(t) − 1

adH(t)

(
dH(t)

dt

)
= X + eadH(t)(Y ).

(Thus we actually use the alternative formula from Remark 2.8.5.) For ‖X‖, ‖Y ‖ and therefore ‖H(t)‖ small

enough, the operator e
adH(t)−1
adH(t)

= id +O(adH(t)) is invertible, thus

dH(t)

dt
=

adH(t)

eadH(t) − 1
(X + eadH(t)(Y )). (2.10)

This differential equation looks nasty, but H(t) can be eliminated from the r.h.s. From (1.2) we have A =

log((eA − 1) + 1) =
∑∞
k=1

(−1)k−1

k (eA − 1)k, convergent (to the correct value) if ‖A‖ < log 2, and thus

A

eA − 1
=

∞∑
k=1

(−1)k−1

k
(eA − 1)k−1.

This can be applied to A = adH(t) since A only appears as eA on the r.h.s. and since (2.1) gives

eadH(t) = AdeH(t) = AdetXAdetY = eadtXeadtY .

Noting also that eadtY (Y ) = Y , we obtain

dH(t)

dt
=

∞∑
k=1

(−1)k−1

k
(eadtXeadtY − 1)k−1(X + eadtX (Y )), (2.11)

which has no H(t) on the r.h.s. Before we continue, we discuss the convergence of the series. We have

‖eadtXeadtY − 1‖ =

∥∥∥∥∥ ∑
m+n>0

admtXadntY
m!n!

∥∥∥∥∥ ≤ ∑
m+n>0

‖adtX‖m‖adtY ‖n

m!n!

= e‖adtX‖+‖adtY ‖ − 1 ≤ e2t(‖X‖+‖Y ‖) − 1,

so that the series in (2.11) converges for all ‖X‖ + ‖Y ‖ < log 2
2 , uniformly in t ∈ [0, 1]. Integrating (2.11) over

[0, 1] and using H(0) = 0, we have

log(eXeY ) = H(1) =

∫ 1

0

( ∞∑
k=1

(−1)k−1

k
(eadtXeadtY − 1)k−1(X + eadtX (Y ))

)
dt.

This already proves the BCH theorem, since the r.h.s. is Lie. To obtain Dynkin’s formula, we expand

log(eXeY ) =

∫ 1

0

∞∑
k=1

(−1)k−1

k

∑
m1+n1>0

· · ·
∑

mk−1+nk−1>0adm1

tX adn1

tY · · · ad
mk−1

tX ad
nk−1

tY (X)

m1!n1! · · ·mk−1!nk−1!
+
∑
mk≥0

adm1

tX adn1

tY · · · ad
mk−1

tX ad
nk−1

tY admktX (Y )

m1!n1! · · ·mk−1!nk−1!mk!

 dt.
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Using admtX = tmadmX and
∫ 1

0
tndt = 1

n+1 , evaluating the integral simply amounts to counting powers of t, giving
exactly formula (1.5), which we have seen to be equivalent to the standard Dynkin formula (1.4). �

2.15 Remark 1. The proof given above followed [50] (with a few more details), since this argument gives
exactly Dynkin’s formula (1.4) as opposed to the variations, discussed next, proven by most authors.

2. Other analytic approaches to BCH work with eH(t) = eXetY (Hausner/Schwartz [34], Hilgert/Neeb [36],
Hall [32]) or with eH(t) = etXeY (Duistermaat/Kolk [17]) instead of eH(t) = etXetY . We quickly discuss the
first, the second being completely analogous. Differentiating eH(t) = eXetY and using (2.5) gives

eH(t) 1− e−adH(t)

adH(t)

dH(t)

dt
=
deH(t)

dt
= eXetY Y = eH(t)Y,

from which an argument analogous to the above (but using H(0) = X) leads to the integral representation

log(eXeY ) = X +

∫ 1

0

ψ(eadXet adY )(Y )dt, (2.12)

where ψ(t) = t log t
t−1 = t

∑∞
n=1(−1)n−1 (t−1)n−1

n . While the resulting series expansion

log(eXeY ) = X +

∞∑
k=1

∑
m1+n1>0

· · ·
∑

mk−1+nk−1>0

∑
mk≥0

(−1)k−1

k(n1 + · · ·+ nk−1 + 1)

adm1

X adn1

Y · · · ad
mk−1

X ad
nk−1

Y admkX (Y )

m1!n1! · · ·mk−1!nk−1!mk!

(2.13)
is simpler than Dynkin’s (1.4),(1.5), it is less symmetric in that

∑
i ni appears in the denominator instead of∑

i(mi + ni). Another reason to prefer (1.4) is that the algebraic proof of Section 6 naturally leads to (1.4)
rather than (2.13). (It is not evident (to this author) how to prove that the right hand sides of (1.4) and of
(2.13) are equal without invoking that both are equal to log(eXeY ).)

3. Proofs of the above type have a long history. A version of Proposition 2.7 can be found in the 1891 paper
[55] of F. Schur, and integral representations like (2.12) in works of H. Poincaré [45] around 1900. (But it can
be difficult to recognize the results in these papers.) One of the earliest books where the results can be found
in the above form is [34]. Later ones like [29] (the most thorough one as far as BCHD is concerned, with a
computation of the Dynkin series to order 4) and [36, 17, 50, 32] only offer minor variations. Since Dynkin’s
series (or equivalent ones) can easily be deduced by expansion of integral formulae like (2.12), it seems puzzling
that an explicit expansion was obtained only in 1947, by a rather different algebraic approach, discussed in
Section 6.

4. In Section 7 we will see that the above proof is not as manifestly analytic as it looks! Essentially the only
challenge is to give an algebraic version of Proposition 2.7, whose proof will be similar to the third proof of the
latter. And in Section 8 we will give a different proof of the BCH theorem based on (the algebraic version) of
Proposition 2.7, much closer (at least in spirit) to the original works [4, 8, 33]. But first we will discuss two
algebraic approaches to BCH(D) that have very little in common with what we have done so far. 2

3 Basics of non-commutative (Lie) polynomials and series

In this section we will introduce only the modest preliminaries needed for Eichler’s algebraic proof of the BCH
theorem. Further material on non-commutative polynomials and series will be given in Section 5. From now
on, F is an arbitrary field of characteristic zero.

• If A is a set (the alphabet), the free monoid A∗ generated by A is the set of finite sequences (words) with
elements in A, with concatenation as (associative) composition and the empty (length zero) sequence ε
as unit. The length of a word w is denoted |w|. Clearly |w1w2| = |w1| + |w2|. More formally: A∗ =
{(n, f) | n ∈ N0, f : {1, . . . , n} → A}, with |(n, f)| = n and (n, f)(n′, f ′) = (n + n′, {1, . . . , n + n′} 7→
{f(1), . . . , f(n), f ′(1), . . . , f ′(n′)}).
If A = ∅, one finds A∗ = {ε}. If |A| = 1, the map {1, . . . , n} → A in the above definition is constant, thus
carries no information and can be omitted. This shows that A∗ ∼= (N0,+, 0). Note that this does not give
an independent construction of N0 since N0 was used in our definition of A∗.
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• The free monoid has a universal property: For every function A→M , where (M, ·, 1) is a monoid, there is

a unique unital monoid homomorphism f̂ : A∗ →M such that f̂ ◦ ι = f , where ι : A ↪→ A∗ is the inclusion
map sending letters to one-letter words. Clearly f̂ must send ε to 1 and a1 . . . an to f(a1) . . . f(an). This
universal property determines A∗ up to isomorphism.

• Aside: Applying the above to M = B∗, we see that if A,B are sets and f : A → B a function, one has a
unique monoid homomorphism f∗ : A∗ → B∗ such that ε 7→ ε and a1 . . . an 7→ f(a1) . . . f(an). One easily
checks that G(A) = A∗, G(f) = f∗ defines a functor G : Set→Mon, the free monoid functor. Now the
universal property satisfied by A∗ is essentially equivalent to saying that G is a left adjoint of the obvious
forgetful functor F : Mon→Set.

If one wants to define A∗ without reference to N0, one may either define it (up to isomorphism) by its
universal property or as G(A), where G is a left adjoint of the forgetful functor F : Mon→Set. But either
way, the proof of existence becomes non-trivial. We won’t pursue this.

• If M is a monoid and F is a field, FM is the monoid algebra. It consists of the finitely supported functions
M → F with the obvious structure of F-vector space. Writing an element f of FM symbolically as∑
m∈M amm, multiplication is given by (

∑
m∈M amm)(

∑
m′∈M bm′m

′) =
∑
m,m′ ambm′mm

′. The function
h : M → F corresponding to this element is given by the convolution

hm =
∑

m′,m′′∈M
m′m′′=m

am′bm′′ . (3.1)

This is well-defined due to the finite supports of a and b.

• If A is a set and F a field, the monoid algebra FA∗ for the free monoid A∗ is called the free (non-
commutative) F-algebra generated by A, denoted F〈A〉. (NB: This is not to be confused with the free
commutative F-algebra over A, which is the polynomial ring F[A].) It has a universal property very similar
to the one of the free monoid. (Just replace ‘monoid homomorphism’ by ‘F-algebra homomorphism’.)
When considered in F〈A〉 we write ε as 1 since it is the multiplicative unit.

• Aside: If A is a set and F a field, we can define the F-vector space FA generated by A as the set of finitely
supported functions A → F. And if V is a F-vector space, the tensor algebra TV is defined as ⊕∞n=0V

⊗n

with the obvious product operation. Now one can prove a natural (in A) isomorphism T (FA) ∼= F(A∗).
(The two sides correspond to the two possible orders of freely introducing an associative multiplication
and a F-vector space structure.) We omit the details since the free algebra formulation is more natural
when V comes with a basis.

• If A is a set and F a field, the algebra F〈〈A〉〉 of formal non-commutative power series over A consists
of the set of all functions A∗ → F with the obvious structure of F-vector space and multiplication given
by convolution as in (3.1), with M = A∗. Despite the possibly infinite supports of such functions, this
is well defined since every word w ∈ A∗ can be factored as w = w′w′′ only in finitely many ways. (For
this reason, the more general ‘algebra of formal series’ over a monoid M can only be defined if M satisfies
such a finite factorization condition. We will not need this generalization.) (Recall that F[[A]] denotes the
usual F-algebra of commutative formal power series over A.) If A = {a1, . . . , an}, we write F〈〈a1, . . . , an〉〉
instead of F〈〈{a1, . . . , an}〉〉. Instead of f : A∗ → F we write F =

∑
w∈A∗ aww and put (F,w) = aw ∀w.

We will usually denote the formal variables from A by lower case letters and elements of F〈A〉 or F〈〈A〉〉
by capital letters. (This is mildly inconsistent since A ↪→ F〈A〉, but this will not lead to problems.)

• The algebras F〈A〉 and F〈〈A〉〉 have obvious gradations by N0, where F〈〈A〉〉n consists of linear combinations
(typically infinite ones in the case of F〈〈A〉〉) of words of length n. For F =

∑
w aww, we define Fn =∑

w∈A∗,|w|=n aww ∈ F〈〈A〉〉n.

Our sets A will always be finite. This implies F〈〈A〉〉n = F〈A〉n for all n ∈ N0.

• We denote by F〈A〉>0,F〈〈A〉〉>0 the ideals of non-commutative polynomials and series, respectively, with
constant term (F, ε) equal to zero. We use analogous notations F〈〈A〉〉≥k, etc., which should explain
themselves.

• Given formal series F =
∑∞
n=0 anx

n, G =
∑∞
n=0 bnx

n ∈ F〈〈x〉〉, the composite G ◦ F is given by

G ◦ F =

∞∑
n=0

bn

( ∞∑
m=0

amx
m

)n
=

∞∑
k=0

ckx
k,
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where

ck =

∞∑
`=0

b`
∑

m1,...,m`
m1+···+m`=k

am1
· · · am` . (3.2)

If G is a polynomial or a0 = 0 then each ck is given by a polynomial in finitely many b0, b1, b2 . . . so that
G ◦ F is well-defined as an element of F〈〈x〉〉. (Otherwise we have infinite sums like c0 =

∑∞
`=0 b`a

`
0 in

F, of which we cannot make sense without a topology on F. A simple example is F = G =
∑∞
n=0 x

n.)
In the more important case a0 = 0, thus F ∈ F〈〈x〉〉>0, the index ` in (3.2) effectively only runs up
to k. The above reasoning generalizes to formal series in several ‘variables’: If G ∈ F〈〈x1, . . . , xn〉〉 and
F1, . . . , Fn ∈ F〈〈y1, . . . , ym〉〉>0 then G(F1, . . . , Fn) makes sense in F〈〈y1, . . . , ym〉〉.

• In particular if F ∈ F〈〈x1, . . . , xm〉〉>0 then eF ≡ exp(F ) ∈ F〈〈x1, . . . , xm〉〉 exists and has constant
term 1. And if F ∈ 1 + F〈〈x1, . . . , xm〉〉>0 then log(F ), where log is as in (1.2), defines an element in
F〈〈x1, . . . , xm〉〉>0. (Note that the series defining log has no constant term.) In fact, these maps

exp : F〈〈x1, . . . , xm〉〉>0 → 1 + F〈〈x1, . . . , xm〉〉>0,

log : 1 + F〈〈x1, . . . , xm〉〉>0 → F〈〈x1, . . . , xm〉〉>0

are inverses of each other. To see this, note that the usual functions log : (0, 2) → (−∞, log 2) and
exp : (−∞, log 2) → (0, 2) are inverses of each other. On these domains, the power series for log and exp
converge, so that

x = exp(log(x)) =

∞∑
n=0

1

n!

( ∞∑
m=1

(−1)m−1(x− 1)m

m

)n
∀x ∈ (0, 2),

x = log(exp(x)) =

∞∑
m=1

(−1)m−1

m

( ∞∑
n=0

xn

n!

)m
∀x ∈ (−∞, log 2).

But this implies that exp ◦ log and log ◦ exp are the identity (formal) power series. (A purely algebraic
proof of the latter statement is given in Appendix C.)

• If A is an associative algebra, we define a map [·, ·] : A × A → A by [x, y] = xy − yx. One easily verifies
that (A, [·, ·]) is a Lie algebra, i.e. [·, ·] is bilinear, antisymmetric ([y, x] = −[x, y] ∀x, y) and satisfies the
Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z.

• If A is a set and F a field, the intersection of all Lie subalgebras of (F〈A〉, [·, ·]) that contain A is a Lie
algebra, called the free Lie algebra LF〈A〉 (over F). Elements of LF〈A〉 are called Lie polynomials. Note
that Lie polynomials have no constant term.

3.1 Lemma (i) LF〈A〉 consists of all finite F-linear combinations of elements of A and elements obtained
using commutators of finitely elements.

(ii) If F ∈ LF〈A〉 then each homogeneous component Fn is Lie.

