Optimal regularity and Uhlenbeck compactness in Lorentzian geometry and beyond

Moritz Reintjes

Assistant Professor
City University of Hong Kong

Singularities and Curvature in General Relativity

23 June 2023

Funding: CityU Start-up Grant & CityU Strategic Grant, (current)

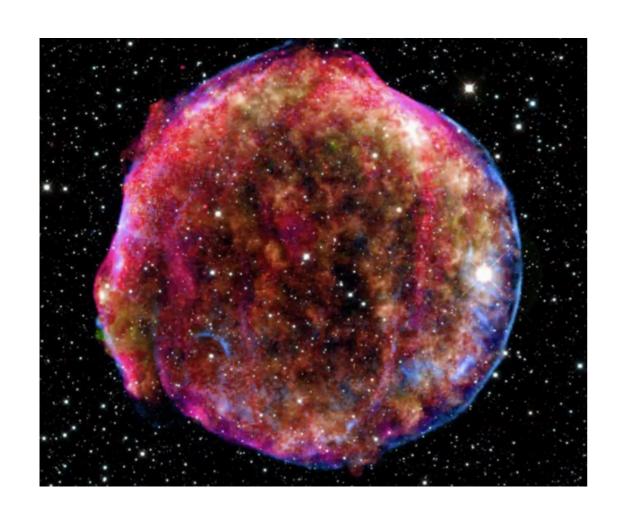
DFG - German Research Foundation, (2019 - 2021);

FCT/Portugal and CAMGSD, Instituto Superior Técnico, (2017 - 2018).

Collaborator: Blake Temple (University of California, Davis)

Preview

[Groah-Temple, `04]



Can one remove these "singularities" in the metric tensor?

Can one remove these "singularities" in the metric tensor?

Corollary: [R. & Temple, 2019.]

Yes, by coordinate transformation to optimal regularity.

Can one remove these "singularities" in the metric tensor?

Corollary: [R. & Temple, 2019.]

Yes, by coordinate transformation to optimal regularity.

Thm: ("Optimal Regularity") [R. & Temple, 2019]

Any L^p connection can be regularised by coordinate transformation to one derivative above their L^p Riemann curvature ("optimal regularity").

Can one remove these "singularities" in the metric tensor?

Corollary: [R. & Temple, 2019.]

Yes, by coordinate transformation to optimal regularity.

Thm: ("Optimal Regularity") [R. & Temple, 2019]

Any L^p connection can be regularised by coordinate transformation to one derivative above their L^p Riemann curvature ("optimal regularity").

Proof:

Write connection transformation law as solvable system of elliptic PDE's for the regularising transformation.

Optimal Regularity and Uhlenbeck Compactness

The setting:

Covariant derivative $\nabla = \partial + \Gamma$

Connection components:
$$\Gamma \equiv \Gamma_{ij}^{k}$$
 $(k, i, j = 1,...,n)$

E.g.:
$$\Gamma^k_{ij} = g^{kl}(\partial_i g_{jl} + \partial_j g_{il} - \partial_l g_{ij})$$
 for a metric g_{ij} .

• Their Riemann curvature:

$$Riem(\Gamma) = Curl(\Gamma) + [\Gamma, \Gamma]$$

Both defined on an open & bounded set $\Omega \subset \mathbb{R}^n$.

The problem of optimal regularity is local.

• The set $\Omega \subset \mathbb{R}^n$ represents a chart (x, U) on a manifold, $\Omega = x(U)$.

$$\Gamma \in W^{1,p}$$

$$\downarrow \frac{\partial}{\partial y}$$

$$Riem(\Gamma) \in L^p$$

"Optimal Regularity"

- $\Gamma \in L^p$ means $\int |\Gamma|^p dx < \infty$ component-wise
- $\Gamma \in W^{1,p}$ means $\Gamma \in L^p \& \partial \Gamma \in L^p$

$$\Gamma \in W^{1,p}$$

$$\downarrow \frac{\partial}{\partial y}$$
 $\mathrm{Riem}(\Gamma) \in L^p$
"Optimal Regularity"

$$\Gamma \in L^{2p}$$

$$\downarrow \frac{\partial}{\partial x}$$

$$Riem(\Gamma) \in L^{p}$$

"Non-optimal Regularity"

- $\Gamma \in L^p$ means $|\Gamma|^p dx < \infty$ component-wise
- $\Gamma \in W^{1,p}$ means $\Gamma \in L^p \& \partial \Gamma \in L^p$

$$\Gamma \in W^{1,p}$$

$$\downarrow \frac{\partial}{\partial y}$$

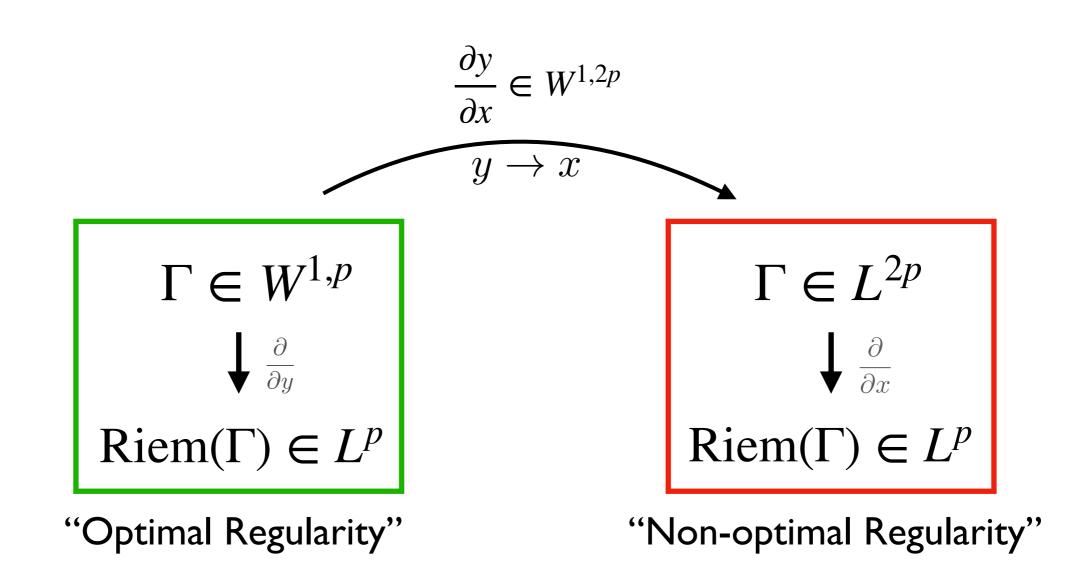
$$\mathrm{Riem}(\Gamma) \in L^p$$
"Optimal Regularity"

