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History of GR: state of the art

History of GR so far has been largely centered around Einstein:

I The Collected Papers of Albert Einstein, especially:
Vol. 4 (1912–1914), Vol. 6 (1914–1917), Vol. 7 (1918–1921)
https://einsteinpapers.press.princeton.edu/

I Renn, J., ed. (2007). The Genesis of General Relativity (Springer)

I Janssen, M., Renn, J. (2022). How Einstein Found His Field Equations:
Sources and Interpretation (Springer)

I Dongen, J. van (2010). Einstein’s Unification (CUP)

Relatively new research about the “Renaissance of gr”:

I Eisenstaedt, J. (2006). The Curious History of Relativity: How Einstein’s
Theory of Gravity was Lost and Found Again (Princeton)

I Blum, A.S., Lalli, R., Renn, J., eds. (2020). The Renaissance of General
Relativity in Context (Springer)

Dennis Lehmkuhl (Bonn), 2023–2027: ERC Consolidator Grant

GR 1955–1975: Penrose, Hawking, Bondi, Ehlers, Wheeler, etc.

https://einsteinpapers.press.princeton.edu/


Mathematical GR

From 1920 through 1965, gr was considered to have so few empirically
testable predictions that its practitioners in English-speaking countries
were largely banished to mathematics departments. When the discoveries
of cosmological background radiation, quasars and pulsars made it clear
that gr does model important science at astronomical scales, the theory
still appeared remote from the microcosmic concerns of most research
physicists. (. . . )

The isolation of gr from the rest of theoretical physics was intensified by

the special nature of its mathematical tools. Particle physicists could

recognize that condensed-matter people were doing quantum field theory;

nuclear and molecular physicists used the same quantum mechanics. In

the early days, the heavily indexed tensors of gr betokened a kinship

with continuum mechanics (similarly exiled to engineering departments),

but when relativists fell under the spell of index-free differential forms

and algebraic topology, their isolation became complete. (Fulling, 2006)



History of mathematical GR (after Riemann)
Reich, K. (1994). Die Entwicklung des Tensorkalküls: Vom absoluten
Differentialkalkül zur Relativitätstheorie (Birkhäuser)

Goodstein, J.R. (2018). Einstein’s Italian Mathematicians: Ricci, Levi-Civita,
and the Birth of General Relativity (American Mathematical Society)

Renn, J., Stachel, J. (2007). Hilbert’s Foundation of Physics: From a theory of
everything to a constituent of general relativity. The Genesis of General
Relativity. Volume 4, ed. Renn, J., pp. 857–973 (Springer)

Scholz, E., ed. (2001). Hermann Weyl’s Raum - Zeit - Materie and a General
Introduction to His Scientific Work (Birkhäuser)
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Secondary (historical) literature on singularities in GR
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Roger Penrose, Oxford, July 2, 2022



Hilbert (1917)

I Hilbert, Einstein, Weyl, and many others saw singularities as
points/regions inside spacetime (motivated by Schwarzschild
r = 2m and de Sitter solution) which even now is not a foolish
attitude compared with algebraic geometry & stratified spaces

Hilbert about r = 2m in the Schwarzschild metric:
A line element or a gravitational field gij is regular at a point if it is

possible to introduce by a reversible, one-one transformation a

coordinate system, such that in this system the corresponding

functions g ′ij are regular at that point, i.e. they are continuous and

arbitrarily differentiable at the point and in a neighbourhood of the

point, and the determinant g ′ is different from 0

Mistake (even then): a coordinate transformation is supposed to
be defined (and invertible) even in the region where one of the
coordinate systems fails (which would even make the Euclidean
metric in Rn singular at r = 0 if is expressed in polar coordinates!)



Einstein

Except for a few brief periods, Einstein was uninterested in analysing the nature

of the spacetime singularities that appeared in solutions to his gravitational ”eld

equations for general relativity. The existence of such monstrosities reinforced

his conviction that general relativity was an incomplete theory which would be

superseded by a singularity-free unified field theory. Nevertheless, on a number

of occasions between 1916 and the end of his life, Einstein was forced to

confront singularities. His reactions show a strange asymmetry: he tended to

be more disturbed by (what today we would call) merely apparent singularities

and less disturbed by (what we would call) real singularities. Einstein had

strong a priori ideas about what results a correct physical theory should deliver.

