Lorentzian Hausdorff measures, doubling and more

Workshop on Singularities and Curvature in General Relativity Nijmegen, The Netherlands

> Clemens Sämann Mathematical Institute University of Oxford

joint work with Robert McCann

June 21, 2023

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \geq \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \leq \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \ge \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \le \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge)

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

Theorem (Toponogov)

(smooth) Riemannian manifold has $Sec(g) \ge K$ (\le) if $\forall \triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d(p,q) \ge \bar{d}(\bar{p},\bar{q}) \qquad (d(p,q) \le \bar{d}(\bar{p},\bar{q}))$

Definition

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if *spacelike* sectional curvatures $\ge K$ (\le) and *timelike* sectional curvatures $\le K$ (\ge)

Theorem (Alexander, Bishop 2008)

(smooth) semi-Riemannian manifold has $Sec(g) \ge K$ (\le) if \forall geodesic $\triangle abc$ (small enough), p, q on the sides of $\triangle abc$

 $d_{\text{signed}}(p,q) \ge \bar{d}_{\text{signed}}(\bar{p},\bar{q}) \qquad (d_{\text{signed}}(p,q) \le \bar{d}_{\text{signed}}(\bar{p},\bar{q}))$

analog of metric space in the Lorentzian setting?

analog of Hausdorff measure and Hausdorff dimension?

analog of metric space in the Lorentzian setting?

analog of Hausdorff measure and Hausdorff dimension?

analog of metric space in the Lorentzian setting?

analog of Hausdorff measure and Hausdorff dimension?

What to do in the Lorentzian setting?

want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
- ...

→ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018) timelike, causal (sectional) curvature bounds, inextendibility, warped products, singularity theorems...

What to do in the *Lorentzian setting*?

want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
- ...

→ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018) timelike, causal (sectional) curvature bounds, inextendibility, warped products, singularity theorems...

What to do in the Lorentzian setting?

want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
- ...

→ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018)

timelike, causal (sectional) *curvature bounds*, *inextendibility*, *warped products*, *singularity theorems*...

What to do in the *Lorentzian setting*?

want to handle

- spacetimes of low regularity
- no manifold structure
- no metric
- ...

→ Lorentzian (pre-)length spaces (Kunzinger C.S. 2018) timelike, causal (sectional) curvature bounds, inextendibility, warped products, singularity theorems...

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

 $\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$

and $\tau(x,y) = 0$ if $x \nleq y$ and $\tau(x,y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M,g) with usual time separation function $\tau(p,q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau : X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau : X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau : X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau : X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau : X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z) \,,$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\} \cup \{0\}$
- finite directed graphs

Hausdorff measures and dimension

Definition

(X,d) metric space, $A\subseteq X$, $\delta>0,~N\in[0,\infty)$

$$\mathcal{H}^{N}_{\delta}(A) := \inf\{c_{N} \sum_{i} \operatorname{diam}(A_{i})^{N} : A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}(A_{i}) \le \delta\}$$

N-dimensional Hausdorff measure $\mathcal{H}^N(A) := \sup_{\delta > 0} \mathcal{H}^N_{\delta}(A)$

Definition

Hausdorff dimension $\dim^H(A) := \inf\{N \ge 0 : \mathcal{H}^N(A) = 0\}$

Hausdorff measures and dimension

Definition

(X,d) metric space, $A\subseteq X$, $\delta>0,~N\in[0,\infty)$

$$\mathcal{H}^{N}_{\delta}(A) := \inf\{c_{N} \sum_{i} \operatorname{diam}(A_{i})^{N} : A \subseteq \bigcup_{i} A_{i}, \operatorname{diam}(A_{i}) \leq \delta\}$$

N-dimensional Hausdorff measure $\mathcal{H}^N(A) := \sup_{\delta > 0} \mathcal{H}^N_{\delta}(A)$

Definition

Hausdorff dimension
$$\dim^H(A) := \inf\{N \ge 0 : \mathcal{H}^N(A) = 0\}$$

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x,y):=J^+(x)\cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}},\,\Gamma \text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N}
i N \geq 2$: $ho^N(J(x,y)) =$ vol. CD in N-dim Minkowski w eq. time-sep.