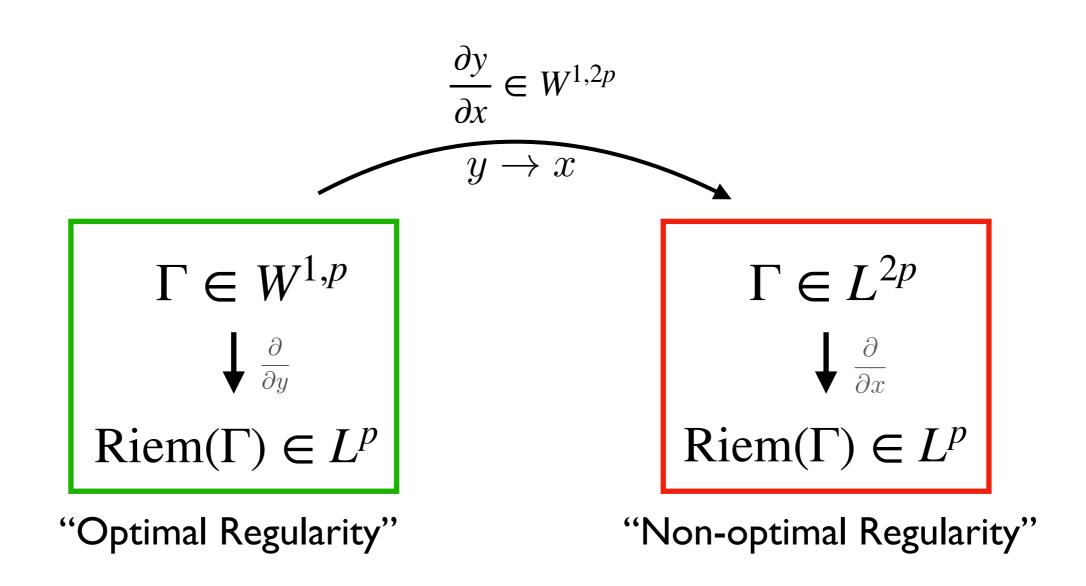
$$\Gamma \in L^{2p}$$

$$\downarrow \frac{\partial}{\partial x}$$

$$Riem(\Gamma) \in L^{p}$$

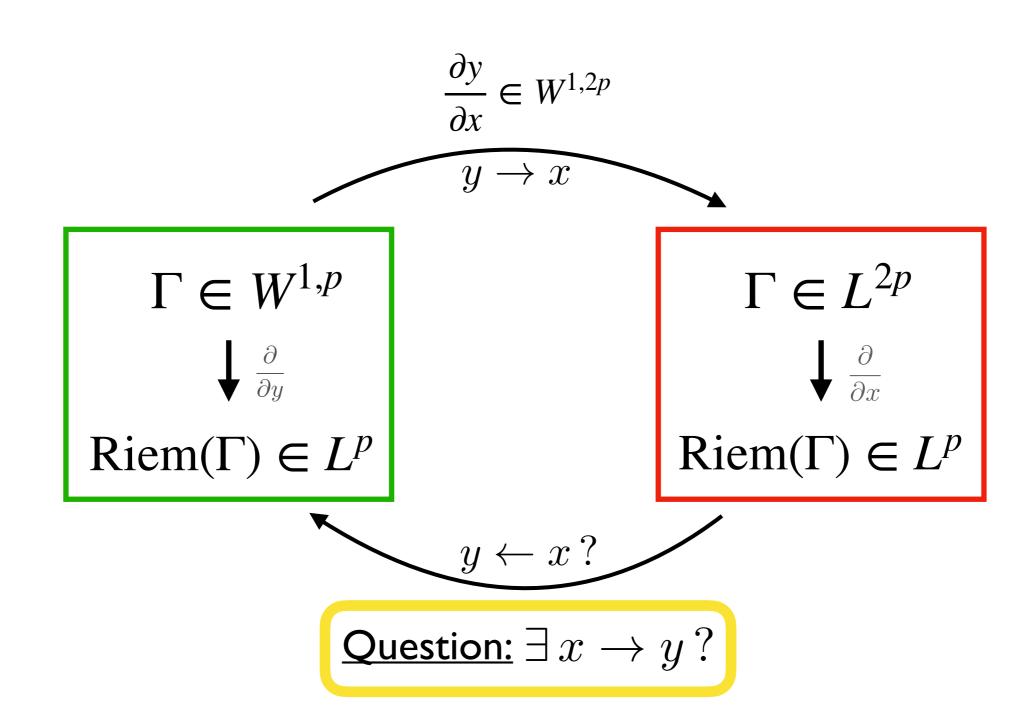
"Non-optimal Regularity"