In the process of searching through theoretical possibilities, he tended to push

aside technical problems and jump over essential difficulties. Sometimes this

method of working produced brilliant new ideas (such as the Einstein–Rosen

bridge) and sometimes it lead him to miss important implications of his theory

of gravity (such as gravitational collapse). (Earman & Eisenstaedt, 1999)



Einstein (and others) on Schwarzschild solution

I r = 0: artefact of vacuum solution, solved by matter source

I r = 2m: regarded as a real “singularity” by Einstein, Hilbert,
and many others: discontinuity (Schwarzschild), magic circle
(Eddington), barrier (Kottler), limit circle (Brillouin), death
(Nordmann) – despite Eddington (1924) & Lemâıtre (1933)

Finally settled by Finkelstein (1958), Kruskal (1960), etc.

I But not worrying because physically irrelevant for 3 reasons:

1. Stars could not have R < 2m (Schwarzschild, 1916, 2nd),
Einstein (1922): pressure as r → 0 would be infinite (used as
reductio ad absurdum argument) so no vacuum at r = 2m

2. Even if R < 2m for some star, r = 2m would be empirically
inaccessible (infinite redshift argument, Eddington)

3. As for r = 0: if r = 2m is really a singularity it again indicates
that there should be a matter source (Einstein, Eddington)



Einstein on de Sitter space (1918)

ds2 =−cos2(r/R)dt2 +dr2 +R2 sin2(r/R)dΩ

Like r = 2m, Einstein regarded r = πR/2 as a real (echte) singularity:

I Singularity := point x (in space-time) where some component
gµν (x) or gµν (x) or its first derivative is discontinuous, such that
no choice of coordinates can remove this discontinuity

I Singularity is real if it can be connected to some “regular” point P0

by curve of finite proper length (which Einstein thought was not the
case for Schwarzschild r = 2m but which is correct for r = πR/2)

Serious attempt–but both the definition and its application are flawed:

1. r = πR/2 is a coordinate singularity (dS solution is regular)

2. Points that can be connected by a curve with infinite proper lenght
can also be connected by curve of finite proper length (C.J.S.
Clarke, 1993: “wiggle” curve to make it approximately lightlike)

3. No causality requirement; so definition is physically obscure

But (with some goodwill) foreshadows incomplete causal geodesics!



Lemâıtre: The expanding Universe (1933)

The equations of the Friedmann universe admit solutions where the radius of

the universe tends to zero for non-zero mass. This contradicts the generally

accepted result that a given mass cannot have a radius smaller than 2m.

I Resolves r = 2m “singularity” in Schwarzschild metric

I Misses r = 2m as event horizon (clarified by Finkelstein, 1958)

I Early cosmological “singularity theorem” (similar to Tolman,
Robertson, de Sitter, Synge, 1930–1935), and the first based on
energy conditions (T i

i < 0 and |T i
i | ≤ T 4

4 for i = 1,2,3):

Metric ds2 =−dt2 + ∑i hii (t)(dx i )2, R := det(h)1/6 = det(−g)1/6

I If Ṙ(t) < 0 for some t > 0, then R(t0) = 0 for some t0 < t

I No attempt to define singularity and unclear what coordinate
dependence of R means (hindsight: R = 0 is real singularity)

The matter has to find, though, a way of avoiding the vanishing of its volume

(. . . ) Forces which prevent the mutual interpenetration of elementary particles

are without doubt capable of stopping the contraction [when R ∼ solar system]



“Renaissance” of general relativity (1950–1970)

After solar eclipse sensation in 1919, gr gradually decoupled from
mainstream physics (especially from qm). But revival ∼ 1950:

I Gödel’s solution (1949) with rotating fluid sparked further
mathematical work (on global geometry, congruences, and
relativistic fluid mechanics): Lichnerowicz, Choquet-Bruhat
(France); Raychaudhuri (India); Komar, Markus, Taub, Misner
(US); Jordan, Heckmann, Schücking, Ehlers (Germany), . . .

