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Particles as Singularities of the Fields. Part I (GR)

(1921) Hermann Weyl: Elementary particles as singular
points in a three-dimensional spacelike section of four-
dimensional spacetime with many time-like singularities.
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Particles as Singularities of the Fields. Part I (GR)

(1921) Hermann Weyl: Elementary particles as singular
points in a three-dimensional spacelike section of four-
dimensional spacetime with many time-like singularities.
(1926) Albert Einstein: “I am plaguing myself with the
derivation of the equations of motion of material points,
conceived of as singularities [in the gravitational field],
from the equations of general relativity.”
(Letter to Max Born, Dec. 4)
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Particles as Singularities of the Fields. Part I (GR)

(1921) Hermann Weyl: Elementary particles as singular
points in a three-dimensional spacelike section of four-
dimensional spacetime with many time-like singularities.
(1926) Albert Einstein: “I am torturing myself with the
derivation of the equations of motion of material points,
conceived of as singularities [in the gravitational field],
from the equations of general relativity.”
(Letter to Max Born, Dec. 4)
(1927) A. Einstein & J. Grommer:
General Relativity and the Law of Motion,
Sitzungsber. Preuss. Akad., Jan. 6, pp.2-13
“The law of motion is completely determined by the field
equations, though ... proven only for the ... equilibrium.”
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Particles as Singularities of the Fields. Part I (GR)
(1938) A. Einstein, L. Infeld, & B. Hoffmann:
The Gravitational Equations and the Problem of Motion,
Annals Math. 39, Jan., pp.65–100
“(1) By ... method of approximation, ... the gravitational
field due to [slowly] moving particles is determined.
(2) It is shown that for two-dimensional spatial surfaces
containing singularities, certain surface integral conditions
are valid which determine the motion.”
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Particles as Singularities of the Fields. Part I (GR)
(1938) A. Einstein, L. Infeld, & B. Hoffmann:
The Gravitational Equations and the Problem of Motion,
Annals Math. 39, Jan., pp.65–100
“(1) By ... method of approximation, ... the gravitational
field due to [slowly] moving particles is determined.
(2) It is shown that for two-dimensional spatial surfaces
containing singularities, certain surface integral conditions
are valid which determine the motion.”
(1940) A. Einstein & L. Infeld:
The Gravitational Equations and the Problem of Motion. II,
Annals Math. 41, April, pp. 455–464
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Particles as Singularities of the Fields. Part I (GR)
(1938) A. Einstein, L. Infeld, & B. Hoffmann:
The Gravitational Equations and the Problem of Motion,
Annals Math. 39, Jan., pp.65–100
“(1) By ... method of approximation, ... the gravitational
field due to [slowly] moving particles is determined.
(2) It is shown that for two-dimensional spatial surfaces
containing singularities, certain surface integral conditions
are valid which determine the motion.”
(1940) A. Einstein & L. Infeld:
The Gravitational Equations and the Problem of Motion. II,
Annals Math. 41, April, pp. 455–464
(1941) P. R. Wallace:
Relativistic Equations of Motion in Electromagnetic Theory,
Amer. J. Math. 63, pp.729–236.
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Particles as Singularities of the Fields. Part I (GR)

The gist of the EIH argument:
Imagine an electromagnetic Lorentz spacetime (M1,3,F)
with N charged, time-like singularities of infinite extent.
Away from the singularities:

Einstein : R − 1
2Rg = 8πG

c4 T [F ,g] (E)

Maxwell : dF = 0; d ∗F = 0 (M)

Twice contracted second Bianchi identity:

∇·
(
R − 1

2Rg
)

= 0 (B)

(E) & (B) =⇒ ∇·T [F ,g] = 0
SIC
=⇒ law of motion .
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Particles as Singularities of the Fields. Part I (GR)

“We have therefore obtained the Newtonian equations of
motion from the field equations alone, without extra assumption
such as ... the law of geodetic lines, or by a special choice of an
energy impulse tensor.
From the above derivation of the Newtonian equations of
motion, the general mechanism becomes apparent by which
the Lorentz equations for the motion of electric particles can be
obtained. In this case we have to consider the gravitational
equations in which the Maxwell energy-momentum tensor
appears on the right, and also the Maxwell field equations, and
treat the whole set of equations by our approximation method.
It is necessary, now, to give each singularity an electric charge
e in addition to its mass m. We .... obtain the full Lorentz force
together with the relativistic correction to the mass.”

