Ricci curvature bounds: synthetic versus analytic

Michael Kunzinger

(joint work with Michael Oberguggenberger, James A. Vickers)

Singularities and Curvature in General Relativity

The question, outline

The question, outline

Two main approaches to Ricci curvature in low regularity:

- Synthetic: Based on methods from Optimal Transport, expresses Ricci bounds in terms of weak displacement convexity of entropy functionals. Extends even to metric measure spaces.
- Analytic: View Ric as a Schwartz distribution. Bounds on Ric are expressed via positivity of distributions. Widely used in physics.

The question, outline

Two main approaches to Ricci curvature in low regularity:

- Synthetic: Based on methods from Optimal Transport, expresses Ricci bounds in terms of weak displacement convexity of entropy functionals. Extends even to metric measure spaces.
- Analytic: View Ric as a Schwartz distribution. Bounds on Ric are expressed via positivity of distributions. Widely used in physics.

Plan of the talk

- Distributional curvature bounds and regularization
- Geometry of $C^{1,1}$ -(semi-) Riemannian metrics
- OT for *C*^{1,1}-metrics
- Synthetic lower Ricci curvature bounds
- Synthetic from distributional bounds in C^1
- Distributional from synthetic bounds in $C^{1,1}$
- Further results, Outlook

Distributional curvature (Marsden, LeFloch/Mardare)

Distributional curvature (Marsden, LeFloch/Mardare) Vol(M)...volume bundle, $\Gamma_c^k(M, Vol(M))$ comp. supp. C^k one-densities.

 $\mathcal{D}^{\prime(k)}(M) := \Gamma_c^k(M, \operatorname{Vol}(M))'$ $\mathcal{D}^{\prime(k)}\mathcal{T}_s^r(M) := \Gamma_c^k(M, T_r^s \otimes \operatorname{Vol}(M))' \cong \mathcal{D}^{\prime(k)}(M) \otimes_{\mathcal{C}^{\infty}(M)} \mathcal{T}_s^r(M)$

Distributional curvature (Marsden, LeFloch/Mardare) Vol(M)...volume bundle, $\Gamma_c^k(M, Vol(M))$ comp. supp. C^k one-densities.

$$\mathcal{D}^{\prime(k)}(M) := \Gamma_c^k(M, \operatorname{Vol}(M))'$$
$$\mathcal{D}^{\prime(k)}\mathcal{T}_s^r(M) := \Gamma_c^k(M, \mathcal{T}_r^s \otimes \operatorname{Vol}(M))' \cong \mathcal{D}^{\prime(k)}(M) \otimes_{\mathcal{C}^{\infty}(M)} \mathcal{T}_s^r(M)$$

 $Distributional/L^2_{\rm loc}$ connection:

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) o \mathcal{D}'\mathcal{T}_0^1(M) \qquad \text{resp.} \quad o \mathrm{L}^2_{\mathrm{loc}}\mathcal{T}_0^1(M).$

Riemann tensor of L^2_{loc} -connection: $X, Y, Z \in \mathfrak{X}(M)$, $\theta \in \Omega^1(M)$:

 $R(X,Y,Z)(\theta) := (\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z)(\theta) \in \mathcal{D}'(M).$

Distributional curvature (Marsden, LeFloch/Mardare) Vol(M)...volume bundle, $\Gamma_c^k(M, Vol(M))$ comp. supp. C^k one-densities.

$$\mathcal{D}^{\prime(k)}(M) := \Gamma_c^k(M, \operatorname{Vol}(M))'$$
$$\mathcal{D}^{\prime(k)}\mathcal{T}_s^r(M) := \Gamma_c^k(M, \mathcal{T}_r^s \otimes \operatorname{Vol}(M))' \cong \mathcal{D}^{\prime(k)}(M) \otimes_{\mathcal{C}^{\infty}(M)} \mathcal{T}_s^r(M)$$

 $Distributional/L^2_{\rm loc}$ connection:

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) o \mathcal{D}' \mathcal{T}_0^1(M) \qquad \text{resp.} \quad o \mathrm{L}^2_{\mathrm{loc}} \mathcal{T}_0^1(M).$

Riemann tensor of L^2_{loc} -connection: $X, Y, Z \in \mathfrak{X}(M)$, $\theta \in \Omega^1(M)$:

$$R(X,Y,Z)(\theta) := (\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z)(\theta) \in \mathcal{D}'(M).$$

For $g \in C^1$: unique Levi-Civita connection, R, Ric defined in $\mathcal{D}'^{(1)}$, and locally

$$R_{ijk}^{m} = \partial_{j}\Gamma_{ik}^{m} - \partial_{k}\Gamma_{ij}^{m} + \Gamma_{js}^{m}\Gamma_{ik}^{s} - \Gamma_{ks}^{m}\Gamma_{ij}^{s}$$

Ric_{ij} = R_{imj}^{m} .

Regularization of distributional curvature

Regularization of distributional curvature

Distributional curvature bound

- $u \in \mathcal{D}' \ge 0 :\Leftrightarrow \langle u, \mu \rangle \ge 0$ for each test-density $\mu \ge 0$.
- Lower Ricci curvature bound: Ric(X, X) ≥ Kg(X, X) for each smooth vector field X, write: Ric[g] ≥ K.