Definition

X Lorentzian pre-length space, $A\subseteq X$, $\delta>0$, $N\in[0,\infty)$

$$\mathcal{V}_{\delta}^{N}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x,y):=J^+(x)\cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}},\,\Gamma \text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N} \ni N \ge 2$: $\rho^N(J(x,y)) = \textit{vol. CD}$ in N-dim Minkowski w eq. time-sep.

Definition

X Lorentzian pre-length space, $A\subseteq X$, $\delta>0$, $N\in[0,\infty)$

$$\mathcal{V}_{\delta}^{N}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Lorentzian analog of Hausdorff measures

Definition

X Lorentzian pre-length space, $J(x,y):=J^+(x)\cap J^-(y)$

$$\rho^N(J(x,y)) := \omega_N \tau(x,y)^N$$

 $\omega_N:=\frac{\pi^{\frac{N-1}{2}}}{N\,\Gamma(\frac{N+1}{2})2^{N-1}}\text{, }\Gamma\text{ Euler's gamma function, }N\in[0,\infty)$

 $\mathbb{N} \ni N \ge 2$: $\rho^N(J(x,y)) = \textit{vol. CD}$ in N-dim Minkowski w eq. time-sep.

Definition

X Lorentzian pre-length space, $A\subseteq X$, $\delta>0,$ $N\in[0,\infty)$

$$\mathcal{V}_{\delta}^{N}(A) := \inf\{\sum_{i} \rho^{N}(J_{i}) : A \subseteq \bigcup_{i} J_{i}, \operatorname{diam}(J_{i}) \le \delta, J_{i} = J(x_{i}, y_{i})\}$$

N-dimensional Lorentzian measure $\mathcal{V}^N(A) := \sup_{\delta > 0} \mathcal{V}^N_{\delta}(A)$

Synthetic dimension

Definition

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $A\subseteq X,$ the synthetic dimension of A is

$$\dim^{\tau}(A) := \inf\{N \ge 0 : \mathcal{V}^N(A) < \infty\}$$

Proposition

X locally d-uniform $(\tau = o(1))$ Lorentzian pre-length space, $A \subseteq X$ $N = \dim^{\tau}(A)$ if and only if $\forall k < N < K$: $\mathcal{V}^{k}(A) = \infty$, $\mathcal{V}^{K}(A) = 0$; thus

$$\dim^{\tau}(A) = \sup\{N \ge 0 : \mathcal{V}^N(A) = \infty\}$$

Synthetic dimension

Definition

 (X,d,\ll,\leq,τ) Lorentzian pre-length space, $A\subseteq X,$ the synthetic dimension of A is

$$\dim^{\tau}(A) := \inf\{N \ge 0 : \mathcal{V}^N(A) < \infty\}$$

Proposition

X locally d-uniform $(\tau = o(1))$ Lorentzian pre-length space, $A \subseteq X$ $N = \dim^{\tau}(A)$ if and only if $\forall k < N < K$: $\mathcal{V}^{k}(A) = \infty$, $\mathcal{V}^{K}(A) = 0$; thus

$$\dim^{\tau}(A) = \sup\{N \ge 0 : \mathcal{V}^N(A) = \infty\}$$

Null curves are zero-dimensional

 $\gamma\colon [a,b]\to X \text{ future directed } \frac{\textit{null}}{\textit{curve in strongly causal Lorentzian pre-length space: } \dim^\tau(\gamma([a,b]))=0$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

 $\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$

Countable sets are zero dimensional and measured by their cardinality X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not \leq x \not \leq x^{+}$: $A \subseteq X$ countable, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ arbitrary then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\gamma\colon [a,b]\to X \text{ future directed } \frac{\textit{null}}{\textit{curve in strongly causal Lorentzian pre-length space: } \dim^\tau(\gamma([a,b]))=0$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

