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The question, outline

Two main approaches to Ricci curvature in low regularity:
Synthetic: Based on methods from Optimal Transport, expresses
Ricci bounds in terms of weak displacement convexity of entropy
functionals. Extends even to metric measure spaces.
Analytic: View Ric as a Schwartz distribution. Bounds on Ric are
expressed via positivity of distributions. Widely used in physics.

Plan of the talk
Distributional curvature bounds and regularization
Geometry of C1,1-(semi-) Riemannian metrics
OT for C1,1-metrics
Synthetic lower Ricci curvature bounds
Synthetic from distributional bounds in C1

Distributional from synthetic bounds in C1,1

Further results, Outlook
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Distributional curvature (Marsden, LeFloch/Mardare)

Vol(M). . . volume bundle, Γk
c (M,Vol(M)) comp. supp. Ck one-densities.

D′(k)(M) := Γk
c (M,Vol(M))′

D′(k)T r
s (M) := Γk

c (M,T s
r ⊗ Vol(M))′ ∼= D′(k)(M) ⊗C∞(M) T r

s (M)

Distributional/L2
loc connection:

∇ : X(M) × X(M) → D′T 1
0 (M) resp. → L2

locT 1
0 (M).

Riemann tensor of L2
loc-connection: X ,Y ,Z ∈ X(M), θ ∈ Ω1(M):

R(X ,Y ,Z )(θ) := (∇X ∇Y Z − ∇Y ∇X Z − ∇[X ,Y ]Z )(θ) ∈ D′(M).

For g ∈ C1: unique Levi-Civita connection, R, Ric defined in D′(1), and
locally

Rm
ijk = ∂jΓm

ik − ∂kΓm
ij + Γm

js Γs
ik − Γm

ksΓs
ij

Ricij = Rm
imj .
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Regularization of distributional curvature

Distributional curvature bound
u ∈ D′ ≥ 0 :⇔ ⟨u, µ⟩ ≥ 0 for each test-density µ ≥ 0.
Lower Ricci curvature bound: Ric(X ,X ) ≥ Kg(X ,X ) for each
smooth vector field X , write: Ric[g ] ≥ K .

Regularization of tensor distributions
Let T ∈ D′T r

s (M). Atlas (Uα, ψα), ξα ∈ D(Uα) partition of 1,
χα ∈ D(Uα), |χα| ≤ 1, χα ≡ 1 near suppξα. ρ ≥ 0 mollifier. Then

T ∗M ρε :=
∑

α

χα · (ψα)∗(
((ψα)∗)(ξα · T )) ∗ ρε

)
∈ T r

s (M).

Properties:
T ∗M ρε ∈ C∞

T ⋆M ρε → T in D′T r
s (M) (resp. in Ck

loc or W k,p
loc if T is contained

in these spaces)
T ∈ D′(M), T ≥ 0 ⇒ T ⋆M ρε ≥ 0 in C∞(M).
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The Friedrichs Lemma

Standard form
P PDO of order m, u ∈ Hs+m−1, then [P, ρε ∗ . ]u → 0 in Hs .

Elementary versions
E.g., a ∈ C1(Rn), f ∈ C0(Rn) ⇒ (a ∗ ρε)(f ∗ ρε) − (af ) ∗ ρε → 0 in C1(K ).

Consequences for g ∈ C 1

Let gε := g ⋆M ρε, X ,Y ∈ X(M). then:
Ricg(X ,Y ) ⋆M ρε − Ricgε(X ,Y ) → 0 in C0(M) as ε → 0.
Ric[g] ∗M ρε − Ric[gε] → 0 in C0.

Theorem Let g ∈ C1, M compact. TFAE:
(i) Ric[g ] ≥ K in D′.
(ii) ∀δ > 0 ∃ε0 > 0 ∀ε < ε0 : Ric[gε] ≥ K − δ.
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The exponential map of a C 1,1-Riemannian metric

Let g be a C1,1-Riemannian metric. Then
Around any x , expx is bi-Lipschitz homeomorphism, and
T0 expx = id .
Existence of geodesically convex neighborhoods.
In such nbhds, dg(x , y) = | exp−1

y x |.
Shortest curves are C2,1-geodesics.
Gauss Lemma holds.
D2

y := x 7→ g(exp−1
y x , exp−1

y x) is C1,1, with TxD2
y = 2g(σ̇(1), . ),

where σ(t) = expy (t · exp−1
y x) and (y , x) 7→ P(y , x) := σ̇(1) is the

position vector field of x with respect to y .
E : (y ,w) 7→ (y , expy (w)) is strongly differentiable over the zero
section with invertible differential.
Cost function ϕ(x) := d2(x , y)/2 is super-differentiable a.e.