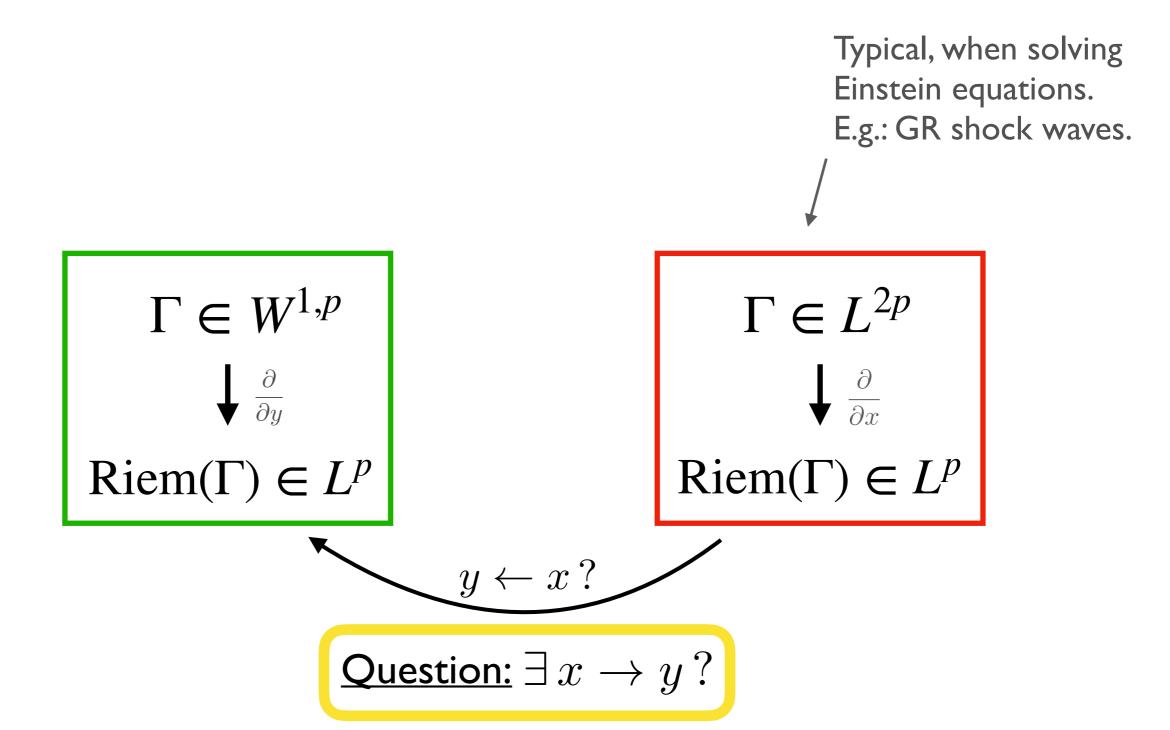


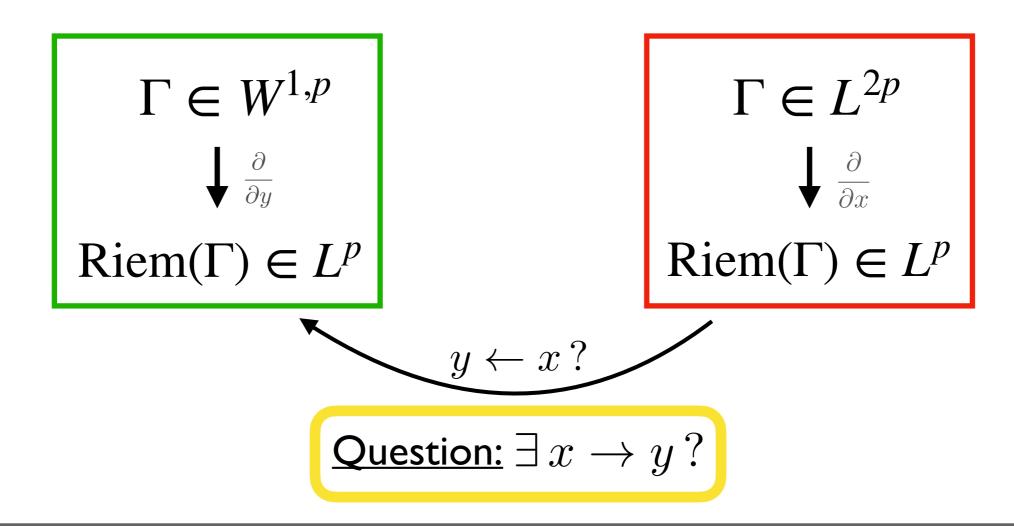


$$\Gamma \to \Gamma + \partial(\frac{\partial x}{\partial y})$$

$$\operatorname{Riem}(\Gamma) \to \frac{\partial x}{\partial y} \cdot \operatorname{Riem}(\Gamma)$$

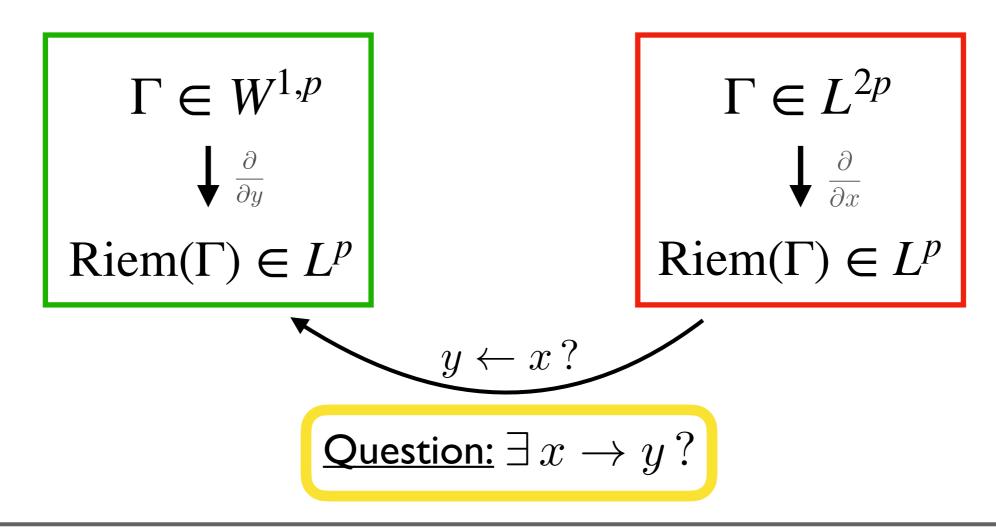






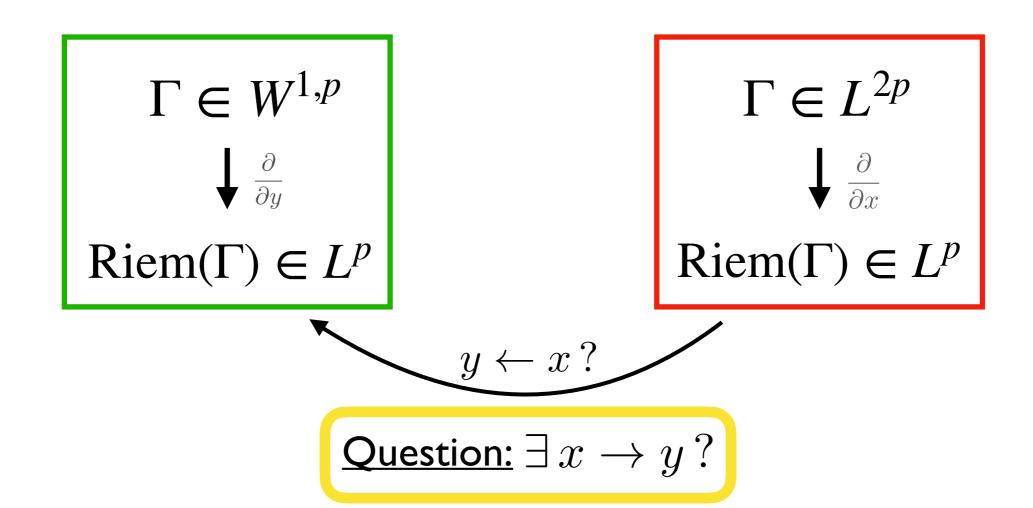
Prior Results: Yes, smoothing transformation exists for...

• Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]



Prior Results: Yes, smoothing transformation exists for...

- Riemannian metrics (pos. def.). [Kazdan-DeTurck, 1981]
- Lorentzian metrics, (L^{∞}) , under restrictive conditions, ruling out shock waves. [Anderson, 2002] and [LeFloch & Chen, 2008]
- Lorentzian metrics, (L^{∞}) , across <u>single</u> shock surfaces. [Israel, 1966]
- Lorentzian metrics, (L^{∞}) , across spherical shock interactions. [R. & Temple, 2014]



Thm I: Yes, smoothing transformation exists... for any affine connection, (p > n/2)!

Thm I: ("Optimal Regularity") [R. & Temple, 2019/2021] Let n/2 . Assume that in x-coordinates

$$\|\Gamma_{x}\|_{L^{2p}} + \|\operatorname{Riem}(\Gamma_{x})\|_{L^{p}} \leq M.$$

Then, locally there exists a coordinate transformation $x \to y$ to a connection of optimal regularity, $\Gamma_y \in W^{1,p}$, such that

$$\|\Gamma_{y}\|_{W^{1,p}} + \|J\|_{W^{1,2p}} \leq C(M),$$

where $J \equiv \frac{\partial y}{\partial x}$ and C(M) > 0 depends only on $\Omega, n, p \& M > 0$.