I Cold War: huge science funding in USA and USSR, nuclear (bomb)
physicist moved to gr (Wheeler, Zeldovich) for astrophysics reasons

I gr conferences: Bern (1955), Chapel Hill (1957), Warsaw (1962)

I New astrophysics (Quasars, 1963; CMB, 1965; Pulsars, 1967)

⇒ gr “schools”: Princeton (Wheeler), Austin (Schild), Cambridge
(Sciama, Hoyle), Syracuse (Bergmann), King’s College London
(Bondi), Warsaw (Infeld, Trautman), Dublin (Lanczos, Synge,
Schrödinger), Moscow (Zeldovich, Landau–Lifshitz–Khalatnikov)



Einstein and Gödel in Princeton, ∼ 1949



Wheeler and Sciama had a widespread impact on the development of the

understanding of singularities, particularly through their students.

Wheeler’s students included Misner, Shepley, Thorne, and Geroch [and

Christodoulou], while Sciama’s included Ellis, Hawking, Carter, Rees, and

Clarke. However, Sciama has claimed, on occasion, that his most

important contribution to relativity has been in influencing Roger Penrose

to work on the subject! (Tipler–Clarke–Ellis, 1980)

Consolidating textbooks of this era (1950–1970)
I Penrose, R. (1972). Techniques of Differential Topology in Relativity

I Weinberg, S. (1972). Gravitation and Cosmology: Principles and
Applications of the General Theory of Relativity

I Misner, C.W., Thorne, K.S., Wheeler, J.A. (1973). Gravitation

I Hawking, S.W., Ellis, G.F.R. (1973). The Large Scale Structure of
Space-Time



Raychaudhuri (1955) and Komar (1956)

The Friedmann solution, which employs the assumptions that the universe is

spacially isotropic and that the state of matter may be represented by

incoherent dust, yields the result that the universe is not stationary, but is

rather in a state either of expansion from a singular point in time (which would

correspond to creation), or of contraction toward a singular point in time

(which would correspond to annihilation). The question naturally arises

whether such singular points are a consequence of the particular symmetry

presupposed in Friedmann’s model, or whether perhaps for more general

distributions of matter one need not expect instants of creation or annihilation

of the universe. The purpose of this paper is to show that singularities are to

be expected under very general hypotheses, and in particular that the singular

instant of creation (or annihilation) necessarily would occur at a finite time in

the past (or future, respectively) (Komar, Introduction)

I R. assumes anisotropic dust, K. just energy conditions.

I Same notion of singularity as Lemâıtre: det(−g) = 0

I Proofs based on Raychaudhuri equation for det(−g)1/6



Misner (1963)

Causal geodesic (in)completeness and global Lorentzian geometry were
“in the air”, e.g. K. Gödel (1949–52), L. Markus (1955-63), W. Kundt
(1963), R. Hermann (1964), M. Fierz & R. Jost (1965), . . .

Misner just summarizes ‘the present state of the art’ on singularities:

the clue to clarity is to refuse ever to speak of a singularity but instead to

phrase everything in terms of the properties of differentiable metric fields on

manifolds. If one is given a manifold, and on it a metric which does not at all

points satisfy the necessary differentiability requirements, one simply throws

away all the points of singularity. The starting point for any further discussion

is then the largest submanifold on which the metric is differentiable. This is

done because there is not known any useful way of describing the singularities

of a function except by describing its behavior at regular points near the

singularity. The first problem then is to select a criteria which will identify in an

intuitively acceptable way a “nonsingular space.” Evidently, differentiability is

only a minimum prerequisite, since everything becomes differentiable when the

singular points are discarded. The problem is rather to recognize the holes left

in the space where singular (or even regular) points have been omitted.