Michael K.-H. Kiessling
The Einstein–Infeld–Hoffmann Legacy in Mathematical Relativity



Quest for the Microscopic Foundations of Classical Physics
Rigorous Results: Special Relativistic Problem
Rigorous Results: General Relativistic Problem

Particles as Singularities of the Fields. Part I (GR)

Alas, their Mathematics does not Support their Claim

“It is most convenient to take definite, infinitesimally small
spheres whose centers are at the singularities, but in this case
infinities of the types

lim const ./rn, n a positive integer, r → 0

can occur in the values of the partial integrals. Since these
must cancel, however, in the final result, we may merely ignore
them throughout the calculation of the surface integrals.”

(EIH, p. 92)
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Particles as Singularities of the Fields. Part I (GR)

Alas, their Mathematics does not Support their Claim

“It is most convenient to take definite, infinitesimally small
spheres whose centers are at the singularities, but in this case
infinities of the types

lim const ./rn, n a positive integer, r → 0

can occur in the values of the partial integrals. Since these
must cancel, however, in the final result, we may merely ignore
them throughout the calculation of the surface integrals.”

(EIH, p. 92)

However, the infinities do not cancel!
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Particles as Singularities of the Fields. Part I (GR)

Alas, their Mathematics does not Support their Claim

EIH’s surface integral conditions (SIC) correspond to the
assumption of a positive bare mass of the timelike singularities.
EIH did not know that this (presumably) implies Black Holes

Michael K.-H. Kiessling
The Einstein–Infeld–Hoffmann Legacy in Mathematical Relativity



Quest for the Microscopic Foundations of Classical Physics
Rigorous Results: Special Relativistic Problem
Rigorous Results: General Relativistic Problem

Particles as Singularities of the Fields. Part II (SR)

Negative Infinite Bare Mass Renormalization to the rescue?
(1938) Paul Adrien Maurice Dirac:
Classical theory of radiating electrons,
Proc. Roy. Soc. A 167, Aug., pp. 148–169
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Particles as Singularities of the Fields. Part II (SR)

Negative Infinite Bare Mass Renormalization to the rescue?
(1938) Paul Adrien Maurice Dirac:
Classical theory of radiating electrons,
Proc. Roy. Soc. A 167, Aug., pp. 148–169

mobs
d2

dτ2 q = f ext + f LAUE

where f ext = e
c F ext(q) · d

dτ q is a Lorentz Minkowski-force,

f LAUE = 2e2

3c3

(
g + 1

c2
d

dτ q ⊗ d
dτ q
)
· d3

dτ3 q

is von Laue’s radiation-reaction Minkowski-force, and ...
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Particles as Singularities of the Fields. Part II (SR)

Negative Infinite Bare Mass Renormalization to the rescue?
(1938) Paul Adrien Maurice Dirac:
Classical theory of radiating electrons,
Proc. Roy. Soc. A 167, Aug., pp. 148–169

mobs
d2

dτ2 q = f ext + f LAUE

where f ext = e
c F ext(q) · d

dτ q is a Lorentz Minkowski-force,

f LAUE = 2e2

3c3

(
g + 1

c2
d

dτ q ⊗ d
dτ q
)
· d3

dτ3 q

is von Laue’s radiation-reaction Minkowski-force, and

mobs = limr↓0

(
mbare(r) + e2

2c2
1
r

)
defines mbare(r) [N.B.: mbare(r) ↓ −∞ as r ↓ 0]
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Particles as Singularities of the Fields. Part II (SR)

Negative Infinite Bare Mass Renormalization to the rescue?
(1938) Paul Adrien Maurice Dirac:
Classical theory of radiating electrons,
Proc. Roy. Soc. A 167, Aug., pp. 148–169

mobs
d2

dτ2 q = f ext + f LAUE

where f ext = e
c F ext(q) · d

dτ q is a Lorentz Minkowski-force, and

f LAUE = 2e2

3c3

(
g + 1

c2
d

dτ q ⊗ d
dτ q
)
· d3

dτ3 q

is von Laue’s radiation-reaction Minkowski-force, and

mobs = limr↓0

(
mbare(r) + e2

2c2
1
r

)
defines mbare(r) [N.B.: mbare(r) ↓ −∞ as r ↓ 0]
Why should mbare know about r (radius of averaging sphere)?
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Particles as Singularities of the Fields. Part II (SR)