Norms are taken component-wise in fixed x-coordinates.

$$\underline{\textbf{E.g.:}} \qquad \|\Gamma\|_{L^p} \equiv \sum_{k,i,j} \|\Gamma^k_{ij}\|_{L^p} = \sum_{k,i,j} \left(\int_{\Omega} |\Gamma^k_{ij}|^p dx \right)^{\frac{1}{p}}$$

$$\|\Gamma\|_{W^{1,p}} \equiv \|\Gamma\|_{L^p} + \|D\Gamma\|_{L^p}$$

Thm 1: ("Optimal Regularity") [R. & Temple, 2019/2021] Let $n/2 . Assume that in x-coordinates <math display="block">\|\Gamma_x\|_{L^{2p}} + \|\mathrm{Riem}(\Gamma_x)\|_{L^p} \leq M.$ Then, locally there exists a coordinate transformation $x \to y$ to a connection of optimal regularity, $\Gamma_y \in W^{1,p}$, such that $\|\Gamma_y\|_{W^{1,p}} + \|J\|_{W^{1,2p}} \leq C(M),$ where $J \equiv \frac{\partial y}{\partial x}$ and C(M) > 0 depends only on $\Omega, n, p \ \& M > 0$.

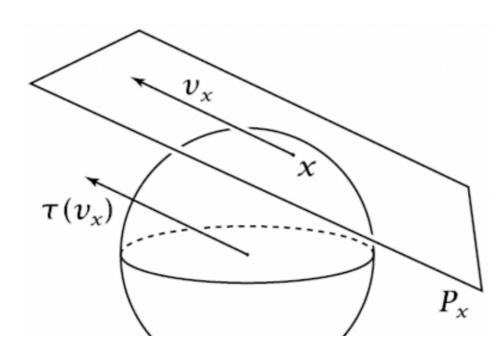
This extends optimal regularity result of Kazdan-DeTurck [`81]
 from <u>Riemannian metrics</u> to general <u>affine connections</u>.

Thm 1: ("Optimal Regularity") [R. & Temple, 2019/2021] Let $n/2 . Assume that in x-coordinates <math display="block"> \|\Gamma_x\|_{L^{2p}} + \|\mathrm{Riem}(\Gamma_x)\|_{L^p} \leq M.$ Then, locally there exists a coordinate transformation $x \to y$ to a connection of optimal regularity, $\Gamma_y \in W^{1,p}$, such that $\|\Gamma_y\|_{W^{1,p}} + \|J\|_{W^{1,2p}} \leq C(M),$ where $J = \frac{\partial y}{\partial x}$ and C(M) > 0 depends only on $O(x, y) \in M > 0$

- where $J \equiv \frac{\partial y}{\partial x}$ and C(M) > 0 depends only on $\Omega, n, p \& M > 0$.
 - This extends optimal regularity result of Kazdan-DeTurck ['81] from Riemannian metrics to general affine connections.
 - Higher levels of optimal regularity [R. & Temple, 2018]:

$$\Gamma_x$$
, Riem $(\Gamma_x) \in W^{m,p} \longrightarrow \Gamma_y \in W^{m+1,p}$, $(m \ge 1, p > n)$.

Our results extends from tangent bundles to vector bundles:

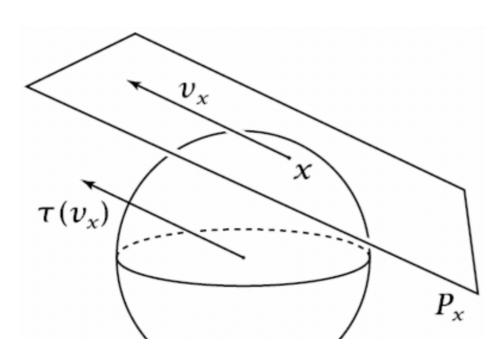


Tangent bundle. (General Relativity)

Connection: Γ

Transformation group: Jacobians $J = \frac{\partial y}{\partial x}$

Our results extends from tangent bundles to vector bundles:



Tangent bundle. (General Relativity)

Connection: Γ

Transformation group: Jacobians $J = \frac{\partial y}{\partial x}$

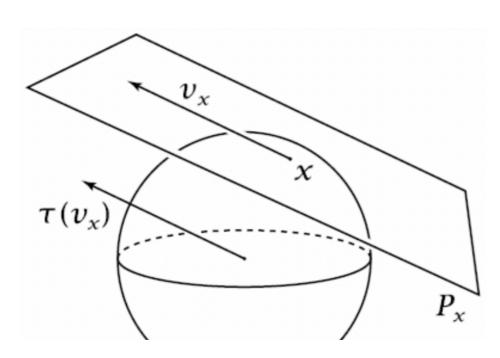
Vector bundle. (Yang-Mills Theory)

Connection: (Γ, \mathbf{A})

Transformation group: SO(r, s)

Signature of metric η in orthogonality condition $U^T \eta U = \eta$.

Our results extends from tangent bundles to vector bundles:



Tangent bundle. (General Relativity)

Connection: Γ

Transformation group: Jacobians $J = \frac{\partial y}{\partial x}$

Vector bundle. (Yang-Mills Theory)

Connection: (Γ, \mathbf{A})

Transformation group: SO(r, s)

Thm I: ("Optimal regularity") [R. & Temple, 2021]

Assume $\|(\Gamma_x, \mathbf{A_a})\|_{L^{2p}} + \|\text{Riem}(\Gamma_x, \mathbf{A_a})\|_{L^p} \le M$, (p > n/2).

Then, locally there exists a coord./gauge transformation, $x \to y$, $U \in SO(r, s)$,

to a connection of optimal regularity, $(\Gamma_y, \mathbf{A_b}) \in W^{1,p}(\Omega)$, $\mathbf{b} = U \cdot \mathbf{a}$, $J \equiv \frac{\partial y}{\partial x}$

with $\|(\Gamma_{v}, \mathbf{A_{b}})\|_{W^{1,p}} \le C(M)$ and $\|(J, U)\|_{W^{1,2p}} \le C(M)$.

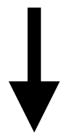
Thm I: ("Optimal regularity") [R. & Temple, 2021]

Assume $\|(\Gamma_x, \mathbf{A_a})\|_{L^{2p}} + \|\text{Riem}(\Gamma_x, \mathbf{A_a})\|_{L^p} \le M$, (p > n/2).

