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Inleiding
Ik zie het al zo voor me. Een bekende fabrikant van puzzelboekjes komt met
een nieuwe puzzel. De opgave is om van een tekening bestaande uit wat punten
en lijnen een nieuwe tekening te maken. Natuurlijk zijn er wat eisen:

• De lijnen in de nieuwe tekening mogen elkaar niet kruisen.

• Om de nieuwe tekening te verkrijgen mag alleen geschoven worden met
de punten en lijnen van de oude tekening. Punten en lijnen toevoegen of
verwijderen is absoluut verboden.

Het fijne aan zulke puzzels in puzzelboekjes is dat ze altijd op te lossen zijn. Daar
worden de tekeningen immers speciaal op uitgekozen. Maar natuurlijk zijn er
ook tekeningen, in de wiskundige vaktaal grafen genoemd, die niet na een beetje
schuiven een tekening zonder kruisende lijnen opleveren. Hoe weet je nu dat je
met zo’n tekening te maken hebt? Want als je na een uur proberen nog geen
goede nieuwe tekening hebt gevonden, moet je misschien gewoon nog een uur
doorzoeken. Het is dus een vraag die niet altijd zo makkelijk te beantwoorden is.

Het is dan ook niet zo verwonderlijk dat er wiskundigen zijn die zich op deze
vraag hebben gestort. Zo zijn uiteindelijk de theorieën over planaire grafen
(tekeningen die in het puzzelboekje zouden kunnen staan) en niet-planaire grafen
(tekeningen waarvan geen goede nieuwe tekening te maken is) ontstaan. Ik vond
het intrigerend om te zien dat een probleem dat zo mooi is in zijn eenvoud toch
veel gecompliceerde wiskunde kan herbergen. Toch is het antwoord op de vraag
dan weer ontzettend simpel. Als een deel van de tekening op één van de onder-
staande figuren lijkt, dan is de tekening niet-planair. Is dit niet het geval, dan
kan je hem gelijk opsturen naar de fabrikant van het puzzelboekje. De puzzel is
dan namelijk wel op te lossen. Dit resultaat staat bekend als het Theorema van
Kuratowski. Het is in 1930 door de Poolse wiskundige Kazimierz Kuratowski
in een artikel gepresenteerd.

In hoofdstuk 1 zullen we wat belangrijke begrippen in de grafentheorie definiëren.
Met behulp van deze definities zullen we vervolgens gaan bewijzen dat de twee
figuren van hierboven niet-planair zijn. Hoofdstuk 2 staat in het teken van het
bewijs van het Theorema van Kuratowski. Het is een lang bewijs, maar zeker
de moeite waard om te lezen. In het laatste hoofdstuk hebben we het over an-
dere oppervlakken, en dan vooral over het oppervlak van de torus (die bij de
meeste mensen bekend staat onder de naam donut). Welke grafen kunnen we
tekenen op de torus zonder dat de lijnen elkaar snijden? Is er ook een variant
van het Theorema van Kuratowski voor de torus? Zo ja, welke grafen komen
daar dan voor in aanmerking? Dit zijn deels onopgeloste vraagstukken die we
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in hoofdstuk 3 proberen op te lossen. Helaas heb ik niet op alle vragen een
antwoord kunnen geven. Dit heeft veel te maken met de moeilijkheid van het
probleem. Waar er in het Theorema van Kuratowski slechts een tweetal belang-
rijke grafen was, zijn dat er bij een variant van de stelling voor de torus op zijn
minst 239.451. Aan het eind van deze scriptie gaan we in op de vraag waarom
dit aantal zo groot is.

Ten slotte wil ik mijn begeleider bedanken, Dr. Wieb Bosma. Niet alleen legde
hij mij dit onderwerp voor, ook luisterde hij vol aandacht naar mijn bevindin-
gen tijdens het onderzoek en wist hij me vaak te helpen door me artikelen te
overhandigen of tips te geven.
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Hoofdstuk 1

Planaire grafen

Definitie 1. Een graaf G = (V,E) is een geordend paar bestaande uit een
verzameling V van punten en een verzameling E van zijden. Elke e ∈ E is
van de vorm {u, v} met u, v ∈ V en correspondeert met de zijde tussen u en
v. Een deelgraaf G′ van G is een graaf G′ = (V ′, E′) met V ′ ⊂ V , E′ ⊂ E
en elke e′ ∈ E′ is een zijde tussen twee punten uit V ′. De graad van een punt
v is het aantal zijden waarin v voorkomt, δ(G) noteert de minimum graad van
de punten in V . Een pad van lengte n tussen twee punten a, b ∈ V is een rij
v0v1..vn van verschillende punten uit V met v0 = a, vn = b en {vi, vi+1} ∈ E
∀i ∈ {0, 1, .., n − 1}. De afstand d(u, v) tussen twee punten u, v ∈ V is de
lengte van het kortste pad tussen u en v als die er is en gelijk aan ∞ als er
geen pad is tussen u en v. Een n-cykel is een pad van lengte n met v0 =
vn. G heet samenhangend als alle punten door een pad verbonden zijn (en
onsamenhangend als dit niet het geval is).

Opmerking: Merk op dat de definitie van een n-cykel niet volledig correct is
omdat er, terwijl in een pad alle punten verschillend zouden moeten zijn, wordt
geëist dat v0 = vn. De definitie wordt er mijns inziens echter onoverzichtelijker
op als we hem meer precies zouden maken.