$\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$

Countable sets are zero dimensional and measured by their cardinality

X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ *countable*, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ *arbitrary* then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ future directed } \textit{null} \text{ curve in strongly causal Lorentzian} \\ \text{pre-length space: } \dim^\tau(\gamma([a,b]))=0 \end{array}$

Proposition

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ f.d. } \textit{causal} \text{ curve, } X \text{ strongly causal: } \mathcal{V}^1(\gamma([a,b]))\leq L_\tau(\gamma); \\ \text{all causal diamonds } J(x,y) \textit{ closed } (\text{e.g. } X \text{ is globally hyperbolic}), \text{ then} \end{array}$

$$\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$$

Countable sets are zero dimensional and measured by their cardinality

X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ *countable*, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ *arbitrary* then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Null curves are zero-dimensional

 $\begin{array}{l} \gamma\colon [a,b]\to X \text{ future directed } \textit{null} \text{ curve in strongly causal Lorentzian} \\ \text{pre-length space: } \dim^\tau(\gamma([a,b]))=0 \end{array}$

Proposition

 $\gamma \colon [a,b] \to X$ f.d. *causal* curve, X strongly causal: $\mathcal{V}^1(\gamma([a,b])) \leq L_{\tau}(\gamma)$; all causal diamonds J(x,y) *closed* (e.g. X is globally hyperbolic), then

$$\mathcal{V}^1(\gamma([a,b])) = L_\tau(\gamma)$$

Countable sets are zero dimensional and measured by their cardinality X strongly causal, $N \in [0, \infty)$; additionally in case N > 0 assume $\forall x \in X$, $\forall U$ nhd. of $x \exists x^{\pm} \in U$ s.t. $x^{-} < x < x^{+}$, $x^{-} \not\ll x \not\ll x^{+}$: $A \subseteq X$ countable, then $\mathcal{V}^{N}(A) = 0$ for N > 0; and $A \subseteq X$ arbitrary then $\mathcal{V}^{0}(A) = |A|$ (cardinality of A)

Dimension and measure of Minkowski subspaces (1/2)

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure* \mathcal{H}^k

Linear null hypersurfaces have geometric codimension two

Lemma

 $n \geq 2, S \subset \mathbb{R}^n_1$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Dimension and measure of Minkowski subspaces (1/2)

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure* \mathcal{H}^k

Linear null hypersurfaces have geometric codimension two

Lemma

 $n \geq 2, S \subset \mathbb{R}^n_1$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of $S, \nu \in S$ null vector

Dimension and measure of Minkowski subspaces (1/2)

Lemma

restriction of \mathcal{V}^k to spacelike subspace of Minkowski spacetime \mathbb{R}^n_1 with algebraic dimension k is *positive multiple of Hausdorff measure* \mathcal{H}^k

Linear null hypersurfaces have geometric codimension two

Lemma

 $n \geq 2$, $S \subset \mathbb{R}_1^n$ null subspace of algebraic dimension $k \neq n$, then $\dim^{\tau}(S) = k - 1$ and Lorentzian measure splits as $\mathcal{V}^{k-1} = c \mathcal{H}^{k-1} \times \mathcal{H}^0$ on $S = R \times \mathbb{R}\nu$, where R spacelike subspace of S, $\nu \in S$ null vector

Dimension and measure of Minkowski subspaces (2/2)

The intersection (in red) of the causal cones $J^{\pm}(\mp(\delta\nu + te_1))$ (in blue) with the null subspace S (in green)

Compatibility for continuous spacetimes

Theorem

 $\left(M,g
ight)$ continuous, strongly causal, causally plain spacetime of dim n

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

Compatibility for continuous spacetimes

Theorem

 $\left(M,g\right)$ continuous, strongly causal, causally plain spacetime of dim n

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- *doubling* of causal diamonds and doubling of vol^g

Compatibility for continuous spacetimes

Theorem

 $\left(M,g\right)$ continuous, strongly causal, causally plain spacetime of dim n

