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Corollary:

Yes, by coordinate transformation to -
-
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Thm: (“Optimal Regularity”) [R. & Temple, 2019]

Any LP connection can be regularised by coordinate transformation to

~

_one derivative above their L” Riemann curvature (“optimal regularity”).




?

‘Thm: (“Optimal Regularity”)

Any L? connection can be resularised by coordinate transformation to
Y g Y

one derivative above their L Riemann curvature 5

Proof:
Write connection transformation law

as solvable system of elliptic PDE’s
for the regularising transformation.



Optimal Regularity
and
Uhlenbeck Compactness



Covariant derivative V =0+ 1

The setting: /

e Connection components: [ = Fg. (k,i,j=1,...,n)

E.g.: Fg. = gkl(al-gﬂ +0,8; — 9,8;;) for a metric g;; .

® Their Riemann curvature: Riem(I') = Curl(T") + [, T']

Both defined on an open & bounded set Q2 C R”.

The problem of optimal regularity is local.

> The set 2 C R"” represents a chart (x, U) on a manifold, = x(U).



Optimal regularity and coordinate transformations:

Riem(I') € L?

“Optimal Regularity”

e 'el?” means ||['|Pdx < co component-wise

e TeW'” means 'el? & ol € L”
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Optimal regularity and coordinate transformations:
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Optimal regularity and coordinate transformations:

“Optimal Regularity”

I - T +0(4%)

Riem(I') — ag - Riem(I")



Optimal regularity and coordinate transformations:

o

Riem(I') € L? Riem(I') € L?

Question: dox — y 7




Optimal regularity and coordinate transformations:

Typical, when solving
Einstein equations.
E.g.: GR shock waves.

e lL?

9
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9
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* Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]



Optimal regularity and coordinate transformations:

e L%

9
ox

Riem(I') € L? Riem(I') € L?

Question: dx — y 7

Prior Results: Yes, smoothing transformation exists for...

* Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]

* Lorentzian metrics, (/.°”), under restrictive conditions, ruling out shock waves.
[Anderson, 2002] and [LeFloch & Chen, 2008]

* Lorentzian metrics, (/.°”), across single shock surfaces. [Israel, |966]

* Lorentzian metrics, (/.°”), across spherical shock interactions. [R. & Temple, 2014]



Optimal regularity and coordinate transformations:

e wtrp e L?

0 0

0y Oz

Riem(I') € L? Riem(I') € L?

Ne :L’M

Question: dx — y 7

-
Thm |: Yes, smoothing transformation exists...

~

.

for any affine connection, (p > n/2)!




‘Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021]

-

Let n/2 < p < c0. Assume that in x-coordinates
1Tl 2o + lIRIeM(I' )| 1 < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, & WP, such that

1w + 1l pr2r < CM),
dy

where J = — and C(M) > O depends only on Q,n,p & M > 0.

o0x

y,

Norms are taken component-wise in fixed x-coordinates.

Egs D= Y IS r = Y ([ Ik Pao)’

k,i,9 k,i,9

1

ICllwre = Dl ze + | DT| 2o



(Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021] a
Let n/2 < p < 00. Assume that in x-coordinates

1Tl 22 + [[Riem(T' Y|, < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, & WP, such that

1T e + [ llwr2r < CM),

where J = ? and C(M) > O depends only on Q,n,p & M > 0.
— * _J

* This extends optimal regularity result of Kazdan-DeTurck [ 81]

from Riemannian metrics to general affine connections.




(Thm |: (“Optimal Regularity”) [R.& Temple, 2019/2021] A
Let n/2 < p < 00. Assume that in x-coordinates

1Tl 22 + [[Riem(T' Y|, < M.

Then, locally there exists a coordinate transformation x — y
to a connection of optimal regularity, | |, € WP, such that

HFyHWLp + HJHWIQP S C(M)’

where J = ? and C(M) > O depends only on Q,n,p & M > 0.
— * _J

* This extends optimal regularity result of Kazdan-DeTurck [ 81]

from Riemannian metrics to general affine connections.