Voorbeeld 2. Enkele bekende grafen zijn:

• Kn, de volledige graaf op n punten. Oftewel een graaf G = (V,E) met
|V | = n en E = {{v1, v2}| v1, v2 ∈ V, v1 6= v2}. In figuur 1.1 staat K5
afgebeeld.

• Km,n, de volledige bipartiete graaf. Deze graaf bestaat uit 2 groepen van
respectievelijk m en n punten, waarbij alleen punten uit de verschillende
groepen met elkaar verbonden zijn. Wat preciezer: Een graaf G = (V,E)
is de volledige bipartiete graaf Km,n als V = U ∪W, U ∩W = φ, |U | =
m, |W | = n en E = {{v1, v2}| v1 ∈ U, v2 ∈W}. Zie figuur 1.1 voor K3,3.

In beide grafen is te zien dat er wat zijden zijn die elkaar snijden. Je zou je
kunnen afvragen of je deze grafen anders kunt tekenen zodat er geen zijden meer
zijn die elkaar snijden. Zo komen we bij de definitie van een planaire graaf:

Definitie 3. Een graaf is planair als hij in het platte vak te tekenen is zon-
der dat de zijden elkaar snijden. In zo’n vlakke graaf zijn er verschillende
gebieden: 1 uitwendig gebied en voor de rest inwendige gebieden.
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Figuur 1.1: Links: K5, rechts: K3,3.

Voorbeeld 4. In figuur 1.2 is aan de linkerkant K4 te zien. Ondanks dat
de zijden elkaar in het middelpunt snijden, is deze graaf toch planair. Aan
de rechterkant staat namelijk een vlakke graaf van K4. Hierin staan ook de
verschillende gebieden gemarkeerd. f1, f2 en f3 zijn inwendige gebieden, f4
is een uitwendig gebied. Daarnaast kan opgemerkt worden dat elk gebied een
3-cykel is, m.a.w. elk gebied wordt begrensd door 3 zijden.

Figuur 1.2: K4 en een vlakke graaf van K4.

Nu we een planaire graaf hebben gezien is een logische vraag: Zijn er ook niet-
planaire grafen. Jazeker! De grafen van fig. 1.1, K5 en K3,3, zijn niet planair.
Om dit te bewijzen kunnen we de volgende stelling goed gebruiken:

Stelling 5 (Euler’s veelvlakformule). Voor elk convex veelvlak met V punten,
E zijden en F gebieden geldt:

V − E + F = 2.

In [1] wordt een bewijs van deze stelling gegeven en laat men tevens zien dat
we deze formule kunnen herschrijven. Voor een vlakke graaf van een samen-
hangende graaf met p punten, q zijden en r gebieden geldt namelijk ook:

p− q + r = 2. (1.1)

Stel nu eens dat zo’n vlakke graaf alleen maar uit n-cykels bestaat. Aangezien
elke zijde in 2 cykels voorkomt, geldt dan r = 2q/n. Met (1.1) volgt nu: 2 =
p− q + r = p− q + 2q/n = p+ q(2− n)/n. Hieruit volgt:
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Gevolg 6. Voor een vlakke graaf van een samenhangende graaf G met p punten,
q zijden en waarvoor elk gebied een n-cykel is, geldt:

q = n(p− 2)
(n− 2) . (1.2)

Gevolg 7. Als een samenhangende graaf G planair is en p ≥3 punten en q
zijden heeft, dan q ≤ 3p− 6. Als G geen 3-cykels bevat, dan q ≤ 2p− 4.

Bewĳs. De vlakke graaf van G bereikt zijn maximaal aantal zijden als elk gebied
een 3-cykel is. Substitutie van n = 3 in (1.2) geeft q ≤ 3p − 6. Als de vlakke
graaf geen 3-cykels bevat, dan wordt het maximaal aantal zijden bereikt als
n = 4 in (1.2), dus q ≤ 2p− 4.

Met dit gevolg is het hoofdresultaat nu makkelijk te bewijzen.

Stelling 8. K5 en K3,3 zijn niet planair.

Bewĳs. K5 heeft 5 punten en dus zou voor planairiteit moeten gelden dat q ≤ 9.
K3,3 heeft 6 punten en geen 3-cykels. Er zou dus moeten gelden dat q ≤ 8.
Omdat K5 10 zijden en K3,3 9 zijden heeft, zijn beide grafen niet planair.

Zouden we nu van nog meer grafen weten dat ze niet-planair zijn? Wederom
is het antwoord jazeker! Kijk eens naar de graaf van figuur 1.3. Deze graaf is
hetzelfde als K5, behalve dat er wat zijden onderverdeeld zijn doordat er wat
extra punten op die zijden staan. Deze punten geven geen extra mogelijkheden
om de graaf in het platte vak te tekenen zonder dat de zijden elkaar snijden.
Omdat K5 niet planair is, is deze graaf dat ook niet. We noemen deze graaf
ook wel homeomorf aan K5. De precieze definitie van homeomorfe grafen is:

Definitie 9. Twee grafen zijn homeomorf als beiden verkregen kunnen worden
uit dezelfde graaf door een onderverdeling van de zijden.

Figuur 1.3: Een graaf die homeomorf is aan K5.