Regularization of distributional curvature

Distributional curvature bound

- $u \in \mathcal{D}' \ge 0 : \Leftrightarrow \langle u, \mu \rangle \ge 0$ for each test-density $\mu \ge 0$.
- Lower Ricci curvature bound: Ric(X, X) ≥ Kg(X, X) for each smooth vector field X, write: Ric[g] ≥ K.

Regularization of tensor distributions

Let $T \in \mathcal{D}'\mathcal{T}_{s}^{r}(M)$. Atlas $(U_{\alpha}, \psi_{\alpha}), \xi_{\alpha} \in \mathcal{D}(U_{\alpha})$ partition of 1, $\chi_{\alpha} \in \mathcal{D}(U_{\alpha}), |\chi_{\alpha}| \leq 1, \chi_{\alpha} \equiv 1$ near $\operatorname{supp}\xi_{\alpha}. \rho \geq 0$ mollifier. Then $T *_{M} \rho_{\varepsilon} := \sum_{\alpha} \chi_{\alpha} \cdot (\psi_{\alpha})^{*} (((\psi_{\alpha})_{*})(\xi_{\alpha} \cdot T)) * \rho_{\varepsilon}) \in \mathcal{T}_{s}^{r}(M).$

Properties:

- $T *_M \rho_{\varepsilon} \in C^{\infty}$
- $T \star_M \rho_{\varepsilon} \to T$ in $\mathcal{D}'\mathcal{T}_s^r(M)$ (resp. in C_{loc}^k or $W_{\text{loc}}^{k,p}$ if T is contained in these spaces)
- $T \in \mathcal{D}'(M), \ T \ge 0 \ \Rightarrow \ T \star_M \rho_{\varepsilon} \ge 0$ in $C^{\infty}(M)$.

Michael Kunzinger

Standard form

P PDO of order $m, u \in H^{s+m-1}$, then $[P, \rho_{\varepsilon} * .] u \to 0$ in H^s .

Standard form

$$P$$
 PDO of order $m,\;u\in H^{s+m-1}$, then $[P,
ho_arepsilonst$. $]u
ightarrow 0$ in H^s .

Elementary versions

E.g.,
$$a \in C^1(\mathbb{R}^n)$$
, $f \in C^0(\mathbb{R}^n) \Rightarrow (a * \rho_{\varepsilon})(f * \rho_{\varepsilon}) - (af) * \rho_{\varepsilon} \to 0$ in $C^1(K)$.

Standard form

P PDO of order
$$m, u \in H^{s+m-1}$$
, then $[P, \rho_{\varepsilon} * .] u \to 0$ in H^s .

Elementary versions

E.g.,
$$a \in C^1(\mathbb{R}^n)$$
, $f \in C^0(\mathbb{R}^n) \Rightarrow (a * \rho_{\varepsilon})(f * \rho_{\varepsilon}) - (af) * \rho_{\varepsilon} \to 0$ in $C^1(K)$.

Consequences for $g \in C^1$

Let $g_{\varepsilon} := g \star_M \rho_{\varepsilon}$, $X, Y \in \mathfrak{X}(M)$. then:

•
$$\operatorname{Ric}_{g}(X, Y) \star_{M} \rho_{\varepsilon} - \operatorname{Ric}_{g_{\varepsilon}}(X, Y) \to 0$$
 in $C^{0}(M)$ as $\varepsilon \to 0$.

•
$$\operatorname{Ric}[g] *_M \rho_{\varepsilon} - \operatorname{Ric}[g_{\varepsilon}] \to 0$$
 in C^0 .

Theorem Let $g \in C^1$, *M* compact. TFAE:

(i) $\operatorname{Ric}[g] \geq K$ in \mathcal{D}' .

(ii) $\forall \delta > 0 \exists \varepsilon_0 > 0 \forall \varepsilon < \varepsilon_0 : \operatorname{Ric}[g_{\varepsilon}] \geq K - \delta.$

Let g be a $C^{1,1}$ -Riemannian metric. Then

• Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.
- Shortest curves are $C^{2,1}$ -geodesics.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.
- Shortest curves are $C^{2,1}$ -geodesics.
- Gauss Lemma holds.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.
- Shortest curves are $C^{2,1}$ -geodesics.
- Gauss Lemma holds.
- $D_y^2 := x \mapsto g(\exp_y^{-1} x, \exp_y^{-1} x)$ is $C^{1,1}$, with $T_x D_y^2 = 2g(\dot{\sigma}(1), .)$, where $\sigma(t) = \exp_y(t \cdot \exp_y^{-1} x)$ and $(y, x) \mapsto P(y, x) := \dot{\sigma}(1)$ is the position vector field of x with respect to y.