* Higher levels of optimal regularity [R. & Temple, 2018]:

I'.RiemT,) € W™ — T, € W™ > 1,p>n).



Our results extends from tangent bundles to vector bundles:

Tangent bundle.

Connection: T

dy

Transformation group: Jacobians J = —



Our results extends from tangent bundles to vector bundles:

Tangent bundle. (General Relativity) Vector bundle. (Yang-Mills Theory)
Connection: I Connection: (I', A)
Transformation group: Jacobians J =

S
| S

Transformation group: SO(r, s)

/

Signature of metric 7 in
orthogonality condition

U'nU =n.

o0x



Our results extends from tangent bundles to vector bundles:

Tangent bundle. (General Relativity) Vector bundle. (Yang-Mills Theory)

Connection: I’ Connection: (I', A)
0
Transformation group: Jacobians J = a_;yc Transformation group: SO(r, s)

Thm 1: (“Optimal regularity”) [R. & Temple, 20217
Assume ||, A)|l;2 + ||Riem(I", A ||, » <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, s),

to a connection of optimal regularity, (I, Ap) € WHP(Q),b=U-a,/] = %

Q’Vith ”(Fya Ab)”wl,p < C(M) and ”(Ja U)”WLZP < C(M)




Thm I: (“Optimal regularity’)
Assume ||[(T',, Ayll;2 + [|[Riem(T",, A)||;» <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, s),

to a connection of optimal regularity, (I';, A,) € Wlr(Q)

with [0, Ap)lyis < CM) and I D)l < CM).

‘ Banach-Alaoglu Theorem

4 R
Uhlenbeck compactness

for general connections

on vector bundles.




Thm I: (“Optimal regularity”)
Assume ||[(T',, Ay)|l;2 + [|[Riem(T", A)l|l;» <M, (p > n/2).

Then, locally there exists a coord./gauge transformation,x — y, U € SO(r, ),

to a connection of optimal regularity, (1, Ap) € 1424(9)

with  [|(T,Aplly, < CM)  and [, Dllyar < CM).

i Banach-Alaoglu Theorem

'Thm 2: (“Uhlenbeck compactness™) [R. & lemple, 2021

Let (I';, A;) € L™ be a sequence of connections on SO(r, §) vector

bundle in fixed gauge and x-coord’s.
Assume  [[(I';, A)ll» + |[Riem(L';, A)ll,, <M  for p > n.

Then, in coord’s/gauges (y;, b;) of optimal regularity, a subsequence

of (I'y, Ap ) converges weakly in W' and strongly in L?.
k l l




Thm 2: (“Uhlenbeck compactness™)

Let (I, A;) € L™ be a sequence of connections on SO(r, §) vector
bundle in fixed gauge and x-coord’s.
Assume  |[|(I', A)|l;~ + [|Riem(I", A)|[;, <M for p > n.

Then, in coord’s/gauges (y;, b;) of optimal regularity, a subsequence

of (I'y, Ap ) converges weakly in W' and strongly in L?.

K. Uhlenbeck’s original compactness theorem:

Assumes

» a fixed smooth Riemannian metric g on the base manifold, (I, =1 );

e connections A, € WP of optimal regularity (on fibre); p > %;

» ||Riem(A))||;» £ M. (invariant uniform bound)
* compact gauge group & C SO(n);

Asserts convergence of subsequence A ; weakly in W', strongly in L?.




The RI-equations

Proof of Main Theorem



The coordinate/gauge transformations which regularise a
connection (I', A) to optimal regularity, are solutions of the
Regularity Transformation (RT-) equations:




Regularity Transformation (RI-) equations:

Al'=68dT" — 8(dJ~' AdJ)+d(J'B)

AJ =86UJT) —(dJ;T") — B

dB = div(dJ AT) + div(JdT) — d({dJ: T))
5B =v

Regularises I

{AA = 8dA — 5(dU™" A dU) Regularises A

AU = USA — (U n)~1{dU"; ndU)
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o Unknowns (J,T, B) & (U, A) are matrix valued differential forms.
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—> ellipticity & non-invariance of RT-equations



Regularity Transformation (RI-) equations:

Al = 6dT = 6(dJ~ ' AdJ) + d(J~'B)
AJ =86UJT) —(dJ;T") — B

N . 3 Regularises [ by J
dB = div(dJ AT) + div(Jdl') — d({(dJ;T))

0B =V Independent
of each other!
AA = 5dA — 5(dU" A dU) /
T sel/ arrT Regularises A by U
AU = USA — (U'n) {dU";ndU)

/N AN

A Laplacian in R"  § co-derivative d exterior derivative

The RT-equations are elliptic regardless of metric signature.
* Unknowns (J, [,B) & (U, A) are matrix valued differential forms.

e We base co-derivative 0 on Euclidean metric in x-coordinates.

— & non-invariance of RT-equations



Derivation of affine RT-equations:

- =J"'JJ-T,

[
Connection Transfo. Law: I'=1,-J a7

7N

Optimal

g 1 Non-optimal
I~T'eWw?

[ €L?&dl', € L”

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv.Theor. Math. Phys. 24.5 (2020).
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/ Differentiate \
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Derivation of affine RT-equations:

Connection Transfo. Law: [ = I'.—J a7

/ Differentiate \

AJ=(dJ;(T,—D)y+J(6T, =) Al =68dT,—6(dJ~' AdJ) + dsT

g . )
For J to be integrable to coordinates,

we need Curl(J) = 0.
.

J




Derivation of affine R1-equations:

r=J"'J-T,
- A |
Connection Transfo. Law: I'=1 —J""'dJ

X

/ Differentiate \

AJ={dJ;T,-D)+J(6T,—6l) Al =68dT, —5(dJ~' AdJ) + doT

\r )
Introduce unknown B by /

B=JéT
\_

J

a )
For J to be integrable to coordinates,

we need Curl(J) = 0.
.

,

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Derivation of affine R1-equations:

r=J"'J-T,
. & |
Connection Transfo. Law: I'=1 . -J""dJ

/ Differentiate \

AJ=(dJ;T,-D)+J-6T . —B Al'=68dT,—8(dJ"' AdJ) +d(J'B)

\r )
Introduce unknown B by /

B=J6
k y
Motivated by “Riemann-flat condition’:
Coord’s of optimal regularity exist
< 3" with Riem(' -1 =0 . -
— —— _ R. & Temple, “... Riemann-flat condition...”,
< (dI =..0 |Arch.Rat.Mech. Anal.235.

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Derivation of affine RT-equations:

- =J7'JJ-T,

Connection Transfo. Law: I'=1,.-J a7

/ Differentiate \

AJ=(d];(T,-D)+J-6T,—B Al'=6dU,—5(dJ"" AdJ) +d(J'B)

Impose dJ = Curl(J/) =0 on B. = Jintegrable to coord’s

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv.Theor. Math. Phys. 24.5 (2020).



Derivation of affine R1-equations:

r=J"'JJ-T,
. & |
Connection Transfo. Law: I'=1 . -J""dJ

/ Differentiate \

AT ={(dJ;C,-D)+J-6I',—B Al =6dU,—5(dJ"" AdJ) +d(J7'B)

l Impose dJ = Curl(J/) =0 on B. = Jintegrable to coord’s

dB = div(dJ AT) + div(JdD) — d((dJ:T)) = Be L’

/ \

Controlled in LP By cancellation of 6I'-terms
dl' € [’ © Riem(I') € L”
forI' € L%

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Derivation of affine RT-equations:

~J

Connection Transfo. Law: I'=1, — J1dJ

/ Differentiate \

AJ={(dJ;(T -T))+J-6 —B Al'=68dT,—5(dJ"' AdJ) +d(J~'B)

l Impose dJ = Curl(J) =0 on B.

dB = div(dJ AT) + div(JdT) — d((dJ:T)) = Be L’

Al'=6dT — 8(dJ~' AdJ)+d(J'B)
Set 6B = v, AJ = 8(JT) — (dJ;T) — B
I dB = div(dJ AT) + div(JdT) — d({dJ; T))

éﬁzv H

the RT-equations.