Alle grafen homeomorf aan K5 zijn dus niet planair, net zo zijn alle grafen
homeomorf aan K3,3 niet planair.
Maar als er al geen vlakke graaf is van een graaf G die homeomorf is aan K5 of
K3,3, dan is er al helemaal geen vlakke graaf van een graaf die G als deelgraaf
bevat. Zo komen we tot de volgende stelling:

Stelling 10. Als een graaf een deelgraaf homeomorf aan K5 of K3,3 bevat, dan
is die graaf niet planair.
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Deze stelling kunnen we goed gebruiken om te laten zien dat een graaf niet
planair is. Als de omgekeerde implicatie waar zou zijn, dan kunnen we ook
aantonen dat een graaf wel planair is, namelijk door te laten zien dat die graaf
geen deelgraaf homeomorf aan K5 of K3,3 bevat. En de omgekeerde implicatie
blijkt waar te zijn! Dit resultaat staat bekend als het Theorema van Kuratowski.
Het volgend hoofdstuk zal geheel in het teken staan van het bewijs van deze
stelling.
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Hoofdstuk 2

Bewijs Theorema van
Kuratowski

We willen dus het Theorema van Kuratowski bewijzen. Het eerste bewijs is in
1930 door Kazimierz Kuratowski gegeven [2]. Ik heb nog even naar de Engelse
vertaling van het bewijs [3] gekeken. Uiteindelijk ben ik me echter gaan richten
op een bewijs dat afkomstig is uit een boek van Harary [1]. Dit is ook de versie
die hier (en deels al in hoofdstuk 1) wordt gegeven.

Stelling 11 (Theorema van Kuratowski). Een graaf is planair dan en slechts
dan als hij geen deelgraaf homeomorf aan K5 of K3,3 bevat.

Bewĳs. Uit de stelling aan het eind van het vorig hoofdstuk weten we al dat
wanneer een graaf planair is, hij geen deelgraaf homeomorf aan K5 of K3,3
bevat.
Omgekeerd is de stelling wat lastiger te bewijzen. In het vorige hoofdstuk
zijn we de lange lijst met definities geëindigd met de opmerking dat een graaf
samenhangend is als elk paar punten door een pad verbonden is. Om verder te
gaan moeten we onze lijst nog een klein beetje uitbreiden.

Definitie 12. Een component van een graaf G = (V,E) is een maximale
samenhangende deelgraaf. Een punt v ∈ V is een snijpunt van een samen-
hangende graaf G als de graaf bij verwijdering van v onsamenhangend wordt.
G heet 2-samenhangend als V geen snijpunten bevat. Een blok van een graaf
is een maximale 2-samenhangende deelgraaf.

Figuur 2.1: Boven: Een graaf met een snijpunt v, onder: De twee blokken van
de graaf.
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Lemma 13. Als een graaf G = (V,E) van tenminste drie punten een blok is,
dan liggen elke twee punten van G op een gemeenschappelijke cykel.

Bewĳs. Zij u, v ∈ V en U de verzameling van alle punten behalve u die op een
cykel met u liggen. Zij w een buur van u (oftewel een punt met {u,w} ∈ E).
Omdat G een blok is, kan u geen snijpunt zijn en dus heeft w nog een buur z.
Ook w is geen snijpunt en dus is er een pad van z naar u die niet langs w gaat.
Samen met de zijden {u,w} en {w, z} vormt dit pad een cykel. Alle buren van
u zitten dus in U ; U is niet leeg.

Figuur 2.2: Een situatieschets.

Stel v /∈ U . Zij w een element uit U waarvoor de d(w, v) minimaal is. Zij P0
het kortste pad van w naar v en P1, P2 de paden van u naar w die samen een
gemeenschappelijke cykel van u en w vormen. Omdat w geen snijpunt is, moet
er een pad P ′ zijn zonder w van u naar v. Dit pad snijdt P1 of P2 tussen u en
w, anders zou het eerste snijpunt van P ′ met P0 in U zitten (in het geval dat er
een snijpunt is) of zou v zelf in U zitten (in het geval dat P ′ ook P0 niet snijdt).
Net zo is na te gaan dat P ′ P0 tussen w en v snijdt. Zij w′ het dichtstbij u
liggende punt op P ′ dat ook op P0 ligt en u′ het dichtstbij v liggende punt op
P ′ dat ook op P1 of P2 ligt. Zonder verlies van algemeenheid nemen we aan
dat u′ op P1 ligt. Nu kunnen we een cykel maken door van u naar u′ over P1
te gaan, dan van u′ naar w′ over P ′, van w′ naar w over P0 en ten slotte van
w naar u over P2. Hieruit volgt dat w′ ∈ U . Maar w′ ligt op het kortste pad
tussen w en v, dus d(w′, v) < d(w, v). Dit leidt tot een tegenspraak omdat w
het punt uit U is met d(w, v) minimaal. Hieruit volgt dat v ∈ U , dus u en v
liggen op een gemeenschappelijke cykel.

Als een graaf planair is, kunnen we die graaf logischerwijs ook op het oppervlak
van de bol tekenen zonder dat de zijden elkaar snijden. We noemen zo’n tekening
een bolgraaf.
Omgekeerd, stel nu eens dat we van een graaf een bolgraaf hebben. Kies een
gebied van de bolgraaf en draai de bol zo dat het gebied (en geen punt of
zijde!) op de noordpool ligt. Leg een vlak onder de bol en stop vervolgens in
de noordpool een laser die stralen uitzendt naar beneden. Elke straal zal één
snijpunt met de bol hebben en één snijpunt met het vlak. We kunnen dit ook
zien als een afbeelding van het eerste snijpunt naar het snijpunt met het vlak.
We noemen deze afbeelding de stereografische projectie (zie figuur 2.3). Op deze
manier kunnen we bijna de hele bolgraaf op het platte vlak afbeelden. De plek
vanwaar de laser stralen uitzendt, wordt echter niet afgebeeld. Maar omdat op
deze plek geen punt of zijde ligt, kan er ook niks afgebeeld worden. Dit is dus
geen probleem. We krijgen zo dus een vlakke graaf van de graaf, kortom:

Lemma 14. Een graaf is planair dan en slechts dan als er een bolgraaf van die
graaf is op het oppervlak van de bol.
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Figuur 2.3: De stereografische projectie die o.a. het punt P op P ′ afbeeldt.