[Min:15], [KSS:14]
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Optimal Transport on C 1,1 Riemannian manifolds

Th.: ([McC:01]) M compact, g C1,1, µ, ν ∈ P(M), µ ≪ volg,
c(x , y) = dg(x , y)2/2. The unique solution to the Kantorovich problem is
of the (Monge-) form π = (idX ,T )♯µ. Here, T : x 7→ expx (−∇ψ(x)),
with ψ = ψcc , where

ϕc(y) := inf
x∈M

(
c(x , y) − ϕ(x)

)
.

Wasserstein-distance between µ and ν:

W2(µ, ν) =
[

inf
π∈Cpl(µ,ν)

∫
X×X

dg(x , y)2 dπ(x , y)
] 1

2

Alternative interpretation:
Existence and uniqueness of geodesics in (P(M),W2) between µ and ν:
t 7→ µt := (Tt)♯µ, where

Tt(x) = expx (−t∇ψ(x)).
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Synthetic Ricci curvature bounds (1)

(X , d) metric space, f : X → R̄ weakly K -convex if ∀ x , y ∈ X ∃ geodesic
γ : [0, 1] → X from x to y such that for all t ∈ [0, 1]

f ◦ γ(t) ≤ (1 − t)f ◦ γ(0) + tf ◦ γ(1) − 1
2 t(t − 1)Kd(γ(0), γ(1))2

Def. (Entropy functional) (X , d , ν) metric measure space, µ ∈ P2(X ),
Given a continuous convex function U : [0,∞) → R with U(0) = 0 and
ν ∈ P(X ), define Uν : P2(X ) → R ∪ {∞} by

Uν(µ) :=
∫

X
U(ρ(x)) dν(x) + U ′(∞)µs(X ).

where µ = ρν + µs Lebesgue decomposition, U ′(∞) := limr→∞ U(r)/r .
U ∈ DC∞ if eλU(e−λ) convex.

λK (U) := infr>0 K rU′
+(r)−U(r)

r
For U∞(r) := r log(r), λK (U∞) = K .
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Synthetic Ricci curvature bounds (2)

Def. (X , d , ν) has ∞-Ricci bounded below by K if ∀U ∈ DC∞, Uν is
weakly λK -convex on (P2(X ),W2).
Th.: (Sturm/Lott/Villani) Let (M, g) be a compact C2-Riemannian
manifold. Then (with νg := dVolg/Volg(M))

Ric[g ] ≥ K ⇐⇒ (M, dg , νg) has ∞-Ric ≥ K ..

Theorem
g ∈ C1, Ric[g ] ≥ K in D′ ⇒ (M, dg , νg) has ∞-Ric ≥ K .

Pr:
gε := g ∗M ρε ⇒ (M, dgε , νgε) → (M, dg , νg) in measured
Gromov-Hausdorff sense.
∞-Ric ≥ K is stable under measured GH-convergence.
δ > 0: (M, dgε , νgε) has ∞-Ric ≥ K − δ hence so does (M, dg , νg).
∞-Ric[g ] ≥ K − δ ∀δ > 0 ⇒ ∞-Ric[g ] ≥ K .
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Synthetic to distributional: Strategy

Difficulties
Standard proofs for synthetic ⇒ pointwise in C2 rely on

Jacobi fields
Estimates on curvature along geodesics
Riemannian normal coordinates
Jacobian determinant of exp

None of these is available, even in C1,1.

Strategy of proof for g ∈ C 1,1

Regularize g to gε.
Suppose Ricgεk

(vk , vk) < (K − δ)gεk (vk , vk), vk → v ∈ Tx0M.
Construct exceptional Wasserstein geodesics for gk ≡ gεk , show
convergence to W-geodesic for g .
Derive contradiction by inserting measures with support → {x0}.
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Synthetic to distributional: Proof (1)

Assumption: Ricgk (vk , vk) < (K − δ)gk(vk , vk), Txk M ∋ vk → v ∈ Tx0M
Pick ϕk : M → R such that ∇gkϕk(xk) = −vk and Hessgk (ϕk)(xk) = 0,
and analogously ϕ for g at x0. Can have ϕk → ϕ in nbhd V of x0. Set
c(x , y) := dg(x , y)2/2, ck(x , y) := dgk (x , y)2/2.