Negative Infinite Bare Mass Renormalization to the rescue?
(1938) Paul Adrien Maurice Dirac:
Classical theory of radiating electrons,
Proc. Roy. Soc. A 167, Aug., pp. 148–169

mobs
d2

dτ2 q = f ext + f LAUE

where f ext = e
c F ext(q) · d

dτ q is a Lorentz Minkowski-force, and

f LAUE = 2e2

3c3

(
g + 1

c2
d

dτ q ⊗ d
dτ q
)
· d3

dτ3 q ← ???

is von Laue’s radiation-reaction Minkowski-force, and

mobs = limr↓0

(
mbare(r) + e2

2c2
1
r

)
defines mbare(r) [N.B.: mbare(r) ↓ −∞ as r ↓ 0]
Why should mbare know about r (radius of averaging sphere)?
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Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]
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Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]

Test particle theory works well FAPP.
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Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]

Test particle theory works well FAPP.
Therefore the

...
q term must be a small perturbation.

Michael K.-H. Kiessling
The Einstein–Infeld–Hoffmann Legacy in Mathematical Relativity



Quest for the Microscopic Foundations of Classical Physics
Rigorous Results: Special Relativistic Problem
Rigorous Results: General Relativistic Problem

Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]

Test particle theory works well FAPP.
Therefore the

...
q term must be a small perturbation.

To compute
...
q (FAPP), just take proper time derivative of

test-particle law of motion, i.e.
d3

dτ3 q FAPP
==

e
mobsc

d
dτ

(
F ext(q) · d

dτ q
)
.
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Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]

Test particle theory works well FAPP.
Therefore the

...
q term must be a small perturbation.

To compute
...
q FAPP, just take proper time derivative of

test-particle law of motion, i.e.
d3

dτ3 q FAPP
==

e
mobsc

d
dτ

(
F ext(q) · d

dτ q
)
.

R.h.s. depends only on q, q̇, q̈.
Mission Accomplished FMPP!
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Particles as Singularities of the Fields. Part II (SR)

How physicists have handled the
...
q problem

(1951) Lev Landau & Eugenii Lifshitz:
The Classical Theory of Fields,
Pergamon Press (First English edition)
[Translated from the Russian original by John Stewart Bell.]

Test particle theory works well FAPP.
Therefore the

...
q term must be a small perturbation.

To compute
...
q FAPP, just take proper time derivative of

test-particle law of motion, i.e.
d3

dτ3 q FAPP
==

e
mobsc

d
dτ

(
F ext(q) · d

dτ q
)
.

R.h.s. depends only on q, q̇, q̈.
Mission Accomplished FMPP!

Fails to deliver in an important special case:
DLL motion along constant E-field is mere test particle motion!

Michael K.-H. Kiessling
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Particles as Singularities of the Fields. Part III (GR)

Sixty years later: DLL still features in the State of Affairs in GR ...
(2011) Eric Poisson, Adam Pound, & Ian Vega,
The motion of point particles in curved spacetime,
Living Reviews in Relativity, Sept. (162 pp.)
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Particles as Singularities of the Fields. Part III (GR)

Sixty years later DLL still features in the State of Affairs in GR ...
(2011) Eric Poisson, Adam Pound, & Ian Vega,
The motion of point particles in curved spacetime,
Living Reviews in Relativity, Sept. (162 pp.)

mobs
D
dτ u = f ext + f LAUE + f tail,

where u := d
dτ q and D

dτ u := d
dτ u + Γext (u,u), and where

f ext = e
c F ext(q) · u,

f LAUE = 2
3e2

(
g + 1

c2 u ⊗ u
)
·
(

1
6Rext · 1

c u + 1
c3

D2

dτ2 u
)

f tail = 2e2
∫ τ

−∞
H ret(q(τ),q(τ ′)) · u(τ ′)dτ ′ · u(τ)

and
D2

dτ2 u FAPP
==

e
mobsc

D
dτ (F ext(q) · u) .
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Particles as Singularities of the Fields. Part III (GR)

... but this State of Affairs is worse than in SR!

The Green function in the integral “defining” the tail force f tail,∫ τ

−∞
H ret(q(τ),q(τ ′)) · u(τ ′)dτ ′,

diverges at the upper limit of integration!
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Particles as Singularities of the Fields. Part III (GR)

but another part of this State of Affairs is worse than in SR!