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.
- Shortest curves are $C^{2,1}$ -geodesics.
- Gauss Lemma holds.
- $D_y^2 := x \mapsto g(\exp_y^{-1} x, \exp_y^{-1} x)$ is $C^{1,1}$, with $T_x D_y^2 = 2g(\dot{\sigma}(1), .)$, where $\sigma(t) = \exp_y(t \cdot \exp_y^{-1} x)$ and $(y, x) \mapsto P(y, x) := \dot{\sigma}(1)$ is the position vector field of x with respect to y.
- E : (y, w) → (y, exp_y(w)) is strongly differentiable over the zero section with invertible differential.

Let g be a $C^{1,1}$ -Riemannian metric. Then

- Around any x, \exp_x is bi-Lipschitz homeomorphism, and $T_0 \exp_x = id$.
- Existence of geodesically convex neighborhoods.
- In such nbhds, $d_g(x, y) = |\exp_y^{-1} x|$.
- Shortest curves are $C^{2,1}$ -geodesics.
- Gauss Lemma holds.
- $D_y^2 := x \mapsto g(\exp_y^{-1} x, \exp_y^{-1} x)$ is $C^{1,1}$, with $T_x D_y^2 = 2g(\dot{\sigma}(1), .)$, where $\sigma(t) = \exp_y(t \cdot \exp_y^{-1} x)$ and $(y, x) \mapsto P(y, x) := \dot{\sigma}(1)$ is the position vector field of x with respect to y.
- E : (y, w) → (y, exp_y(w)) is strongly differentiable over the zero section with invertible differential.
- Cost function $\phi(x) := d^2(x, y)/2$ is super-differentiable a.e.

[Min:15], [KSS:14]

Th.: ([McC:01]) *M* compact, $g C^{1,1}$, $\mu, \nu \in \mathcal{P}(M)$, $\mu \ll \operatorname{vol}_g$, $c(x, y) = d_g(x, y)^2/2$. The unique solution to the Kantorovich problem is of the (Monge-) form $\pi = (\operatorname{id}_X, T)_{\sharp}\mu$. Here, $T : x \mapsto \exp_x(-\nabla \psi(x))$, with $\psi = \psi^{cc}$, where

$$\phi^{c}(y) := \inf_{x \in M} (c(x, y) - \phi(x)).$$

Th.: ([McC:01]) *M* compact, $g C^{1,1}$, $\mu, \nu \in \mathcal{P}(M)$, $\mu \ll \operatorname{vol}_g$, $c(x, y) = d_g(x, y)^2/2$. The unique solution to the Kantorovich problem is of the (Monge-) form $\pi = (\operatorname{id}_X, T)_{\sharp}\mu$. Here, $T : x \mapsto \exp_x(-\nabla \psi(x))$, with $\psi = \psi^{cc}$, where

$$\phi^{c}(y) := \inf_{x \in M} (c(x, y) - \phi(x)).$$

Wasserstein-distance between μ and ν :

$$W_2(\mu,\nu) = \left[\inf_{\pi \in \operatorname{Cpl}(\mu,\nu)} \int_{X \times X} d_g(x,y)^2 d\pi(x,y)\right]^{\frac{1}{2}}$$

Th.: ([McC:01]) *M* compact, $g C^{1,1}$, $\mu, \nu \in \mathcal{P}(M)$, $\mu \ll \operatorname{vol}_g$, $c(x, y) = d_g(x, y)^2/2$. The unique solution to the Kantorovich problem is of the (Monge-) form $\pi = (\operatorname{id}_X, T)_{\sharp}\mu$. Here, $T : x \mapsto \exp_x(-\nabla \psi(x))$, with $\psi = \psi^{cc}$, where

$$\phi^{c}(y) := \inf_{x \in M} (c(x, y) - \phi(x)).$$

Wasserstein-distance between μ and ν :

$$W_2(\mu,\nu) = \left[\inf_{\pi \in \operatorname{Cpl}(\mu,\nu)} \int_{X \times X} d_g(x,y)^2 d\pi(x,y)\right]^{\frac{1}{2}}$$

Alternative interpretation:

Existence and uniqueness of geodesics in $(\mathcal{P}(M), W_2)$ between μ and ν : $t \mapsto \mu_t := (T_t)_{\sharp} \mu$, where

$$T_t(x) = \exp_x(-t\nabla\psi(x)).$$

(X, d) metric space, $f : X \to \mathbb{R}$ weakly *K*-convex if $\forall x, y \in X \exists$ geodesic $\gamma : [0, 1] \to X$ from x to y such that for all $t \in [0, 1]$

$$f\circ\gamma(t)\leq (1-t)f\circ\gamma(0)+tf\circ\gamma(1)-rac{1}{2}t(t-1)\mathsf{Kd}(\gamma(0),\gamma(1))^2$$

(X, d) metric space, $f : X \to \mathbb{R}$ weakly *K*-convex if $\forall x, y \in X \exists$ geodesic $\gamma : [0, 1] \to X$ from x to y such that for all $t \in [0, 1]$

$$f\circ\gamma(t)\leq (1-t)f\circ\gamma(0)+tf\circ\gamma(1)-rac{1}{2}t(t-1)\mathsf{Kd}(\gamma(0),\gamma(1))^2$$

Def. (Entropy functional) (X, d, ν) metric measure space, $\mu \in \mathcal{P}^2(X)$, Given a continuous convex function $U : [0, \infty) \to \mathbb{R}$ with U(0) = 0 and $\nu \in P(X)$, define $U_{\nu} : P_2(X) \to \mathbb{R} \cup \{\infty\}$ by

$$U_{\nu}(\mu) := \int_{X} U(\rho(x)) d\nu(x) + U'(\infty)\mu_{\mathfrak{s}}(X).$$

where $\mu = \rho \nu + \mu_s$ Lebesgue decomposition, $U'(\infty) := \lim_{r \to \infty} U(r)/r$.

