Lorentzian Hausdorff measures, doubling and more

Workshop on
Singularities and Curvature in General Relativity Nijmegen, The Netherlands
Clemens Sämann
Mathematical Institute
University of Oxford
joint work with Robert McCann

June 21, 2023

Introduction (1/3)

Theorem (Toponogov)

(smooth) Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if $\forall \triangle a b c$ (small enough), p, q on the sides of $\triangle a b c$

$$
d(p, q) \geq \bar{d}(\bar{p}, \bar{q}) \quad(d(p, q) \leq \bar{d}(\bar{p}, \bar{q}))
$$

Introduction (1/3)

Theorem (Toponogov)

(smooth) Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if $\forall \triangle a b c$ (small enough), p, q on the sides of $\triangle a b c$

$$
d(p, q) \geq \bar{d}(\bar{p}, \bar{q}) \quad(d(p, q) \leq \bar{d}(\bar{p}, \bar{q}))
$$

Definition

(smooth) semi-Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if spacelike sectional curvatures $\geq K(\leq)$ and timelike sectional curvatures $\leq K(\geq)$

Introduction (1/3)

Theorem (Toponogov)

(smooth) Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if $\forall \triangle a b c$ (small enough), p, q on the sides of $\triangle a b c$

$$
d(p, q) \geq \bar{d}(\bar{p}, \bar{q}) \quad(d(p, q) \leq \bar{d}(\bar{p}, \bar{q}))
$$

Definition

(smooth) semi-Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if spacelike sectional curvatures $\geq K(\leq)$ and timelike sectional curvatures $\leq K(\geq)$

Theorem (Alexander, Bishop 2008)
(smooth) semi-Riemannian manifold has $\operatorname{Sec}(g) \geq K(\leq)$ if \forall geodesic $\triangle a b c$ (small enough), p, q on the sides of $\triangle a b c$

$$
d_{\text {signed }}(p, q) \geq \bar{d}_{\text {signed }}(\bar{p}, \bar{q}) \quad\left(d_{\text {signed }}(p, q) \leq \bar{d}_{\text {signed }}(\bar{p}, \bar{q})\right)
$$

Introduction (2/3)

Riemannian manifolds
 \subsetneq metric spaces
 Lorentzian manifolds / spacetimes \subsetneq ?

Introduction (2/3)

Riemannian manifolds \subsetneq metric spaces
 Lorentzian manifolds / spacetimes \subsetneq ?

 analog of metric space in the Lorentzian setting?analog of Hausdorff measure and Hausdorff dimension?

Introduction (2/3)

Riemannian manifolds \subsetneq metric spaces
 Lorentzian manifolds / spacetimes \subsetneq ?

 analog of metric space in the Lorentzian setting?analog of Hausdorff measure and Hausdorff dimension?

Introduction (3/3)

What to do in the Lorentzian setting?

want to handle

- spacetimes of low regularity
- no manifold structure
- no metric

Lorentzian (pre-)length spaces (Kunzinger C.S. 2018)

Introduction (3/3)

What to do in the Lorentzian setting?
want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
- ...

Lorentzian (pere legrth spaces Knuringer C. 20.8) timelike, causal (sectional) curvature bounds, inextendibility, warped nroducts singularity thenrems

Introduction (3/3)

What to do in the Lorentzian setting?
want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
-..
$~$ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018)

Introduction (3/3)

What to do in the Lorentzian setting?
want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
$~$ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018)
timelike, causal (sectional) curvature bounds, inextendibility, warped products, singularity theorems...

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$; τ is called time separation function

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\} \cup\{0\}$

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\} \cup\{0\}$
- finite directed graphs

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\} \cup\{0\}$
- finite directed graphs
causal curves and their length,

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\} \cup\{0\}$
- finite directed graphs
causal curves and their length, causality conditions,

Lorentzian (pre-)length spaces

X set, \leq preorder on X, \ll transitive relation contained in \leq, d metric on $X, \tau: X \times X \rightarrow[0, \infty]$ lower semicontinuous (with respect to d)

Definition

(X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

$$
\tau(x, z) \geq \tau(x, y)+\tau(y, z) \quad(x \leq y \leq z)
$$

and $\tau(x, y)=0$ if $x \not \leq y$ and $\tau(x, y)>0 \Leftrightarrow x \ll y$;
τ is called time separation function
examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q):=\sup \left\{L_{g}(\gamma): \gamma\right.$ f.d. causal from p to $\left.q\right\} \cup\{0\}$
- finite directed graphs
causal curves and their length, causality conditions, τ intrinsic,...