The Green function in the integral “defining” the tail force f tail,∫ τ

−∞
H ret(q(τ),q(τ ′)) · u(τ ′)dτ ′,

diverges at the upper limit of integration!

On p. 104, PPV have this to say about their “tail force integral:”
“We recall that the integration [from −∞ to τ ] must be cut short
at τ− := τ − 0+ to avoid the singular behaviour of the retarded
Green’s function at coincidence [τ ′ = τ ].”

Is the tail-force integral convergent? Even if, there is a problem:
The PPV equation of motion does not pose a Cauchy problem!

Michael K.-H. Kiessling
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Particles as Singularities of the Fields. Part III (GR)

And for the “observable mass” mobs PPV have this to say:
On p. 103, PPV tell the reader that

δm = lim
r↓0

2e2

3c2
1
r

“is formally a divergent quantity, but .... m denoting the (also
formally divergent) bare mass of the particle, m and δm
combine to form the particle’s observable mass

mobs = m + δm,

which is finite.”

Michael K.-H. Kiessling
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Particles as Singularities of the Fields. Part III (GR)

And for the “observable mass” mobs PPV have this to say:
On p. 103, PPV tell the reader that

δm = lim
r↓0

2e2

3c2
1
r

“is formally a divergent quantity, but .... m denoting the (also
formally divergent) bare mass of the particle, m and δm
combine to form the particle’s observable mass

mobs = m + δm,

which is finite.”
On p. 104, PPV
“confess that ... our expression for δm is admittedly incorrect,”
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Particles as Singularities of the Fields. Part III (GR)

And for the “observable mass” mobs PPV have this to say:
On p. 103, PPV tell the reader that

δm = lim
r↓0

2e2

3c2
1
r

“is formally a divergent quantity, but .... m denoting the (also
formally divergent) bare mass of the particle, m and δm
combine to form the particle’s observable mass

mobs = m + δm,

which is finite.”
On p. 104, PPV
“confess that ... our expression for δm is admittedly incorrect,”

But why?
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Particles as Singularities of the Fields. Part III (GR)

And for the “observable mass” mobs PPV have this to say:
On p. 103, PPV tell the reader that

δm = lim
r↓0

2e2

3c2
1
r

“is formally a divergent quantity, but .... m denoting the (also
formally divergent) bare mass of the particle, m and δm
combine to form the particle’s observable mass

mobs = m + δm,

which is finite.”
On p. 104, PPV
“confess that ... our expression for δm is admittedly incorrect,”

But why?
Because ... “we are wrong by a factor of 4/3.”
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Particles as Singularities of the Fields. Part IV (SR)

As to that “factor 4/3”
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Particles as Singularities of the Fields. Part IV (SR)

As to that “factor 4/3”

(1960s) Richard Feynman (Lectures of physics):
“... and when Einstein showed it always had to be 1 instead of
4/3, there was great confusion.”
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Particles as Singularities of the Fields. Part IV (SR)

As to that “factor 4/3”

(1960s) Richard Feynman (Lectures of physics):
“... and when Einstein showed it always had to be 1 instead of
4/3, there was great confusion.”

(1922) Enrico Fermi
Concerning a contradiction between electrodynamic and the
relativistic theory of electromagnetic mass,
Zeitschrift f. Physik, Nuovo Cimento, and yet one more!

“Classical electron theory” (Abraham, Lorentz) predicted a
value of m = (4/3)(E/c2) for the electromagnetic mass m by
spherical averaging in the laboratory frame. Fermi showed that
spherical averaging in the particle rest frame gave m = E/c2.
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Particles as Singularities of the Fields. Part V (GR)

As to averaging:

(2011) E. Poisson, A. Pound, & I. Vega (p. 143)
Enunciation of an “axiom”:

“The force on the particle arises from the piece of the field that
survives angle averaging.”
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Particles as Singularities of the Fields. Part V (GR)

As to averaging:

(2011) E. Poisson, A. Pound, & I. Vega (p. 143)
Enunciation of an “axiom”:

“The force on the particle arises from the piece of the field that
survives angle averaging.”

Convexity theory has this to say:
Theorem: “Averaging a piecewise continuous function over
the neighborhood of a discontinuity can produce any value
between the extreme values through a suitable choice of
averaging procedure.”
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Particles as Singularities of the Fields. Part V (GR)

As to averaging:

(2011) E. Poisson, A. Pound, & I. Vega (p. 143)
Enunciation of an “axiom”:

“The force on the particle arises from the piece of the field that
survives angle averaging.”