(X, d) metric space, $f : X \to \overline{\mathbb{R}}$ weakly *K*-convex if $\forall x, y \in X \exists$ geodesic $\gamma : [0, 1] \to X$ from x to y such that for all $t \in [0, 1]$

$$f\circ\gamma(t)\leq (1-t)f\circ\gamma(0)+tf\circ\gamma(1)-rac{1}{2}t(t-1){\it Kd}(\gamma(0),\gamma(1))^2$$

Def. (Entropy functional) (X, d, ν) metric measure space, $\mu \in \mathcal{P}^2(X)$, Given a continuous convex function $U : [0, \infty) \to \mathbb{R}$ with U(0) = 0 and $\nu \in P(X)$, define $U_{\nu} : P_2(X) \to \mathbb{R} \cup \{\infty\}$ by

$$U_{\nu}(\mu) := \int_{X} U(\rho(x)) d\nu(x) + U'(\infty)\mu_{\mathfrak{s}}(X).$$

where $\mu = \rho \nu + \mu_s$ Lebesgue decomposition, $U'(\infty) := \lim_{r \to \infty} U(r)/r$.

• $U \in \mathcal{DC}_{\infty}$ if $e^{\lambda}U(e^{-\lambda})$ convex.

•
$$\lambda_{\mathcal{K}}(U) := \inf_{r>0} \mathcal{K} \frac{rU'_+(r) - U(r)}{r}$$

• For $U_{\infty}(r) := r \log(r)$, $\lambda_{K}(U_{\infty}) = K$.

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem

 $g \in C^1$, $\operatorname{Ric}[g] \ge K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\ge K$.

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem

$$g \in C^1$$
, $\operatorname{Ric}[g] \geq K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\geq K$.

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem $g \in C^1$, $\operatorname{Ric}[g] \ge K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\ge K$.

Pr:

• $g_{\varepsilon} := g *_M \rho_{\varepsilon} \Rightarrow (M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}}) \rightarrow (M, d_g, \nu_g)$ in measured Gromov-Hausdorff sense.

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem $g \in C^1$, $\operatorname{Ric}[g] \ge K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\ge K$.

- $g_{\varepsilon} := g *_M \rho_{\varepsilon} \Rightarrow (M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}}) \rightarrow (M, d_g, \nu_g)$ in measured Gromov-Hausdorff sense.
- ∞ -Ric $\geq K$ is stable under measured GH-convergence.

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem $g \in C^1$, $\operatorname{Ric}[g] \ge K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\ge K$.

- $g_{\varepsilon} := g *_M \rho_{\varepsilon} \Rightarrow (M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}}) \rightarrow (M, d_g, \nu_g)$ in measured Gromov-Hausdorff sense.
- ∞ -Ric $\geq K$ is stable under measured GH-convergence.
- $\delta > 0$: $(M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}})$ has ∞ -Ric $\geq K \delta$ hence so does (M, d_g, ν_g) .

Def. (X, d, ν) has ∞ -Ricci bounded below by K if $\forall U \in \mathcal{DC}_{\infty}$, U_{ν} is weakly λ_{K} -convex on $(\mathcal{P}_{2}(X), W_{2})$.

Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C^2 -Riemannian manifold. Then (with $\nu_g := d \operatorname{Vol}_g/\operatorname{Vol}_g(M)$)

 $\operatorname{Ric}[g] \ge K \iff (M, d_g, \nu_g) \text{ has } \infty\text{-Ric} \ge K..$

Theorem $g \in C^1$, $\operatorname{Ric}[g] \ge K$ in $\mathcal{D}' \Rightarrow (M, d_g, \nu_g)$ has ∞ -Ric $\ge K$.

- $g_{\varepsilon} := g *_M \rho_{\varepsilon} \Rightarrow (M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}}) \rightarrow (M, d_g, \nu_g)$ in measured Gromov-Hausdorff sense.
- ∞ -Ric $\geq K$ is stable under measured GH-convergence.
- $\delta > 0$: $(M, d_{g_{\varepsilon}}, \nu_{g_{\varepsilon}})$ has ∞ -Ric $\geq K \delta$ hence so does (M, d_g, ν_g) .
- ∞ -Ric[g] $\geq K \delta \ \forall \delta > 0 \ \Rightarrow \infty$ -Ric[g] $\geq K$.

Synthetic to distributional: Strategy

Synthetic to distributional: Strategy

Difficulties

Standard proofs for synthetic \Rightarrow pointwise in C^2 rely on

- Jacobi fields
- Estimates on curvature along geodesics
- Riemannian normal coordinates
- Jacobian determinant of exp

None of these is available, even in $C^{1,1}$.