Gevolg 15. Bij een planaire graaf is er voor elk gebied een vlakke graaf waarbij
dat gebied het uitwendig gebied is.

Bewĳs. Zij f een gebied van een planaire graaf. Maak een bolgraaf van de graaf
op de bol met dat gebied op de noordpool en voer de stereografische projectie uit.
Dan krijgen we een vlakke graaf van de graaf met f als uitwendig gebied.

Het is vrij gemakkelijk in te zien dat een graaf planair is dan en slechts dan
als zijn componenten planair zijn. Hebben we immers een vlakke graaf van alle
componenten apart, dan kunnen we al die componenten ook wel naast elkaar
in het platte vlak tekenen zonder dat de zijden elkaar snijden. Een soortgelijke
uitspraak kunnen we ook doen voor een graaf en zijn blokken.

Lemma 16. Een graaf is planair dan en slechts dan als elk van zijn blokken
planair is.

Bewĳs. Als een graaf planair is, dan is het duidelijk dat zijn blokken planair
zijn. Zij G een graaf met een snijpunt v en twee planaire blokken G1 en G2.
Omdat zowel G1 als G2 nu het punt v bevatten, hernoemen we dit punt even
naar u (voor G1) en w (voor G2). Uit het gevolg weten we dat we G1 en G2 zo op
verschillende plekken in het platte vlak kunnen tekenen, dat u en w beiden het
uitwendig gebied grenzen. Nu kunnen we beide grafen naar elkaar toe draaien
en u en w ‘aan elkaar plakken’, om zo een vlakke graaf van G te krijgen. G is
dus ook planair. Door herhaald toepassen van dit proces kunnen we van elke
graaf bestaande uit planaire blokken een vlakke graaf maken.

Nu hebben we voor even genoeg lemma’s bekeken, tijd om verder te gaan met
het bewijs.
Stel eens dat het Theorema van Kuratowski niet waar is. Dan is er dus een
niet-planaire graaf die geen deelgraaf homeomorf aan K5 of K3,3 bevat. Zij G
zo’n graaf met een minimaal aantal zijden. Wat weten we over G?

• δ(G) ≥ 3. Dat δ(G) > 1 is duidelijk. Stel δ(G) = 2, dan kunnen we een
graaf homeomorf aan G maar met minder zijden maken door het punt v
van graad 2 tezamen met de zijden {u, v}, {u′, v} waarin v voorkomt te
verwijderen en een nieuwe zijde {u, u′} toe te voegen (dit proces wordt
later het afvlakken van een punt genoemd). Door de homeomorfie met
G is deze nieuwe graaf ook niet planair en bevat hij ook geen deelgraaf
homeomorf aan K5 of K3,3. Dit is in tegenspraak met dat G de kleinste
graaf met deze eigenschappen is.

• G is een blok. Dit volgt uit Lemma 16.
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We kunnen een willekeurige zijde x0 = {u0, v0} uitG weghalen om zo de planaire
graaf F = G− x0 te verkrijgen. Toch weer even een lemma:

Lemma 17. Er is een cykel in F die u0 en v0 bevat.

Bewĳs. Stel dat er geen cykel in F is die u0 en v0 bevat. Dan volgt uit Lemma
13 dat u0 en v0 in verschillende blokken liggen en dat er dus een snijpunt w
is, dat per definitie op elk pad tussen u0 en v0 ligt. Nu kunnen we de zijden
{w, u0} en {w, v0} toevoegen en zo de nieuwe graaf F0 met in ieder geval twee
blokken B1 en B2 krijgen, waarbij u0 in B1 ligt en v0 in B2. Omdat B1 en
B2 allebei minder zijden hebben dan G, moet B1 planair zijn of een deelgraaf
H homeomorf aan K5 of K3,3 bevatten. Stel eens dat dit laatste het geval is.
Dan is de graaf die wordt verkregen uit H door {w, u0} te verwijderen en te
vervangen door een pad, bestaande uit x0 en een pad van v0 naar w, homeomorf
aan H en daarnaast een deelgraaf van G. G bevat dus een deelgraaf homeomorf
aan H en dus aan K5 of K3,3, tegenspraak. Dit betekent dus dat B1 en B2
planair zijn. Uit Gevolg 15 weten we dan dat er vlakke grafen van B1 en B2
zijn waarbij de zijden {w, u0} respectievelijk {w, v0} aan het uitwendig gebied
grenzen. Hieruit volgt dat er ook een vlakke graaf van F0 is waarbij beide
zijden aan het uitwendig gebied grenzen. Niets ligt ons nu in de weg om door
het uitwendig gebied x0 te tekenen. F0 + x0 is dus planair en daarnaast is G
een deelgraaf van F0 + x0. G is dus ook planair, wat weer een tegenspraak is.
Er is dus wel een cykel in F die u0 en v0 bevat.