Proof. (i) Let L ⊂ F〈A〉 consist of the finite linear combinations of elements of A and of (correctly
bracketed) commutator expressions of elements of A. (E.g. [[a1, [a2, a3]], a4].) Since LF〈A〉 is a Lie algebra
containing A, we have L ⊆ LF〈A〉. If X1, X2 ∈ L then [X1, X2] ∈ L. Thus L is closed under [·, ·] and
therefore a Lie algebra. Now the definition of LF〈A〉 implies L = LF〈A〉, which was our claim.

(ii) By (i), every F ∈ LF〈A〉 is a finite linear combination of commutator expressions involving elements
of A. Since each of these is homogeneous and Lie, it follows that Fn is Lie for each n. �

• If G ∈ LF〈〈x1, . . . , xn〉〉 and F1, . . . , Fn ∈ LF〈〈y1, . . . , ym〉〉 then clearly also the composite G(F1, . . . , Fn)
(see above) is a Lie polynomial.

• Let F be a field and A a finite set. A formal (non-commutative) series
∑
w∈A∗ aww ∈ F〈〈A〉〉 is called a

Lie series if its constant term vanishes and each homogeneous component
∑
|w|=n aww is a Lie polynomial,

i.e. lies in LF〈A〉. The set of Lie series is denoted LF〈〈A〉〉. (The definition of Lie series is slightly more
involved if A is infinite, cf. [49]. We will not need this.) Lemma 3.1(ii) implies that LF〈A〉 ⊂ LF〈〈A〉〉.
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4 Eichler’s algebraic proof of BCH

In this section we will give M. Eichler’s8 [20] little referenced (but see [52, 61, 6]) proof of the following theorem:

4.1 Theorem (BCH) The formal series for log(exey) ∈ F〈〈x, y〉〉 is a Lie series.

Proof. In what follows, we work in F〈〈A〉〉 throughout, where A = {x, y, z}. By the observations of the preceding
section, H = log(exey) is a well-defined element of F〈〈A〉〉 with vanishing constant term and satisfying eH = exey.
Using the N0-gradation of F〈〈A〉〉 we write H =

∑∞
k=1Hk, where Hk ∈ F〈A〉k for each k. Reading (1.4) as a

computation in F〈〈A〉〉, we have H1(x, y) = x+ y and H2(x, y) = 1
2 [x, y], thus H1 and H2 are Lie polynomials.

We will prove by induction that each Hn, n ≥ 3 is a Lie polynomial, so that H is a Lie series.
If X,Y ∈ F〈〈x, y〉〉>0, we obtain composite formal series Hn(X,Y ). Replacing x, y ; X,Y in the iden-

tity eH = exey shows that the (unique) solution of eH(X,Y ) = eXeY is given by H(X,Y ) =
∑
nHn(X,Y ).

Furthermore:

1. Each Hn is homogeneous of order n, thus Hn(rX, rY ) = rnHn(X,Y ) for all r ∈ F for all n ≥ 1.

2. If XY = Y X then eXeY = eX+Y , thus H(X,Y ) = log(eXeY ) = X +Y . Thus H(X,Y ) is homogeneous of
degree one, implying Hk(X,Y ) = 0 for all k ≥ 2. In particular Hk(rX, sX) = 0 for all r, s ∈ F and k ≥ 2.

3. Let X,Y, Z ∈ F〈〈x, y, z〉〉>0. Then the associativity (eXeY )eZ = eX(eY eZ) leads to

H(H(X,Y ), Z) = log(eH(X,Y )eZ) = log(eXeY eZ) = log(eXeH(Y,Z)) = H(X,H(Y,Z)).

Expanding the formula H(H(X,Y ), Z) = H(X,H(Y,Z)) using H =
∑∞
k=1Hk and H1(X,Y ) = X + Y , we

obtain

X + Y + Z +

∞∑
m=2

Hm(X,Y ) +

∞∑
`=2

H`

(
X + Y +

∞∑
m=2

Hm(X,Y ), Z

)

= X + Y + Z +

∞∑
m=2

Hm(Y, Z) +

∞∑
`=2

H`

(
X,Y + Z +

∞∑
m=2

Hm(Y, Z)

)
. (4.1)

While this identity holds for all X,Y, Z ∈ F〈〈x, y, z〉〉>0, we now restrict it to X,Y, Z ∈ V , where V =
F〈x, y, z〉1 = spanF{x, y, z}, the motivation being that V is a vector space containing {x, y, z} and all its el-
ements are Lie.

Let now n ≥ 3 and assume that Hm ∈ F〈x, y〉 is a Lie polynomial for each m < n. Recall that if K,L,M
are Lie polynomials, then so is the composite K(L,M). Thus if X,Y, Z ∈ V then

X + Y + Z +

n−1∑
m=2

Hm(X,Y ) and X + Y + Z +

n−1∑
m=2

Hm(Y, Z)

are Lie. Since all contributions of degree ≤ n to

∞∑
`=2

H`

(
X + Y +

∞∑
m=2

Hm(X,Y ), Z

)
and

∞∑
`=2

H`

(
X,Y + Z +

∞∑
m=2

Hm(Y,Z)

)

involving both H` and Hm have `,m < n, they are Lie. Thus the projection of (4.1) to F〈x, y, z〉n is

Hn(X,Y ) +Hn(X + Y, Z) + LIE = Hn(Y, Z) +Hn(X,Y + Z) + LIE. (4.2)

Put W = F〈x, y, z〉/LF〈x, y, z〉 with quotient map φ : F〈x, y, z〉�W , and define C : V × V →W as the map

C : V × V →W, (K,L) 7→ φ(Hn(K,L)).

Then (4.2) is equivalent to the 2-cocycle equation

C(X,Y ) + C(X + Y,Z) = C(X,Y + Z) + C(Y,Z) ∀X,Y, Z ∈ V.
8Martin Eichler (1912-1992), German mathematician who mostly worked on number theory.

14



The properties 1. and 2. of Hn stated above pass to C. Now the following proposition gives C = 0. This
means that Hn(K,L) is a Lie polynomial for all K,L ∈ V , in particular for K = x, L = y. This completes the
induction. �

4.2 Proposition 9 Let F be a field of characteristic zero and V,W be F-vector spaces. Let C : V × V → W
satisfy

(i) 2-Cocycle identity: C(X,Y ) + C(X + Y,Z) = C(X,Y + Z) + C(Y,Z) ∀X,Y, Z ∈ V .

(ii) Homogeneity: There is an 3 ≤ n ∈ N such that C(rX, rY ) = rnC(X,Y ) ∀X,Y ∈ V, r ∈ F.

(iii) C(rX, sX) = 0 ∀X ∈ V, r, s ∈ F. In particular C(X, 0) = C(0, X) = 0.

Then C ≡ 0.

Proof. Putting Z = −Y in (i) we have C(X,Y ) + C(X + Y,−Y ) = C(X, 0) + C(Y,−Y ), thus using (iii):

C(X,Y ) = −C(X + Y,−Y ). (4.3)

Similarly with X = −Y in (i) and using (iii) we get 0 = C(−Y, Y + Z) + C(Y,Z). Replacing Y, Z by X,Y :

C(X,Y ) = −C(−X,X + Y ). (4.4)

Now,

C(X,Y )
(4.4)
= −C(−X,X + Y )

(4.3)
= C(Y,−X − Y )

(4.4)
= −C(−Y,−X)

(ii)
= (−1)n+1C(Y,X). (4.5)

Putting Z = −Y/2 in (i) gives C(X,Y ) + C(X + Y,−Y/2) = C(X,Y − Y/2) + C(Y,−Y/2), thus with (iii):

C(X,Y ) = C(X,Y/2)− C(X + Y,−Y/2). (4.6)

With X = −Y/2 in (i) we have C(−Y/2, Y ) + C(−Y/2 + Y, Z) = C(−Y/2, Y + Z) + C(Y,Z), thus with
Y,Z → X,Y :

C(X,Y ) = C(X/2, Y )− C(−X/2, X + Y ). (4.7)

Applying (4.6) to both terms on the r.h.s. of (4.7) gives

C(X/2, Y ) = C(X/2, Y/2)− C(X/2 + Y,−Y/2)

(4.3)
= C(X/2, Y/2) + C(X/2 + Y/2, Y/2),

C(−X/2, X + Y ) = C(−X/2, X/2 + Y/2)− C(X/2 + Y,−X/2− Y/2)

(4.3)
= C(−X/2, X/2 + Y/2) + C(Y/2, X/2 + Y/2)

(4.4)
= −C(X/2, Y/2) + C(Y/2, X/2 + Y/2),

thus

C(X,Y ) = C(X/2, Y/2) + C(X/2 + Y/2, Y/2) + C(X/2, Y/2)− C(Y/2, X/2 + Y/2)

= 2C(X/2, Y/2) + C(X/2 + Y/2, Y/2)− C(Y/2, X/2 + Y/2)

(ii)
= 21−nC(X,Y ) + 2−nC(X + Y, Y )− 2−nC(Y,X + Y )

(4.5)
= 21−nC(X,Y ) + 2−n(1 + (−1)n)C(X + Y, Y ).

Collecting, we have
(1− 21−n)C(X,Y ) = 2−n(1 + (−1)n)C(X + Y, Y ), (4.8)

which already implies C(X,Y ) = 0 if n is odd (since n 6= 1). If n is even, replacing X in (4.8) by X−Y we have

−(1− 21−n)C(X,−Y )
(4.3)
= (1− 21−n)C(X − Y, Y ) = 21−nC(X,Y ).

9This way of stating the proposition is inspired by Eichler’s Autoreferat in Zentralblatt (Zbl 0157.07601).
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Dividing by 21−n we obtain
C(X,Y ) = (1− 2n−1)C(X,−Y ),

twofold application of which yields
C(X,Y ) = (1− 2n−1)2 C(X,Y ).

In view of n 6= 2, the numerical factor on the r.h.s. is different from one, so that C(X,Y ) = 0 ∀X,Y ∈ V . �

4.3 Remark 1. For almost all purposes in Lie theory, the qualitative BCH Theorem 4.1 (plus an easy conver-
gence result, see Remark 2.5) is sufficient. If one only needs this, Eichler’s proof probably is the shortest, at
least of the algebraic ones.

2. The above proof based on associativity and a resulting 2-cocycle equation is quite interesting and very
different from all the others, at least on the surface. It would be good to understand how it relates to the other
proofs. 2

5 F〈A〉 and F〈〈A〉〉 as Hopf algebras

In the interest of a coherent picture, in this section we give a few more facts than strictly needed later.

5.1 Definition Let A be a set and F a field. Denoting by ⊗ the algebraic tensor product of F-modules, define

• a F-linear map conc : F〈A〉 ⊗ F〈A〉 → F〈A〉, P ⊗Q 7→ PQ.

• a F-algebra homomorphism δ : F〈A〉 → F〈A〉 ⊗ F〈A〉, uniquely determined by

δ : 1 7→ 1⊗ 1, a 7→ a⊗ 1 + 1⊗ a ∀a ∈ A.

• an F-algebra homomorphism ε : F〈A〉 → F, ε(F ) = (F, 1).

• a linear map α : F〈A〉 → F〈A〉 by α(1) = 1 and α(a1 · · · an) = (−1)nan · · · a1 for a1, . . . , an ∈ A.

5.2 Proposition With the above definitions,

(i) (F〈A〉, conc, 1) is an (associative) algebra.

(ii) (F〈A〉, δ, ε) is a coalgebra, i.e. coassociative (δ⊗id)◦δ = (id⊗δ)◦δ with ε as counit (ε⊗id)◦δ = id = (id⊗ε)◦δ.
(iii) (F〈A〉, conc, 1, δ, ε) is a bialgebra, i.e. algebra, coalgebra, and δ, ε are algebra homomorphisms.

(iv) (F〈A〉, conc, 1, δ, ε, α) is a Hopf algebra, i.e. a bialgebra such that α is an anti-homomorphism α(FG) =
α(G)α(F ) and

conc ◦ (α⊗ id) ◦ δ = η ◦ ε = conc ◦ (id⊗ α) ◦ δ, (5.1)

where η : F→ F〈A〉, c 7→ c1.

(v) In addition we have α ◦ α = id and cocommutativity δ = σ ◦ δ, where σ : F〈A〉 ⊗ F〈A〉 → F〈A〉 ⊗ F〈A〉 is
defined by σ(F ⊗G) = G⊗ F for all F,G ∈ F〈A〉.

(vi) All maps considered above have obvious extensions to F〈〈A〉〉, but note that δ(F〈〈A〉〉) ⊆
∏∞
r,s=0 F〈〈A〉〉r⊗

F〈〈A〉〉s, which is bigger than the algebraic tensor product F〈〈A〉〉 ⊗ F〈〈A〉〉.

Proof. (i) is known. (ii) Linearity of ε is clear, and multiplicativity ε(FG) = ε(F )ε(G) is immediate by definition
of the multiplication of F〈A〉. Since δ is a homomorphism, it suffices to verify (δ ⊗ id) ◦ δ(F ) = (id⊗ δ) ◦ δ(F )
for F = 1 and F = a ∈ A. For F = 1, both sides equal 1 ⊗ 1 ⊗ 1, and for F = a ∈ A, both sides equal
a⊗ 1⊗ 1 + 1⊗ a⊗ 1 + 1⊗ 1⊗ a. Also for the counit property (ε⊗ id) ◦ δ(F ) = F = (id⊗ ε) ◦ δ(F ) it suffices to
consider F = 1 and F = a ∈ A. The first case is trivial, and the second follows readily from ε(a) = 0.

(iii) δ is multiplicative by definition, and for ε this was seen above.
(iv) By linearity, it suffices to verify anti-multiplicativity α(ww′) = α(w′)α(w) for w,w′ ∈ A∗, and this is

immediate since α reverses the order of letters in each word. For F = 1, the antipode property (5.1) is clearly
true since all expressions equal 1. For F ∈ A∗ with |F | ≥ 1, we have ε(F ) = 0 so that it remains to show that
the left and right hand sides of (5.1) vanish. We do this for the latter, the other case being analogous.
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Since α is an anti-homomorphism, it isn’t totally obvious that it suffices to verify (5.1) on {1} ∪A. Thus let

n ≥ 1 and a1, . . . , an ∈ A. Noting that δ(a) = a⊗ 1 + 1⊗ a =
∑1
s=0 a

s ⊗ a1−s for a ∈ A we have

δ(a1 · · · an) = δ(a1) · · · δ(an) =
∑

s∈{0,1}n
as11 · · · asnn ⊗ a

1−s1
1 · · · a1−snn , (5.2)

where we sum over all ways of distributing the factors a1, . . . , an over the two sides of the tensor product while
maintaining their order. Now

conc ◦ (id⊗ α) ◦ δ(a1 · · · an) =
∑

s∈{0,1}n
as11 · · · asnn α(a1−s11 · · · a1−snn )

=
∑

s∈{0,1}n
(−1)

∑n
i=1(1−si)as11 · · · asnn a1−snn · · · a1−s11 .