Synthetic to distributional: Strategy

Difficulties

Standard proofs for synthetic \Rightarrow pointwise in C^2 rely on

- Jacobi fields
- Estimates on curvature along geodesics
- Riemannian normal coordinates
- Jacobian determinant of exp

None of these is available, even in $C^{1,1}$.

Strategy of proof for $g \in C^{1,1}$

- Regularize g to g_ε.
- Suppose $\operatorname{Ric}_{g_{\varepsilon_k}}(v_k, v_k) < (K \delta)g_{\varepsilon_k}(v_k, v_k), v_k \to v \in T_{x_0}M.$
- Construct exceptional Wasserstein geodesics for $g_k \equiv g_{\varepsilon_k}$, show convergence to W-geodesic for g.
- Derive contradiction by inserting measures with support $\rightarrow \{x_0\}$.

10 / 18

Assumption: $\operatorname{Ric}_{g_k}(v_k, v_k) < (K - \delta)g_k(v_k, v_k), \ T_{x_k}M \ni v_k \to v \in T_{x_0}M$

Assumption: $\operatorname{Ric}_{g_k}(v_k, v_k) < (K - \delta)g_k(v_k, v_k), \ T_{x_k}M \ni v_k \to v \in T_{x_0}M$ Pick $\phi_k : M \to \mathbb{R}$ such that $\nabla^{g_k}\phi_k(x_k) = -v_k$ and $\operatorname{Hess}^{g_k}(\phi_k)(x_k) = 0$, and analogously ϕ for g at x_0 . Can have $\phi_k \to \phi$ in nbhd V of x_0 . Set $c(x, y) := d_g(x, y)^2/2, \ c_k(x, y) := d_{g_k}(x, y)^2/2$.

Assumption: $\operatorname{Ric}_{g_k}(v_k, v_k) < (K - \delta)g_k(v_k, v_k), \ T_{x_k}M \ni v_k \to v \in T_{x_0}M$ Pick $\phi_k : M \to \mathbb{R}$ such that $\nabla^{g_k}\phi_k(x_k) = -v_k$ and $\operatorname{Hess}^{g_k}(\phi_k)(x_k) = 0$, and analogously ϕ for g at x_0 . Can have $\phi_k \to \phi$ in nbhd V of x_0 . Set $c(x, y) := d_g(x, y)^2/2, \ c_k(x, y) := d_{g_k}(x, y)^2/2.$

Th.: ([GI:19]) (M,g) compact RMF with sectional curvature bounded above by $K \ge 0$. Then $\exists C_* := C_*(inj(M), K, diam(M)) > 0$ s.t., $\forall \varepsilon > 0$, if $\phi \in C^2(M, \mathbb{R})$ satisfies

$$\|
abla \phi\|_{\infty} \leq \min\left(rac{arepsilon}{3K ext{diam}(M)}, C_*
ight) \qquad ext{and} \qquad ext{Hess}(\phi) \leq (1-arepsilon)g,$$

then ϕ is *c*-concave.

Assumption: $\operatorname{Ric}_{g_k}(v_k, v_k) < (K - \delta)g_k(v_k, v_k), \ T_{x_k}M \ni v_k \to v \in T_{x_0}M$ Pick $\phi_k : M \to \mathbb{R}$ such that $\nabla^{g_k}\phi_k(x_k) = -v_k$ and $\operatorname{Hess}^{g_k}(\phi_k)(x_k) = 0$, and analogously ϕ for g at x_0 . Can have $\phi_k \to \phi$ in nbhd V of x_0 . Set $c(x, y) := d_g(x, y)^2/2, \ c_k(x, y) := d_{g_k}(x, y)^2/2.$

Th.: ([GI:19]) (M,g) compact RMF with sectional curvature bounded above by $K \ge 0$. Then $\exists C_* := C_*(inj(M), K, diam(M)) > 0$ s.t., $\forall \varepsilon > 0$, if $\phi \in C^2(M, \mathbb{R})$ satisfies

$$\|
abla \phi\|_{\infty} \leq \min\left(rac{arepsilon}{3\mathcal{K}\mathrm{diam}(\mathcal{M})}, \mathcal{C}_*
ight) \qquad ext{and} \qquad \mathrm{Hess}(\phi) \leq (1-arepsilon)g,$$

then ϕ is *c*-concave.

 $g \in C^{1,1} \Rightarrow$ can have all $\phi_k c_k$ -concave \Rightarrow push-forward under $F_t^{(k)}(y) := \exp_y^{g_k}(-t\nabla^{g_k}\phi_k)$ induces OT.

• Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.

- Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.
- Up to subsequence, $\mu_t^{(k)}$ converges to Wasserstein geodesic χ_t for g. We know: $\chi_1 = T_{\#}\mu_0$, where $T(y) = \exp_y(-\nabla \psi(y))$.

- Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.
- Up to subsequence, $\mu_t^{(k)}$ converges to Wasserstein geodesic χ_t for g. We know: $\chi_1 = T_{\#}\mu_0$, where $T(y) = \exp_y(-\nabla \psi(y))$.
- Want to relate ψ and ϕ .

- Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.
- Up to subsequence, $\mu_t^{(k)}$ converges to Wasserstein geodesic χ_t for g. We know: $\chi_1 = T_{\#}\mu_0$, where $T(y) = \exp_y(-\nabla \psi(y))$.
- Want to relate ψ and ϕ .
- Strong differentiability of E : (y, w) → (y, exp_y(w)) over zero-section in TM implies bi-Lipschitz property of F_t, F^(k)_t.

- Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.
- Up to subsequence, $\mu_t^{(k)}$ converges to Wasserstein geodesic χ_t for g. We know: $\chi_1 = T_{\#}\mu_0$, where $T(y) = \exp_y(-\nabla \psi(y))$.
- Want to relate ψ and ϕ .
- Strong differentiability of E : (y, w) → (y, exp_y(w)) over zero-section in TM implies bi-Lipschitz property of F_t, F^(k)_t.
- Therefore, push-forward under $F_t^{(k)}$, F_t possess densities w.r.t. $d \operatorname{vol}_{g_k}$, $d \operatorname{vol}_g$.

- Uniform distribution $\eta_0^{(k)} := \operatorname{Vol}_{g_k}(V)^{-1} \mathbf{1}_V$, $\mu_0^{(k)} := \eta_0^{(k)} d\operatorname{vol}_{g_k}$. Then $\mu_t^{(k)} := (F_t^{(k)})_{\#} \mu_0^{(k)}$ is a c_k -optimal transport from $\mu_0^{(k)}$ to $\mu_t^{(k)}$, hence a g_k -Wasserstein geodesic.
- Up to subsequence, $\mu_t^{(k)}$ converges to Wasserstein geodesic χ_t for g. We know: $\chi_1 = T_{\#}\mu_0$, where $T(y) = \exp_y(-\nabla \psi(y))$.
- Want to relate ψ and ϕ .
- Strong differentiability of E : (y, w) → (y, exp_y(w)) over zero-section in TM implies bi-Lipschitz property of F_t, F^(k)_t.
- Therefore, push-forward under $F_t^{(k)}$, F_t possess densities w.r.t. $dvol_{g_k}$, $dvol_g$.
- Density of $(F_t)_{\#}(\xi_0 d \operatorname{vol}_g)$:

$$x \mapsto \xi_0(F_t^{-1}(x)) \left. \frac{1}{\det DF_t(y)} \right|_{y=F_t^{-1}(x)}$$

To get φ = ψ, want to apply dominated convergence → need information on det DF^(k)_t.

 To get φ = ψ, want to apply dominated convergence → need information on det DF^(k)_t.

•
$$J_i(t) := DF_t^{(k)}(e_i), \ J_{ij} = g_k(J_i, e_j), \ then$$

 $J''(t) + K(t)J(t) = 0, \quad J(0) = I_n, \quad J'(0) = \operatorname{Hess}^{g_k}(\phi_k)_y.$

with $K_{ij}(t) = \langle R^{g_k}(e_i(t),\dot{\gamma}(t))\dot{\gamma}(t),e_j(t)\rangle_{g_k(\gamma(t))}.$

 To get φ = ψ, want to apply dominated convergence → need information on det DF^(k)_t.

•
$$J_i(t) := DF_t^{(k)}(e_i), \ J_{ij} = g_k(J_i, e_j), \ then$$

 $J''(t) + K(t)J(t) = 0, \quad J(0) = I_n, \quad J'(0) = \operatorname{Hess}^{g_k}(\phi_k)_y.$

with $K_{ij}(t) = \langle R^{g_k}(e_i(t),\dot{\gamma}(t))\dot{\gamma}(t),e_j(t)\rangle_{g_k(\gamma(t))}.$

• Riccati comparison and $g \in C^{1,1}$ give:

 $\log(\det DF_t^{(k)}(y))$ is bounded, uniformly in $k \in \mathbb{N}, y \in M, t$.

 To get φ = ψ, want to apply dominated convergence → need information on det DF^(k)_t.

•
$$J_i(t) := DF_t^{(k)}(e_i), \ J_{ij} = g_k(J_i, e_j),$$
 then

 $J''(t) + K(t)J(t) = 0, \quad J(0) = I_n, \quad J'(0) = \operatorname{Hess}^{g_k}(\phi_k)_y.$

with $K_{ij}(t) = \langle R^{g_k}(e_i(t),\dot{\gamma}(t))\dot{\gamma}(t),e_j(t)\rangle_{g_k(\gamma(t))}.$

• Riccati comparison and $g \in C^{1,1}$ give:

 $\log(\det DF_t^{(k)}(y))$ is bounded, uniformly in $k \in \mathbb{N}, y \in M, t$.

• For dominated convergence, need additional assumption: There exists a (Lebesgue-) null set $N \subseteq M$ such that, for each $y \in M \setminus N$,

$$DF_t^{(k)}(y) \to DF_t(y),$$

uniformly for $t \in [0, 1]$.