Misner (1963)

I Differences between Riemannian and Lorentzian geometry
around Hopf–Rinow theorem; highlights that implication
geodesically complete ⇒ inextendible is valid in both

I Adds that in gr it is ‘commonly accepted’ that an ‘essentially
singular space’ is geodesically incomplete and inextendible

I Defines curvature singularity as unboundedness of some scalar
polynomial in (∇τ )Rµνρσ along some open geodesic segment

I Curvature singularity is sufficient condition for singularity

I Proposes: Curvature singularity ⇒ space-time is “singular” ⇒
space-time is geodesically incomplete as well as inextendible

I States necessary and sufficient conditions for singularity but
no definition (N.B. geodesic incompleteness is just necessary!)
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Geophys. Res. 66, 1363 (1961}].The increases pro-
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GRAVITATIONAL COLLAPSE AND SPACE- TIME SINGULARITIES

Roger Penrose
Department of Mathematics, Birkbeck College, London, England

{Received 18 December 1964)

The discovery of the quasistellar radio sources
has stimulated renewed interest in the question
of gravitational collapse. It has been suggested
by some authors' that the enormous amounts
of energy that these objects apparently emit
may result from the collapse of a mass of the
order of (10'-10')MC, to the neighborhood of
its Schwarzschild radius, accompanied by a
violent release of energy, possibly in the form
of gravitational radiation. The detailed math-
ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications
of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation —which
requires at least a quadripole structure.
The general situation with regard to a spher-

ically symmetrical body is well known. ' For
a sufficiently great mass, there is no final
equilibrium state. %'hen sufficient thermal
energy has been radiated away, the body con-
tracts and continues to contract until a physi-
cal singularity is encountered at r = 0. As

measured by local comoving observers, the
body passes within its Schwarzschild radius
r = 2m. (The densities at which this happens
need not be enormously high if the total mass
is large enough. ) To an outside observer the
contraction to ~ = 2m appears to take an infinite
time. Nevertheless, the existence of a singu-
larity presents a serious problem for any com-
plete discussion of the physics of the interior
region.
The question has been raised as to whether

this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter
the situation drastically? The recent rotating
solution of Kerr' also possesses a physical
singularity, but since a high degree of sym-
metry is still present (and the solution is al-
gebraically special), it might again be argued
that this is not representative of the general
situation. 4 Collapse without assumptions of
symmetry will be discussed here.

18 JPNUPRY 1965VOLUME 14, NUMBER $ PHYSICAL REVIEW LETTERS

'd the time development of a CauchyConsi er e
tterC' representing an initial mahypersurface re

distribu 1on.'b t %e may assume Einstein s fie
equations an d suitable equations of state gov-
erning the ma er.tt In fact the only assump-

made here about these equations of sta e
will be the non-negative definiteness o
energy express1on w'(with or without cosmologi-

c. Su ose this matter distributioncal terms. uppose
undergoes gravitational collapse in a way w ic,

e s herical-at first, qualitatively resembles the p
t ' al case. It will be shown that,

after a certain critical condition has been u-
filled, deviations from spherical yal s mmetry
cannot prevent space-tim gue sin larities from
ar18 1ng. , asIf s seems justifiable, actual phys-

0 ~ ~ - ime are not to be1ca1 singularities 1n space-tim
ould apermitted to occur, the conclus1on wou p-

pear inescapa e abl th t inside such a collapsing
ob'ect at least one of the following holds:o ]ec a
(a) Negative local energy occurs.
stein's equations are v1olated. ,c, The s ace-
time manifold is incomplete. ' (d} The concept
f e-time loses its meaning at very high

he-curvatures —possibly because of quantum p e-
nomena. ' In fact (a}, (b), (c), d are some-
what interrelated, the distinction being part-
ly one of attitude of mind.
Before examining the asymmetrical case,

consider a spherically symmetrical matter
distribution of finite radius in C' which col-
1 ses symmetrically. The empty region sur-
rounding the matter will, in th1s case,
Schwarzsc 1h ld field, and we can conveniently
use the metric ds' = 2drdv+dU'-(I-2m/r
r'(d8'+ sin-'8dcp') with an advanced time pa-
rameter v to describe it. The situation is
depicted 1n 1g.d ' F' . 1. Note that an exterior ob-
server will always see matter outside r =2m,
the collapse through r =2m to the singularity
at r =0 being invisible to him.
Aft the matter has contracted within r =2m,er

e =, = ta space e sp elik here S' (f =const, 2m &r= cson)

can be found in the empty region surrounding
the matter. This sphere is an example of what
will be called here a trapped surface —defined

T' with the property that the two systems of
null eodesics which meet T' orthogonally con-
verge locally in future directions at T'.
ly trapped surfaces will still exist if the matter
region has no sharp boundary or if spherica

tions from the above situation are not too great.