Then, locally there exists a coord./gauge transformation, $x \to y$, $U \in SO(r, s)$,

to a connection of optimal regularity, $(\Gamma_y, \mathbf{A_b}) \in W^{1,p}(\Omega)$, $\mathbf{b} = U \cdot \mathbf{a}$, $J \equiv \frac{\partial y}{\partial x}$

with $\|(\Gamma_{v}, \mathbf{A_{b}})\|_{W^{1,p}} \le C(M)$ and $\|(J, U)\|_{W^{1,2p}} \le C(M)$.



Banach-Alaoglu Theorem

Uhlenbeck compactness for general connections on vector bundles.

Thm I: ("Optimal regularity") [R. & Temple, 2021]

Assume $\|(\Gamma_x, \mathbf{A_a})\|_{L^{2p}} + \|\text{Riem}(\Gamma_x, \mathbf{A_a})\|_{L^p} \le M$, (p > n/2).

Then, locally there exists a coord./gauge transformation, $x \to y$, $U \in SO(r, s)$,

to a connection of optimal regularity, $(\Gamma_y, \mathbf{A_b}) \in W^{1,p}(\Omega)$, $\mathbf{b} = U \cdot \mathbf{a}$, $J \equiv \frac{\partial y}{\partial x}$

with $\|(\Gamma_y, \mathbf{A_b})\|_{W^{1,p}} \le C(M)$ and $\|(J, U)\|_{W^{1,2p}} \le C(M)$.

Banach-Alaoglu Theorem

Thm 2: ("Uhlenbeck compactness") [R. & Temple, 2021]

Let $(\Gamma_i, \mathbf{A}_i) \in L^{\infty}$ be a sequence of connections on SO(r, s) vector bundle in fixed gauge and x-coord's.

Assume $\|(\Gamma_i, \mathbf{A}_i)\|_{L^{\infty}} + \|\operatorname{Riem}(\Gamma_i, \mathbf{A}_i)\|_{L^p} \le M$ for p > n.

Then, in coord's/gauges (y_i, b_i) of optimal regularity, a subsequence of $(\Gamma_{y_i}, \mathbf{A}_{\mathbf{b}_i})$ converges weakly in $W^{1,p}$ and strongly in L^p .

Thm 2: ("Uhlenbeck compactness") [R. & Temple, 2021]

Let $(\Gamma_i, \mathbf{A}_i) \in L^{\infty}$ be a sequence of connections on SO(r, s) vector bundle in fixed gauge and x-coord's.

Assume $\|(\Gamma_i, \mathbf{A}_i)\|_{L^{\infty}} + \|\operatorname{Riem}(\Gamma_i, \mathbf{A}_i)\|_{L^p} \le M$ for p > n.

Then, in coord's/gauges (y_i, b_i) of optimal regularity, a subsequence of $(\Gamma_{y_i}, \mathbf{A}_{b_i})$ converges weakly in $W^{1,p}$ and strongly in L^p .

K. Uhlenbeck's original compactness theorem: ['82; Abel & Steele Prize]

Assumes

- a fixed smooth Riemannian metric g on the base manifold, $(\Gamma_i \equiv \Gamma_g)$;
- connections $\mathbf{A}_i \in W^{1,p}$ of optimal regularity (on fibre); $p \geq \frac{n}{2}$;
- $\|\text{Riem}(\mathbf{A}_i)\|_{L^p} \leq M$. (invariant uniform bound)
- compact gauge group $\mathcal{G} \subset SO(n)$;

Asserts convergence of subsequence A_i weakly in $W^{1,p}$, strongly in L^p .

The RT-equations

Proof of Main Theorem

The coordinate/gauge transformations which regularise a connection (Γ, \mathbf{A}) to optimal regularity, are solutions of the <u>Regularity Transformation (RT-) equations</u>:

The coordinate/gauge transformations which regularise a connection (Γ, \mathbf{A}) to optimal regularity, are solutions of the <u>Regularity Transformation (RT-) equations</u>:

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - B \\ d\vec{B} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (Jd\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle) \\ \delta \vec{B} = v \end{cases}$$

Regularises Γ by J

$$\begin{cases} \Delta \tilde{\mathbf{A}} = \delta d\mathbf{A} - \delta (dU^{-1} \wedge dU) \\ \Delta U = U\delta \mathbf{A} - (U^{T} \eta)^{-1} \langle dU^{T}; \eta dU \rangle \end{cases}$$

Regularises \mathbf{A} by U

The coordinate/gauge transformations which regularise a connection (Γ, \mathbf{A}) to optimal regularity, are solutions of the Regularity Transformation (RT-) equations:

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - B \\ d\vec{B} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (Jd\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle) \\ \delta \vec{B} = v \end{cases}$$

Regularises Γ by J

$$\begin{cases} \Delta \tilde{\mathbf{A}} = \delta d\mathbf{A} - \delta (dU^{-1} \wedge dU) \\ \Delta U = U\delta \mathbf{A} - (U^{T} \eta)^{-1} \langle dU^{T}; \eta dU \rangle \end{cases}$$

Regularises \mathbf{A} by U

The RT-equations are elliptic regardless of metric signature.

Regularity Transformation (RT-) equations:

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - B \\ d\vec{B} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (Jd\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle) \\ \delta \vec{B} = v \end{cases}$$

Regularises Γ by J

$$\begin{cases} \Delta \tilde{\mathbf{A}} = \delta d\mathbf{A} - \delta (dU^{-1} \wedge dU) \\ \Delta U = U \delta \mathbf{A} - (U^T \eta)^{-1} \langle dU^T; \eta dU \rangle \end{cases}$$
 Laplacian in \mathbb{R}^n δ co-derivative d exterior derivative

Regularises A by U

The RT-equations are elliptic regardless of metric signature.

• Unknowns $(J, \tilde{\Gamma}, B)$ & $(U, \tilde{\mathbf{A}})$ are matrix valued differential forms.

Regularity Transformation (RT-) equations:

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - B \\ d\vec{B} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (Jd\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle) \\ \delta \vec{B} = v \end{cases}$$

Regularises Γ by J

$$\begin{cases} \Delta \tilde{\mathbf{A}} = \delta d\mathbf{A} - \delta (dU^{-1} \wedge dU) \\ \Delta U = U \delta \mathbf{A} - (U^T \eta)^{-1} \langle dU^T; \eta dU \rangle \end{cases}$$
 Laplacian in \mathbb{R}^n δ co-derivative d exterior derivative

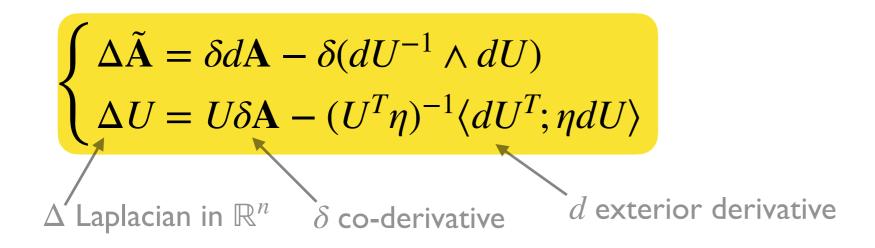
Regularises \mathbf{A} by U

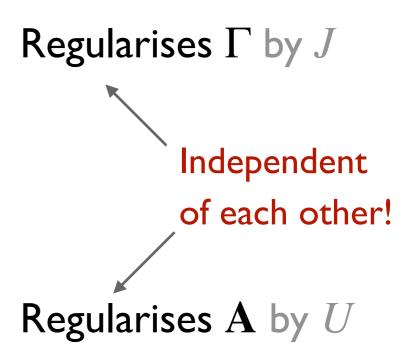
The RT-equations are elliptic regardless of metric signature.