• Consequently, $\mu_t^{(k)} = (F_t^{(k)})_{\#} \mu_0^{(k)} \to (F_t)_{\#} \mu_0$, as well as $\mu_t^{(k)} \to \chi_t = (H_t)_{\#} \mu_0$, where $H_t = y \mapsto \exp_y(-t\nabla\psi(y))$

• Consequently,
$$\mu_t^{(k)} = (F_t^{(k)})_{\#} \mu_0^{(k)} \rightarrow (F_t)_{\#} \mu_0$$
, as well as
 $\mu_t^{(k)} \rightarrow \chi_t = (H_t)_{\#} \mu_0$, where $H_t = y \mapsto \exp_y(-t\nabla\psi(y))$
• $\rightsquigarrow \exp_y(-t\nabla\phi(y)) = \exp_y(-t\nabla\psi(y)) \rightsquigarrow \nabla\phi = \nabla\psi$, so w.l.o.g., ϕ
c-concave.

- Consequently, $\mu_t^{(k)} = (F_t^{(k)})_{\#} \mu_0^{(k)} \to (F_t)_{\#} \mu_0$, as well as $\mu_t^{(k)} \to \chi_t = (H_t)_{\#} \mu_0$, where $H_t = y \mapsto \exp_y(-t\nabla\psi(y))$ • $\rightsquigarrow \exp_y(-t\nabla\phi(y)) = \exp_y(-t\nabla\psi(y)) \rightsquigarrow \nabla\phi = \nabla\psi$, so w.l.o.g., ϕ
 - *c*-concave.
- Hence, for any μ_0 , $(F_t)_{\#}\mu_0$ is a Wasserstein geodesic.

- Consequently, $\mu_t^{(k)} = (F_t^{(k)})_{\#} \mu_0^{(k)} \to (F_t)_{\#} \mu_0$, as well as $\mu_t^{(k)} \to \chi_t = (H_t)_{\#} \mu_0$, where $H_t = y \mapsto \exp_y(-t\nabla\psi(y))$
- $\rightsquigarrow \exp_y(-t\nabla\phi(y)) = \exp_y(-t\nabla\psi(y)) \rightsquigarrow \nabla\phi = \nabla\psi$, so w.l.o.g., ϕ *c*-concave.
- Hence, for any μ_0 , $(F_t)_{\#}\mu_0$ is a Wasserstein geodesic.
- W-geodesics are unique, so can use this and U_∞(r) = r log r in Def. of ∞-Ricci bound:

$$U_{
u}(\mu_t) \leq t U_{
u}(\mu_1) + (1-t) U_{
u}(\mu_0) - rac{1}{2} K t (1-t) W_2(\mu_0,\mu_1)^2,$$

Here,

$$U_{\nu}(\mu_t) = \int_{\mathcal{M}} U\left(\operatorname{vol}_g(\mathcal{M}) \cdot \frac{\eta_0(y)}{\det(DF_t)(y)}\right) \det(DF_t)(y) \frac{d\operatorname{vol}_g(y)}{\operatorname{vol}_g(\mathcal{M})}.$$

• Set $C(y, t) := -\log(\operatorname{vol}_g(M)) + \log(\det DF_t(y))$, and C_k for g_k .

- Set $C(y, t) := -\log(\operatorname{vol}_g(M)) + \log(\det DF_t(y))$, and C_k for g_k .
- Suitably concentrating $\mu_0^{(k)}$ near x_k and using $C_k \to C$, we get from ∞ -Ricci bound for k large the convexity of:

$$-C_k(x_k,t)-\frac{1}{2}\Big(K-\frac{\delta}{2}\Big)t^2g_k(v_k,v_k)$$

- Set $C(y, t) := -\log(\operatorname{vol}_g(M)) + \log(\det DF_t(y))$, and C_k for g_k .
- Suitably concentrating $\mu_0^{(k)}$ near x_k and using $C_k \to C$, we get from ∞ -Ricci bound for k large the convexity of:

$$-C_k(x_k,t)-\frac{1}{2}\left(K-\frac{\delta}{2}\right)t^2g_k(v_k,v_k)$$

• Standard comparison arguments then give (for *k* large) the contradiction:

$$\mathsf{Ric}_{g_k}(v_k, v_k) = -\frac{\partial^2}{\partial t^2} C_k(x_k, 0) \ge (\mathcal{K} - \frac{\delta}{2}) g_k(v_k, v_k) > (\mathcal{K} - \delta) g_k(v_k, v_k)$$

- Set $C(y, t) := -\log(\operatorname{vol}_g(M)) + \log(\det DF_t(y))$, and C_k for g_k .
- Suitably concentrating $\mu_0^{(k)}$ near x_k and using $C_k \to C$, we get from ∞ -Ricci bound for k large the convexity of:

$$-C_k(x_k,t)-\frac{1}{2}\left(K-\frac{\delta}{2}\right)t^2g_k(v_k,v_k)$$

• Standard comparison arguments then give (for *k* large) the contradiction:

$$\mathsf{Ric}_{g_k}(v_k, v_k) = -\frac{\partial^2}{\partial t^2} C_k(x_k, 0) \ge (\mathcal{K} - \frac{\delta}{2}) g_k(v_k, v_k) > (\mathcal{K} - \delta) g_k(v_k, v_k)$$

Th.