Figuur 2.4: vlakke graaf van F met een cykel Z door u0 en v0 die een maximaal
aantal gebieden binnen zich heeft.
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We weten nu dus dat de planaire graaf F een cykel met daarin u0 en v0 bevat.
Dan is er dus ook een vlakke graaf van F waarbij een cykel Z die u0 en v0 bevat
een maximaal aantal gebieden binnen Z heeft liggen. Figuur 2.4 laat zien hoe
zo’n vlakke graaf eruit kan zien. Nu kunnen we een nieuwe deelgraaf van F
maken bestaande uit de punten buiten Z en de zijden waarvan beide punten
buiten Z liggen. De componenten van deze deelgraaf noemen we uitwendige
componenten, ze zijn in figuur 2.4 met ellipsen aangegeven. Een uitwendige
component kunnen we uitbreiden met de zijden van F die één punt met die
component en één punt met Z gemeen hebben, en met de punten die deze zijden
gemeen hebben met Z. Deze deelgraaf van F noemen we een buitenstuk van F .
Ook de deelgraaf van F bestaande uit een zijde (en zijn twee punten) die buiten
Z ligt, maar waarvan beide punten op Z liggen, noemen we een buitenstuk
van F . Inwendige componenten en binnenstukken zijn op soortgelijke wijze
gedefinieerd.
Als we met de klok mee over Z lopen, zij voor punten u, v ∈ Z, Z[u, v] het pad
van u naar v en Z(u, v) het pad van u naar v met daaruit u en v weggelaten
(Z(u, v) is niet gedefinieerd als u en v elkaar direct opvolgen). Een binnenstuk
of buitenstuk noemen we u− v scheidend als het zowel een punt met Z(u, v) als
Z(v, u) gemeen heeft. Wat weten we nu?

• F heeft tenminste één u0 − v0 scheidend binnenstuk, anders zouden we
binnen de cykel x0 kunnen tekenen en zo een vlakke graaf van G krijgen.

• Een buitenstuk kan geen twee punten met Z(u0, v0) of Z(v0, u0) gemeen
hebben, anders zou er een cykel zijn met daarin u0 en v0 die meer gebieden
bevat dan Z. Om dezelfde reden kunnen u0 en v0 geen deel uitmaken van
een buitenstuk.

• Omdat F een blok is (dit volgt uit het bewijs van lemma 17) en dus geen
snijpunten bevat, moet een buitenstuk tenminste twee punten gemeen
hebben met Z. Hieruit volgt samen met het vorige punt dat een buiten-
stuk precies twee punten met Z gemeen heeft. Eén van die punten ligt
op Z(u0, v0), het ander op Z(v0, u0). Oftewel, elk buitenstuk is u0 − v0
scheidend.

Lemma 18. Er is een u0−v0 scheidend buitenstuk die het punt u1 met Z(u0, v0)
en het punt v1 met Z(v0, u0) gemeen heeft, waarvoor er een binnenstuk is dat
zowel u0 − v0 als u1 − v1 scheidend is.

Bewĳs. Stel dat het lemma niet waar is en zij I een u0−v0 scheidend binnenstuk.
Zij u2 en u3 het eerste respectievelijk laatste punt dat I met de klok meegaand
met Z(u0, v0) gemeen heeft en zij v2 en v3 het eerste respectievelijk laatste punt
dat I met Z(v0, u0) gemeen heeft (zie figuur 2.4). Voor elk buitenstuk geldt
dat de twee gemeenschappelijke punten met Z allebei op Z[v3, u2] of allebei op
Z[u3, v2] moeten liggen, anders zou het buitenstuk samen met I het lemma toch
bevestigen terwijl we die als onwaar hadden gesteld. Maar in dat geval kunnen
we I net als in figuur 2.4 naar buiten brengen zonder dat het de zijden van een
buitenstuk snijdt. Op deze manier kunnen we elk u0− v0 scheidend binnenstuk
naar buiten brengen en zo een nieuwe vlakke graaf van F krijgen. Maar omdat
de u0− v0 scheidende binnenstukken dan weg zijn, kunnen we x0 tekenen en zo
een vlakke graaf van G krijgen. Deze tegenspraak bewijst het lemma.
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Zij H het binnenstuk uit het lemma dat zowel u0 − v0 als u1 − v1 scheidend
is. Dit betekent dat er punten w0, w′0, w1 en w′1 zijn die H met respectievelijk
Z(u0, v0), Z(v0, u0), Z(u1, v1), Z(v1, u1) gemeen heeft. We kunnen nu vier
gevallen onderscheiden:

1. w1 ∈ Z(u0, v0) en w′1 ∈ Z(v0, u0) of omgekeerd. Neem zonder verlies van
algemeenheid het eerste aan en teken x0 zodat we G weer krijgen. Dan
zien we in figuur 2.5(a) dat G een deelgraaf homeomorf aan K3,3 bevat.

2. w1, w
′
1 ∈ Z(u0, v0) of w1, w

′
1 ∈ Z(v0, u0). We mogen de eerste situatie

aannemen. Dan zijn er weer drie mogelijkheden: w′0 ∈ Z(v0, v1), w′0 ∈
Z(v1, u0) of w′0 = v1. Bij de eerste twee mogelijkheden bevat G weer een
deelgraaf homeomorf aan K3,3, zoals te zien is in figuur 2.5(b en c). Bij de
laatste mogelijkheid is er een punt r ∈ H vanwaar er disjuncte paden naar
w1, w′1 en v1 lopen. Ook hier is er weer een deelgraaf van G homeomorf
aan K3,3 (zie figuur 2.5(d)).