Hausdorff measures and dimension

Definition

(X, d) metric space, $A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum_{i} \operatorname{diam}\left(A_{i}\right)^{N}: A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}\left(A_{i}\right) \leq \delta\right\}
$$

N-dimensional Hausdorff measure $\mathcal{H}^{N}(A):=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}(A)$

Hausdorff measures and dimension

Definition

(X, d) metric space, $A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{H}_{\delta}^{N}(A):=\inf \left\{c_{N} \sum_{i} \operatorname{diam}\left(A_{i}\right)^{N}: A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}\left(A_{i}\right) \leq \delta\right\}
$$

N-dimensional Hausdorff measure $\mathcal{H}^{N}(A):=\sup _{\delta>0} \mathcal{H}_{\delta}^{N}(A)$

Definition

Hausdorff dimension $\operatorname{dim}^{H}(A):=\inf \left\{N \geq 0: \mathcal{H}^{N}(A)=0\right\}$

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$
$\mathbb{N} \ni N \geq 2: \rho^{N}(J(x, y))=$ vol. $C D$ in N-dim Minkowski w eq. time-sep.

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x, y):=J^{+}(x) \cap J^{-}(y)$

$$
\rho^{N}(J(x, y)):=\omega_{N} \tau(x, y)^{N}
$$

$\omega_{N}:=\frac{\pi^{\frac{N-1}{2}}}{N \Gamma\left(\frac{N+1}{2}\right) 2^{N-1}}, \Gamma$ Euler's gamma function, $N \in[0, \infty)$
$\mathbb{N} \ni N \geq 2: \rho^{N}(J(x, y))=$ vol. $C D$ in N-dim Minkowski w eq. time-sep.

Definition

X Lorentzian pre-length space, $A \subseteq X, \delta>0, N \in[0, \infty)$

$$
\mathcal{V}_{\delta}^{N}(A):=\inf \left\{\sum_{i} \rho^{N}\left(J_{i}\right): A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}\left(J_{i}\right) \leq \delta, J_{i}=J\left(x_{i}, y_{i}\right)\right\}
$$

N-dimensional Lorentzian measure $\mathcal{V}^{N}(A):=\sup _{\delta>0} \mathcal{V}_{\delta}^{N}(A)$

Synthetic dimension

Definition

(X, d, \ll, \leq, τ) Lorentzian pre-length space, $A \subseteq X$, the synthetic dimension of A is

$$
\operatorname{dim}^{\tau}(A):=\inf \left\{N \geq 0: \mathcal{V}^{N}(A)<\infty\right\}
$$

Synthetic dimension

Definition

(X, d, \ll, \leq, τ) Lorentzian pre-length space, $A \subseteq X$, the synthetic dimension of A is

$$
\operatorname{dim}^{\tau}(A):=\inf \left\{N \geq 0: \mathcal{V}^{N}(A)<\infty\right\}
$$

Proposition

X locally d-uniform ($\tau=o(1)$) Lorentzian pre-length space, $A \subseteq X$ $N=\operatorname{dim}^{\tau}(A)$ if and only if $\forall k<N<K: \mathcal{V}^{k}(A)=\infty, \mathcal{V}^{K}(A)=0$; thus

$$
\operatorname{dim}^{\tau}(A)=\sup \left\{N \geq 0: \mathcal{V}^{N}(A)=\infty\right\}
$$

One-dimensional measure versus length

Null curves are zero-dimensional
$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$
all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

One-dimensional measure versus length

Null curves are zero-dimensional
$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

$$
\begin{aligned}
& \text { Proposition } \\
& \gamma:[a, b] \rightarrow X \text { f.d. causal curve, } X \text { strongly causal: } \mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma) \text {; }
\end{aligned}
$$

One-dimensional measure versus length

Null curves are zero-dimensional

$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

Proposition

$\gamma:[a, b] \rightarrow X$ f.d. causal curve, X strongly causal: $\mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma)$; all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

$$
\mathcal{V}^{1}(\gamma([a, b]))=L_{\tau}(\gamma)
$$

One-dimensional measure versus length

Null curves are zero-dimensional

$\gamma:[a, b] \rightarrow X$ future directed null curve in strongly causal Lorentzian pre-length space: $\operatorname{dim}^{\tau}(\gamma([a, b]))=0$