Th.: ([Gl:19]) (M, g) compact RMF with sectional curvature bounded
above by K ≥ 0. Then ∃ C∗ := C∗(inj(M), K ,diam(M)) > 0 s.t., ∀ε > 0,
if ϕ ∈ C2(M,R) satisfies

∥∇ϕ∥∞ ≤ min
(

ε

3Kdiam(M) ,C∗

)
and Hess(ϕ) ≤ (1 − ε)g ,

then ϕ is c-concave.

g ∈ C1,1 ⇒ can have all ϕk ck -concave ⇒ push-forward under
F (k)

t (y) := expgky (−t∇gkϕk) induces OT.
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Synthetic to distributional: Proof (2)

Uniform distribution η(k)
0 := Volgk (V )−11V , µ(k)

0 := η
(k)
0 dvolgk . Then

µ
(k)
t := (F (k)

t )#µ
(k)
0 is a ck -optimal transport from µ

(k)
0 to µ(k)

t , hence
a gk -Wasserstein geodesic.
Up to subsequence, µ(k)

t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
Want to relate ψ and ϕ.
Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .
Therefore, push-forward under F (k)

t , Ft possess densities w.r.t. dvolgk ,
dvolg .
Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.
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t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
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Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .
Therefore, push-forward under F (k)

t , Ft possess densities w.r.t. dvolgk ,
dvolg .
Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 12 / 18



Synthetic to distributional: Proof (2)
Uniform distribution η(k)

0 := Volgk (V )−11V , µ(k)
0 := η

(k)
0 dvolgk . Then

µ
(k)
t := (F (k)

t )#µ
(k)
0 is a ck -optimal transport from µ

(k)
0 to µ(k)

t , hence
a gk -Wasserstein geodesic.
Up to subsequence, µ(k)

t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
Want to relate ψ and ϕ.

Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .
Therefore, push-forward under F (k)

t , Ft possess densities w.r.t. dvolgk ,
dvolg .
Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 12 / 18



Synthetic to distributional: Proof (2)
Uniform distribution η(k)

0 := Volgk (V )−11V , µ(k)
0 := η

(k)
0 dvolgk . Then

µ
(k)
t := (F (k)

t )#µ
(k)
0 is a ck -optimal transport from µ

(k)
0 to µ(k)

t , hence
a gk -Wasserstein geodesic.
Up to subsequence, µ(k)

t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
Want to relate ψ and ϕ.
Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .

Therefore, push-forward under F (k)
t , Ft possess densities w.r.t. dvolgk ,

dvolg .
Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 12 / 18



Synthetic to distributional: Proof (2)
Uniform distribution η(k)

0 := Volgk (V )−11V , µ(k)
0 := η

(k)
0 dvolgk . Then

µ
(k)
t := (F (k)

t )#µ
(k)
0 is a ck -optimal transport from µ

(k)
0 to µ(k)

t , hence
a gk -Wasserstein geodesic.
Up to subsequence, µ(k)

t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
Want to relate ψ and ϕ.
Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .
Therefore, push-forward under F (k)

t , Ft possess densities w.r.t. dvolgk ,
dvolg .

Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 12 / 18



Synthetic to distributional: Proof (2)
Uniform distribution η(k)

0 := Volgk (V )−11V , µ(k)
0 := η

(k)
0 dvolgk . Then

µ
(k)
t := (F (k)

t )#µ
(k)
0 is a ck -optimal transport from µ

(k)
0 to µ(k)

t , hence
a gk -Wasserstein geodesic.
Up to subsequence, µ(k)

t converges to Wasserstein geodesic χt for g .
We know: χ1 = T#µ0, where T (y) = expy (−∇ψ(y)).
Want to relate ψ and ϕ.
Strong differentiability of E : (y ,w) → (y , expy (w)) over zero-section
in TM implies bi-Lipschitz property of Ft , F (k)

t .
Therefore, push-forward under F (k)

t , Ft possess densities w.r.t. dvolgk ,
dvolg .
Density of (Ft)#(ξ0dvolg):

x 7→ ξ0(F −1
t (x)) 1

det DFt(y)

∣∣∣∣
y=F −1

t (x)
.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 12 / 18



Synthetic to distributional: Proof (3)

To get ϕ = ψ, want to apply dominated convergence ; need
information on det DF (k)

t .
Ji(t) := DF (k)

t (ei), Jij = gk(Ji , ej), then

J ′′(t) + K (t)J(t) = 0, J(0) = In, J ′(0) = Hessgk (ϕk)y .

with Kij(t) = ⟨Rgk (ei(t), γ̇(t))γ̇(t), ej(t)⟩gk(γ(t)).
Riccati comparison and g ∈ C1,1 give:

log(det DF (k)
t (y)) is bounded, uniformly in k ∈ N, y ∈ M, t.