Let M be a compact connected mf with $C^{1,1}$ -RM g s.t. (M, d_g, ν_g) has ∞ -Ricci curvature $\geq K$. Assume that some subsequence of $g \star_M \rho_{\varepsilon}$, satisfies the convergence condition. Then also $\operatorname{Ric}_g \geq Kg$ in the distributional sense.

Michael Kunzinger

Further investigations

Further investigations

Braun/Calisti (2022): Lorentzian setting

- (M,g) globally hyperbolic with timelike Ric_g bounded below in \mathcal{D}' .
- $g \in C^1 \Rightarrow M$ has timelike measure-contraction property TMCP.
- $g \in C^{1,1} \Rightarrow M$ has timelike curvature-dimension property TCD.
- Proofs use regularization and stability of TMCP and TCD, much more involved than above setting.

Further investigations

Braun/Calisti (2022): Lorentzian setting

- (M,g) globally hyperbolic with timelike Ric_g bounded below in \mathcal{D}' .
- $g \in C^1 \Rightarrow M$ has timelike measure-contraction property TMCP.
- $g \in C^{1,1} \Rightarrow M$ has timelike curvature-dimension property TCD.
- Proofs use regularization and stability of TMCP and TCD, much more involved than above setting.

Compatibility of singularity theorems

- Generalizations of Hawking/Penrose singularity theorems to $g \in C^1$ using \mathcal{D}' methods.
- Cavalletti/Mondino: Synthetic Hawking theorem assuming TMCP and synth. mean curvature condition.
- C/M (+ TL-nonbranching) implies C¹-Hawking: D'-assumptions imply mean curvature cond., and Braun/Calisti⇒ TMCP.

Michael Kunzinger

• Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?
- Synthetic to distributional in Lorentzian setting?

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?
- Synthetic to distributional in Lorentzian setting?
- Do distributional and synthetic approaches "branch" in lower regularity?
 - Many tools no longer available
 - In $C^{1,\alpha}$, local minimizers and geodesics are no longer the same
 - Uniqueness of minimizers and/or geodesics is lost

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?
- Synthetic to distributional in Lorentzian setting?
- Do distributional and synthetic approaches "branch" in lower regularity?
 - Many tools no longer available
 - In $C^{1,\alpha}$, local minimizers and geodesics are no longer the same
 - Uniqueness of minimizers and/or geodesics is lost
- Does the equivalence of various synthetic Ricci bounds (e.g., CD) persist in low regularity?

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?
- Synthetic to distributional in Lorentzian setting?
- Do distributional and synthetic approaches "branch" in lower regularity?
 - Many tools no longer available
 - In $C^{1,\alpha}$, local minimizers and geodesics are no longer the same
 - Uniqueness of minimizers and/or geodesics is lost
- Does the equivalence of various synthetic Ricci bounds (e.g., CD) persist in low regularity?
- Role of causal pathologies in low regularity (below Lipschitz)?

- Convergence condition is satisfied in many examples, e.g., gluing along sub-mf.
- Can one do without?
- Synthetic to distributional in Lorentzian setting?
- Do distributional and synthetic approaches "branch" in lower regularity?
 - Many tools no longer available
 - In $C^{1,\alpha}$, local minimizers and geodesics are no longer the same
 - Uniqueness of minimizers and/or geodesics is lost
- Does the equivalence of various synthetic Ricci bounds (e.g., CD) persist in low regularity?
- Role of causal pathologies in low regularity (below Lipschitz)?
- Can synthetic methods be used to prove Lipschitz versions of the singularity theorems?

References

[BC:22] M. Braun, M. Calisti, Timelike Ricci bounds for low regularity spacetimes by optimal transport Preprint, 2209.03802

[CM:20] F. Cavalletti, A. Mondino, Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. Preprint, arxiv:2004.08934

[G:19] F. Glaudo, On the c-concavity with respect to the quadratic cost on a manifold, Nonlinear Anal. 178 (2019), 145–151.

[G:20] M. Graf, Singularity theorems for C¹-Lorentzian metrics. Comm. Math. Phys., 378 (2020), no. 2, 1417–1450.

[KOSS:22] MK, A. Ohanyan, B. Schinnerl, R. Steinbauer, The Hawking-Penrose singularity theorem for C¹-Lorentzian metrics. Comm. Math. Phys. 391 (2022), no. 3, 1143–1179.

[KOV:22] MK, M. Oberguggenberger, J.A. Vickers. Synthetic versus distributional lower Ricci curvature bounds. Preprint, arxiv: 2207.03715

[KSS:14] MK, R. Steinbauer, M. Stojković. The exponential map of a C^{1,1}-metric. Diff. Geom. Appl. 34 (2014), 14–24.

[McC:01] R.J. McCann, Polar factorization of maps on Riemannian manifolds, GAFA Vol. 11 (2001), 589–608.

[Min:15] E. Minguzzi, Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math. 177 (2015), no. 4, 569–625.