Since the middle factor asnn a
1−sn
n = an is independent of sn, the presence of the factor (−1)1−sn implies that

the summation over sn gives zero.
(v) Involutivity of α and cocommutativity of δ are immediate from the respective definitions.
(vi) The only point that may not be entirely obvious concerns the well-definedness of δ on F〈〈A〉〉. In view

of (5.2), wherein the sum of all exponents on the r.h.s. is n, we have

δ(F〈A〉n) ⊆
n⊕
k=0

F〈A〉k ⊗ F〈A〉n−k =: (F〈〈A〉〉 ⊗ F〈〈A〉〉)n,

which means that δ preserves degrees so that defining δ(F ) for F ∈ F〈〈A〉〉 by δ(F ) =
∑∞
n=0 δ(Fn) makes sense.

All remaining verifications are straightforward. �

5.3 Remark For every Lie algebra L, there is a unique associative algebra U(L), the universal enveloping
algebra. One can show that U(L) is a Hopf algebra with maps very similar to the above, see e.g. [39]. In fact,
one then has an isomorphism U(LF〈A〉) ∼= F〈A〉 of Hopf algebras, showing that U(L) generalizes F〈A〉. 2

5.4 Lemma Let F be a field and let A,B be sets.

(i) For F,G ∈ F〈〈A〉〉 define

d(F,G) =

{
0 if F = G
2−min{n∈N | Fn 6=Gn} if F 6= G

Then d is a metric. The topology on F〈〈A〉〉 induced by d is called the A-adic topology.

(ii) A map α : F〈〈A〉〉 → F〈〈B〉〉 is continuous w.r.t. the A-adic topologies on both sides if and only if for every
r ∈ N there is s ∈ N such that φ(F )≤r (the projection of φ(F ) to F〈〈B〉〉≤r) depends only on F≤s.

(iii) If α : F〈〈A〉〉 → F〈〈B〉〉 is homogeneous, i.e. α(F〈〈A〉〉n) ⊆ F〈〈B〉〉n ∀n ∈ N0, then it is continuous.

We omit the easy proof. The maps δ, α are homogeneous, thus continuous. Also ε : F〈〈A〉〉 → F is continuous
if we identify F with F〈〈B〉〉 with B = ∅.

6 Standard algebraic proof of BCHD

This section requires everything from Section 3 and most of Section 5, but not Section 4.

6.1 The Lie-ness criteria of Friedrichs and Dynkin-Specht-Wever

6.1 Definition Let A be a set and F a field. We define F-linear maps D : F〈A〉 → F〈A〉 and R : F〈A〉 →
LF〈A〉 ⊂ F〈A〉 by defining them on the words A∗ ⊂ F〈A〉:

D : w 7→ |w|w,
R : 1 = ε 7→ 0, a 7→ a, a1a2 . . . an 7→ [a1, [a2, [· · · , [an−1, an] · · · ] ∀a, a1, . . . , an ∈ A.

Note that D and R map the homogeneous components F〈A〉n into themselves.
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6.2 Lemma With the above notations, the following holds for all F ∈ F〈A〉:

conc ◦ (D ⊗ α) ◦ δ(F ) = R(F ). (6.1)

Proof. Since this equation is linear, it suffices to prove it on words F = w ∈ A∗. In degree zero, i.e. for F = 1,
it becomes D(1)1 = R(1), which is true since D(1) = R(1) = 0 by definition. Now let n ∈ N, a1, . . . , an ∈ A.
Combining (5.2) with D(as11 · · · asnn ) = (

∑n
i=1 si)a

s1
1 · · · asnn , we have

conc ◦ (D ⊗ α)(δ(a1 · · · an)) =
∑

s∈{0,1}n
(−1)

∑
i(1−si)

(
n∑
i=1

si

)
as11 · · · asnn a1−snn · · · a1−s11

=
∑

s∈{0,1}n
(−1)

∑
i(1−si)

(
n∑
i=1

si

)
as11 · · · a

sn−1

n−1 ana
1−sn−1

n−1 · · · a1−s11 .

Writing
∑n
i=1 si = (

∑n−1
i=1 si) + sn and noting that (

∑n−1
i=1 si)a

s1
1 · · · a

sn−1

n−1 ana
1−sn−1

n−1 · · · a1−s11 is independent of
sn, this term is killed by the sn-summation due to the presence of the factor (−1)1−sn . The term involving sn
obviously only contributes for sn = 1, for which (−1)1−sn = 1. We thus arrive at

conc ◦ (D ⊗ α)(δ(a1 · · · an)) =
∑

s1,...,sn−1

(−1)
∑n−1
i=1 (1−si) as11 · · · a

sn−1

n−1 ana
1−sn−1

n−1 · · · a1−s11 . (6.2)

For n = 1 the r.h.s. reduces to a1, which equals R(a1). For n ≥ 2 we notice that

1∑
sn−1=0

(−1)1−sn−1a
sn−1

n−1 ana
1−sn−1

n−1 = an−1an − anan−1 = [an−1, an].

It should be obvious enough without formal inductive argument that working our way outwards in (6.2), we
have

conc ◦ (D ⊗ α)(δ(a1 · · · an)) = [a1, [a2, [· · · , [an−1, an] · · · ] = R(a1 · · · an),

completing the proof of (6.1). �

6.3 Theorem (Friedrichs-Dynkin-Specht-Wever) 10 If charF = 0, the following are equivalent for all
F ∈ F〈A〉:

(i) F is a Lie polynomial.

(ii) δ(F ) = F ⊗ 1 + 1⊗ F . (Friedrichs’ criterion)

(iii) The constant term (F, 1) vanishes and R(F ) = D(F ). (Criterion of Dynkin-Specht-Wever)

(The equivalence (i)⇔(ii) is called Friedrichs’ theorem, and (i)⇔(iii) the Dynkin-Specht-Wever theorem.)

Proof. (iii)⇒(i) Assume F ∈ F〈A〉 satisfies (F, 1) = 0 and R(F ) = D(F ). Since R(F ) is a Lie polynomial, it
follows from R(F ) = D(F ) that Fn = 1

nR(F )n is a Lie polynomial for all n ≥ 1. (This is the only place where
characteristic zero is used.) Since F0 = (F, 1)ε is zero by assumption, F is Lie.

(i)⇒(ii) Let L = {F ∈ F〈A〉 | δ(F ) = F ⊗ 1 + 1⊗F}, which is a linear subspace. By definition of δ, we have
A ⊆ L. If F,G ∈ L, the computation

δ([F,G]) = δ(FG−GF ) = (F ⊗ 1 + 1⊗ F )(G⊗ 1 + 1⊗G)− (G⊗ 1 + 1⊗G)(F ⊗ 1 + 1⊗ F )

= FG⊗ 1 + 1⊗ FG+ F ⊗G+G⊗ F −GF ⊗ 1− 1⊗GF − F ⊗G−G⊗ F
= [F,G]⊗ 1 + 1⊗ [F,G]

shows that [F,G] ∈ L, so that L is closed under commutators. Thus it contains the smallest Lie subalgebra of
F〈A〉 that contains A, to wit LF〈A〉.

10Kurt Otto Friedrichs (1901-1982) German American mathematician. Best known for work on differential equations. Wilhelm Otto
Ludwig Specht (1907-1985). German mathematician best known for Specht modules in the representation theory of symmetric groups.
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(ii)⇒(iii) Assume F ∈ F〈A〉 satisfies (ii). Applying ε ⊗ id to both sides of δ(F ) = F ⊗ 1 + 1 ⊗ F gives
F = ε(F )1 + ε(1)F . With ε(1) = 1 it follows that (F, 1) = ε(F ) = 0. Plugging δ(F ) = F ⊗ 1 + 1⊗ F into (6.1)
and using α(1) = 1, D(1) = 0, we get D(F ) = D(F )α(1) +D(1)α(F ) = R(F ). �

6.4 Remark 1. The easy implications (iii)⇒(i)⇒(ii) are from the classical papers [18, 59, 67] on the criteria
of Dynkin-Specht-Wever (1947-49) and Friedrichs (1953) [24]. (Friedrichs gave no general proof, which was
supplied soon after by P. M. Cohn, W. Magnus and others.) The beautiful approach to (ii)⇒(iii) based on
(6.1) is due to von Waldenfels [65] (1966), who eliminated any reference to the fact that F〈A〉 is the universal
enveloping algebra of LF〈A〉, let alone the Poincaré-Birkhoff-Witt theorem. Cf. also the exposition in [49] and
[31, Exercise 1.5.11(c)]. The proof of (6.1) using (5.2) is probably well-known to the experts, but I haven’t yet
seen it elsewhere.

2. If (H,m, 1, δ, ε, α) is a Hopf algebra and u, v : H → H are linear maps, we define the convolution
u ? v : H → H by u ? v = m ◦ (u ⊗ v) ◦ δ. Associativity of m and coassociativity of δ imply associativity of
?, and (5.1) becomes α ? id = id ? α = η ◦ ε. With H = F〈A〉 and m = conc, (6.1) just is D ? α = R. Thus
R ? id = D ? α ? id = D, to wit

D = conc ◦ (R⊗ id) ◦ δ. (6.3)

(This actually is equivalent to (6.1), the converse working analogously.) Using (6.3) it is also immediate that
δ(F ) = F ⊗ 1 + 1⊗ F implies R(F ) = D(F ). And (6.3) also has an α-free direct proof, see [68], very similar to
the proof of (6.1) in [65], but I prefer the essentially non-inductive proof of (6.1) given above.

3. Before the Hopf algebraic view of F〈A〉 and F〈〈A〉〉 became common, Friedrichs’ criterion was usually stated
differently, see e.g. [24, 43, 47]: For each a ∈ A introduce a new formal variable a′, putting also A′ = {a′ | a ∈ A},
in such a way that the variables in A′ commute with those in A. Now Friedrichs’ criterion is equivalent to
F (a + a′) = F (a) + F (a′) where, e.g., F (a + a′) means that each instance a ∈ A in F is replaced by a + a′.
To see this equivalence it suffices to realize that the free algebra generated by A ∪ A′, but with each element
of A commuting with each element of A′, is nothing other than F〈A〉 ⊗ F〈A′〉 ∼= F〈A〉 ⊗ F〈A〉. Now F (a + a′)
lives in the latter tensor product, and F (a+ a′) precisely is δ(F ). This author finds the superiority of the Hopf
algebraic formulation quite evident. 2

From now on we always assume the alphabet A to be finite. (For our purposes this is sufficient, even
though the results hold without this assumption provided one adapts the definition of LF〈〈A〉〉, cf. [49].)

6.5 Corollary The analogue of Theorem 6.3 holds for F ∈ F〈〈A〉〉 if we replace (Lie) ‘polynomial’ by ‘series’
in (i) and interpret F〈〈A〉〉 ⊗ F〈〈A〉〉 as the completion

∏
m,n F〈A〉m ⊗ F〈A〉n.

Proof. We have already seen that δ extends to F〈〈A〉〉, and the observation that R and D preserve degrees
of homogeneous elements guarantees that their obvious extensions to F〈〈A〉〉 are well-defined. Now the claim
follows since a formal series’ being Lie is determined degreewise. �

6.2 Proof of BCH

6.6 Proposition Let F ∈ F〈〈A〉〉>0. Then F is a Lie series if and only if δ(eF ) = eF ⊗ eF .

Proof. Recall that eF = expF is well-defined since F has no constant term. By (i)⇔(ii) in Corollary 6.5, F is a
Lie series if and only if δ(F ) = F ⊗1 + 1⊗F . Both sides of this identity live in

∏∞
n=0⊕nk=0F〈A〉k⊗F〈A〉n−k and

have zero constant term, so that we can exponentiate them. Since exponentiation of formal series is injective,
we find

F ∈ LF〈〈A〉〉 ⇔ δ(F ) = F ⊗ 1 + 1⊗ F ⇔ exp(δ(F )) = exp(F ⊗ 1 + 1⊗ F ).

As to the r.h.s., since F ⊗ 1 and 1⊗ F commute, we have

exp(F ⊗ 1 + 1⊗ F ) = exp(F ⊗ 1) exp(1⊗ F ) = (eF ⊗ 1)(1⊗ eF ) = eF ⊗ eF ,

where we also used exp(F )⊗ 1 = exp(F ⊗ 1) (and ↔) which follows from 1 being the unit of F〈〈A〉〉. Thus the
proof is complete once we prove that exp(δ(F )) = δ(eF ) holds for all F ∈ F〈〈A〉〉>0.
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Since δ is an algebra homomorphism, it satisfies

δ

(
N∑
n=0

Fn

n!

)
=

N∑
n=0

δ(F )n

n!
∀N ∈ N. (6.4)

Since F has no constant term and δ is degree-preserving, summands δ(F k/k!) = δ(F )k/k! with k > N do not
contribute to the degree ≤ N parts of δ(exp(F )) and exp(δ(F )), so that (6.4) implies δ(exp(F )) = exp(δ(F )).
(This argument is usually, see e.g. [49], couched in topological language using the ‘A-adic topology’ of F〈〈A〉〉,
but this is not really needed here.) �

(An element X of a Hopf algebra is called group-like if δ(X) = X ⊗X and ε(X) = 1 and is called primitive
if δ(X) = X ⊗ 1 + 1⊗X (although ‘Lie-like’ would be better). Thus eX is group-like iff X is primitive.)

6.7 Corollary (BCH) If A is finite and X1, . . . , Xn ∈ LF〈〈A〉〉 then log(eX1 · · · eXn) ∈ LF〈〈A〉〉. In particular
H = log(exey) ∈ F〈〈x, y〉〉 is a Lie series.

Proof. By assumption, the Xi are Lie, in particular they have no constant terms. By Proposition 6.6, we have
δ(eXi) = eXi ⊗ eXi for all i. Since δ is a homomorphism, δ(eX1 · · · eXn) = eX1 · · · eXn ⊗ eX1 · · · eXn . With
W = log(eX1 · · · eXn) we have eW = eX1 · · · eXn , thus δ(eW ) = eW ⊗ eW , and using Proposition 6.6 again, W is
Lie. The second statement is a special case (since the generators x, y are Lie). �

The above approach to BCH is due to P. Cartier11 [10, 11] and was canonized in the first half of the 1960s
by books like [38, 57, 37].

6.3 Proof of Dynkin’s formula (1.4)

6.8 Corollary Define a linear map P : F〈〈A〉〉 → LF〈〈A〉〉 by linear extension of

ε 7→ 0, a1 . . . an 7→
1

n
R(a1 . . . an) =

1

n
[a1, [a2, [· · · , [an−1, an] · · · ].

Then P satisfies P �LF〈〈A〉〉= id, thus also P 2 = P , so that it is a projection, called the Dynkin idempotent.