Proposition

$\gamma:[a, b] \rightarrow X$ f.d. causal curve, X strongly causal: $\mathcal{V}^{1}(\gamma([a, b])) \leq L_{\tau}(\gamma)$; all causal diamonds $J(x, y)$ closed (e.g. X is globally hyperbolic), then

$$
\mathcal{V}^{1}(\gamma([a, b]))=L_{\tau}(\gamma)
$$

Countable sets are zero dimensional and measured by their cardinality X strongly causal, $N \in[0, \infty)$; additionally in case $N>0$ assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{ \pm} \in U$ s.t. $x^{-}<x<x^{+}, x^{-} \ll x \nless x^{+}: A \subseteq X$ countable, then $\mathcal{V}^{N}(A)=0$ for $N>0$; and $A \subseteq X$ arbitrary then $\mathcal{V}^{0}(A)=|A|($ cardinality of $A)$

Dimension and measure of Minkowski subspaces (1/2)

Lemma
 restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure \mathcal{H}^{k}

Dimension and measure of Minkowski subspaces $(1 / 2)$

Lemma
 restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure \mathcal{H}^{k}

Linear null hypersurfaces have geometric codimension two

Dimension and measure of Minkowski subspaces $(1 / 2)$

Lemma

restriction of \mathcal{V}^{k} to spacelike subspace of Minkowski spacetime \mathbb{R}_{1}^{n} with algebraic dimension k is positive multiple of Hausdorff measure \mathcal{H}^{k}

Linear null hypersurfaces have geometric codimension two

Lemma

$n \geq 2, S \subset \mathbb{R}_{1}^{n}$ null subspace of algebraic dimension $k \neq n$, then $\operatorname{dim}^{\tau}(S)=k-1$ and Lorentzian measure splits as $\mathcal{V}^{k-1}=c \mathcal{H}^{k-1} \times \mathcal{H}^{0}$ on $S=R \times \mathbb{R} \nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Dimension and measure of Minkowski subspaces (2/2)

The intersection (in red) of the causal cones $J^{ \pm}\left(\mp\left(\delta \nu+t e_{1}\right)\right)$ (in blue) with the null subspace S (in green)

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- use appropriate cylindrical neighborhoods

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
\square
- machinery of Federer: Geometric measure theory 1969

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969

Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969

Compatibility for continuous spacetimes

Theorem

(M, g) continuous, strongly causal, causally plain spacetime of $\operatorname{dim} n$

- $\mathcal{V}^{n}=\mathrm{vol}^{g}$
- $\operatorname{dim}^{\tau}(M)=n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^{g}

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(4) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t. $p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(5) $p=(t, x) \ll q=(s, x)$,

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(5) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$

Doubling of causal diamonds in cont. spacetimes (1/2)

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open,
caus. conv. in W s.t.
$p=(t, x), q=(s, x) \in W^{\prime}:$
$\hat{p}=(t-\lambda(s-t), x)$,
$\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t. $p=(t, x), q=(s, x) \in W^{\kappa}$ $\hat{p}=(t-\lambda(s-t), x)$, $\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$

Doubling of causal diamonds in cont. spacetimes $(1 / 2)$

(1) W open, conn., rel. comp. chart
(2) $W=(0, B) \times Z$
(3) $\partial_{t}=\partial_{x^{0}}$ unif. TL
(9) $W^{\prime} \subseteq W$ open, caus. conv. in W s.t. $p=(t, x), q=(s, x) \in W^{\kappa}$ $\hat{p}=(t-\lambda(s-t), x)$, $\hat{q}=(s+\lambda(s-t), x) \in W$
(6) $p=(t, x) \ll q=(s, x)$,
$u=(r, y) \ll v=(l, y) \in W^{\prime}$,
$l-r \leq 2(s-t)$,
$J(p, q) \cap J(u, v) \neq \emptyset$
$\Rightarrow J(u, v) \subseteq J(\hat{p}, \hat{q}, W)$
(6) W arb. small, inside g.h. nhd.