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

Compatibility for continuous spacetimes

Theorem

 $\left(M,g\right)$ continuous, strongly causal, causally plain spacetime of dim n

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

Compatibility for continuous spacetimes

Theorem

 $\left(M,g\right)$ continuous, strongly causal, causally plain spacetime of dim n

- $\mathcal{V}^n = \mathrm{vol}^g$
- $\dim^{\tau}(M) = n$
- use appropriate cylindrical neighborhoods
- machinery of Federer: Geometric measure theory 1969
- doubling of causal diamonds and doubling of vol^g

13 / 18

 \mathbb{R}^{n-1}

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL
- $W' \subseteq W$ open, caus. conv. in W s.t. $p = (t, x), q = (s, x) \in W'$: $\hat{p} = (t - \lambda(s - t), x),$ $\hat{q} = (s + \lambda(s - t), x) \in W$
- $\begin{array}{ll} \textcircled{O} & p = (t,x) \ll q = (s,x), \\ u = (r,y) \ll v = (t,y) \in W \\ l r \leq 2(s-t), \\ J(p,q) \cap J(u,v) \neq 0 \\ \simeq d(u,v) (u,v) \neq 0 \end{array}$
- W arb. small, inside g.h. nhd.

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL
- $W' \subseteq W$ open, caus. conv. in W s.t. $p = (t, x), q = (s, x) \in W'$: $\hat{p} = (t - \lambda(s - t), x),$ $\hat{q} = (s + \lambda(s - t), x) \in W$
- W arb. small, inside g.h. nhd.

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL
- - W arb. small, inside g.h. nhd.

- W open, conn., rel. comp. chart
- $W = (0, B) \times Z$
- 3 $\partial_t = \partial_{x^0}$ unif. TL

W arb. small, inside g.h. nhd.

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

- $@ m(J(p,q,W)) > 0 \ (p,q \in W \text{ with } p \ll q) \\$
- $\bigcirc m(W) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W:
$$\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ O \ } \ \, \forall p=(t,x),q=(s,x)\in W' { : \ } m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

2
$$m(J(p,q,W)) > 0 \ (p,q \in W \text{ with } p \ll q)$$

 $m(W) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W:
$$\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ \, { \bigcirc } } \ \, \forall p=(t,x), q=(s,x)\in W': \ \, m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

$$\ \, {\it Omega} \ \, m(J(p,q,W))>0 \ \, (p,q\in W \ \, {\rm with} \ \, p\ll q)$$

 $m(W) < \infty$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W: $\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ \, { \bigcirc } } \ \, \forall p=(t,x), q=(s,x)\in W' { : } \ \, m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

$$\ \, {\it Omega} \ \, m(J(p,q,W))>0 \ \, (p,q\in W \ \, {\rm with} \ \, p\ll q)$$

$$m(W) < \infty$$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

cylindrical nhd. W:
$$\operatorname{vol}^g(J(\hat{p}, \hat{q}, W)) \leq L \operatorname{vol}^g(J(p, q))$$

Definition

Borel measure m on M is *loc. causally doubling* if \forall cyl. nhds. $(W', W) \exists L \geq 1$:

$$\ \, { \ \, { \bigcirc } } \ \, \forall p=(t,x), q=(s,x)\in W' : \ \, m(J(\hat{p},\hat{q},W))\leq L\,m(J(p,q))$$

2
$$m(J(p,q,W)) > 0 \ (p,q \in W \text{ with } p \ll q)$$

$$m(W) < \infty$$

Theorem

(M,g) cont., causally plain, strongly causal spacetime; m loc. causally doubling measure, loc. doubling constant L on all suff. small cyl. nhds \Rightarrow

$$\dim(M) = \dim^{\tau}(M) \le \log_{1+2\lambda}(L)$$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\mathcal{E}}$) maximally $T_{\mathcal{E}}$ -separated, i.e.,

9
$$p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$$

$$s_i - t_i = T_{\xi},$$

- for all $i, j \in I_{\xi}$, $i \neq j$ one has $p_i \not\leq q_j$ or $|s_j t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i t_j| > 2T_{\xi}$, and finally
- $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$.

Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1 \xi$, $\tau(\hat{p}_i, \hat{q}_i) \leq C_2 \xi$ $(J_i)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J(\hat{p}_i, \hat{q}_i)$; $m(J_i) \geq \tilde{K} \tau(p_i, q_i)^{\kappa}$

 $\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\kappa}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD $J\left(\kappa := \log_{1+2\lambda}(L)\right)$ in cyl. nhd. $J_i := J(p_i, q_i) \ (i \in I_{\xi})$ maximally T_{ξ} -separated, i.e., **a** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W},$ **a** $s_i - t_i = T_{\xi},$ **a** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **a** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi, \tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$

 $\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\epsilon}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\xi}$) maximally T_{ξ} -separated, i.e., **a** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$, **a** $s_i - t_i = T_{\xi}$, **a** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **a** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi, \tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$ $(J_i)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{k \in I_{\xi}} J(\hat{p}_i, \hat{q}_i)$; $m(J_i) \geq K \tau(p_i, q_i)^{\kappa}$

 $\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\epsilon}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\xi}$) maximally T_{ξ} -separated, i.e., **1** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$, **2** $s_i - t_i = T_{\xi}$, **3** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **3** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi, \tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$

 $(J_i)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J(\hat{p}_i, \hat{q}_i); m(J_i) \ge K \tau(p_i, q_i)^{\kappa}$

$$\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\kappa}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\xi}$) maximally T_{ξ} -separated, i.e., **1** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$, **2** $s_i - t_i = T_{\xi}$, **3** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **3** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi, \tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$

 $(J_i)_{i \in I_{\xi}} \text{ disjoint and } J \subseteq \bigcup_{i \in I_{\xi}} J(\hat{p}_i, \hat{q}_i)) \cong \tilde{K} \tau(p_i, q_i) \cong \tilde{K} \tau(p_i, q_i) \cong \tilde{K} \tau(p_i, q_i)^{\kappa}$

$$\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\kappa}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\xi}$) maximally T_{ξ} -separated, i.e., **1** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$, **2** $s_i - t_i = T_{\xi}$, **3** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **3** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi$, $\tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$ $(J_i)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J(\hat{p}_i, \hat{q}_i)$; $m(J_i) \geq \tilde{K} \tau(p_i, q_i)^{\kappa}$

$$\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\kappa}$

Sketch of the proof:

Suffices to show $\mathcal{V}^{\kappa}(J)$ for small CD J ($\kappa := \log_{1+2\lambda}(L)$) in cyl. nhd. $J_i := J(p_i, q_i)$ ($i \in I_{\xi}$) maximally T_{ξ} -separated, i.e., **1** $p_i = (t_i, x_i), q_i = (s_i, x_i) \in \tilde{W}$, **2** $s_i - t_i = T_{\xi}$, **3** for all $i, j \in I_{\xi}, i \neq j$ one has $p_i \not\leq q_j$ or $|s_j - t_i| > 2T_{\xi}$ or $p_j \not\leq q_i$ or $|s_i - t_j| > 2T_{\xi}$, and finally **3** $J_i \cap J \neq \emptyset$ for all $i \in I_{\xi}$. Then diam $(J_i) \leq \xi$, diam $(J(\hat{p}_i, \hat{q}_i)) \leq \xi$; $\tau(p_i, q_i) \geq C_1\xi, \tau(\hat{p}_i, \hat{q}_i) \leq C_2\xi$ $(J_i)_{i \in I_{\xi}}$ disjoint and $J \subseteq \bigcup_{i \in I_{\xi}} J(\hat{p}_i, \hat{q}_i)$; $m(J_i) \geq \tilde{K} \tau(p_i, q_i)^{\kappa}$

$$\infty > m(\overline{W}) \ge m(\bigcup_{i \in I_{\xi}} J_i) = \sum_{i \in I_{\xi}} m(J_i) \ge \tilde{K} \sum_{i \in I_{\xi}} \tau(p_i, q_i)^{\kappa} \ge \tilde{K} C_1^{\kappa} \xi^{\kappa} |I_{\xi}|$$