Convexity theory has this to say:
Theorem: “Averaging a piecewise continuous function over
the neighborhood of a discontinuity can produce any value
between the extreme values through a suitable choice of
averaging procedure.”

So much for that “axiom.”
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Particles as Singularities of the Fields. Part V (GR)

The PPV treatment of the problem is a sad state of affairs!

This is a rare opportunity for mathematical physicists!
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EIH when G = 0: Electrodynamics with point charges

Let’s analyze the EIH argument in the formal limit G→ 0
where g → η (Minkowski metric).
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EIH when G = 0: Electrodynamics with point charges

Let’s analyze the EIH argument in the formal limit G→ 0
where g → η (Minkowski metric).
Turning Gravity off, the central claim of EIH reduces to:
Away from the singularities, with

Maxwell : dF = 0; d ∗F = 0

∇·T [F ,η] = 0
SIC
=⇒ law of motion
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EIH when G = 0: Electrodynamics with point charges

Let’s analyze the EIH argument in the formal limit G→ 0
where g → η (Minkowski metric).
Turning Gravity off, the central claim of EIH reduces to:
Away from the singularities, with

Maxwell : dF = 0; d ∗F = 0

∇·T [F ,η] = 0
SIC
=⇒ law of motion

Formally equivalent to a distributional formulation on R1,3:
1 T [F ,η] −→ T [F ,η] + T [δ,η]
2 d ∗F = 0 −→ d ∗F = δ
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Letting G→ 0: Electrodynamics with point charges

Let’s analyze the EIH argument in the formal limit G→ 0
where g → η (Minkowski metric).
Turning Gravity off, the central claim of EIH reduces to:
Away from the singularities, with

Maxwell : dF = 0; d ∗F = 0

∇·T [F ,η] = 0
SIC
=⇒ law of motion

Formally equivalent to a distributional formulation on R1,3:
1 T [F ,η] −→ T [F ,η] + T [δ,η]
2 d ∗F = 0 −→ d ∗F = δ
3 The above setup symbolically leads to

Lorentz electrodynamics← ill-defined!
4 However, this is not the end of the story! After one

modification the setup yields a well-posed law of motion!
5 d ∗F = 0 −→ dM = δ

with suitable law of the electromagnetic vacuumF ↔ M
Michael K.-H. Kiessling
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Pre-metric Maxwell–Lorentz field equations

Minkowski spacetime threaded by N timelike world-lines
Lorentz frame with space vector s ∈ R3 and time t ∈ R
The evolution equations for the B, D fields

∂t B(t ,s) = −∇× E(t ,s)

∂t D(t ,s) = +∇× H(t ,s)− 4π
∑N

k=1 ek q̇k (t)δqk (t)(s)

The constraint equations for the B, D fields

∇ · B(t ,s) = 0

∇ · D(t ,s) = 4π
∑N

k=1 ekδqk (t)(s)

The constraint for the sources: subluminal velocities

|q̇k (t)| < 1

Michael K.-H. Kiessling
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Need Electromagnetic Vacuum Law: (B,D)↔ (H,E)

Maxwell(-Lorentz)’s law
H = B
E = D

Born-Infeld’s law
H =

B− 1
b2 B× (B× D)√

1 + 1
b2 (|B|2 + |D|2) + 1

b4 |B× D|2

E =
D− 1

b2 D× (D× B)√
1 + 1

b2 (|B|2 + |D|2) + 1
b4 |B× D|2

Bopp-Landé-Thomas(-Podolsky) law (N.B.: � := ∂2
t −∆)

H(t ,s) =
(

1 + κ−2�
)

B(t ,s)

D(t ,s) =
(

1 + κ−2�
)

E(t ,s) .
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Rigorous Results on the Field Cauchy Problems

ML field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.
MBLTP field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.
MBI field Cauchy problem:

Global well-posedness (classical) with small data (no
charges!) (J. Speck; F. Pasqualotto)
Finite-time blow up with certain plane wave data (no
charges!) (Y. Brenier; cf. D. Serre)
Existence and Uniqueness of static finite-energy solutions
with N fixed point charges; real analyticity away from point
charges (M.K.; cf. Bonheure et al.)
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Lorentz electrodynamics: Field equations