- Unknowns $(J, \tilde{\Gamma}, B)$ & $(U, \tilde{\mathbf{A}})$ are matrix valued differential forms.
- We base co-derivative δ on Euclidean metric in x-coordinates.
 - ⇒ ellipticity & non-invariance of RT-equations

Regularity Transformation (RT-) equations:

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - B \\ d\vec{B} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (Jd\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle) \\ \delta \vec{B} = v \end{cases}$$





The RT-equations are elliptic regardless of metric signature.

- Unknowns $(J, \tilde{\Gamma}, B)$ & $(U, \tilde{\mathbf{A}})$ are matrix valued differential forms.
- We base co-derivative δ on Euclidean metric in x-coordinates.
 - ellipticity & non-invariance of RT-equations

Derivation of affine RT-equations:

Connection Transfo. Law:
$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_y$$

$$\tilde{\Gamma} = \Gamma_x - J^{-1}dJ$$

$$\text{Optimal}$$

$$\Gamma_y \sim \tilde{\Gamma} \in W^{1,p}$$

$$\Gamma_x \in L^{2p} \& d\Gamma_x \in L^p$$

$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_{y}$$

$$\tilde{\Gamma} = \Gamma_{x} - J^{-1}dJ$$

Connection Transfo. Law:

$$\Delta J = \langle dJ; (\Gamma_{\rm x} - \tilde{\Gamma}) \rangle + J \left(\delta \Gamma_{\rm x} - \delta \tilde{\Gamma} \right) \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{\rm x} - \delta \left(dJ^{-1} \wedge dJ \right) + d\delta \tilde{\Gamma}$$

$$\Delta \equiv d\delta + \delta d$$
 Laplacian in \mathbb{R}^n

$$\Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta (dJ^{-1} \wedge dJ) + d\delta \tilde{\Gamma}$$

$$\Delta \equiv d\delta + \delta d$$
 Laplacian in \mathbb{R}^n

Connection Transfo. Law:
$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_y$$

$$\tilde{\Gamma} = \Gamma_x - J^{-1}dJ$$
 Differentiate

$$\Delta J = \langle dJ; (\Gamma_{\mathbf{x}} - \tilde{\Gamma}) \rangle + J \left(\delta \Gamma_{\mathbf{x}} - \delta \tilde{\Gamma} \right) \qquad \Delta \tilde{\Gamma} = \delta d \Gamma_{\mathbf{x}} - \delta \left(dJ^{-1} \wedge dJ \right) + d\delta \tilde{\Gamma}$$

$$\Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta (dJ^{-1} \wedge dJ) + d\delta \tilde{\Gamma}$$

For J to be integrable to coordinates, we need Curl(J) = 0.

$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_{y}$$

Connection Transfo. Law:
$$\tilde{\Gamma} = \Gamma_{\chi} - J^{-1} dJ$$

Differentiate

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \left(\delta \Gamma_{x} - \delta \tilde{\Gamma} \right) \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta \left(dJ^{-1} \wedge dJ \right) + d\delta \tilde{\Gamma}$$

$$\Delta \tilde{\Gamma} = \delta d \Gamma_{x} - \delta (dJ^{-1} \wedge dJ) + d\delta \tilde{\Gamma}$$

Introduce unknown B by $B \equiv J \delta \tilde{\Gamma}$

For J to be integrable to coordinates, we need Curl(J) = 0.

$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_{y}$$

Connection Transfo. Law:

$$\tilde{\Gamma} = \Gamma_{x} - J^{-1}dJ$$

Differentiate

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}B)$$

Introduce unknown B by $B \equiv J \delta \tilde{\Gamma}$

Coord's of optimal regularity exist

$$\iff \exists \tilde{\Gamma} \text{ with } \underline{\text{Riem}(\Gamma - \tilde{\Gamma}) = 0}$$

R. & Temple, "... Riemann-flat condition...", Arch. Rat. Mech. Anal. 235.

Connection Transfo. Law:
$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_{J}$$
 Differentiate

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B)$$

Impose $d\overrightarrow{J} \equiv \text{Curl}(J) = 0$ on B. $\Rightarrow J$ integrable to coord's

$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_y$$

Connection Transfo. Law:
$$\tilde{\Gamma} = \Gamma_x - J^{-1} dJ$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}B)$$

Impose $d\overrightarrow{J} \equiv \operatorname{Curl}(J) = 0$ on B. $\Rightarrow J$ integrable to coord's

$$d\overrightarrow{B} = \overrightarrow{\operatorname{div}}(dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}}(Jd\Gamma) - d(\overrightarrow{\langle dJ; \widetilde{\Gamma} \rangle}) \Rightarrow B \in L^p$$

Controlled in L^p

$$d\Gamma \in L^p \Leftrightarrow \operatorname{Riem}(\Gamma) \in L^p$$

for $\Gamma \in L^{2p}$

$$\Rightarrow B \in L^p$$

By cancellation of $\delta\Gamma$ -terms

$$\tilde{\Gamma} \equiv J^{-1}JJ \cdot \Gamma_{y}$$

Connection Transfo. Law:
$$\tilde{\Gamma} = \Gamma_{\chi} - J^{-1}dJ$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B$$

$$\Delta J = \langle dJ; (\Gamma_{x} - \tilde{\Gamma}) \rangle + J \cdot \delta \Gamma_{x} - B \qquad \Delta \tilde{\Gamma} = \delta d\Gamma_{x} - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}B)$$

Impose $d\overrightarrow{J} \equiv \operatorname{Curl}(J) = 0$ on B. $\Rightarrow J$ integrable to coord's

$$d\overrightarrow{B} = \overrightarrow{\operatorname{div}}(dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}}(Jd\Gamma) - d(\overrightarrow{\langle dJ; \widetilde{\Gamma} \rangle}) \Rightarrow B \in L^p$$

Set
$$\overrightarrow{\delta B} = v$$
,
for v free

Set
$$\delta \overrightarrow{B} = v$$
, for v free vector field
$$\begin{cases} \Delta \widetilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B) \\ \Delta J = \delta (J\Gamma) - \langle dJ; \widetilde{\Gamma} \rangle - B \\ d\overrightarrow{B} = \overrightarrow{\operatorname{div}}(dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}}(Jd\Gamma) - d(\langle dJ; \widetilde{\Gamma} \rangle) \\ \delta \overrightarrow{B} = v \end{cases}$$

the RT-equations.