Indee, ed th Kerr solutions with m &a angular
) all possess trapped surfacmomentum ma

.' Thewhereas osth se for which m ~a do not.
e ofargument w1 e11 be to show that the existence o

a trapped sur ace 1m„lies—irrespective of sym-
—that singularities necessarilyil develop.metry — a

n never beThe existence of a singular1ty can
tion suchd however, without an assump ioinferre, ow
r con-as completeness for the manifold under c

si eration. It will be necessary, here, to sup-
4, 'ch is the futureth t the manifold M+, which is

development of an initial Cauchy yptime deve opm
4 re ion),sur acef C~ (past boundary of the M+ r g'
re. Theis in fact null complete into the future.

var lou s assumptions are, more precise y, as+---) Rie-follows: (i) M+~ is a nonsingular (+---
ifold for which the null half-cones

form two separate systems ("past" an u r
(ii) Every nu ge e '

the future to arbitrarily large affine param-into e u
ster values (null completeness . ux

4 can be extendedtimelike or null geodesic in M+ can e

FIG. 1. Spherically symmetrical collapse (one
s ace dimension surpressed). The diagram essen-
tially also serves for the discussion o e ymf the as met-
rical case.
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into the past until it meets C, (Cauchy hyper-
surface condition). (iv) At every point of M+~,
all timelike vectors t& satisfy (—R „+~g
-gg )t&t~ ~ 0 (non-negativeness of local ener-

jLLV

gy). (v) There exists a trapped surface F' in
M+4. It will be shown here, in outline, that
(i), ~ ~ ~, (v) are together inconsistent.
Let E be the set of points in M+4 which can

be connected to T' by a smooth timelike curve
leading into the future from T'. Let 8' be the
boundary of F . Local considerations show
that B' is null where it is nonsingular, being
generated by the null geodesic segments which
meet T' orthogonally at a past endpoint and
have a future endpoint if this is a singularity
(on a caustic or crossing region) of B'. I.et
lP' (subject to I& ~l =0), p (=-qlP' &), and l&l
(=[zl(&.~)l »~-&(I&.&)']'"j be, respectively,
a future-pointing tangent vector, the conver-
gence, and the shear for these null geodesics, "
and let A be a corresponding infinitesimal area
of cross section of B'. Then [(A'").&lP).~l
=-(A p). lP=-A ([cr~ +4) ~0 where 4'
= -&R&~lPI~ [~0 by (iv)]. Since T' is trapped,
p& 0 at T', whence A becomes zero at a finite
affine distance to the future of T' on each null
geodesic. Each geodesic thus encounters a
caustic. Hence B' is compact (closed), being
generated by a compact system of finite seg-
ments. We may approximate Bs arbitrarily
closely by a smooth, closed, spacelike hyper-
surface B'*. Let K' denote the set of pairs
(P, s) with PCB'* and 0 s -1. Define a con-
tinuous map p.. K4-M+4 where, for fixed P,
p((P, s)j is the past geodesic segment normal
to B'* at P = pOP, I)] and meeting C' [as it
must, by (iii)] in the point p,((P, 0)). At each
point Q of p(K'}, we can define the degree d(Q)
of p. to be the number of points of K4 which
map to Q (correctly counted). Over any region
not containing the image of a boundary point
of E~, d(Q) will be constant. Near B~*, p is
1-1, so d(Q) =1. It follows that d(Q) =1 near
Cs also, whence the degree of the map Bs

-C' induced by p, when s =0 must also be uni-
ty. The impossibility of this follows from the
noncompactness of C'.
Full details of this and other related results

will be given elsewhere.
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Penrose (1965)

Turn against the tide: the “leaders” Wheeler, Lifshitz & Khalatnikov

(and formerly Einstein, Eddington) expected singularities to be artefacts

The question has been raised as to whether [the Schwarzschild] singularity is, in

fact, simply a property of the high symmetry assumed. The matter collapses

radially inwards to the single point at the center, so that a resulting space-time

catastrophe there is perhaps not surprising. Could not the presence of

perturbations which destroy the spherical symmetry alter the situation

drastically? (. . . ) It will be shown that, after a certain critical condition has

been fulfilled, deviations from spherical symmetry cannot prevent space-time

singularities from arising. (. . . ) It will be shown that (i)–(v) are inconsistent:

(i) Space-time (M,g) is a 4d time-orientable Lorentzian manifold

(ii) (M,g) is future null geodesically complete

(iii) M contains a non-compact Cauchy surface C3

(iv) (−Rµν + 1
2gµνR)tµtν ≥ 0 for any timelike vector t

(v) There exists a trapped surface in M



Penrose (1965): Trapped surfaces

Trapped surface one of the major innovations of Penrose (1965):
Defined as closed, spacelike, two-surface T 2 with the property that
the two systems of null geodesics which meet T 2 orthogonally
converge locally in future directions at T 2

My conversation with [Ivor] Robinson stopped momentarily as we crossed

a side road, and resumed again at the other side. Evidently, during those

few moments an idea occurred to me, but then the ensuing conversation

blotted it from my mind! Later in the day, after Robinson had left, I

returned to my office. I remember having an odd feeling of elation that I

could not account for. I began going through in my mind all the various

things that had happened to me during the day, in an attempt to find

what it was that had caused this elation. After eliminating numerous

inadequate possibilities, I finally brought to mind the thought that I had

had while crossing the street. (Penrose, quoted by Thorne, 1994)



Penrose (1965): Cauchy surfaces
Penrose (1965), following earlier 1965 paper on gravitational waves (which

topic–not black holes!–originally inspired his global techniques), defines Cauchy

surface C by property that every inextendible timelike or null geodesic meets C

(which makes him one of the founders of concept of global hyperbolicity)



Penrose (1965): What is a singularity?

I Does not directly define what he means by a singularity

I Examples (gravitational collapse, Schwarzschild, and Kerr)
suggest that he means: singularity = curvature singularity

I Geodesic completeness first appears in the statement of the
theorem, in which it is a reductio ad absurdum assumption
whose negation as a way out of the ensuing contradiction is
left to the reader and is nowhere defined as a singularity

I Singular 6= (causally) geodesically incomplete: ‘The existence of

a singularity can never be inferred, however, without an assumption

such as [inextendibility] for the manifold under consideration.

I Among possibilities to avoid singularities despite his theorem,
Penrose includes: (c) The space-time manifold is [extendible]

⇒ Penrose clearly recognizes that geodesic incompleteness might
not be due to curvature singularity but to extendibility



Comments on Penrose (1965)

Source of singularity := incomplete causal geodesic? No:

I “Singularity” clearly always means curvature singularity

I Penrose argues from incompleteness to curvature singularity

I Penrose twice makes the point that although extendibility is a
logically possible reason for null geodesic incompleteness, this
is undesirable: the reason should be a curvature singularity

Penrose also clearly saw the gap between what his theorem actually

proves and what it is often taken to prove (2020 Physics Nobel Prize!),

namely the formation of a “black hole” (as yet undefined in 1965), given

sufficient mass concentration (trapped surface) even in the absence of

symmetry. In order to get black holes one should at least add:

1. Get rid of possible extendibility (strong cosmic censorship)

2. Existence of an event horizon (weak cosmic censorship)



The definition of a space-time singularity

Hawking claimed: singularity := incomplete causal geodesic

I any model must have a singularity, that is, it cannot be a
geodesically complete C 1, piecewise C 2 manifold (1965 PhD)

I space-time is said to be singularity free if all timelike geodesics can
be extended to arbitrary length (1966 PRL)

I [I] take timelike and lightlike geodesic incompleteness as our
definition of a singularity of space-time (1966 Adams Prize Essay)

Timelike geodesic incompleteness has an immediate physical significance

in that it presents the possibility that there could be freely moving

observers or particles whose histories did not exist after (or before) a

finite interval of proper time. This would appear to be an even more

objectionable feature than infinite curvature and so it seems appropriate

to regard such a space as singular. (. . . ) The advantage of taking

timelike and/or null incompleteness as being indicative of the presence of

a singularity is [also] that on this basis one can establish a number of

theorems about their occurrence. (Hawking & Ellis, 1973)