The evolution equations for the fields,

∂t B(t ,s) = −∇× E(t ,s)

∂t E(t ,s) = +∇× B(t ,s)− 4π
∑
k

ek q̇k (t)δqk (t)(s),

The constraint equations for the fields,

∇ · B(t ,s) = 0
∇ · E(t ,s) = 4π

∑
k

ekδqk (t)(s)

N.B.: Constraint equations restrict field data only.
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Lorentz electrodynamics: Equations of Motion

Einstein–Lorentz–Poincaré velocity-momentum relation

q̇k (t) =
1

mk

pk (t)√
1 + |pk (t)|2

m2
k

; mk 6= 0

Newton’s law for the rate of change of momentum

ṗk (t) = fk (t)

Lorentz’ law for the electromagnetic force

fLor
k (t) = ek [E(t ,qk (t)) + q̇k (t)× B(t ,qk (t))]

Michael K.-H. Kiessling
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Lorentz Electrodynamics is not well-definable!

Symbolically the equations of Lorentz Electrodynamics
seem to pose a joint Cauchy problem for positions qk (t)
and momenta pk (t), and for the fields B(t ,s) and E(t ,s),
with initial data constrained by the divergence equations.
However, this Cauchy problem is rigorously ill defined!
Reason: E(t ,qk (t)) and B(t ,qk (t)) “infinite in all directions”
fLor
k (t) can be “defined” through averaging (very popular!),

but result depends on how the averaging is done.
Also, fields too strongly divergent at particle world lines −→
No meaningful energy-momentum conservation law!
Deckert and Hartenstein: Singularities on initial light cones.
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Beyond Lorentz Electrodynamics: Finite field momenta

Field momentum density: Π

For ML and for MBI field equations

4πΠ = D× B

For MBLTP field equations

4πΠ = D×B + E×H− E×B− κ−2(∇ · E)(∇×B− κ Ė
)

The fields B,D,E, Ė (and H) at (t ,s) depend on their initial
data and on q(·), p(·), and D& H also on a(·).
N.B.: (B,D)0 7→ (E, Ė)0 feasible!
Π(t ,s) is L1

loc(R3) about each q(t) for MBLTP fields (KTZ),
perhaps also for MBI fields, but surely NOT for ML fields.
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Momentum Conservation −→ Equations of Motion

Conservation of total momentum (here: 1 pt charge):

d
dt p(t) = − d

dt

∫
R3

Π(t ,s)d3s

With BLTP law: Volterra integral equation for a = a[q,p]

This leads to the fixed point equations

q(t) = q(0) +
1
m

∫ t

0

p√
1 + |p|2

m2

(̃t)dt̃ =: Qt (q(·),p(·))

p(t) = p(0)−
∫
R3

(Π(t ,s)−Π(0,s)) d3s =: Pt (q(·),p(·))

Well-posedness b/c (Q•,P•)( · , · ) is a Lipschitz Map.
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BLTP Electrodynamics as Initial Value Problem exists!

MBLTP field + N-point-charge Cauchy problem (KTZ)
Local well-posedness for admissible initial data & m 6= 0.
Global well-posedness if in a finite time:
(a) no particle reaches the speed of light,
(b) no particle reaches infinite acceleration,
(c) no two particles reach the same location.

Energy-Momentum conservation rigorously true.
“Self”-force analyzed rigorously.
MBLTP oddities:
(a) longitudinal electrical waves;
(b) subluminal transversal electromagnetic wave modes;
(c) energy functional unbounded below.

Michael K.-H. Kiessling
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The Volterra equation for the acceleration

The key proposition

Proposition (KTZ) Given C0,1 maps t 7→ q(t) and t 7→ p(t),
with Lip(q) = v, Lip(v) = a, and |v(t)| ≤ v < 1, the Volterra
equation as a fixed point map has a unique C0 solution
t 7→ a(t) = α[q( · ),p( · )](t). Moreover, the solution depends
Lipschitz continuously on the maps t 7→ q(t) and t 7→ p(t).

The proof takes several dozen pages of careful estimates, but
at the end of the day it all pans out! The well-posedness result
for the joint initial value problem of MBLTP fields and their point
charge sources is a corollary of the above Proposition.
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Motion along a constant electric capacitor field
This problem is a litmus test

Abraham–Lorentz–Dirac & Landau–Lifshitz & Eliezer equations
of motion
fail to yield radiation-reaction.