Conversely:

If $(J, \tilde{\Gamma}, B)$ solves the RT-equations, then J is a Jacobian, integrable to coordinates, which regularises Γ to optimal regularity.

Proof and existence theory require careful analysis...

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}A), \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - A, \\ d\vec{A} = \overrightarrow{\operatorname{div}} \left(dJ \wedge \Gamma \right) + \overrightarrow{\operatorname{div}} \left(J d\Gamma \right) - d \left(\overline{\langle dJ; \tilde{\Gamma} \rangle} \right), \\ \delta \vec{A} = v, \end{cases}$$

Loss of regularity in iteration:

dJ, $dJ^{-1} \in L^{2p}$, but $dJ^{-1} \wedge dJ \notin L^{2p}$.

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}A), \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - A, \\ d\vec{A} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (J d\Gamma) - d(\overrightarrow{\langle dJ; \tilde{\Gamma} \rangle}), \\ \delta \vec{A} = v, \end{cases}$$

Resolution: Remove $dJ^{-1} \wedge dJ$ from iteration, using "gauge-type" freedom.

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}A), \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - A, \\ d\vec{A} = \overrightarrow{\operatorname{div}} \left(dJ \wedge \Gamma \right) + \overrightarrow{\operatorname{div}} \left(J d\Gamma \right) - d\left(\overrightarrow{\langle dJ; \tilde{\Gamma} \rangle} \right), \\ \delta \vec{A} = v, \end{cases}$$

"Gauge-type" freedom

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta \left(dJ^{-1} \wedge dJ \right) + d(J^{-1}A), \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - A, \\ d\vec{A} = \overrightarrow{\operatorname{div}} \left(dJ \wedge \Gamma \right) + \overrightarrow{\operatorname{div}} \left(J d\Gamma \right) - d(\langle dJ; \tilde{\Gamma} \rangle), \\ \delta \vec{A} = v, \end{cases}$$

$$B \equiv A + \langle dJ; \tilde{\Gamma} \rangle \qquad \qquad w = v + \delta \left(\overline{\langle dJ; \tilde{\Gamma} \rangle} \right)$$

$$\begin{cases} \Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}A), \\ \Delta J = \delta (J\Gamma) - \langle dJ; \tilde{\Gamma} \rangle - A, \\ d\vec{A} = \overrightarrow{\operatorname{div}} (dJ \wedge \Gamma) + \overrightarrow{\operatorname{div}} (J d\Gamma) - d(\langle dJ; \tilde{\Gamma} \rangle), \\ \delta \vec{A} = v, \end{cases}$$

$$B \equiv A + \langle dJ; \tilde{\Gamma} \rangle \qquad w = v + \delta \left(\overline{\langle dJ; \tilde{\Gamma} \rangle} \right)$$

$$\Delta \tilde{\Gamma} = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}A)$$

$$\Delta J = \delta (J\Gamma) - B$$

$$d\vec{B} = \overrightarrow{\text{div}}(dJ \wedge \Gamma) + \overrightarrow{\text{div}}(Jd\Gamma)$$

$$\delta \vec{B} = w$$

Decoupling!

Free to choose!

$$\Delta J = \delta(J\Gamma) - B$$

$$d\vec{B} = \overrightarrow{\text{div}}(dJ \wedge \Gamma) + \overrightarrow{\text{div}}(Jd\Gamma)$$

$$\delta \vec{B} = w$$

"Reduced RT-equations"

Linear & independent of $\tilde{\Gamma}!$

How RT-equations give transformation to optimal regularity:

ullet Integrability of J to coordinates:

$$J$$
- & \overrightarrow{B} -eqn's $\Longrightarrow \Delta(d\overrightarrow{J})=0$, $\overset{\partial-data}{\Longrightarrow} d\overrightarrow{J}\equiv \operatorname{Curl}(J)=0$ when $d\overrightarrow{J}|_{\partial\Omega}=0$.

$$\Delta J = \delta(J\Gamma) - B$$

$$d\vec{B} = \overrightarrow{\text{div}}(dJ \wedge \Gamma) + \overrightarrow{\text{div}}(Jd\Gamma)$$

$$\delta \vec{B} = w$$

"Reduced RT-equations"

Linear & independent of $\tilde{\Gamma}!$

How RT-equations give transformation to optimal regularity:

ullet Integrability of J to coordinates:

$$J\text{- \& \overrightarrow{B}-eqn's }\Longrightarrow \Delta(d\overrightarrow{J})=0, \ \stackrel{\partial-data}{\Longrightarrow} d\overrightarrow{J}\equiv \operatorname{Curl}(J)=0 \text{ when } d\overrightarrow{J}|_{\partial\Omega}=0.$$

Optimal regularity is obtain as follows:

The reduced RT-equations induce cancellation of terms involving $\delta\Gamma$, which implies $\tilde{\Gamma}' \equiv \Gamma - J^{-1}dJ$ solves the gauge transformed first RT-equation

implies
$$\Gamma = \Gamma - J^{-1} dJ$$
 solves the gauge transformed first K1-equation
$$\Delta \tilde{\Gamma}' = \delta d\Gamma - \delta (dJ^{-1} \wedge dJ) + d(J^{-1}B')$$

$$\implies \|\tilde{\Gamma}'\|_{W^{1,p}} \leq C(M)$$

$$\|\Gamma_x\|_{L^{2p}} + \|d\Gamma_x\|_{L^p} \leq M$$

$$\implies \|\Gamma_y\|_{W^{1,p}} \leq C(M)$$

$$(\Gamma_y)_{\alpha\beta}^{\gamma} \equiv J_k^{\gamma} (J^{-1})_{\alpha}^i (J^{-1})_{\beta}^j (\tilde{\Gamma}')_{ij}^k$$

Thm: ("Existence") (R. & Temple, 2019/2021)

Assume $\|\Gamma_x\|_{L^{2p}} + \|\operatorname{Riem}(\Gamma_x)\|_{L^p} \le M$ in x-coordinates, (n/2 .

Then, locally, there exists a solution $(J,B)\in W^{1,2p}\times L^{2p}$ of the

reduced RT-eqn's with Curl(J) = 0, J invertible, and

$$||I - J||_{W^{1,2p}} + ||I - J^{-1}||_{W^{1,2p}} + ||B||_{L^{2p}} \le C(M)$$

for some constant C(M) > 0 only depending on M, Ω, n, p .