Impact of Penrose (1965)

After the publication of [Penrose’s] paper in January 1965, the members of

Dennis Sciama’s general relativity group in the Department of Applied

Mathematics and Theoretical Physics at Cambridge University (particularly

Stephen Hawking, myself, and Brandon Carter) hurriedly tried to learn the new

methods that Penrose had introduced. We were assisted in this by discussions

with Felix Pirani and the group at King’s College, London; with John Wheeler

and Charles Misner, who visited Cambridge from the USA for an extended

period; and with Roger Penrose and Bob Geroch, who was visiting Penrose at

Birkbeck College, London. In particular we had a one day seminar in

Cambridge attended by the members of the King’s College group, where I and

Brandon Carter summarized our understandings of the ingredients of Penrose’s

theorem. (. . . ) Stephen arrived at [his] results by discussions with the

Cambridge group that under Dennis Sciama’s guidance met to discuss ideas at

tea time each day, and with the London groups; as well as attending many

seminars, we used to regularly catch the train to attend lectures on general

relativity at King’s College, London. (George Ellis, 2014)



Definition of a black hole

I Event horizons in gr: Rindler (1956), Finkelstein (1958)

I Penrose (1968): event horizon of observer := boundary of the
chronological past of timelike curve traveled by observer

I Penrose (1969), Gravitational collapse: The role of general
relativity, in a footnote (!): In a general space-time with a

well-defined [future null infinity I +], the absolute event horizon

would be defined as the boundary of the union of all timelike curves

which escape to I +, [i.e.] İ−[I +] [= ∂ I−(I +)] (N.B. Penrose had

already introduced I + in early 1960s to study gravitational waves)

I Hawking (1972), Black holes in general relativity: A black hole

on a spacelike surface is defined to be a connected component of the

region of the surface bounded by the event horizon [= ∂J−(I +)]

N.B. All this defines a black region since it says nothing about
holes, much as Penrose (1965) says nothing about being black!

Black hole should be a “hole” (singularity) inside a “black” region!



Singularities and cosmic censorship

Penrose (1974, 1979) introduced new concept of a singularity
which is not quite the same as that suggested by the singularity theorems

1. Singularity related to points which it can causally influence

2. Incomplete causal geodesics  Inextendible causal curves

Combination of Penrose (1979) and Geroch–Horowitz (1979):

I Space-time (M,g) assumed strongly causal and may or may
not be asymptotically flat with conformal completion (M̂, ĝ)

I N ⊂M or N ⊂ M̂ is some“region of exposure” (of singularity)

N-naked singularity in M := future-inextendible future-directed
causal curve c in M such that I−(c)⊂ I−(x) for some x ∈ N

Explanation: if curve c has endpoint z ∈ I−(x), then I−(c)⊂ I−(x) iff

z ∈ I−(x), i.e. z can signal to x . If c ends in “singularity” z /∈M, then

I−(c)⊂ I−(x) is still taken to mean that the “singularity” can signal to x



Singularities and cosmic censorship
N ⊂M or N ⊂ M̂: N-naked singularity in M := future-inextendible fd

causal curve c in M such that I−(c)⊂ I−(x) for some x ∈ N

N-cosmic censorship: Space-time has no N-naked singularities

I N = I−(I +): weak cosmic censorship à la Penrose (1969)

I N = I−(I +)∩ I+(I −) = doc: weak cosmic censorship à la

Chruściel–Lopes Costa (2008) in their BH uniqueness theorem

I N = M: strong cosmic censorship à la Penrose (1974, 1979)

Theorem (Penrose): sc holds iff (M,g) is globally hyperbolic

Help! Ambiguity! To which space-time (M,g) should we apply this?