3. w1 = v0 en w′1 6= u0 of w1 6= v0 en w′1 = u0. Neem zonder verlies van
algemeenheid het eerste aan en dat w′1 ∈ Z(u0, u1). Dan w′0 ∈ Z(v0, v1),
w′0 ∈ Z(v1, u0) of w′0 = v1. In alle gevallen bevat G een deelgraaf homeo-
morf aan K3,3 (zie figuur 2.5(b,e en f)).

4. w1 = v0 en w′1 = u0. Als w0 6= u1 en w′0 6= v1, dan is het aan de lezer om
aan te tonen dat G wederom een deelgraaf homeomorf aan K3,3 bevat. Als
w0 6= u1 en w′0 = v1, dan zitten we in de situatie van figuur 2.5(f) (met w0
i.p.v. w′1) of 2.5(g). Het geval w0 = u1 en w′0 6= v1 is hieraan symmetrisch.
Stel dat geldt w0 = u1 en w′0 = v1. Zij P0 het kortste pad in H van u0
naar v0 en P1 het kortste pad van u1 naar v1. P0 en P1 moeten elkaar
snijden. Als beide paden meerdere punten gemeen hebben dan hebben we
te maken met een K3,3 zoals te zien is in figuur 2.5(h). Als beide paden
één punt gemeen hebben, dan bevat G een deelgraaf homeomorf aan K5
(zie figuur 2.5(i)).

We hebben nu laten zien dat de planaire graaf F = G−x0 na toevoeging van de
zijde x0 in alle gevallen een deelgraaf homeomorf aan K3,3 of K5 bevat. Maar
we hebben aangenomen dat G = F + x0 geen deelgraaf homeomorf aan K3,3 of
K5 bevat. Deze tegenspraak bewijst het Theorema van Kuratowski.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figuur 2.5: G bevat in alle gevallen een deelgraaf homeomorf aan K3,3 of K5.
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Hoofdstuk 3

Toroïdale Grafen

Nu weten we welke grafen we op het platte vlak (en dus op het oppervlak
van de bol) kunnen tekenen zonder dat de zijden elkaar snijden. Zouden er
oppervlakken zijn waar niet-planaire grafen op te tekenen zijn zonder dat de
zijden elkaar snijden? Laten we eens een niet-planaire graaf tekenen op de bol,
dan zijn er wat zijden die elkaar snijden. Zoals in het verkeer wel eens een
viaduct wordt aangelegd om twee wegen over elkaar heen te laten lopen, zo
kunnen we de bol uitbreiden met een oor om vervolgens de ene zijde over en de
andere zijde door het oor te laten lopen (zie figuur 3.1). Zo krijgen we voor elke
graaf (door maar genoeg oren toe te voegen) een oppervlak waar de graaf op te
tekenen is zonder dat de zijden elkaar snijden.

Figuur 3.1: De bol uitbreiden met een oor.

Definitie 19. We kunnen een bol uitbreiden met oren. Het geslacht γ(G) van
een graaf G is het minimaal aantal oren dat op de bol nodig is om de graaf te
tekenen zonder dat de zijden elkaar snijden. De bol met één oor noemen we ook
wel torus (figuur 3.2). Een torusgraaf van een graaf is een tekening van een
graaf op het oppervlak van de torus zonder dat de zijden elkaar snijden. Een
graaf heet toroïdaal als er een torusgraaf van die graaf is.

De grote vraag is nu natuurlijk: Zouden K5 en K3,3 wel toroïdaal zijn? Hoe
zouden we daar achter moeten komen? We zouden natuurlijk een levensgrote
maquette van een torus kunnen maken en daarop de grafen kunnen proberen te
tekenen. Voor de creatievelingen onder ons is dit misschien een leuk idee, maar
voor mij toch iets te overdreven. We kunnen het ook iets slimmer aanpakken
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Figuur 3.2: De torus.

door de torus wel na te maken, maar dan alleen in ons hoofd. We beginnen
met een rechthoek. Dan kunnen we de lange kanten aan elkaar plakken om zo
een cilinder te krijgen. Als we nu een zijde tekenen op die cilinder, dan kan het
best zo zijn dat die zijde de plakrand overschrijdt. In de rechthoek betekent
dit dat we een zijde die aan de bovenkant de rechthoek uit gaat aan de on-
derkant gewoon door mogen trekken. Van de cilinder kunnen we weer een torus
maken door de uiteinden van de cilinder aan elkaar te plakken. Nu mogen we
in de rechthoek dus ook een zijde die links het vlak uit gaat aan de rechterkant
doortrekken. Het tekenen van een graaf op het oppervlak van de torus is dus
hetzelfde als het tekenen van een graaf op de rechthoek met de extra moge-
lijkheid dat we zijden die de rechthoek uitgaan aan de andere kant weer door
mogen trekken.

Het volgende stuk beschrijft een dagje van een enthousiaste wiskundestudent:
Benieuwd naar de mogelijkheden van torusgrafen ging ik gelijk aan de slag en
al snel had ik torusgrafen van K5 en K3,3 gevonden, zie figuur 3.3.

Figuur 3.3: Links: K5, rechts: K3,3.