Conversely:
If (J,T", B) solves the RT-equations,
then J is a Jacobian, integrable to coordinates,

which regularises I to optimal regularity.

Proof and existence theory require careful analysis...

M.R. & B.Temple,“The Regularity Transformation Equations...”, Adv. Theor. Math. Phys. 24.5 (2020).



Existence theory for affine RT-equations:

Obstacle!

v

AT = §dl" — 6(dJ =t AdJ) + d(J~1A),
AJ =6(JT) — (dJ;T) — A,

dA = div(d.J AT) + div(J dT) — d((dJ; TY),
§A = v,




Existence theory for affine RT-equations:

Loss of regularity in iteration:

dJ,dJ~' € L, but dJ~' AdJ & L.
AT = 6dl" — §(dJ- L AdJ) +d(JLA),
AJ = §(JT) — (dJ;T) — A,
dA = div(dJ AT) + div(J dT) — d({d.J;T}),
SA = v,




Existence theory for affine RT-equations:

Resolution: Remove dJ~! A dJ from
iteration, using “‘gauge-type” freedom.

AT = 6dl" — §(dJ- L AdJ) +d(JLA),
AJ =6(JT) — (dJ;T) — A,

dA = div(d.J AT) + div(J dT) — d((dJ; TY),
§A = v,

N

“Gauge-type” freedom




Existence theory for affine RT-equations:

AT = §dl — 6(dJ =t AdJT) + d(J~LA),
AJ = 6(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((dJ; V),
§A = v,

BA—I—{dJ;f)i w:v+5(<d(];l~“§>



Existence theory for affine RT-equations:

AT = §dl — 6(dJ =t AdJT) + d(J~LA),
AJ = 6(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((dJ; V),
§A = v,

BA—I—{dJ;f)i w:v+5(<d(];l~“§>

AT = §dl — 6(dJ ™t NdJ) + d(J 1 A)

AJ=46JT)—B <
dB = div(dJ AT) + div(.JdT')
6B = w

N

Free to choose!

Decoupling!




“Reduced Rl-equations”

Linear & independent of I'!

How RT-equations give transformation to optimal regularity:

* Integrability of J to coordinates:

— — 0—data — —
J-& B-eqns => A(dJ) =0, = dJ =Curl(J)=0whend /|, =0



AJ = §(JT) — B
dB = div(dJ AT) + div(.JdT)
6B = w

“Reduced RI-equations”

How RT-equations give transformation to optimal regularity:

* Integrability of J to coordinates:

— —> o—data —
J-& B-eq's = A(dJ)=0, — dJ = Curl(J) =0

» Optimal regularity is obtain as follows:

The reduced RT-equations induce cancellation of terms involving o1, which

implies I” =T" — J~'dJ solves the gauge transformed first RT-equation
AT = 6dT — 6(dJ L AdJ) +d(J 1B

Iy < COM) Il + ALl < M

(Ty))s = JL(T LI HLT)E

8%



' Thm: (“Existence”) (R. & Temple, 2019/2021)
Assume ||I",||;2 + |[Riem(I")||;, £ M in x-coordinates, (n/2 < p < ).

Then, locally, there exists a solution (J, B) € WL2P % % of the
reduced RT-eqn’s with Curl(J) = 0, J invertible, and

I = Jllwrze + 1T = T Hlwree + || Bl p2r < C(M)
kfor some constant C(M) > 0 only depending on M, 2, n, p.

™

Proof:
e[teration via Poisson & Cauchy-Riemann equations with W~1"-sources.

*Augment reduced RT-eqn’s by elliptic PDE’s to replace dJ = 0 with

Dirichlet data J = dy: qu, 30 I‘E 7 b
k+1 — k* — DPEk+1,

X Ayk—l-l — \Ijk—l-la

— A(J —dy) = 0.

J

*Introduce e-rescaling of equations by domain restriction. = Convergence.

*Extend existence theory for Cauchy-Riemann eqn’s to W~ !’-sources.
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Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

g A
Corollary:

The L metric connections of GR shock waves are regularised

ol € WP ie., to Holder continuity
=P (Geodesic curves exist.