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

```
cylindrical nhd. W:
\[
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
\]
```


Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$
(2) $m(J(p, q, W))>0(p, q \in W$ with $p \ll q)$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

$$
\operatorname{vol}^{g}(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^{g}(J(p, q))
$$

Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq L m(J(p, q))$
(2) $m(J(p, q, W))>0(p, q \in W$ with $p \ll q)$
(3) $m(\bar{W})<\infty$

Doubling of causal diamonds in cont. spacetimes $(2 / 2)$

cylindrical nhd. W:

```
\mp@subsup{\operatorname{vol}}{}{g}(J(\hat{p},\hat{q},W))\leqL\mp@subsup{\operatorname{vol}}{}{g}(J(p,q))
```


Definition

Borel measure m on M is loc. causally doubling if \forall cyl. nhds. (W^{\prime}, W) $\exists L \geq 1$:
(1) $\forall p=(t, x), q=(s, x) \in W^{\prime}: m(J(\hat{p}, \hat{q}, W)) \leq \operatorname{Lm}(J(p, q))$
(2) $m(J(p, q, W))>0(p, q \in W$ with $p \ll q)$
(3) $m(\bar{W})<\infty$

Theorem

(M, g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

$$
\operatorname{dim}(M)=\operatorname{dim}^{\tau}(M) \leq \log _{1+2 \lambda}(L)
$$

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi$;

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi ; \tau\left(p_{i}, q_{i}\right) \geq C_{1} \xi, \tau\left(\hat{p}_{i}, \hat{q}_{i}\right) \leq C_{2} \xi$

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi ; \tau\left(p_{i}, q_{i}\right) \geq C_{1} \xi, \tau\left(\hat{p}_{i}, \hat{q}_{i}\right) \leq C_{2} \xi$ $\left(J_{i}\right)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J\left(\hat{p}_{i}, \hat{q}_{i}\right)$;

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi ; \tau\left(p_{i}, q_{i}\right) \geq C_{1} \xi, \tau\left(\hat{p}_{i}, \hat{q}_{i}\right) \leq C_{2} \xi$ $\left(J_{i}\right)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J\left(\hat{p}_{i}, \hat{q}_{i}\right) ; m\left(J_{i}\right) \geq \tilde{K} \tau\left(p_{i}, q_{i}\right)^{\kappa}$

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(9) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi ; \tau\left(p_{i}, q_{i}\right) \geq C_{1} \xi, \tau\left(\hat{p}_{i}, \hat{q}_{i}\right) \leq C_{2} \xi$ $\left(J_{i}\right)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J\left(\hat{p}_{i}, \hat{q}_{i}\right) ; m\left(J_{i}\right) \geq \tilde{K} \tau\left(p_{i}, q_{i}\right)^{\kappa}$

$$
\infty>m(\bar{W}) \geq m\left(\bigcup_{i \in I_{\xi}} J_{i}\right)=\sum_{i \in I_{\xi}} m\left(J_{i}\right) \geq \tilde{K} \sum_{i \in I_{\xi}} \tau\left(p_{i}, q_{i}\right)^{\kappa} \geq \tilde{K} C_{1}^{\kappa} \xi^{\kappa}\left|I_{\xi}\right|
$$

$\leadsto\left|I_{\xi}\right| \leq C_{3} \xi^{-\kappa}$

Doubling of causal diamonds in cont. spacetimes (3/3)

Sketch of the proof:
Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa:=\log _{1+2 \lambda}(L)\right)$ in cyl. nhd. $J_{i}:=J\left(p_{i}, q_{i}\right)\left(i \in I_{\xi}\right)$ maximally T_{ξ}-separated, i.e.,
(1) $p_{i}=\left(t_{i}, x_{i}\right), q_{i}=\left(s_{i}, x_{i}\right) \in \tilde{W}$,
(2) $s_{i}-t_{i}=T_{\xi}$,
(3) for all $i, j \in I_{\xi}, i \neq j$ one has $p_{i} \not \leq q_{j}$ or $\left|s_{j}-t_{i}\right|>2 T_{\xi}$ or $p_{j} \not \leq q_{i}$ or $\left|s_{i}-t_{j}\right|>2 T_{\xi}$, and finally
(3) $J_{i} \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then $\operatorname{diam}\left(J_{i}\right) \leq \xi, \operatorname{diam}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right) \leq \xi ; \tau\left(p_{i}, q_{i}\right) \geq C_{1} \xi, \tau\left(\hat{p}_{i}, \hat{q}_{i}\right) \leq C_{2} \xi$ $\left(J_{i}\right)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J\left(\hat{p}_{i}, \hat{q}_{i}\right) ; m\left(J_{i}\right) \geq \tilde{K} \tau\left(p_{i}, q_{i}\right)^{\kappa}$