For dominated convergence, need additional assumption:
There exists a (Lebesgue-) null set N ⊆ M such that, for each
y ∈ M \ N,

DF (k)
t (y) → DFt(y),

uniformly for t ∈ [0, 1].
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Synthetic to distributional: Proof (4)

Consequently, µ(k)
t = (F (k)

t )#µ
(k)
0 → (Ft)#µ0, as well as

µ
(k)
t → χt = (Ht)#µ0, where Ht = y 7→ expy (−t∇ψ(y))

; expy (−t∇ϕ(y)) = expy (−t∇ψ(y)) ; ∇ϕ = ∇ψ, so w.l.o.g., ϕ
c-concave.
Hence, for any µ0, (Ft)#µ0 is a Wasserstein geodesic.
W-geodesics are unique, so can use this and U∞(r) = r log r in Def.
of ∞-Ricci bound:

Uν(µt) ≤ tUν(µ1) + (1 − t)Uν(µ0) − 1
2Kt(1 − t)W2(µ0, µ1)2,

Here,

Uν(µt) =
∫

M
U

(
volg(M) · η0(y)

det(DFt)(y)
)

det(DFt)(y)dvolg(y)
volg(M) .
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Synthetic to distributional: Result

Set C(y , t) := − log(volg(M)) + log(det DFt(y)), and Ck for gk .
Suitably concentrating µ(k)

0 near xk and using Ck → C , we get from
∞-Ricci bound for k large the convexity of:

−Ck(xk , t) − 1
2

(
K − δ

2
)
t2gk(vk , vk)

Standard comparison arguments then give (for k large) the
contradiction:

Ricgk (vk , vk) = − ∂2

∂t2 Ck(xk , 0) ≥
(
K−δ

2
)
gk(vk , vk) >

(
K−δ

)
gk(vk , vk)

Th.
Let M be a compact connected mf with C1,1-RM g s.t. (M, dg , νg) has
∞-Ricci curvature ≥ K . Assume that some subsequence of g ⋆M ρε,
satisfies the convergence condition. Then also Ricg ≥ Kg in the
distributional sense.
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Further investigations

Braun/Calisti (2022): Lorentzian setting
(M, g) globally hyperbolic with timelike Ricg bounded below in D′.
g ∈ C1 ⇒ M has timelike measure-contraction property TMCP.
g ∈ C1,1 ⇒ M has timelike curvature-dimension property TCD.
Proofs use regularization and stability of TMCP and TCD, much
more involved than above setting.

Compatibility of singularity theorems
Generalizations of Hawking/Penrose singularity theorems to g ∈ C1

using D′ methods.
Cavalletti/Mondino: Synthetic Hawking theorem assuming TMCP
and synth. mean curvature condition.
C/M (+ TL-nonbranching) implies C1-Hawking: D′-assumptions
imply mean curvature cond., and Braun/Calisti⇒ TMCP.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 16 / 18



Further investigations
Braun/Calisti (2022): Lorentzian setting

(M, g) globally hyperbolic with timelike Ricg bounded below in D′.
g ∈ C1 ⇒ M has timelike measure-contraction property TMCP.
g ∈ C1,1 ⇒ M has timelike curvature-dimension property TCD.
Proofs use regularization and stability of TMCP and TCD, much
more involved than above setting.

Compatibility of singularity theorems
Generalizations of Hawking/Penrose singularity theorems to g ∈ C1

using D′ methods.
Cavalletti/Mondino: Synthetic Hawking theorem assuming TMCP
and synth. mean curvature condition.
C/M (+ TL-nonbranching) implies C1-Hawking: D′-assumptions
imply mean curvature cond., and Braun/Calisti⇒ TMCP.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 16 / 18



Further investigations
Braun/Calisti (2022): Lorentzian setting

(M, g) globally hyperbolic with timelike Ricg bounded below in D′.
g ∈ C1 ⇒ M has timelike measure-contraction property TMCP.
g ∈ C1,1 ⇒ M has timelike curvature-dimension property TCD.
Proofs use regularization and stability of TMCP and TCD, much
more involved than above setting.

Compatibility of singularity theorems
Generalizations of Hawking/Penrose singularity theorems to g ∈ C1

using D′ methods.
Cavalletti/Mondino: Synthetic Hawking theorem assuming TMCP
and synth. mean curvature condition.
C/M (+ TL-nonbranching) implies C1-Hawking: D′-assumptions
imply mean curvature cond., and Braun/Calisti⇒ TMCP.

Michael Kunzinger Ricci Curvature Bounds Nijmegen, June 2023 16 / 18



Discussion and outlook

Convergence condition is satisfied in many examples, e.g., gluing
along sub-mf.
Can one do without?
Synthetic to distributional in Lorentzian setting?
Do distributional and synthetic approaches “branch” in lower
regularity?

Many tools no longer available
In C1,α, local minimizers and geodesics are no longer the same
Uniqueness of minimizers and/or geodesics is lost

Does the equivalence of various synthetic Ricci bounds (e.g., CD)
persist in low regularity?
Role of causal pathologies in low regularity (below Lipschitz)?
Can synthetic methods be used to prove Lipschitz versions of the
singularity theorems?
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persist in low regularity?
Role of causal pathologies in low regularity (below Lipschitz)?
Can synthetic methods be used to prove Lipschitz versions of the
singularity theorems?
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