Proof. It is clear that the image of P is contained in LF〈〈A〉〉. Let F ∈ LF〈〈A〉〉. Since P respects the N0-grading,
it suffices to prove P (Fn) = Fn for all n. Since Lie series by definition have no constant term, F0 = 0 = P (F0).
For n ≥ 1 we have

P (Fn) =
1

n
R(Fn) =

1

n
D(Fn) =

n

n
Fn = Fn,

where the second identity is due to the Dynkin-Specht-Wever implication (i)⇒(iii) in Corollary 6.5. �

6.9 Corollary (Dynkin [18]) Dynkin’s formula (1.4) holds as an identity in LF〈〈x, y〉〉.

Proof. By Corollary 6.7, the series (1.3) for H = log(exey) ∈ F〈〈x, y〉〉 is a Lie series, thus applying the projection
P : F〈〈A〉〉 → LF〈〈A〉〉 from Corollary 6.8 does not change it. But since

P (xm1yn1 · · ·xmkynk) =
1∑k

i=1(mi + ni)

m1︷ ︸︸ ︷
[x, [· · · , [x,

n1︷ ︸︸ ︷
[y, [· · · , [y, [. . .

mk︷ ︸︸ ︷
[x, [· · · , [x,

nk︷ ︸︸ ︷
[y, [· · · , [y, [· · · ] · · · ],

the summand-wise application of P to (1.3) gives nothing other than Dynkin’s formula (1.4). �

We note that the above proof of BCH (Subsections 6.1-6.2) is slightly longer than Eichler’s, but more
conceptual, and a negligible additional effort also proves Dynkin’s formula. One wonders whether Eichler’s
proof in some sense is an infinitesimal version of the above one.

11Pierre Cartier (b. 1932). French mathematician. Worked on many subjects, in particular algebraic geometry.
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As mentioned before, for most purposes in Lie theory the qualitative BCH theorem is sufficient. But there
are other applications, e.g. to differential equations or quantum (field) theory, where it is important to have a
managable series expansion. As we have seen, while Dynkin’s formula can be proven in different ways, it is hard
to work with. For this reason we will now study some alternative approaches to log(exey). This will lead us into
combinatorial waters of increasing depth.

7 Algebraic version of the proof of BCHD from Section 2.3

The analytic and algebraic proofs of the BCH theorem and of the Dynkin representation (1.4) given in Sections
2 and 6, respectively, look very different and seem to have nothing in common. In this section we will show that
this (if it is true at all) is not due to the first proof being analytic and the second algebraic by recasting the first
proof in purely algebraic terms. This requires two additions to our algebraic toolkit that will be used again in
later sections.

Formal power series in one variable are well known (and briefly discussed in Appendix C), the generalization
to several commuting variables being straightforward. And the algebra F〈〈A〉〉 of formal series in non-commuting
variables has been discussed extensively above. But one can also consider formal series involving commuting
and non-commuting variables:

7.1 Definition By F〈〈x1, . . . , xn〉〉[[t1, . . . , tm]], where n,m ∈ N, we denote the algebra of formal series in n
non-commuting variables x1, . . . , xn and m variables t1, . . . , tm that commute with each other and with the x’s.
As a vector space it is given by

F〈〈x1, . . . , xn〉〉[[t1, . . . , tm]] = FNm0 ×{x1,...,xn}∗ ,

but we will write its elements as (possibly infinite) linear combinations∑
I=(i1,...,im)∈Nm0
w∈{x1,...,xn}∗

aI,w t
i1
1 · · · timm w,

whose multiplication is defined by multiplication of basis elements:

(ti11 · · · timm w) (t
i′1
1 · · · t

i′m
m w′) = t

i1+i
′
1

1 · · · tim+i′m
m ww′.

7.2 Remark Note that an element of F〈〈x1, . . . , xn〉〉[[t1, . . . , tm]] can and will be considered as a formal series
in commuting variables t1, . . . , tm with coefficients in F〈〈x1, . . . , xn〉〉.

One could also define F〈〈x1, . . . , xn〉〉[[t1, . . . , tm]] as F〈〈x1, . . . , xn〉〉⊗F[[t1, . . . , tm]], but the above approach
is more straightforward. (In the same vein, e.g., F〈〈x, y〉〉 is a ‘free’ tensor product of F[[x]] and F[[y]].) 2

We now turn to the promised algebraic version of Proposition 2.7, which we state in the greater generality
needed later on. All algebras appearing here are unital and all homomorphisms map units to units.

7.3 Definition If A is an associative algebra and φ : A → A an algebra homomorphism, a (φ, φ)-derivation of
A is a linear map D : A → A such that

D(XY ) = D(X)φ(Y ) + φ(X)D(Y ) ∀X,Y ∈ A. (7.1)

A derivation of A is an (id, id)-derivation.

7.4 Lemma Every (φ, φ)-derivation D satisfies D(1) = 0.

Proof. Follows from D(1) = D(1 · 1) = D(1)φ(1) + φ(1)D(1) = 2D(1). (Recall that φ(1) = 1.) �

For the prototypical example of a derivation see Definition B.2 in Appendix C.
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7.5 Proposition Let F be a field of characteristic zero, and let A be an F-algebra of formal series in commuting
and/or non-commuting variables. If φ : A → A is a homomorphism, D : A → A a (φ, φ)-derivation and X ∈ A,
then

D(eX) = eφ(X)
∞∑
n=0

(−adφ(X))
n

(n+ 1)!
(D(X)) = eφ(X) 1− e−adφ(X)

adφ(X)
(D(X)) (7.2)

=

∞∑
n=0

(adφ(X))
n

(n+ 1)!
(D(X)) eφ(X) =

eadφ(X) − 1

adφ(X)
(D(X))eφ(X). (7.3)

Proof. We put A = φ(X), B = D(X) and claim that

D(Xn) =

n∑
`=1

An−`BA`−1 ∀n ∈ N0. (7.4)

For n = 0 this is true since the r.h.s. vanishes and D(1) = 0 by Lemma 7.4. Assuming that (7.4) holds for n,

D(Xn+1) = D(XnX) = D(Xn)φ(X) + φ(Xn)D(X)

=

(
n∑
`=1

An−`BA`−1

)
A+AnB =

n+1∑
`=1

An+1−`BA`−1

provides the induction step. (We used the homomorphism and derivation properties of φ,D, and the final
equality was already shown in the proof of Lemma 2.12.) Dividing (7.4) by n! and summing over n ∈ N0, we
obtain

D(eX) =

∞∑
n=0

1

n!

n∑
`=1

An−`BA`−1,

which equals the l.h.s. of (2.8), whose r.h.s. equals the middle expression in (7.2) if we take the definitions of
A,B into account. This proves (7.2) since the proof of (2.8) remains valid in the present formal setting, all sums
being locally finite. Since the same holds for (2.1), the dual formula (7.3) follows as in Remark 2.8.5. �

7.6 Theorem (BCHD) The formal series H = log(exey) ∈ Q〈〈x, y〉〉 is a Lie series, and it is given by (1.4),
interpreted as element of Q〈〈x, y〉〉.

Proof. We put A = F〈x, y〉[t] and define linear maps D, I : A → A by

D : tnw 7→ ntn−1w ∀n ∈ N0, w ∈ {x, y}∗,

I : tnw 7→ tn+1

n+ 1
w ∀n ∈ N0, w ∈ {x, y}∗.

The proof of Lemma B.5 is easily adapted to show that D is a derivation (with φ = id). It is obvious that
D ◦ I = idA and I ◦D(F ) = F − F0, where F0 is the coefficient of t0 in the expansion F =

∑∞
n=0 t

nFn, where
Fn ∈ F〈〈x, y〉〉. We have

D(etx) =

∞∑
n=0

1

n!
ntn−1xn =

∞∑
n=0

tnxn+1

n!
= xetx = etxx,

and similarly D(ety) = yety = etyy. (Deriving these formulae from Proposition 7.5 is possible, but rather
roundabout.)

Since etxety ∈ A has constant term 1, we can define Ĥ =
∑∞
n=0 t

nĤn = log(etxety) ∈ A. Clearly, Ĥ0 = 0.

The specialization Ĥt=1 =
∑∞
n=0 Ĥn ∈ F〈〈x, y〉〉 is admissible since it equals H = log(exey). Applying the

derivation D to both sides of eĤ = etxety and appealing to (7.3) and the above formulae for D(etx), D(ety) gives

eadĤ − 1

adĤ
(D(Ĥ)) eĤ = D(eĤ) = D(etxety) = xetxety + etxetyy = xeĤ + eĤy,
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whence
eadĤ − 1

adĤ
(D(Ĥ)) = x+ eadĤ (y).

The function f(u) = eu−1
u has g(u) = u

eu−1 as multiplicative inverse: f · g = g · f = 1. Thus f(adĤ) is invertible
with inverse g(adĤ), so that

D(Ĥ) =
adĤ

eadĤ − 1
(x+ eadĤ (y)). (7.5)

Continuing exactly as in Section 2.3 we arrive at the formal version of (2.11):

D(Ĥ) =

∞∑
k=1

(−1)k−1

k
(eadtxeadty − 1)k−1(x+ eadtx(y)). (7.6)

Applying the anti-derivation operator I from the left and using I ◦D(Ĥ) = Ĥ − Ĥ0 = Ĥ, we have

Ĥ =

∞∑
k=1

(−1)k−1

k
I
[
(eadtxeadty − 1)k−1(x+ eadtx(y))

]
.

Once we expand the exponential functions, as done several times before, the operator I has the same effect of
generating the factors like 1 +

∑
i(mi+ni) in the denominator, as in Section 2.3. It also increases the exponents

of t, but the specialization t = 1 makes the t’s disappear, yielding for Ĥt=1 = H = log(exey) the formal series
version of Dynkin’s formula (1.5). Since the latter clearly is equivalent to (1.4) in each order, the two formulae
define the same formal series. �

7.7 Remark Up to and including (7.5), the above argument is essentially the same as in Djoković’s [16]. But
then he contents himself with giving an inductive argument for Lie-ness of the coefficients Hn ∈ Q〈〈x, y〉〉. (The
argument needed to get from (7.5) to (7.6) can in principle be found in [34], but this may well have been the
only place in 1975.) 2

8 Expansion of log(exey) in powers of x. Fourth algebraic proof of
BCH

The formal series H = log(exey) ∈ F〈〈x, y〉〉 can be decomposed w.r.t. the usual gradation of F〈〈x, y〉〉 by word
length. I.e. H =

∑∞
n=1Hn, where Hn ∈ F〈x, y〉n ∀n. This was even central in Eichler’s proof of BCH.

But there are other gradations of the algebras F〈〈A〉〉: If a ∈ A and w ∈ A∗, let |w|a denote the number of
occurrences of the letter a in the word w. Clearly |ww′|a = |w|a + |w′|a. Thus

F〈〈A〉〉(a)n := {F ∈ F〈〈A〉〉 | |w|a 6= n ⇒ (F,w) = 0} ⊂ F〈〈A〉〉

defines a new gradation of F〈〈A〉〉. Note that if {a} ( A, there are arbitrarily long words w with given |w|a, so

that F〈〈A〉〉(a)n 6⊆ F〈A〉, even if A is finite.
The aim of this section, where we mostly follow Reutenauer’s [49] presentation of very classical results, is to

determine H ′n ∈ F〈〈x, y〉〉(x)n (clearly unique) such that H =
∑∞
n=0H

′
n. (Some would call this a resummation of

the original series
∑
nHn.)

Recall that the Bernoulli numbers B0, B1, . . . ∈ Q are defined by their exponential generating function:

z

ez − 1
=

∞∑
n=0

Bn
n!
zn. (8.1)

This is equivalent to( ∞∑
m=0

zm

(m+ 1)!

)( ∞∑
n=0

Bn
n!
zn

)
= 1 and to

N∑
n=0

Bn
n! (N − n+ 1)!

= δN,0 ∀N ∈ N0,
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from which B0 = 1, B1 = − 1
2 , B2 = 1

6 , . . . can be determined recursively. As a consequence of the fact that

z 7→ z
ez−1 + z

2 = z
2
ez+1
ez−1 is even, one has B3 = B5 = · · · = 0.

The function z 7→ z
ez−1 already played a role in the proof of Theorem 2.14, but there it did not lead to an

appearance of the Bernoulli numbers. Now it will:

8.1 Proposition Let H =
∑∞
n=0H

′
n be the decomposition of H = log(exey) ∈ Q〈〈x, y〉〉 w.r.t. the | · |x-grading.

Then H ′0 = y and

H ′1 =
ady

eady − 1
(x) = x− 1

2
ady(x) +

∞∑
m=1

B2m

(2m)!
ad2m
y (x). (8.2)

Proof. Let φ : Q〈〈x, y〉〉 → Q〈〈x, y〉〉 be the unique unital homomorphism such that x 7→ 0, y 7→ y. Clearly φ(F )
is just the specialization F|x=0, which is well-defined. The homomorphism φ is continuous and idempotent with
image Q〈〈y〉〉 ⊂ Q〈〈x, y〉〉. Since H ′0 by definition is the part of the BCH series H = log(exey) involving only
powers of y, but no x, we have H ′0 = φ(H) = log(ey) = y, proving the first claim.

Now let D : Q〈〈x, y〉〉 → Q〈〈x, y〉〉 be the linear map defined on words by D(w) = wδ|w|x,1. Thus D(w) = w
if w contains x once, and D(w) = 0 otherwise. Now D is a (φ, φ)-derivation, i.e. satisfies D(ww′) = D(w)φ(w′)+
φ(w)D(w′), since both sides equal ww′ if |ww′|x = 1 and both vanish otherwise. Now we are in a position to
apply (7.3), obtaining

D(ex)φ(ey) + φ(ex)D(ey) = D(exey) = D(eH) =
eadφ(H) − 1

adφ(H)
(D(H))eφ(H). (8.3)

As shown above, φ(H) = y, and clearly φ(ex) = 1, φ(ey) = ey. Furthermore, D(ex) = x,D(ey) = 0, and
D(H) = H ′1, so that (8.3) reduces to

xey =
eady − 1

ady
(H ′1)ey, thus x =

eady − 1

ady
(H ′1).

Using again that the function f(z) = ez−1
z has g(z) = z

ez−1 as multiplicative inverse, the above becomes

ady
eady − 1

(x) = H ′1,

which is the first identity in (8.2). The second follows from (8.1) and B1 = − 1
2 , B3 = B5 = · · · = 0. �

8.2 Remark 1. Note that H ′1, as given by (8.2), is a Lie series, as was to be expected since a linear combination
of iterated commutators remains one if some of the Lie summands (those of x-degree different from 1) are
removed. (Cf. also Lemma 3.1(ii).)

2. Completely analogously one can consider an expansion H =
∑∞
n=0H

′′
n in powers of y, i.e. H ′′n ∈ F〈〈x, y〉〉(y)n

for all n. One then proves

H ′′1 = y +
1

2
adx(y) +

∞∑
m=1

B2m

(2m)!
ad2m
x (y).