Zou er nog meer mogelijk zijn? Na iets meer werk bleek K4,4 ook een toroïdale
graaf te zijn, zoals te zien is links in figuur 3.4. Op dat moment was het weer tijd
om verder te gaan met de volledige grafen. Ik besloot om K6 over te slaan en
gelijk te proberen om een torusgraaf vanK7 te vinden. Ik ging er eigenlijk vanuit
dat het niet zou lukken. K7 heeft met zijn 21 zijden maar liefst 11 zijden meer
dan K5, en die graaf is al niet planair. Zou een torus zoveel extra mogelijkheden
geven? Tegen beter weten in ging ik toch wat proberen en onverwacht vond ik
een torusgraaf van K7 (rechts in figuur 3.4).

16



Figuur 3.4: Links: K4,4, rechts: K7.

Verder ben ik niet gekomen en vandaar dat ik me af begon te vragen welke grafen
niet toroïdaal zouden zijn. Nu zou het mooi zijn als we een nieuwe stelling in
de stijl van Kuratowski konden krijgen, zoiets als:
Hypothese 20. Een graaf is niet toroïdaal dan en slechts dan als hij een deel-
graaf homeomorf aan K5,5 of K8 bevat.
Zoals van een enthousiaste wiskundestudent verwacht mag worden ging ik gelijk
aan de slag om de hypothese of een soortgelijke uitspraak (met andere of meer
grafen dan K5,5 of K8) te bewijzen. Het leek me goed om het bewijs van de
stelling van Kuratowski een beetje aan te passen. Daarin was de eerste stap
dat we aan moesten tonen dat K5 en K3,3 niet planair waren. Dit deden we
met behulp van Euler’s veelvlakformule. Zou er een variant van die formule
voor toroïdale grafen zijn? Ik ben in elke torusgraaf die ik op dat moment had
gemaakt de gebieden gaan aanduiden met f1, f2, enzovoorts. Zo heb ik dat ook
gedaan met de grafen in figuur 3.3 en 3.4. Vervolgens ben ik toen het aantal
punten, zijden en gebieden van de tot dan toe gevonden toroïdale grafen gaan
tellen en kwam tot de volgende tabel:

Graaf # Punten # Zijden # Gebieden
K5 5 10 5
K3,3 6 9 3
K4,4 8 16 8
K7 7 21 14

In alle gevallen bleek dus te gelden # punten + # gebieden = # zijden, oftewel
p+ r = q. Toch was gemakkelijk in te zien dat deze formule niet geldt voor alle
toroïdale grafen.

Figuur 3.5: K3 op de torus.

Planaire grafen zijn ook toroïdaal, je kunt ze op de torus immers net zo tekenen
als op het platte vlak. Voor de planaire en dus toroïdale graaf K3 (figuur 3.5)
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met zijn 3 punten, 3 zijden en 2 gebieden gaat de formule echter niet op (dit is
ook logisch omdat voor planaire grafen al Euler’s veelvlakformule geldt). Van-
daar dat ik tot het volgende vermoeden kwam:
Vermoeden van Hebbink: Voor een torusgraaf van een samenhangende graaf met
p punten, q zijden en r gebieden die niet planair is geldt: p+ r = q.
Zo ging ik vol tevredenheid met een zelf bedacht vermoeden slapen en eindigde
het dagje van een enthousiaste wiskundestudent.

Dit vermoeden is al bewezen en staat bekend als een speciaal geval van de
volgende formule, bedacht door Henri Poincaré. Hierdoor moeten we helaas
afscheid nemen van de naam vermoeden van Hebbink. Het voordeel is wel dat
deze formule in tegenstelling tot mijn vermoeden al is bewezen, een bewijs is te
vinden in [4].

Stelling 21. Voor een samenhangende graaf G van geslacht γ(G) met p punten,
q zijden en r gebieden geldt:

p− q + r = 2− 2γ(G).

Nu kunnen we op dezelfde voet verder gaan als bij het bewijs van de stelling
van Kuratowski.

Gevolg 22. Voor een samenhangende graaf G van geslacht γ(G) met p punten
en q zijden waarbij elk gebied een 3-cykel is, geldt:

q = 3(p− 2 + 2γ(G)).

Als elk gebied een 4-cykel is, dan:

q = 2(p− 2 + 2γ(G)).

Bewĳs. Als elk van de r gebieden een 3-cykel is, dan r = 2q/3. q = p+ r− 2 +
2γ(G) geeft dan q/3 = p− 2 + 2γ(G), oftewel q = 3(p− 2 + 2γ(G)). Substitueer
voor het bewijs over 4-cykels r = 2q/4 in de formule van Poincaré.

Gevolg 23. Voor een samenhangende graaf G van geslacht γ(G) met p punten
en q zijden geldt:

γ(G) ≥ 1
6q −

1
2(p− 2). (3.1)

Als G geen 3-cykels bevat, dan:

γ(G) ≥ 1
4q −

1
2(p− 2). (3.2)

Bewĳs. G bereikt een maximaal aantal zijden als elk gebied een 3-cykel is, dus
q ≤ 3(p−2+2γ(G)), oftewel q−3p+6 ≤ 6γ(G). Als G geen 3-cykels bevat, dan
volgt op soortgelijke wijze dat q − 2p + 4 ≤ 4γ(G). Het gevolg is nu makkelijk
af te leiden.

Voor de volledige graaf Kn met n punten en n(n− 1)/2 zijden geldt dus:
γ(Kn) ≥ n(n−1)

12 − n−2
2 = n2−7n−12

12 = (n−3)(n−4)
12 .