=P | ocally inertial coordinates exist.
¥—> Metrics in C%! ~ W are regularised to W?? ~ C'*.

_J




Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

* Existence and uniqueness of geodesics for affine ¥ connections with
bounded curvature.

> Existence requires Riem(I') € L”.
» Uniqueness requires Riem(I") € W!».
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* GR-shock waves: Spacetime is non-singular.

Newtonian limit, locally inertial coordinates & geodesics exist.

* Existence and uniqueness of geodesics for affine ¥ connections with
bounded curvature. [arXiv:2306.04868]

> Existence requires Riem(I") € L”.
> Uniqueness requires Riem(I') € W',

> Geometric notion of “weak solution” in non-optimal coordinates.
» Zero-mollification limit to weak solution.



Applications:

* Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and tangent; non-compact groups SO(r, s).

* GR-shock waves: Spacetime is non-singular.

Newtonian limit, locally inertial coordinates & geodesics exist.

* Existence and uniqueness of geodesics for affine L” connections with
bounded curvature. [arXiv:2306.04868]

> Existence requires Riem(I") € L”.
> Uniqueness requires Riem(I') € W',
> Geometric notion of “weak solution” in non-optimal coordinates.

» Zero-mollification limit to weak solution.
> Applicable to general second order ODFE’s without underlying

geometry:

¢ +1(c)cc = K(t,c, C)

N

[P CcY1



Applications:

* Uhlenbeck compactness in Lorentzian geometry.

* GR-shock waves: Spacetime is non-singular.

* Existence and uniqueness of geodesics for affine ¥ connections with

bounded curvature.

* Strong Cosmic Censorship with bounded curvature.
Assume a family of maximal Cauchy developments of generic data is

inextendable as Lorentzian manifolds with metrics uniformly bounded in WP,

Then it is inextendable as Lorentzian manifolds with Lipschitz continuous

metrics uniformly bounded in C%! with curvature uniformly bounded in L”.
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* Existence and uniqueness of geodesics for affine ¥ connections with
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Then it is inextendable as Lorentzian manifolds with Lipschitz continuous

metrics uniformly bounded in C%! with curvature uniformly bounded in L”.

AN




Applications:

* Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and tangent; non-compact groups SO(r, s).

* GR-shock waves: Spacetime is non-singular.

Newtonian limit, locally inertial coordinates & geodesics exist.

* Existence and uniqueness of geodesics for affine L” connections with

bounded curvature. [arXiv:2306.04868]
Riem(I') € L? = existence; Riem(I') € W!* = uniqueness.

* Strong Cosmic Censorship with bounded curvature. [arXiv:2304.04444]

Inextendability with C%! metrics with L? Riemann curvature.

» Penrose Singularity Thm for C%! metrics of bounded curvature. [to come]
> Assumes covering of coordinate patches with metrics uniformly bounded in

C%! and curvature uniformly bounded in L .

> Builds heavily on work by Graf ['20], and Kunzinger, Steinbauer, ... ['15,°18,°22]

> Spacetimes violating this assumptions are quite singular to begin with...
[Crusciel-Grant, ' | 2]



Conclusion:
Curvature always controls the derivative of a connection,

regardless of metric and metric signature,
as a consequence of the connection transformation law,
expressed as the elliptic RT-equations.

* M. R. & B. Temple, “Optimal regularity and Uhlenbeck compactness for General Relativity and Yang-
Mills Theory”, (2022), Proc. Roy. Soc. A 479:20220444. [arXiv:2202.09535]

* MR. & B. Temple, “On the Optimal Regularity Implied by the Assumptions of Geometry I:
Connections on Tangent Bundles”, (2019/2021), 100 pages, Meth. Appl. Analysis. [arXiv:1912.12997]

* MR. & B.Temple, “On the Optimal Regularity Implied by the Assumptions of Geometry II:
Connections on Vector Bundles”, (2021), 40 pages. [arXiv:2105.10765]



Conclusion:
Curvature always controls the derivative of a connection,

regardless of metric and metric signature,
as a consequence of the connection transformation law,
expressed as the elliptic RT-equations.

Thank you very much
, for your attention!
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