3. We know from the computations in the Introduction that

H = x+ y − 1

2
[y, x] +

1

12
([y, [y, x]] + [x, [x, y]])− 1

24
[y, [x, [y, x]]] +O((x+ y)5), (8.4)

from which we immediately get

H ′1 = x− 1

2
[y, x] +

1

12
[y, [y, x]] +O(xy4). (8.5)

In view of B2 = 1
6 , B3 = 0, equations (8.2) and (8.5) agree up to order ≤ 3 in y, as they must. Thus the − 1

2

and 1
12 in (8.4) really ‘are’ B1

1! and B2

2! , respectively, and the vanishing of B3 ‘explains’ the absence in (8.4) of a
term linear in x and cubic in y (or linear in y and cubic in x, by point 2. of the remark). 2
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We need a few more facts concerning derivations:

8.3 Lemma Let D be a derivation (i.e. φ = id) of an algebra A. Then

(i) For all n ∈ N0 and X1, . . . , Xn ∈ A we have

D(X1 · · ·Xn) = D(X1)X2 · · ·Xn +X1D(X2)X3 · · ·Xn + · · ·+X1 · · ·Xn−1D(Xn).

(ii) For each n ∈ N0 and X,Y ∈ A we have

Dn(XY ) =

n∑
k=0

(n
k

)
Dk(X)Dn−k(Y ).

(iii) The following linear map A → A is a continuous homomorphism:

µ : X 7→
∞∑
n=0

Dn(X)

n!
=: eD(X),

provided A = F〈〈A〉〉 and D(a) has zero constant term (D(a), 1) for all a ∈ A (or A is a Banach algebra
and D is bounded).

Proof. (i) For n = 1 this is trivial, for n = 0 it reduces to D(1) = 0 (Lemma 7.4), and for n = 2 this is just the
definition of a derivation. Assume the statement holds for n, and let X1, . . . , Xn+1 ∈ A. Then

D(X1 · · ·Xn+1) = D(X1 · · ·Xn)Xn+1 +X1 · · ·XnD(Xn+1)

= [D(X1)X2 · · ·Xn + · · ·+X1 · · ·Xn−1D(Xn)]Xn+1 +X1 · · ·XnD(Xn+1)

= D(X1)X2 · · ·Xn+1 + · · ·+X1 · · ·XnD(Xn+1)

is the inductive step.
(ii) The proof is the same as for the well-known formula for (fg)(n) (which only uses the derivation property).
(iii) With Lemma 7.4 it is immediate that µ(1) = eD(1) = 1. We compute formally:

µ(XY ) =

∞∑
n=0

Dn(XY )

n!

(ii)
=

∞∑
n=0

1

n!

n∑
k=0

(n
k

)
Dk(X)Dn−k(Y )

=
∑

0≤k≤n<∞

Dk(X)Dn−k(Y )

k! (n− k)!
=

∞∑
k,`=0

Dk(X)D`(Y )

k! `!
= µ(X)µ(Y ).

In the Banach algebra case it is easy to see that ‖µ(X)‖ ≤ e‖D‖‖X‖ <∞, so that µ(X) is well-defined and the
above computation is justified by absolute convergence. In the formal algebra case, we note that by (i) we have

D(a1 · · · an) = D(a1)a2 · · · an + a1D(a2)a3 · · · an + · · ·+ a1 · · · an−1D(an).

Now the assumption on D implies that D maps F〈A〉k to F〈〈A〉〉≥k. This implies that the infinite sum in the
definition of µ is locally finite, thus well-defined. For the same reason the formal proof of µ(XY ) = µ(X)µ(Y )
is valid. �

Given S ∈ Q〈〈x, y〉〉, we can use the formula in Lemma 8.3(i) to define a unique continuous derivation
D : Q〈〈x, y〉〉 → Q〈〈x, y〉〉 such that D(x) = 0 and D(y) = S. This derivation will be denoted S ∂

∂y .

8.4 Theorem The BCH series H = log(exey) is given by

H = exp

(
H ′1

∂

∂y

)
(y) =

∞∑
n=0

H ′n, where H ′n =
1

n!

(
H ′1

∂

∂y

)n
(y) ∈ Q〈〈x, y〉〉(x)n .
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Proof. Applying the construction given before the theorem to H ′1 ∈ Q〈〈x, y〉〉 as obtained in Proposition 8.1, we
obtain a derivation D = H ′1

∂
∂y . With this definition, the second statement of the theorem is trivially true for

n = 1, as it must for consistency. Since H ′1 has no constant term, D satisfies the condition in Lemma 8.3(iii), so
that we have a well-defined homomomorphism µ = eD : Q〈〈x, y〉〉 → Q〈〈x, y〉〉.

Now by Propositions 7.5 (with φ = id) and 8.1 we have

D(ey)
P. 7.5

=
eady − 1

ady
(Dy)ey

Dy=H′1=
eady − 1

ady
(H ′1)ey

P. 8.1
=

eady − 1

ady

(
ady

eady − 1
(x)

)
ey = xey.

By induction, taking D(x) = 0 into account, this gives Dn(ey) = xney. Dividing by n! and summing over n
gives

µ(ey) = eD(ey) =

∞∑
n=0

Dn

n!
(ey) =

∞∑
n=0

xn

n!
ey = exey,

thus µ(ey) = exey. Combining this with ‘continuity’ of the homomorphism µ, i.e. µ(ey) = eµ(y), we obtain

eµ(y) = exey = eH , thus µ(y) = H.

In view of the definition of µ, this is the first statement of the theorem. And H =
∑∞
n=0H

′
n, where H ′n = Dn(y)

n! .

Thus to prove the second half of the theorem, we need to show Dn(y) ∈ Q〈〈x, y〉〉(x)n .

By definition, D(y) = H ′1 ∈ Q〈〈x, y〉〉(x)1 . By way of induction, assume Dn(y) ∈ Q〈〈x, y〉〉(x)n . Then Dn(y) is
a linear combination of words w with |w|x = n. Given such a word, by Lemma 8.3(i) we have D(w) =

∑n
i=1 wi,

where wi is obtained from w by replacing the i-th instance of y by H ′1. Since H ′1 has x-degree one, this implies

D(w) ∈ Q〈〈x, y〉〉(x)n+1 and therefore Dn+1(y) ∈ Q〈〈x, y〉〉(x)n+1. This completes the induction. �

8.5 Remark 1. Also the preceding result has an analogue for the expansion H =
∑∞
n=0H

′′
n in powers of y.

2. Using Theorem 8.4 for actual computations is quite painful. But the following is still quite doable: 2

8.6 Exercise Use

H ′2 =
1

2!

(
H ′1

∂

∂y

)2

(y) =
1

2

(
H ′1

∂

∂y

)
H ′1

to compute H ′2 to order two in (x and) y. Compare with Exercise 1.2.

Nowhere in the above discussion did we assume that H = log(exey) is a Lie series. Indeed it can be used to
give yet another proof of the following:

8.7 Corollary (BCH) The BCH series H = log(exey) is a Lie series.

Proof. The claim clearly follows if we show that each H ′n from Theorem 8.4 is Lie. For H ′1 this is clear from

Proposition 8.1. With D as in the proof of Theorem 8.4, we by construction have H ′n+1 =
D(H′n)
n+1 , so that

it suffices to prove that D maps Lie series to Lie series. And indeed, since D is a derivation (of associative
algebras), we have

D([X,Y ]) = D(XY − Y X) = D(X)Y +XD(Y )−D(Y )X − Y D(X) = [D(X), Y ] + [X,D(Y )],

which shows that D (is a Lie algebra derivation, thus) maps linear combinations of commutators to linear com-
binations of commutators, i.e. Lie polynomials/series. �

The above algebraic proof of BCH is somewhat longer than those of Eichler and Friedrichs-Cartier(-Dynkin)
given before, and certainly less elementary.
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9 Dynkin’s forgotten paper

As we know, the BCH series is the unique formal series H ∈ Q〈〈x, y〉〉 such that eH = exey. In principle, the
expansions (1.3) and (1.4) contain all there is to know. We can, e.g., use them to compute to any desired order,
or expand in powers of y for fixed order in x as in Section 8. But computationally these series are extremely
inconvenient, and the expansion H =

∑
nH

′
n in powers of x of the preceding section is no real improvement.

In the remainder of these notes we will focus on expansions than are finer than H =
∑
nHn or H =

∑
nH

′
n.

The finest possible expansion clearly is H =
∑
w∈{x,y}∗(H,w)w. It is in fact trivial to extract a formula for the

coefficients (H,w) ∈ Q from (1.3):

(H,w) =

|w|∑
k=1

(−1)k−1

k

∑
m1+n1>0

· · ·
∑

mk+nk>0

δw,xm1yn1 ···xmkynk

m1!n1! · · ·mk!nk!
∀w ∈ {x, y}∗,

where δw,xm1yn1 ···xmkynk = 1 if the words w and xm1yn1 · · ·xmkynk are equal and = 0 otherwise. Given a word
w there can be many k,m1, n1, . . . ,mk, nk such that w = xm1yn1 · · ·xmkynk , so that the best that can be said
about this formula is that all summations are finite, since only k,m1, . . . , nk ≤ |w| contribute. A more explicit
formula, albeit quite complicated, for the coefficients (H,w) has first been given by Goldberg [30] (1955) and
elaborated upon or rediscovered by various authors, see in particular [62, 35, 49, 41], and we will discuss it in
Section 10.

But since its statement and proof are involved, we will first, by way of introduction, give a complete account of
a weaker, but prettier and quite simple, result due to Dynkin [19] (1949) that has been almost totally neglected.12

9.1 Dynkin’s §1: Finely homogeneous expansion via permutation combinatorics

Following Dynkin we write

H =

∞∑
p+q>0

Hp,q, where Hp,q =
∑

w∈{x,y}∗
|w|x=p,|w|y=q

(H,w)w,

i.e. Hp,q is the finely homogeneous part of H of degree (p, q), consisting of linear combinations of words containing
x and y precisely p and q times, respectively, but in any order. Dynkin has given fairly explicit expressions for
Hp,q, see (9.13) and (9.2). This makes his result coarser than Goldberg’s, but the ability to compute each
coefficient (H,w) individually is of more theoretical than practical interest. (Nothing wrong with that!)

9.1 Remark 1. The BCH theorem implies Hn,0 = H0,n = 0 ∀n ≥ 2 (since commutator expressions involving
only x or y vanish). We already know the first non-vanishing terms:

H1,0 = x, H0,1 = y, H1,1 =
1

2
[x, y], H1,2 =

1

12
[y, [y, x]], H2,1 =

1

12
[x, [x, y]], H2,2 =

1

24
[y, [x, [y, x]]].

2. By the BCH theorem, Hn =
∑n
p=0Hp,n−p is Lie for each n. But the above suggests that each Hp,q is Lie

on its own. This will follow from the theorem below, whose proof does not use the BCH theorem. But it is also
easy to deduce this from BCH, adapting Lemma 3.1(ii): Let F be a homogeneous Lie polynomial of degree n.

Thus F =
∑I
i=1 ciFi, where ci ∈ F and each Fi is an iterated commutator in x, y. Expanding Fi into a linear

combination of words w ∈ {x, y}∗, which differ only in the order of their letters, it is clear that each Fi is finely
homogeneous. Thus if p+ q = n then Fp,q is a linear combination of some of the Fi and therefore Lie.

3. Using Proposition 8.1 and Remark 8.2.2, we have very explicit (modulo computing Bn, that is) formulae
for Hp,q when one of the indices is one:

H1,q =
Bq
q!

adqy(x), Hp,1 =
Bp
p!

adpx(y) ∀p, q ≥ 2, (9.1)

12Perhaps due to the mistaken idea that [19] was a rehash of the much better known [18]. Adding insult to injury, essentially all
authors citing [19] actually mean the results of [18]! The only genuine references to [19] of which I am aware are [1, pp. 347-350] and
(perhaps, I haven’t seen it yet) [66]. Loday [42] mentions some of Dynkin’s results without, however, giving a reference to [19]. (The
Zentralblatt review (Zbl 0041.16102) of [19] is quite good, but in German. Dynkin’s [19] has never been translated from Russian to
another language. But, then again, also [18] received a published translation only in 2000.)

27



(which vanishes for odd p, q ≥ 3). The rest of these notes is concerned with proving analogous statements for
Hp,q, where p, q ≥ 2. This turns out to be considerably more involved. 2

9.2 Definition For n ∈ N, let Sn denote the permutation group of {1, . . . , n}. For σ ∈ Sn, we define

asc(σ) = #{i ∈ {1, . . . , n− 1} | σ(i) < σ(i+ 1)},
des(σ) = #{i ∈ {1, . . . , n− 1} | σ(i) > σ(i+ 1)},

the numbers of ascents and descents of the permutation σ ∈ Sn. (For n = 1, we put asc(σ) = des(σ) = 0.)

Note that for every σ ∈ Sn we have asc(σ) + des(σ) = n− 1.

9.3 Theorem (Dynkin [19]) For all p, q with p+ q > 0 we have

Hp,q =
1

p! q! (p+ q)! (p+ q)
Rp+q(x, . . . , x︸ ︷︷ ︸

p times

, y, . . . , y︸ ︷︷ ︸
q times

), (9.2)

where
Rn(x1, . . . , xn) =

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! [xσ(1), [xσ(2), [· · · , [xσ(n−1), xσ(n)] · · · ]. (9.3)

9.4 Example It is a triviality to check that formulae (9.2-9.3) correctly reproduce H1,0 and H0,1. For p = q = 1,
they give 1

2!2R2(x, y) = 1
4 ([x, y] − [y, x]) = 1

2 [x, y] (since des(id) = 0 and des(σ) = 1 for the only non-trivial
permutation σ ∈ S2). To illustrate the theorem on a less trivial term, denote the permutations σ ∈ S3 by
σ(1)σ(2)σ(3) and considering them in the order 123, 132, 213, 231, 312, 321, we correctly find (once again):

H1,2 =
1

2! 3! 3
(�����2[x, [y, y]]−����[x, [y, y]]− [y, [x, y]]− [y, [y, x]]− [y, [x, y]] + 2[y, [y, x]])

=
1

36
([y, [y, x]]− [y, [y, x]] + [y, [y, x]] + 2[y, [y, x]]) =

1

12
[y, [y, x]].

2

9.5 Exercise Use Theorem 9.3 to show that H2,2 = 1
24 [y, [x, [y, x]]] (as in Exercises 1.2 and 8.6).

We will first prove Theorem 9.3 assuming the theorems of Baker-Campbell-Hausdorff and Dynkin-Specht-
Wever. Then we will remove the dependency on the mentioned theorems, providing yet another proof of BCH.