In BLTP electrodynamics, radiation-reaction exists.

Expansion in powers of κ up to 3rd order included needed to
see a non-vanishing term;
joint work with Holly Carley (in press, 2023).

But one really wants to study the large-κ regime, and that is
non-perturbative. (Still ongoing.)
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Publications

M.K.-H.K. and Tahvildar-Zadeh, A.S.,
“Bopp–Landé–Thomas–Podolsky electrodynamics
as initial value problem,”
(in preparation, 2023)

A summary appeared in:
M.K.-H.K., “Force on a point charge source of the classical
electromagnetic field,” Phys. Rev. D 100, 065012 (2019);
“Erratum,” ibid. 101, 109901(E) (2020).

The global well-posedness of the scattering problem of a single
point charge in BLTP electrodynamics (for a fixed external,
compactly supported potential) is shown in:
Vu Hoang, Maria Radosz, Angel Harb, Aaron DeLeon, and Alan
Baza, “Radiation reaction in higher-order electrodynamics,” J.
Math. Phys. 62, 072901 (2021).
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Switching G > 0 on again

WANTED:
A well-posed generally covariant joint initial value problem for
the motion of massive charged point particles and the evolution

of the electromagnetic and gravitational fields they generate.

Extension of the SR results to GR requires:
electromagnetic Maxwell equations are equipped with
nonlinear or higher-order linear electromagnetic vacuum
laws to guarantee integrable field-energy and -momentum
densities and mild curvature singularities,
∃no Black Holes! → Energy-momentum-stress tensor of
each particle has negative bare mass.
2nd Bianchi identity holds in weak form and
forces ∇ · T = 0 to supply equations of motion (← Big
!)

No well-posedness results for joint Cauchy problem yet.
The Genie is out of the bottle again!
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Babysteps toward the gravitational radiation-reaction problem:
A. Burtscher, M.K.-H.K., and A.S. Tahvildar-Zadeh,
“The weak second Bianchi identity for static spherically
symmetric spacetimes with a timelike singularity,”
Class. Quantum Grav. 38, 185001 (2021).

We state conditions on the metric of the spacetime under which
the weak second Bianchi identity∫

M

(
Rµ

ν − 1
2Rgµν

)
∇µψν d volg = 0 (1)

holds for all smooth, compactly supported vector fields ψ
defined on the spacetime. Technical ingredients

We use spatially conformally flat coordinates that map the point
singularity to Bray’s sphere of zero area (ZAS).
For regular ZAS, the Bray mass equals their Hawking mass,
equals the bare mass of the singularity.
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Hoffmann’s Electromagnetic Spacetime (1935)

Banesh Hoffmann found an SO(3)-symmetric solution family to
the Einstein-Maxwell-Born-Infeld field equations with single
point charge. For electron / proton parameters (e,M) we can
be either in the black hole or in the naked singularity sector;
borderline case occurs for b = M2

e6( 1
6 B( 1

4 ,
1
4 ))

2 ≡ bB.

g(H)
µν dxµdxν = −f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdϕ2)

f (r) ≡ 1− 2G
r

(
M − b2

∫ ∞
r

(√
1 +

e2

b2s4 − 1

)
s2ds

)
︸ ︷︷ ︸

POSITIVE quasi-local MASS: > 0 for all r > 0 if b = bB.

M =Electrostatic Field Energy of point charge iff b = bB.

Mild Conical Curvature Singularity at r = 0 iff b = bB (T.-Z.)
Bianchi identity holds iff bB ≤ b <∞ (NOT RWN) (BKTZ)
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Amorim’s EMBLTP spacetime

Erik Amorim proved constructively the existence of an
electro-static, spherically symmetric, asymptotically flat
solution to the Einstein-Maxwell-BLTP system.
We don’t know whether weak Bianchi holds for this
spacetime, but suspect it does.
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The problem of motion for other singularities

Weyl and EIH naturally thought of particles as point
singularities in spacelike slices of spacetime.
But GR has more to offer! E.g., the ring singularity of the zGKN
spacetime, a double-sheeted locally flat spacetime with Zipoy
topology and Appell–Sommerfeld electromagnetic fields.

Question: Suppose one succeeds in the EIH-like quest for point
singularities; what does it take to generalize to spacetimes with
zGKN-like ring singularities?
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Fin!

THANK YOU FOR LISTENING!
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