De volledige bipartiete graaf Km,n heeft m+ n punten en mn zijden, dus:
γ(Km,n) ≥ mn

4 −
m+n−2

2 = mn−2m−2n+4
4 = (m−2)(n−2)

4 .
Dit is een deel van het bewijs van de volgende stelling:
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Stelling 24. Als n ≥ 3, dan:

γ(Kn) =
⌈

(n− 3)(n− 4)
12

⌉
.

Als m,n ≥ 2, dan:

γ(Km,n) =
⌈

(m− 2)(n− 2)
4

⌉
.

Bewĳs. Omdat γ(Kn) ≥ (n−3)(n−4)
12 en γ alleen gehele waarden aanneemt, geldt

γ(Kn) ≥
⌈

(n−3)(n−4)
12

⌉
. Net zo is γ(Km,n) ≥

⌈
(m−2)(n−2)

4

⌉
. De andere ongelijk-

heden zijn door ontdekkingen van verschillende wiskundigen gevonden. Harary
geeft in [1] een overzicht deze ontdekkingen.

Nu weten we dus dat K8 en K5,5 niet toroïdaal zijn, maar omdat de deelgraaf
K5,4 van K5,5 ook niet toroïdaal is, klopt de hypothese die eerder gesteld was
niet. Uit de formules (3.1) en (3.2) kan onder andere ook nog afgeleid worden
dat K8 met daaruit drie zijden weggehaald niet toroïdaal is, net als K5,4 met
daaruit één zijde weggehaald. Zouden we een nieuwe hypothese moeten maken
met deze grafen in de rol van K5 en K3,3 bij Kuratowski? Of zouden er nog
andere grafen moeten zijn die in zo’n stelling opgenomen moeten worden? Laten
we eens definiëren wat we precies willen hebben.

Definitie 25. We kunnen een punt v van graad twee afvlakken door het punt
tezamen met de zijden {u, v}, {u′, v} waarin v voorkomt te verwijderen en een
nieuwe zijde {u, u′} toe te voegen. We zeggen G < H als G 6= H en als we G uit
H kunnen verkrijgen door een rij van punt verwijderingen, zijde verwijderingen
en punt afvlakkingen. De obstructieverzameling van een verzameling grafen
V is de verzameling van alle grafen H die niet tot V behoren en waarvoor elke
graaf G met G < H wel tot V behoort.

De obstructieverzameling van de planaire grafen bestaat dus uit K5 en K3,3.
Wat wij willen hebben is de obstructieverzameling van de toroïdale grafen, vanaf
nu (tenzij anders vermeld) de obstructieverzameling genoemd. In 1989 lieten
Robertson en Seymour in een artikel [5] zien dat de obstructieverzameling eindig
veel elementen heeft. Er is in de loop van de jaren nog veel meer onderzoek ver-
richt naar deze verzameling. Woodcock geeft [6] het volgende (vrij vertaalde)
beknopte overzicht van de resultaten van dit onderzoek:
Het algoritme van Myrvold en Neufeld [7] was goed genoeg om van alle grafen
met hooguit 10 punten te zeggen of ze tot de verzameling behoren. Daarnaast
wisten zij enkele grotere elementen te vinden. Dit algoritme werd door Cham-
bers gebruikt [8] om alle elementen met hooguit 11 punten en alle 3-reguliere
(alle punten hebben graaf 3) elementen met hooguit 24 punten te vinden. Ook
hij vond nog wat grotere elementen. Ten slotte wisten Chambers, Gagarin and
Myrvold [9] van alle grafen die geen deelgraaf homeomorf aan K3,3 bevatten
te zeggen of ze tot de obstructieverzameling behoren. Natuurlijk overlappen
de gevonden grafen in sommige gevallen, maar in totaal zijn er al wel 239.451
elementen van de obstructieverzameling gevonden. Het is echter onzeker of deze
lijst compleet is.
Een verrassend groot aantal. Waarom zijn het er zoveel? Omdat we al hebben
laten zien dat een graaf planair is d.e.s.d.a. zijn componenten planair zijn
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d.e.s.d.a. zijn blokken planair zijn, kon de obstructieverzameling van planaire
grafen geen grafen bevatten die uit meerdere blokken of componenten bestaan.
Dit beperkte onze zoektocht naar die verzameling. K7 is met zijn 7 punten en
21 zijden zoals we eerder hebben laten zien toroïdaal. Nu kunnen we een nieuwe
graaf G maken die uit twee blokken bestaat die beiden gelijk zijn aan K7. G
heeft dan 13 (=2·7-1) punten en 42 zijden en is dus zoals uit formule (3.1) blijkt
niet toroïdaal. G bestaat dus uit toroïdale blokken maar is zelf niet toroïdaal.
Dit betekent dat we in onze zoektocht naar de obstructieverzameling niet alleen
kunnen kijken naar grafen die bestaan uit 1 blok. Een verklaring hiervoor is
dat wanneer we G tekenen op de bol, er meer zijden zijn die elkaar snijden dan
wanneer we alleen K7 tekenen. Hierdoor hebben we blijkbaar meer oren nodig
voor G en is het geslacht dus groter dan het geslacht van K7. Net zo hoeft een
graaf bestaande uit meerdere toroïdale componenten niet per sé ook toroïdaal
te zijn. Zelfs onsamenhangende grafen zouden dus in de obstructieverzameling
kunnen zitten.
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