Proof:

- •Iteration via Poisson & Cauchy-Riemann equations with $W^{-1,p}$ -sources.
- •Augment reduced RT-eqn's by elliptic PDE's to replace $d\overrightarrow{J}=0$ with

Dirichlet data
$$J = dy$$
:

$$d\Psi_{k+1} = \overrightarrow{\delta(J_k \cdot \Gamma)} - \overrightarrow{B_{k+1}},$$

$$\Delta y_{k+1} = \Psi_{k+1},$$

$$\Longrightarrow \Delta(J - dy) = 0...$$

- •Introduce ϵ -rescaling of equations by domain restriction. \Rightarrow Convergence.
- •Extend existence theory for Cauchy-Riemann eqn's to $W^{-1,p}$ -sources.

Possible, since A-eqn comes without ∂ -data.

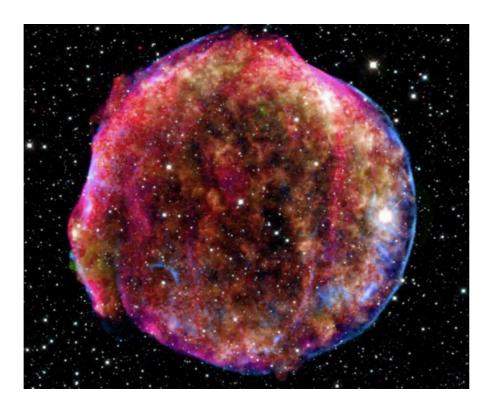
• Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).

• Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).

• GR-shock waves: Spacetime is non-singular.



• Uhlenbeck compactness in Lorentzian geometry.

Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).

• GR-shock waves: Spacetime is non-singular.

Corollary: (GR Shock Waves)

The L^{∞} metric connections of GR shock waves are regularised

to $\Gamma_y \in W^{1,p}$, i.e., to Hölder continuity (p > n).

- Geodesic curves exist. (Particle trajectories)
- Locally inertial coordinates exist. (Newtonian limit)
- \longrightarrow Metrics in $C^{0,1} \simeq W^{1,\infty}$ are regularised to $W^{2,p} \simeq C^{1,\alpha}$.

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - Existence requires $Riem(\Gamma) \in L^p$.
 - ▶ Uniqueness requires $Riem(\Gamma) \in W^{1,p}$.

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - Existence requires $Riem(\Gamma) \in L^p$.
 - ▶ Uniqueness requires $Riem(\Gamma) \in W^{1,p}$.
 - ▶ Geometric notion of "weak solution" in non-optimal coordinates.
 - Zero-mollification limit to weak solution.

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - ▶ Existence requires $Riem(\Gamma) \in L^p$.
 - ▶ Uniqueness requires $Riem(\Gamma) \in W^{1,p}$.
 - ▶ Geometric notion of "weak solution" in non-optimal coordinates.
 - Zero-mollification limit to weak solution.
 - Applicable to general second order ODE's <u>without</u> underlying geometry:

$$\ddot{c} + \Gamma(c)\dot{c}\dot{c} = K(t, c, \dot{c})$$

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - $Riem(\Gamma) \in L^p \Longrightarrow existence; Riem(\Gamma) \in W^{1,p} \Longrightarrow uniqueness.$
- Strong Cosmic Censorship with bounded curvature. [arXiv:2304.04444]
 - Assume a family of maximal Cauchy developments of generic data is inextendable as Lorentzian manifolds with metrics uniformly bounded in $W^{2,p}$, (some $p < \infty$).
 - Then it is inextendable as Lorentzian manifolds with Lipschitz continuous metrics uniformly bounded in $C^{0,1}$ with curvature uniformly bounded in L^p .

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - $Riem(\Gamma) \in L^p \Longrightarrow existence; Riem(\Gamma) \in W^{1,p} \Longrightarrow uniqueness.$
- Strong Cosmic Censorship with bounded curvature. [arXiv:2304.04444]
 - Assume a family of maximal Cauchy developments of generic data is inextendable as Lorentzian manifolds with metrics uniformly bounded in $W^{2,p}$, (some $p < \infty$).
 - Then it is inextendable as Lorentzian manifolds with Lipschitz continuous metrics uniformly bounded in $C^{0,1}$ with curvature uniformly bounded in L^p .

Metrics with $g \notin C^{0,1}$ and Riem $(g) \notin L^p$ might be unphysical... [Crusciel-Grant, '12]

- Uhlenbeck compactness in Lorentzian geometry.
 - Non-optimal connections on fibre and <u>tangent</u>; non-compact groups SO(r, s).
- GR-shock waves: Spacetime is non-singular.
 - Newtonian limit, locally inertial coordinates & geodesics exist.
- Existence and uniqueness of geodesics for affine L^p connections with bounded curvature. [arXiv:2306.04868]
 - $Riem(\Gamma) \in L^p \Longrightarrow existence; Riem(\Gamma) \in W^{1,p} \Longrightarrow uniqueness.$
- Strong Cosmic Censorship with bounded curvature. [arXiv:2304.04444] Inextendability with $C^{0,1}$ metrics with L^p Riemann curvature.
- Penrose Singularity Thm for $C^{0,1}$ metrics of bounded curvature. [to come]
 - Assumes covering of coordinate patches with metrics uniformly bounded in $C^{0,1}$ and curvature uniformly bounded in L^p_{loc} .
 - ▶ Builds heavily on work by Graf ['20], and Kunzinger, Steinbauer, ... ['15, '18, '22]
 - Spacetimes violating this assumptions are quite singular to begin with...
 [Crusciel-Grant, '12]

Conclusion:

Curvature always controls the derivative of a connection, regardless of metric and metric signature, as a consequence of the connection transformation law, expressed as the elliptic RT-equations.

[•] M. R. & B. Temple, "Optimal regularity and Uhlenbeck compactness for General Relativity and Yang-Mills Theory", (2022), Proc. Roy. Soc. A 479: 20220444. [arXiv:2202.09535]

[•] M.R. & B. Temple, "On the Optimal Regularity Implied by the Assumptions of Geometry I: Connections on Tangent Bundles", (2019/2021), 100 pages, Meth. Appl. Analysis. [arXiv:1912.12997]

[•] M.R. & B.Temple, "On the Optimal Regularity Implied by the Assumptions of Geometry II: Connections on Vector Bundles", (2021), 40 pages. [arXiv:2105.10765]

Conclusion:

Curvature always controls the derivative of a connection, regardless of metric and metric signature, as a consequence of the connection transformation law, expressed as the elliptic RT-equations.

Thank you very much for your attention!

- M. R. & B. Temple, "Optimal regularity and Uhlenbeck compactness for General Relativity and Yang-Mills Theory", (2022), Proc. Roy. Soc. A 479: 20220444. [arXiv:2202.09535]
- M.R. & B. Temple, "On the Optimal Regularity Implied by the Assumptions of Geometry I: Connections on Tangent Bundles", (2019/2021), 100 pages, Meth. Appl. Analysis. [arXiv:1912.12997]
- M.R. & B.Temple, "On the Optimal Regularity Implied by the Assumptions of Geometry II: Connections on Vector Bundles", (2021), 40 pages. [arXiv:2105.10765]