9.6 Lemma Define finely homogeneous QI ∈ F〈x1, . . . , xn〉 of degree I = (i1, . . . , in) by the expansion

log(et1x1 · · · etnxn) =
∑

I=(i1,...,in)∈Nn0

ti11 · · · tinn QI ∈ F〈〈x1, . . . , xn〉〉[[t1, . . . , tn]]. (9.4)

Then for each p, q with p+ q > 0 we have

Hp,q =
1

p! q!
Q(1, . . . , 1︸ ︷︷ ︸

p+q times

)(x, . . . , x︸ ︷︷ ︸
p times

, y, . . . , y︸ ︷︷ ︸
q times

). (9.5)

Proof. Fix p, q ∈ N0 and put n = p+ q and x1 = · · · = xp = x and xp+1 = · · · = xn = y in (9.4). We obtain

log(e(t1+···+tp)xe(tp+1+···+tn)y) =
∑

I=(i1,...,in)∈Nn0

ti11 · · · tinn QI(x, . . . , x︸ ︷︷ ︸
p times

, y, . . . , y︸ ︷︷ ︸
q times

). (9.6)

For p = q = 1, this formula reduces to

log(et1xet2y) =
∑

I=(i1,i2)∈N2
0

ti11 t
i2
2 QI(x, y), (9.7)
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which is just the finely homogeneous decomposition
∑
p,qHp,q of the BCH series (with t1, t2 introduced), thus

Hp,q = Q(p,q). Replacing t1, t2 in (9.7) by t1+ · · ·+tp and tp+1+ · · ·+tn, respectively, and calling the summation
indices J = (j1, j2) for safety, the left hand sides of (9.6) and (9.7) agree, so that we obtain the identity∑

j1,j2

(t1 + · · ·+ tp)
j1(tp+1 + · · ·+ tn)j2Hj1,j2 =

∑
I=(i1,...,in)∈Nn0

ti11 · · · tinn QI(x, . . . , x︸ ︷︷ ︸
p times

, y, . . . , y︸ ︷︷ ︸
q times

) (9.8)

in F〈〈x, y〉〉[[t1, . . . , tn]]. Thus the coefficients (living in F〈x, y〉) of the monomials ti11 · · · tinn appearing on both
sides coincide for all I = (i1, . . . , in).

In particular, this holds for t11 · · · t1n. The polynomial (t1 + · · · + tp)
j1(tp+1 + · · · + tn)j2 on the l.h.s. is

homogeneous in the t’s with total degree j1 + j2. Thus it can have a summand t11 · · · t1n (which has degree
n = p+q) only if j1+j2 = p+q. So let us assume this. If j1 < p then none of the monomials in (t1+· · ·+tp)j1 can
involve each t1, . . . , tp. And if j1 > p then all monomials have a ti with exponent > 1. Finally, if (j1, j2) = (p, q),
one checks easily that the coefficient of t11 · · · t1n in (t1 + · · ·+ tp)

j1(tp+1 + · · ·+ tn)j2 is p! q!. Since the coefficient
of t11 · · · t1n on the r.h.s. of (9.8) clearly is given by

Q(1, . . . , 1︸ ︷︷ ︸
p+q times

)(x, . . . , x︸ ︷︷ ︸
p times

, y, . . . , y︸ ︷︷ ︸
q times

),

we have proven (9.5). �

From now on we abbreviate Qn = Q(1, . . . , 1︸ ︷︷ ︸
n times

).

9.7 Proposition For all n ∈ N we have

Qn(x1, . . . , xn) =
1

n!

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! xσ(1) · · ·xσ(n). (9.9)

Proof. By definition, Qn ∈ F〈x1, . . . , xn〉 is the coefficient of t11 · · · t1n of the formal series log(et1x1 · · · etnxn).
This means that in

log(et1x1 · · · etnxn) =

∞∑
k=1

(−1)k−1

k
(et1x1 · · · etnxn − 1)k

=

∞∑
k=1

(−1)k−1

k

( ∑
m1+···+mn>0

tm1
1 · · · tmnn xm1

1 · · ·xmnn
m1! · · ·mn!

)k
(9.10)

only contributions with mi ≤ 1 for all i are relevant for the computation of Qn(x1, . . . , xn). (For such mi, we
have m1! · · ·mn! = 1.) Furthermore we only need to consider k ≤ n since summands with k > n have total
degree > n in the t’s due to the condition m1 + · · ·+mn > 0.

Collecting the terms in (9.10) in which each ti appears exactly once, we thus have

Qn(x1, . . . , xn) =

n∑
k=1

(−1)k−1

k

∑
Wk

w,

where Wk ⊂ {x1, . . . , xn}∗ consists of those words w that contain each letter x1, . . . , xn precisely once and which
can be written as concatenation w = w1 · · ·wk of k non-empty words such that the letters in each word wi
appear in their natural order x1 < x2 < · · · < xn. (Such a word is called increasing.)

Since every word w containing each letter x1, . . . , xn exactly once can be written as xσ(1) · · ·xσ(n) for a unique
permutation σ ∈ Sn, we have

Qn(x1, . . . , xn) =
∑
σ∈Sn

f(σ) xσ(1) · · ·xσ(n), where f(σ) =

n∑
k=1

(−1)k−1

k
χWk

(w).
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It remains to show that f(σ) = (−1)des(σ) asc(σ)! des(σ)!n! .
Every word w = xσ(1) · · ·xσ(n) can be written as a concatenation w = w1 · · ·wk of increasing words, usually

not uniquely. (For example, writing only the indices, 1264537 = (126)(45)(37) = (12)(6)(45)(3)(7) = . . .)
Recall that des(σ) is the number of i ∈ {1, . . . , n − 1} for which σ(i) > σ(i + 1). At these indices the word
w = xσ(1) · · ·xσ(n) fails to be increasing, and it is clear that any decomposition w = w1 · · ·wk of w into
increasing words must have breaks at these positions, so that k ≥ des(σ) + 1. There clearly is a unique minimal
decomposition with k = des(σ)+1. (In the example, this is (126)(45)(37).) All decompositions into k > des(σ)+1
increasing words arise from the minimal one by inserting k − (des(σ) + 1) additional breaks. This can be done
at the asc(σ) positions that are ascents, which proves the formula

f(σ) =

n∑
k=des(σ)+1

(−1)k−1

k

(
asc(σ)

k − des(σ)− 1

)

= (−1)des(σ)
asc(σ)∑
m=0

(−1)m

m+ des(σ) + 1

(
asc(σ)

m

)
, (9.11)

where in the second step we substituted k = des(σ) + 1 +m, with m = 0, . . . , n− 1− des(σ) = asc(σ). Now the
following lemma completes the proof. �

9.8 Lemma For all s, t ∈ N0 the following identities hold:

s∑
m=0

(−1)m

m+ t+ 1

( s
m

)
=

∫ 1

0

xt(1− x)s dx =
s! t!

(s+ t+ 1)!
. (9.12)

Proof. With
∫ 1

0
xm+t dx = 1

m+t+1 and the binomial formula, applied to (1− x)s, we have

s∑
m=0

(−1)m

m+ t+ 1

( s
m

)
=

∫ 1

0

s∑
m=0

(−1)mxm+t
( s
m

)
dx =

∫ 1

0

xt(1− x)s dx,

which is the first identity. For s = 0 and all t ∈ N0, the second identity is true since it reduces to
∫ 1

0
xtdx = 1

t+1 .
To do induction over s, assume it holds for a certain s and all t. Now for each t ∈ N0 partial integration gives∫ 1

0

xt(1− x)s+1 dx =

[
xt+1

t+ 1
(1− x)s+1

]1
0

+ (s+ 1)

∫ 1

0

xt+1

t+ 1
(1− x)sdx

?
=

s+ 1

t+ 1

s! (t+ 1)!

(s+ (t+ 1) + 1)!
=

(s+ 1)! t!

((s+ 1) + t+ 1)!
,

where the starred equality comes from the induction hypothesis. This completes the proof of the second identity
(which just is the evaluation of Euler’s function B(s+ 1, t+ 1) at positive integers). �

9.9 Remark As in Section 7, the proof of the Lemma can easily be algebraized using the anti-derivative operator

I : Q[x] → Q[x] defined by xn 7→ xn+1

n+1 and an algebraic version of partial integration. We leave the details to
the reader. 2

Combining Lemma 9.6 and Proposition 9.7 we now have (with n = p+ q)

Hp,q =
1

p! q!
Qp+q(x, . . . , x︸ ︷︷ ︸

p times

, y, . . . , y︸ ︷︷ ︸
q times

) =
1

p! q! (p+ q)!

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! Xσ(1) · · ·Xσ(n), (9.13)

where X1 = · · · = Xp = x and Xp+1 = · · · = Xn = y. This improves on (1.3). We briefly interrupt our
consideration of BCH matters to prove an interesting combinatorial corollary.
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9.10 Definition For n ∈ N and m ∈ Z we define the Eulerian number A(n,m) (also denoted
〈
n
m

〉
) by

A(n,m) = #{σ ∈ Sn | des(σ) = m}.

Note that, automatically, A(n,m) = 0 if m < 0 or m ≥ n. And counting ascents instead would give the same
numbers since composition of a permutation σ with the permutation 1 · · ·n 7→ n · · · 1 is a bijection of Sn that
exchanges ascents and descents. This observation is equivalent to noting the symmetry A(n,m) = A(n, n−1−m).

9.11 Corollary For all n ≥ 2 we have

n−1∑
m=0

(−1)mA(n,m)m! (n− 1−m)! = 0, (9.14)

n−1∑
m=0

(−1)mA(n,m)m! (n−m)! = (n+ 1)!Bn. (9.15)

Proof. Put x1 = · · · = xn = x in Proposition 9.7. (More rigorously, pass to the quotient algebra F〈x1, . . . , xn〉/I,
where I is the two-sided ideal generated by all xi−xj .) Then et1x · · · etnx = e(t1+···+tn)x, thus log(et1x · · · etnx) =
t1 + · · · + tn. For n ≥ 2, this has no monomial t1 · · · tn, thus Qn(x, . . . , x) = 0. Thus the r.h.s. in Proposition
9.7 vanishes. But the latter equals

xn

n!

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! =
xn

n!

n−1∑
m=0

A(n,m)(−1)mm! (n− 1−m)!,

(since asc(σ) = n− 1− des(σ)), thus the sum on the right vanishes, proving (9.14).
As to the second claim, it will follow from the comparison of two different ways of computing the coefficient

(H,xyn) of the BCH series. On the one hand, since xyn is of order one in x, it is a summand of H ′1 computed
in Proposition 8.1. Its coefficient is easily seen to be

(H,xyn) =
(−1)nBn

n!
=
Bn
n!

∀n ≥ 2, (9.16)

where we took into account that Bn vanishes for odd n.
On the other hand, xyn is a summand of H1,n. Equation (9.13) specializes to

H1,n =
1

n! (n+ 1)!

∑
σ∈Sn+1

(−1)des(σ)des(σ)! asc(σ)! Xσ(1) · · ·Xσ(n+1),

where X1 = x,X2 = · · · = Xn+1 = y. The coefficient of xyn in this sum, thus in H, clearly is

(H,xyn) =
1

n! (n+ 1)!

∑
σ∈Sn+1

σ(1)=1

(−1)des(σ)des(σ)! asc(σ)!.

There is an obvious bijection between the σ ∈ Sn+1 with σ(1) = 1 and the σ′ ∈ Sn, given by σ′(i) = σ(i+ 1)−
1 ∀i = 1, . . . , n. For corresponding σ, σ′ we have des(σ) = des(σ′) and asc(σ) = asc(σ′) + 1. Thus

(H,xyn) =
1

n! (n+ 1)!

∑
σ′∈Sn

(−1)des(σ
′)des(σ′)! (asc(σ′) + 1)!

=
1

n! (n+ 1)!

n−1∑
m=0

A(n,m)(−1)mm! (n−m)!. (9.17)

Comparing (9.16) and (9.17) gives (9.15). �
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9.12 Remark 1. A direct proof of the corollary, using only the definition of A(n,m) and Bn, will be given in
Appendix E, but the above manifestly non-commutative proof perhaps provides more insight.

2. Euler, who introduced the Eulerian numbers to compute power sums
∑n
k=1 a

kkp more general than those
covered by the Faulhaber/Bernoulli formula for

∑n
k=1 k

p, defined them in terms of their generating function, see
(E.2). Eq. (9.15) is also very classical, appearing e.g. in [69] (as the first displayed formula on p. 222. I thank
Mathoverflow user Efinat-S for providing the reference). Worpitzky defined the Eulerian numbers in yet another
manner (via what is now called Worpitzky’s identity). The modern definition of the Eulerian numbers in terms
of permutations is much more recent. It was discovered in the early 1950’s by Carlitz and Riordan. Nowadays
there are various proofs, more or less manifestly combinatorial, of the equivalence of the various definitions, see
e.g. pages 6-13 in [44].

3. Eq. (9.15) is interesting since it connects the two types of combinatorics, at first sight quite different,
involved in our two ways of computing (H,xyn): On the one hand the commutative world of difference calculus,
the Euler-Maclaurin theorem and related matters, on the other the combinatorics of permutations. But such
a distinction has been obsolete since the 19th century, cf. Remark E.3, and recent developments, like higher
dimensional Euler-Maclaurin theorems, underscore this further. 2

Proof of Theorem 9.3, assuming the BCH and Dynkin-Specht-Wever theorems. Since we assume BCH, by Remark
9.1.2 each Hp,q is a Lie polynomial, thus also the right hand side of (9.13) is Lie. And since we assume DSW,
both sides are invariant under the Dynkin idempotent P from Corollary 6.8, so that

Hp,q =
1

p! q! (p+ q)!

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! P (Xσ(1) · · ·Xσ(n))

=
1

p! q! (p+ q)! (p+ q)

∑
σ∈Sn

(−1)des(σ)des(σ)! asc(σ)! [Xσ(1), [Xσ(2), [· · · , [Xσ(n−1), Xσ(n)] · · · ]

=
1

p! q! (p+ q)! (p+ q)
Rp+q(x, . . . , x︸ ︷︷ ︸

p times

, y, . . . , y︸ ︷︷ ︸
q times

),

where Rn is as in Theorem 9.3, finishing the proof of the latter. �

9.2 Dynkin’s §2. Fifth algebraic proof of BCH

Having proven BCH (many times) and Dynkin-Specht-Wever (just once), we could stop at this point. But
Dynkin goes on to finish the proof of Theorem 9.3 without assuming any of the mentioned results. We will
follow him since this involves nice mathematics (and since having only one proof of Dynkin-Specht-Wever is not
satisfactory according to footnote 2).