I Global hyperbolicity is false if applied to maximal analytic solutions

Analytic solutions of 1960s made way for current pde ideology for gr:

assumptions about initial data—theorems about their mghd

I Global hyperbolicity is trivial if applied to mghd of any initial data



Cosmic censorship: From Penrose to PDE

Consider, for motivation, an initial-data set whose maximal evolution [=
mghd] is extendible to the future of S (. . . ) This extended spacetime cannot,
by definition of the maximal evolution, have S as a Cauchy surface. That is,
from a point p in the extension there must exist a maximally extended
past-directed timelike curve which cannot be assigned a past endpoint, and
which fails to meet S . In this rather mild sense the extended spacetime must
be nakedly singular. One might therefore imagine formulating

cosmic censorship as the assertion that every maximal evolution is inextendible

i.e. that, once the maximal evolution is completed, it is not possible to add any
‘extra regions’ as vantage points from which observers could detect that their
spacetime is singular to the future of S . (Geroch & Horowitz, 1979)

The appropriate notion of cosmic censorship is that the generic solution to

Einstein’s equations is globally hyperbolic, i.e. [???] that the mghd of a generic

initial data set is inextendible. (Moncrief, 1981)

This is a very strong requirement: it blocks globally hyperbolic extensions

of a mghd (i.e. with “new” Cauchy surface), which Penrose would allow



Blueshift instability
The physical evolution toward nut space is unstable and short wavelength
perturbations (gravitons, photons, etc.) are accelerated to disruptive energies
before the Cauchy horizon separating the cosmological and the nut regions is
attained. This instability is shown by the same behavior of time -like and null
geodesics which shows that this space-time is not geodesically complete, and
that no analytic continuation of it can be. (Misner & Taub, 1969, subm. 1967

There is a further difficulty confronting our observer who tries to cross [the
Cauchy horizon] H+(H ). As he looks out at the universe he is “leaving
behind,” he sees, in one final flash, as he crosses H+(H ), the entire later
history of the rest of his “old universe.” If, for example, an unlimited amount
of matter eventually falls into the star then presumably he will be confronted
with an infinite density of matter along “H+(H )”. Even if only a finite
amount of matter falls in, it may not be possible in generic situations to avoid
a curvature singularity in place of H+(H ). This is at present an open question.
But it may be, that the place to look for curvature singularities is in this region
rather than (or as well as?) at the “center.” (Penrose, 1968)

If the initial data is generically perturbed then the Cauchy horizon does not
survive as a non-singular hypersurface. It is strongly implied that instead,
genuine space-time singularities will appear along the region which would
otherwise have been the Cauchy horizon. (Simpson & Penrose, 1973)



Summary

I Einstein, Hilbert: singularities as points within space-time
(misled by r = 2m in Schwarzschild and R = πR/2 in dS)

I Cosmological “singularity theorems” without a good definition
of a singularity in 1930s–1950s (Lemâıtre, Raychaudhuri, . . . )

I Incomplete causal geodesics as hallmark of singularities arose
in 1960s (advocated by Misner and indirectly used by Penrose
in 1965 as necessary but not sufficient for a singularity):

Hawking (1965–66) emphatically turned this into a definition

I Penrose (1965) notes he still needs both an event horizon and
inextendibility for his theorem to be relevant to “black holes”

⇒ Redefinition of singularities by Penrose (1969–1979) to fill
these gaps via weak and strong cosmic censorship conjectures

I In turn redefined via pde ideology for gr based on mghd:

strong cs as inextendibility of mghd serves Penrose’s aims well
weak cs as completeness of I + for mghd seems less close to him



Epilogue (Earman, 1995)

Prior to the 1960s spacetime singularities were regarded as an embarrassment

for gr because it was thought by Einstein and others that a singularity in the

fabric of spacetime itself was an absurdity. But the embarrassment was a minor

one that could be swept under the rug; for the then known models of gr

containing singularities all embodied very special and physically unrealistic

features. Two developments forced a major shift in attitude. First, the

observation of the cosmic low temperature blackbody radiation lent credence to

the notion that our universe originated in a big bang singularity. Second, a

series of theorems due principally to Roger Penrose and Stephen Hawking

indicated that, according to gr, singularities can be expected to occur under

quite general conditions, both in cosmology and in gravitational collapse. Thus,

singularities cannot be swept under the rug; they are, so to speak, woven into

the pattern of the rug. These theorems might have been taken as turning what

was initially was only a minor embarrassment into a major scandal. Instead,

what occurred was a 180◦ reorientation: singularities were no longer relegated

to obscurity; rather they were to be recognized as a central feature of gr.