$$
\infty>m(\bar{W}) \geq m\left(\bigcup_{i \in I_{\xi}} J_{i}\right)=\sum_{i \in I_{\xi}} m\left(J_{i}\right) \geq \tilde{K} \sum_{i \in I_{\xi}} \tau\left(p_{i}, q_{i}\right)^{\kappa} \geq \tilde{K} C_{1}^{\kappa} \xi^{\kappa}\left|I_{\xi}\right|
$$

$$
\leadsto\left|I_{\xi}\right| \leq C_{3} \xi^{-\kappa}
$$

$$
\mathcal{V}_{\xi}^{\kappa}(J) \leq \sum_{i \in I_{\xi}} \rho_{\kappa}\left(J\left(\hat{p}_{i}, \hat{q}_{i}\right)\right)=\omega_{\kappa} \sum_{i \in I_{\xi}} \tau\left(\hat{p}_{i}, \hat{q}_{i}\right)^{\kappa} \leq \omega_{\kappa}\left|I_{\xi}\right| C_{2}^{\kappa} \xi^{\kappa} \leq \omega_{\kappa} C_{3} C_{2}^{\kappa}<\infty
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{wTCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{wTCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

does NOT imply doubling for causal diamonds!

Synthetic TL Ricci curvature bounds and doubling

$$
B_{r}^{\tau}(x):=\{y \in X: \tau(x, y)<r\}, E_{r}:=E \cap \overline{B_{r}^{\tau}(x)}
$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. $\mathrm{w} \mathrm{TCD}_{\mathrm{p}}^{\mathrm{e}}(K, N)(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1)) \Rightarrow \exists L=L(K, N) \geq 1$: $\forall x_{0} \in X, E \subseteq I^{+}\left(x_{0}\right) \cup\left\{x_{0}\right\}$ comp., τ-star-shaped wrt $x_{0}, r>0$ small

$$
m\left(E_{2 r}\right) \leq L m\left(E_{r}\right)
$$

does NOT imply doubling for causal diamonds!

Theorem

(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. $\mathrm{wTCD} \mathrm{p}_{\mathrm{e}}(K, N) \mathrm{wrt} \mathrm{vol}^{g}(K \in \mathbb{R}, N \in[1, \infty), \mathrm{p} \in(0,1))$
(+causally-reversed) \Rightarrow

$$
\operatorname{dim}(M)=\operatorname{dim}^{\tau}(M) \leq N
$$

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes - how to define doubling of causal diamonds in general, i.e., not using coordinates?

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt V^{N}
- applications to singularity theorems

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt \mathcal{V}^{N}
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt \mathcal{V}^{N}
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance (steep) time functions

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt \mathcal{V}^{N}
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance
(steep) time functions

Thanks!

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt \mathcal{V}^{N}
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance
- one-dimensional measures restricted to acausal sets / level sets of (steep) time functions

Outlook

- synthetic dimension of semi-Riemannian submanifolds of spacetimes
- how to define doubling of causal diamonds in general, i.e., not using coordinates?
- synthetic timelike Ricci curvature bounds wrt \mathcal{V}^{N}
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance
- one-dimensional measures restricted to acausal sets / level sets of (steep) time functions

Thanks!

References

S. Alexander, M. Graf, M. Kunzinger, C.S.

Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. Comm. Anal. Geom. to appear, arXiv:1909.09575.

R S. B. Alexander and R. L. Bishop.
Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Comm. Anal. Geom., 16(2):251-282, 2008.
F. Cavalletti, A. Mondino.

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. preprint, arXiv:2004.08934 [math.MG].
國 J. D. E. Grant, M. Kunzinger, C.S.
Inextendibility of spacetimes and Lorentzian length spaces. Ann. Global Anal. Geom. 55, no. 1, 133-147, 2019.

- M. Kunzinger, C.S.

Lorentzian length spaces. Ann. Global Anal. Geom. 54, no. 3, 399-447, 2018.
䍰 R. J. McCann, C.S.
A Lorentzian analog for Hausdorff dimension and measure. Pure and Applied Analysis, Vol. 4, No. 2, 367-400, 2022.