Since (9.13) was proven without using any deeper results, it suffices to find a self-contained proof of

1

n

∑
σ∈Sn

(−1)des(σ)asc(σ)! des(σ)! [Xσ(1), [Xσ(2), [· · · , [Xσ(n−1), Xσ(n)] · · · ]

=
∑
σ∈Sn

(−1)des(σ)asc(σ)! des(σ)! Xσ(1) · · ·Xσ(n), (9.18)

which is the content of §2 of [19]. **************************************
Now that we have finished the proof of (9.18), and therefore of Theorem 9.3, without using the BCH and

DSW theorems, the fact that Rn(x, . . . , x, y, . . . , y) by definition is a Lie polynomial gives yet another proof of:

9.13 Corollary (BCH) The formal series log(exey) ∈ Q〈〈x, y〉〉 is a Lie series.

9.14 Remark 1. Let us be explicit about what can be found in Dynkin’s [19]: From Section 9.1 it contains
the material from Definition 9.2 (with the terminology ‘correct’ and ‘wrong’ instead of ascents and descents!)
through Proposition 9.7. His proofs are short, but sufficient to construct complete ones. He doesn’t emphasize
that Theorem 9.3 already follows from §1 of his paper together with the BCH and DSW theorems, presumably

32



since it is obvious and he has bigger fish to fry. Nor does he have Corollary 9.11, which is not surprising since the
connection between permutations and Eulerian numbers wasn’t known yet. As to Section 9.2, ****************

2. One could say that we now have 3 × 2 + 5 = 11 proofs of the BCH theorem. Here 3 is the number of
proofs of Proposition 2.7, the 2 refers to the analytic proofs of BCH(D) given in Theorem 2.14 and in Remark
2.15.2, whereas the 5 refers to the algebraic proofs in Sections 4, 6.2, 7, 8 and just above. 2

10 Goldberg’s theorem and its ramifications

Here we will state the generalization of Goldberg’s result to log(ex1 · · · exn) and give a complete proof, including
the Eulerian connection missing in [30, 41]. (This area is rife with rediscoveries of earlier results: Dynkin’s [19]
is ignored by everyone, the author of [35] seems unaware of [30], as the authors of [41] are unaware of [35], etc.)

I intend to do this in a way that builds upon the material of Section 9 as much as possible.
******************************
While Goldberg’s result is finer than Dynkin’s [19] in that it allows to compute each individual coefficient

(H,w), it does not lead to a new proof of the Lie nature of H. But since we have proven the latter sufficiently
often, we can safely apply Corollary 6.8 to give a Lie representation of the BCH series H as

H =
∑
w∈A∗

(H,w)

|w|
R(w).

A Reinsch’s algorithm for computing the BCH series

In this paper, N = {1, 2, . . .},N0 = {0, 1, 2, . . .}. Expanding the BCH series (1.3) by order of the terms (in
powers of X and Y ), we obtain H(X,Y ) =

∑∞
n=1Hn with

Hn =

n∑
k=1

(−1)k−1

k

∑ Xm1Y n1 · · ·XmkY nk

m1!n1! · · ·mk!nk!
, (A.1)

where the second summation extends over the (m1, n1, . . . ,mk, nk) ∈ N2k
0 satisfying

∑
i(mi + ni) = n and

mi+ni > 0 ∀i. The expression (A.1) makes sense for X,Y ∈ A in any associative unital algebra (in characteristic
zero), since convergence questions do not arise.

In this section we will briefly discuss a computational approach due to Reinsch [48] that makes the compu-
tation of the homogeneous contributions Hn somewhat less painful than using (1.3) directly. The main virtue of
his prescription is that it can be implemented very easily on a computer. (Reinsch concedes that his algorithm
is not faster than others based on (1.3).)

Let n ∈ N. Define (n+ 1)× (n+ 1)-matrices M,N with entries in Z[t1, . . . , tn] by

Mij = δi+1,j , Nij = δi+1,jti.

These matrices are strictly upper triangular, thus nilpotent with Mn+1 = Nn+1 = 0. Define (n+ 1)× (n+ 1)-
matrices F,G with entries in Q[t1, . . . , tn] by

F = eM =

n∑
k=0

Mk

k!
, G = eN =

n∑
k=0

Nk

k!
.

As a consequence of (Mk)i,j = δi+k,j one immediately has

Fij =
1

(j − i)!
, Gij =

1

(j − i)!

j−1∏
k=i

tk

with the understanding that 1
n! = 0 for all n < 0.
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For n = 3 all this amounts to:

M =


0 1 0 0

0 1 0
0 1

0

 , N =


0 t1 0 0

0 t2 0
0 t3

0

 ,

F =


1 1 1

2!
1
3!

1 1 1
2!

1 1
1

 , G =


1 t1

1
2! t1t2

1
3! t1t2t3

1 t2
1
2! t2t3

1 t3
1

 .

Now, FG is upper triangular, with 1’s on the diagonal, so that (FG− 1)n+1 = 013. Therefore

log(FG) =

n∑
k=1

(−1)k−1

k
(FG− 1)k (A.2)

is a finite sum. (1 is the unit matrix.) Let An = [log(FG)]1,n+1 ∈ Q[t1, . . . , tn] be the top right matrix element.
We call a polynomial A =

∑
e=(e1,...,en)

ce t
e1
1 · · · tenn ∈ Q[t1, . . . , tn] multiplicity-free if ce 6= 0 ⇒ ei ∈ {0, 1}

for all i = 1, . . . , n. For a multiplicity-free polynomial A =
∑
e=(e1,...,en)

ce t
e1
1 · · · tenn ∈ Q[t1, . . . , tn], we define

Q(A) =
∑

e∈{0,1}n
ceXe1 · · ·Xen , where X0 = X, X1 = Y.

A.1 Theorem (Reinsch [48]) For each n ∈ N the following holds:

(i) All monomials te11 · · · tenn appearing in An are multiplicity-free.

(ii) Q(An) = Hn.

Proof. (i) By linearity, it is more than sufficient to check that every matrix element of (FG−1)k is multiplicity-
free. One easily checks that

(FG− 1)ij =


∑
i≤r≤j

1

(r − i)!
1

(j − r)!

j−1∏
`=r

t` if i < j

0 if i ≥ j

Thus the non-zero matrix elements (FG− 1)ij with i < j are linear combinations of multiplicity-free products
of t`’s with i ≤ ` < j. Any term contributing to [(FG− 1)k]ij is a sum of products

(FG− 1)ii1(FG− 1)i1i2 · · · (FG− 1)ik−1j with i < i1 < i2 < · · · < ik−1 < j.

Since the different factors involve different t`’s, this product is multiplicity-free.
(ii) We need to prove that Q(An) coincides with (A.1). Both expressions are sums over k = 1, . . . , n, and we

will prove the stronger statement that the respective contributions agree for each k ≤ n separately, thus

Q([(FG− 1)k]1,n+1) =
∑ Xm1Y n1 · · ·XmkY nk

m1!n1! · · ·mk!nk!
. (A.3)

Here the sum on the r.h.s. extends over all non-negative indices m1, n1, . . . ,mk, nk satisfying ms + ns > 0 for
all s, as well as the total degree condition

∑k
s=1(ms +ns) = n. By the observations in the proof of (i), the l.h.s.

of (A.3) is given by

Q

 ∑
1=i0<i1<i2<···<ik−1<ik=n+1

k∏
s=1

 ∑
is−1≤r≤is

1

(r − is−1)!

1

(is − r)!

is−1∏
`=r

t`

 .

13Thus FG is unipotent.
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The variable r is local, thus there is a different one for each value of s. Expanding the product over s gives

Q

 ′∑
1=i0≤r1≤i1≤r2≤i2≤···≤ik−1≤rk≤ik=n+1

k∏
s=1

1

(rs − is−1)!

1

(is − rs)!

is−1∏
`=rs

t`

 . (A.4)

Here the accent above the summation symbol represents the additional condition that for each s we must have
is−1 < is. Now we notice that the assignment (i•, r•) 7→ (m•, n•) given by

ms = rs − is−1, ns = is − rs ∀s = 1, . . . , k

is a bijection between the summation variables in (A.3) and (A.4), respectively: The condition ms + ns > 0
corresponds to is−1 < is, and

∑
s(ms+ns) = n corresponds to ik−i0 = (n+1)−1 = n. With this correspondence

it is immediate that the products of factorials appearing in (A.3) and (A.4) coincide. Finally, observing

Q

(
k∏
s=1

is−1∏
`=rs

t`

)
= Xr1−i0Y i1−r1 · · ·Xrk−ik−1Y ik−rk = Xm1Y n1 · · ·XmkY nk ,

since t1, . . . , tr1−1 (note that r1 − i0 = m1) are missing from the product, tr1 , . . . , ti1−1 are present (and
i1 − r1 = n1), etc., the proof of (A.3) is complete. �

A.2 Remark 1. Reinsch also discusses two generalizations: Instead of log(exey) one can consider the series
expansion of log(f(x)f(y)) for an arbitrary formal power series f with constant term 1. One simply replaces
the above F,G by F = f(M), G = f(N). The proof remains essentially the same.

One can also consider more than two formal variables, i.e. compute log(eX1 · · · eXn). This requires introducing
additional sets of variables besides t1, . . . , tn, diminishing somewhat the elegance of the approach. And one can
combine both generalizations.

2. Reinsch’s result is one of many instances in combinatorics where a problem can be approached by linear
algebra methods, as e.g. in the solution of linear difference equations. But from a theoretical point of view, it is
a dead end as it adds few new insights, in particular it does not yield the Lie nature of the BCH series. 2

B Algebraic proof of exp ◦ log = id and log ◦ exp = id

In this section we exclusively consider F[[x]] = F〈〈x〉〉, i.e. formal power series in one variable, where F is a field
of characteristic zero.

B.1 Theorem Define f, g ∈ F[[x]]>0 by f(x) = exp(x)− 1 and g(x) = log(1 + x). Then f ◦ g = id = g ◦ f .

This can be proven in many ways, for example using pedestrian direct computation (which is tedious and
not very illuminating) or the Lagrange inversion formula. We choose an intermediate route.

B.2 Definition For f(x) =
∑∞
n=0 anx

n ∈ F[[x]], we define f ′ ∈ F[[x]] by f ′(x) =
∑∞
n=0 nanx

n−1.

B.3 Example For f(x) =
∑∞
n=0 x

n/n! we immediately get f ′ = f . For

g(x) = log(1 + x) =

∞∑
n=1

(−1)n−1

n
xn

we find

g′(x) =

∞∑
n=1

(−1)n−1

n
nxn−1 =

∞∑
n=1

(−1)n−1xn−1 =

∞∑
n=0

(−x)n = (1 + x)−1.

2
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The following is immediate:

B.4 Lemma (i) The map F[[x]]→ F[[x]], f 7→ f ′ is linear and continous.

(ii) If f(x) =
∑∞
n=0 anx

n ∈ F[[x]] satisfies f ′ = 0 then f is constant, i.e. an = 0 for all n ≥ 1.

B.5 Lemma (Product rule or derivation property) Let f, g ∈ F[[x]]. Then (fg)′ = f ′g + fg′.

Proof. By linearity of the claim w.r.t. f and g, it suffices to prove it for f(x) = xn, g(x) = xm. Then

(fg)′ = (xn+m)′ = (n+m)xn+m−1 = (nxn−1)xm + xn(mxm−1) = f ′g + fg′.

(This, and similar arguments below, works despite the fact that {xn} is not a Hamel basis of F[[x]].) �

B.6 Lemma (Chain rule) Let f ∈ F[[x]], g ∈ F[[x]]>0. Then

(f ◦ g)′ = (f ′ ◦ g) · g′.

Proof. By linearity of the claim w.r.t. f , it suffices to prove it for f(x) = xn, for which the claim reduces to
(gn)′ = ngn−1g′. For n = 0, n = 1 this reduces to 0 = 0 and g′ = g′, respectively. Assume the claim holds for n.
Then it follows for n+ 1 by

(gn+1)′ = (gng)′ = (gn)′g + gng′ = ngn−1g′g + gng′ = ngng′ + gng′ = (n+ 1)gng′,

where we have used the product rule in the second equality and the induction hypothesis in the third. �

If f =
∑∞
n=0 anx

n ∈ F[[x]] then [xn]f denotes the coefficient an of xn.

B.7 Proposition (Compositional inverses) For f ∈ F[[x]]>0 the following are equivalent:

(i) [x1]f 6= 0.

(ii) f has a left inverse g ∈ F[[x]]>0, i.e. g ◦ f = id.

(iii) f has a unique inverse g ∈ F[[x]]>0, i.e. g ◦ f = id = f ◦ g.

Proof. If f =
∑∞
n=1 anx

n and g =
∑∞
n=1 bnx

n, recall from Section 3 that

g ◦ f =

∞∑
n=1

bn

( ∞∑
m=1

amx
m

)n
=

∞∑
k=1

ckx
k with ck =

k∑
`=1

b`
∑

m1+···+m`=k

am1
· · · am` ,

in particular c1 = a1b1. Thus g ◦ f = id, to wit g ◦ f(x) = x, is equivalent to ck = δk,1 ∀k.
(ii)⇒(i) If g ◦ f = id then a1b1 = c1 = 1, thus [x1]f = a1 6= 0.
(i)⇒(ii) Since a1 6= 0 by assumption, we take b1 = 1/a1. For k ≥ 2, we want

bka
k
1 +

k−1∑
`=1

b`
∑

m1+···+m`=k

am1
· · · am` =

k∑
`=1

b`
∑

m1+···+m`=k

am1
· · · am` = ck = 0,

which allows to determine the bk recursively, again using a1 6= 0.
(iii)⇒(ii) is trivial.
(ii)⇒(iii) As noted in the proof of (ii)⇒(i), the left inverse g of f satisfies [x1]g 6= 0. Thus by (i)⇒(ii), g has

a left inverse h. Since clearly f is a right inverse of g, we have h = h ◦ g ◦ f = f . Thus f is a left inverse of g,
so that g is a right inverse of f , as was to be shown. This argument also proves uniqueness of inverses. �

Proof of Theorem B.1. By Example B.3, f ′ = f + 1 and g′(x) = 1/(1 + x). Using the chain rule, we compute

(g ◦ f)′ = (g′ ◦ f)f ′ =
1

1 + f
f ′ =

f + 1

1 + f
= 1,

thus (g ◦ f − x)′ = 0. Combining this with (g ◦ f − x)(0) = 0, Lemma B.4(ii) gives g ◦ f − x = 0, thus we have
proven g ◦ f = id. Now the implication (ii)⇒(iii) of Proposition B.7 gives f ◦ g = id. �
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B.8 Remark If we try to prove (f ◦ g)′ = 1 as we did for (g ◦ f)′, we run into

(f ◦ g)′ = (f ′ ◦ g)g′ = (f ◦ g + 1)(x)(1 + x)−1,

which is equal to 1 if and only if f ◦ g = id, so that this attempt leads nowhere. 2

C Combinatorial proof of exp ◦ log = id and log ◦ exp = id

D More on the exponential function in a Banach algebra

We have seen that in a unital Banach algebra XY = Y X implies eX+Y = eXeY = eY eX . There is a partial
converse:

D.1 Lemma Let A be a unital Banach algebra and X,Y ∈ A. Then the following are equivalent:

(i) XY = Y X.

(ii) There are subsets S, T ⊆ R both having accumulation points such that esX+tY = esXetY for all s ∈ S, t ∈ T .