 $\rightsquigarrow |I_{\xi}| \le C_3 \xi^{-\kappa}$

$$\mathcal{V}_{\xi}^{\kappa}(J) \leq \sum_{i \in I_{\xi}} \rho_{\kappa}(J(\hat{p}_i, \hat{q}_i)) = \omega_{\kappa} \sum_{i \in I_{\xi}} \tau(\hat{p}_i, \hat{q}_i)^{\kappa} \leq \omega_{\kappa} |I_{\xi}| C_2^{\kappa} \xi^{\kappa} \leq \omega_{\kappa} C_3 C_2^{\kappa} < \infty$$

Clemens Sämann, University of Oxford

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) ($K \in \mathbb{R}, N \in [1, \infty)$, $p \in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. wTCD^e_p(K,N) wrt vol^g $(K \in \mathbb{R}, N \in [1,\infty), p \in (0,1))$ (+causally-reversed) \Rightarrow

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does NOT imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. wTCD^e_p(K,N) wrt vol^g $(K \in \mathbb{R}, N \in [1,\infty), p \in (0,1))$ (+causally-reversed) \Rightarrow

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. wTCD^e_p(K,N) wrt vol^g $(K \in \mathbb{R}, N \in [1,\infty), p \in (0,1))$ (+causally-reversed) \Rightarrow

$$B^\tau_r(x) := \{y \in X : \tau(x,y) < r\}, \ E_r := E \cap \overline{B^\tau_r(x)}$$

Lemma

glob. hyp. locally causally closed measured Lorentzian length space sat. wTCD^e_p(K, N) (K $\in \mathbb{R}$, N $\in [1, \infty)$, p $\in (0, 1)$) $\Rightarrow \exists L = L(K, N) \geq 1$: $\forall x_0 \in X, E \subseteq I^+(x_0) \cup \{x_0\}$ comp., τ -star-shaped wrt $x_0, r > 0$ small

 $m(E_{2r}) \le L m(E_r)$

does *NOT* imply doubling for causal diamonds!

Theorem

(M,g) cont., glob. hyp. TL non-branching, causally plain spacetime sat. wTCD^e_p(K,N) wrt vol^g $(K \in \mathbb{R}, N \in [1,\infty), p \in (0,1))$ (+causally-reversed) \Rightarrow

• synthetic dimension of *semi-Riemannian submanifolds* of spacetimes

- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- ullet synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to singularity theorems
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- ullet synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt Sormani-Vega null distance
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null distance*
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null distance*
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

- synthetic dimension of *semi-Riemannian submanifolds* of spacetimes
- how to *define doubling* of *causal diamonds* in general, i.e., not using coordinates?
- synthetic timelike *Ricci curvature bounds* wrt \mathcal{V}^N
- applications to *singularity theorems*
- relation to Hausdorff measure/dimension wrt *Sormani-Vega null* distance
- one-dimensional measures restricted to *acausal sets* / *level sets* of (steep) time functions

References

S. Alexander, M. Graf, M. Kunzinger, C.S.

Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. Comm. Anal. Geom. to appear, arXiv:1909.09575.

S. B. Alexander and R. L. Bishop.

Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Comm. Anal. Geom., 16(2):251-282, 2008.

F. Cavalletti, A. Mondino.

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. preprint, arXiv:2004.08934 [math.MG].

J. D. E. Grant, M. Kunzinger, C.S.

Inextendibility of spacetimes and Lorentzian length spaces. Ann. Global Anal. Geom. 55, no. 1, 133-147, 2019.

M. Kunzinger, C.S.

Lorentzian length spaces. Ann. Global Anal. Geom. 54, no. 3, 399-447, 2018.

R. J. McCann. C.S.

A Lorentzian analog for Hausdorff dimension and measure. Pure and Applied Analysis, Vol. 4, No. 2, 367-400, 2022.