(iii) esX+tY = esXetY ∀s, t ∈ R.

Proof. (i)⇒(iii) Apply Proposition 2.2(i).
(iii)⇒(i) Both sides of the equation in (iii) are invertible, and taking inverses we obtain e−(sX+tY ) =

e−tY e−sX . Replacing s and t by −s and −t, respectively, gives esX+tY = etY esX , and combining this with

(iii) we have esXetY = etY esX . Applying ∂2

∂s∂t to both sides and putting s = t = 0 gives XY = Y X.
(iii)⇒(ii) is trivial.
(ii)⇒(iii) By assumption, for every fixed t ∈ T , the map S → A, s 7→ e−sXesX+tY = etY is constant. Now a

well-known argument involving power series, which also works for series with coefficients in a Banach algebra,
implies that s 7→ e−sXesX+tY = etY is constant for all s ∈ R. Thus esX+tY = esXetY holds for all s ∈ R and
t ∈ T . In the same fashion one extends this to all t ∈ R. �

Remarkably, the above result can be strengthened considerably in the case of matrices, cf. [56], in that also
the discrete sets S = T = Z work in (ii)! But eX+Y = eXeY = eY eX does not imply XY = Y X:

D.2 Lemma Let A =

(
d1 w
0 d2

)
. If d1 6= d2 but ed1 = ed2 (equivalently, d2−d1

2πi ∈ Z\{0}) then eA = ed11.

Proof. The eigenvalues of A evidently are d1, d2. If X1, X2 are corresponding eigenvectors, they are lin-
early independent since d1 6= d2. Thus the 2 × 2 matrix S having X1, X2 as columns is invertible, and
A = S diag(d1, d2)S−1. Now eA = S diag(ed1 , ed2)S−1. Since ed1 = ed2 , the matrix in the middle is ed11,
which commutes with S, so that eA = ed11. �

D.3 Corollary There are 2× 2 matrices X,Y such that eX+Y = eXeY = eY eX , but XY 6= Y X.

Proof. Let X =

(
iπ 0
0 −iπ

)
, Y =

(
iπ 1
0 −iπ

)
. Now XY =

(
−π2 iπ

0 −π2

)
6=
(
−π2 −iπ

0 −π2

)
= Y X,

yet the preceding lemma gives eX = eY = −1 and eX+Y = 1, so that eX+Y = eXeY = eY eX . �

The importance of multiples of 2πi in the above construction is underlined by the result, due to Wermuth
(1997), that an identity eXeY = eY eX in a unital Banach algebra does imply XY = Y X when the spectra of X
and Y are ‘2πi-congruence free’, i.e. neither contains u, v with u−v

2πi ∈ Z\{0}. For a simple proof see [54].

The BCHD theorem, the subject of this paper, is one way of coping with the failure of eX+Y = eXeY in a
non-commutative setting. The Lie-Trotter formula proven below is another such result, often employed together
with BCHD in treatments of matrix Lie groups like [32, 50].
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D.4 Theorem Let A be a unital Banach algebra.

(i) If {Zn}n∈N ⊂ A such that Zn
n→∞−→ Z then

lim
n→∞

(
1 +

Zn
n

)n
= eZ .

(ii) For all X,Y ∈ A, the Lie-Trotter product formula holds:

eX+Y = lim
n→∞

(
e
X
n e

Y
n

)n
.

Proof. (ii) Assume (i) holds. If ‖X‖ ≤ 1 then

‖eX − 1−X‖ =

∥∥∥∥∥
∞∑
n=2

Xn

n!

∥∥∥∥∥ ≤ ‖X‖2
∞∑
n=2

1/n! = ‖X‖2(e− 2),

thus eX = 1 +X +O(‖X‖2) as ‖X‖ → 0. Expanding the exponential functions, we have

e
X
n e

Y
n = 1 +

X

n
+
Y

n
+O

(
1

n2

)
as n→∞ (for fixed X,Y ). Thus

lim
n→∞

(
e
X
n e

Y
n

)n
= lim
n→∞

(
1 +

X

n
+
Y

n
+O

(
1

n2

))n
= lim
n→∞

(
1 +

X + Y +O
(
1
n

)
n

)n
= eX+Y ,

where we used (i) in the last step.
(i) We have Zn → Z, thus ‖Zn‖ → ‖Z‖ <∞, so that we can pick C > 0 such that ‖Zn‖ ≤ C for all n. Now

we compute (
1 +

Zn
n

)n
=

n∑
k=0

(n
k

)(Zn
n

)k
=

n∑
k=0

Zkn
k!

n

n

n− 1

n
· · · n− k + 1

n
=

∞∑
k=0

Zkn
k!

an,k, (D.1)

where an,k = 0 if k > n and an,k = n
n
n−1
n · · ·

n−k+1
n otherwise. We have 0 ≤ an,k < 1 ∀n, k and limn→∞ an,k = 1

for each k. Thus in the final sum of (D.1), each summand tends to Zk/k! as n→∞. Furthermore, the norm of
the kth summand is bounded, uniformly in n, by Ck/k!, which sums to eC <∞. Now the lemma below justifies
taking the limit n→∞ inside the sum, so that

lim
n→∞

(
1 +

Zn
n

)n
= lim
n→∞

∞∑
k=0

Zkn
k!

an,k =

∞∑
k=0

lim
n→∞

Zkn
k!

an,k =

∞∑
k=0

Zk

k!
= eZ ,

as desired. �

The following is a Banach space version of Lebesgue’s Dominated Convergence Theorem for the measure
space (N0, P (N0), µ), where µ(B) = #B for each B ⊂ N0.

D.5 Lemma Let V be a Banach space, {ai,n ∈ V}i,n∈N0
and {ck ≥ 0}k∈N0

and such that

(a)
∑∞
k=0 ck <∞.

(b) ‖an,k‖ ≤ ck ∀n, k.

(c) bk = limn→∞ an,k exists for all k ∈ N0.

Then the sums
∑∞
k=0 an,k and

∑∞
k=0 bk converge absolutely, and

lim
n→∞

( ∞∑
k=0

an,k

)
=

∞∑
k=0

bk

(
=

∞∑
k=0

lim
n→∞

an,k

)
. (D.2)
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Proof. The absolute convergence of
∑∞
k=0 an,k is immediate by (a), (b), and that of

∑∞
k=0 bk follows from

‖bk‖ ≤ ck, which is implied by (c).
To prove the limit in (D.2), let ε > 0. In view of

∑
k ck <∞, there exists K ∈ N such that

∑∞
k=K ck < ε/2.

Since an,k
n→∞−→ bk for each k = 0, . . . , N − 1, there exists an N ∈ N such that n ≥ N implies ‖an,k − bk‖ < ε

2K

for each k = 0, . . . ,K − 1. Thus for n ≥ N we have ‖
∑K−1
k=0 an,k −

∑K−1
k=0 bk‖ < ε/2 and therefore∥∥∥∥∥

K−1∑
k=0

an,k −
∞∑
k=0

bk

∥∥∥∥∥ =

∥∥∥∥∥
(
K−1∑
k=0

an,k −
K−1∑
k=0

bk

)
−
∞∑
k=K

bk

∥∥∥∥∥
≤

∥∥∥∥∥
K−1∑
k=0

an,k −
K−1∑
k=0

bk

∥∥∥∥∥+

∞∑
k=K

‖bk‖ <
ε

2
+
ε

2
= ε.

The fact that for each ε > 0 we can find a K means that limN→∞
∑K−1
k=0 an,k =

∑∞
k=0 bk, as claimed. �

E Some connections between Eulerian and Bernoulli numbers

Our aim here is to give a direct and elementary proof of Corollary 9.11.

E.1 Lemma (i) The Eulerian numbers satisfy the recursion relation

A(1, 0) = 1, A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m) ∀n ≥ 2 (E.1)

with the understanding that A(n,m) = 0 if m < 0 or m ≥ n.

(ii) For |x| < min(1, |t|−1) we have

1 +

∞∑
n=1

xn

n!

n−1∑
m=0

A(n,m)tm =
t− 1

t− ex(t−1)
. (E.2)

Proof. (i) If σ′ ∈ Sn then removing n gives a σ ∈ Sn−1. Conversely, σ′ arises from this (and only this)
σ ∈ Sn−1 by inserting n at the right place. Now, let σ = (σ(1), . . . , σ(n − 1)) ∈ Sn−1. To obtain some
σ′ ∈ Sn, we must insert n. If we insert n after σ(n− 1) or between σ(i) and σ(i+ 1) with i a descent, we have
asc(σ′) = asc(σ) + 1,des(σ′) = des(σ). (This gives m+ 1 cases.) If we insert n before σ(1) or between σ(i) and
σ(i + 1) with i an ascent, we have asc(σ′) = asc(σ),des(σ′) = des(σ) + 1. (This gives n − 1 −m + 1 = n −m
cases.) Now (E.1) is immediate.

(ii) In view of 0 ≤ A(n,m) ≤ n!, we have∣∣∣∣∣
∞∑
n=0

n−1∑
m=0

A(n,m)

n!
xntm

∣∣∣∣∣ ≤
∞∑
n=0

|x|n
n−1∑
m=0

|t|m ≤
∞∑
n=0

|x|nnmax(1, |t|)n =
∞∑
n=0

n(|x|max(1, |t|))n,

which converges if |x|max(1, |t|) < 1, defining a smooth function G(x, t) on this domain. Consider the partial
differential operator

D = 1 + (t− t2)
∂

∂t
+ (tx− 1)

∂

∂x
.

A straightforward computation, left to the reader, proves D

(
t− 1

t− ex(t−1)

)
= 0. Applying the operator D to the

l.h.s. of (E.2) gives

1 +

∞∑
n=1

∑
m

A(n,m)

n!

(
xntm + (t− t2)xnmtm−1 + (tx− 1)nxn−1tm

)
= 1 +

∞∑
n=1

∑
m

A(n,m)

n!

(
(m+ 1)xntm + (n−m)xntm+1 − nxn−1tm

)
= 1− 1 +

∞∑
n=1

∑
m

xntm

n!
((m+ 1)A(n,m) + (n+ 1−m)A(n,m− 1)−A(n+ 1,m))

= 0,
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where we used (E.1) with n replaced by n + 1, thus valid for n ≥ 1. (Reading this computation backwards
perhaps provides some motivation: The point is to find polynomials H,K,L in x, t such that (E.1) implies
HG+KGt + LGx ≡ 0, and H = 1,K = t− t2, L = tx− 1 do the job.)

Thus both sides of (E.2) are annihilated by the linear (in G,Gt, Gx) differential operator D. Since they
clearly coincide on the line x = 0 (and also on t = 0), they coincide everywhere. �

Direct proof of Corollary 9.11. Let n ≥ 2. To prove (9.14) it suffices to insert (E.1) into its l.h.s., resulting in∑
m

(−1)mA(n,m)m! (n− 1−m)! =
∑
m

(−1)mm! (n− 1−m)![(n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m)]

=
∑
m

(−1)mm! (n− 1−m)! (n−m)A(n− 1,m− 1) +
∑
m

(−1)mm! (n− 1−m)! (m+ 1)A(n− 1,m)

=
∑
m

(−1)mm! (n−m)!A(n− 1,m− 1) +
∑
m

(−1)m(m+ 1)! (n− 1−m)!A(n− 1,m)

=
∑
m

(−1)m+1(m+ 1)! (n−m− 1)!A(n− 1,m) +
∑
m

(−1)m(m+ 1)! (n− 1−m)!A(n− 1,m)

= 0.

(All the m-summations are over Z.)
The proof of (9.15), which I owe to Ira Gessel [28], is less trivial and requires the generating function.

Replacing t in (E.2) by −u/(1− u) and x by x(1− u) (the product of which has absolute value |ux|) gives

1 +

∞∑
n=1

[x(1− u)]n

n!

n−1∑
m=0

A(n,m)

(
−u

1− u

)m
=

−u/(1− u)− 1

−u/(1− u)− ex(1−u)(−u/(1−u)−1)
.

Some rearranging leads to

1 +

∞∑
n=1

xn

n!

n−1∑
m=0

(−1)mA(n,m)um(1− u)n−m =
ex

1 + u(ex − 1)
.

Integrating this identity over [0, 1] with respect to u with the help of (9.12) gives (for |x| < 1)

1 +

∞∑
n=1

xn

n!

n−1∑
m=0

(−1)mA(n,m)
m! (n−m)!

(n+ 1)!
=

xex

ex − 1
= x+

x

ex − 1
= 1 +

x

2
+

∞∑
n=2

xn

n!
Bn,

using B1 = − 1
2 . Now comparison of coefficients proves (9.15). �

E.2 Remark An equivalent way of stating the identities of Corollary 9.11, employed by the Wikipedia article
on Eulerian numbers, is

n−1∑
m=0

(−1)m
A(n,m)(
n−1
m

) = 0,

n−1∑
m=0

(−1)m
A(n,m)(

n
m

) = (n+ 1)Bn ∀n ≥ 2.

But the versions (9.14-9.15) are more useful for our purposes. 2

E.3 Remark While the connection (9.15) between Bernoulli numbers and Eulerian numbers is from the 19th
century, the permutations did not become involved in this story before 1953. But a different (and better known)
connection between permutations and Bernoulli (and Euler) numbers really is from around 1880: Defining the
(up-down) alternating permutations by

Tn = {σ ∈ Sn | σ(1) < σ(2) > σ(3) < · · · },
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André14 [2] proved (see [60] for a survey of later developments)

∞∑
n=0

#Tn
n!

xn = secx+ tanx,

equivalent to #Tn = Tn (tangent numbers) for odd n and #Tn = Sn (secant numbers) for even n, so that

#Tn = (−1)(n−1)/2
2n+1(2n+1 − 1)

n+ 1
Bn+1 for all odd n.

(For even n, one has Sn = (−1)n/2En, where the Euler numbers15 En (which vanish for odd n) are defined by
2

ex+e−x =
∑∞
n=0

En
n! x

n.)

Now, as a consequence of the symmetry A(n,m) = A(n, n− 1−m), it is clear that
∑n−1
m=0(−1)mA(n,m) = 0

for even n. The formula (with Eulerian numbers defined without involvement of permutations)

n−1∑
m=0

(−1)mA(n,m) = Tn =
2n+1(2n+1 − 1)

n+ 1
Bn+1 for odd n

goes back to Laplace (1777) and Eytelwein (1816)! More recent references are [25, 51]. Not much after the discov-

ery of the meaning of A(n,m) in terms of permutations, purely combinatorial proofs of
∑n−1
m=0(−1)mA(n,m) =

#Tn for odd n were found, see [23, Théorème 5.6] and [44, Sect. 4.2].
2. When Bernoulli and Euler numbers appear together in alternating fashion as in the formula for #Tn,

e.g. in computation of the volumes of certain polytopes [5] or the computation of
∑∞
k=−∞(4k + 1)−n [21], this

usually is due to the identity in question factoring through #Tn. 2
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