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Introduction (1/3)

Theorem (Toponogov)
(smooth) Riemannian manifold has Sec(g) ≥ K (≤) if ∀ △abc (small
enough), p, q on the sides of △abc

d(p, q) ≥ d̄(p̄, q̄) (d(p, q) ≤ d̄(p̄, q̄))

Definition
(smooth) semi-Riemannian manifold has Sec(g) ≥ K (≤) if spacelike
sectional curvatures ≥ K (≤) and timelike sectional curvatures ≤ K (≥)

Theorem (Alexander, Bishop 2008)
(smooth) semi-Riemannian manifold has Sec(g) ≥ K (≤) if ∀ geodesic
△abc (small enough), p, q on the sides of △abc

dsigned(p, q) ≥ d̄signed(p̄, q̄) (dsigned(p, q) ≤ d̄signed(p̄, q̄))
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Introduction (2/3)

Riemannian manifolds ⊊ metric spaces

Lorentzian manifolds / spacetimes ⊊ ?

analog of metric space in the Lorentzian setting?

analog of Hausdorff measure and Hausdorff dimension?
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Introduction (3/3)

What to do in the Lorentzian setting?

want to handle
spacetimes of low regularity
no manifold structure
no metric
...

; Lorentzian (pre-)length spaces (Kunzinger C.S. 2018)
timelike, causal (sectional) curvature bounds, inextendibility, warped
products, singularity theorems...
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Lorentzian (pre-)length spaces

X set, ≤ preorder on X, ≪ transitive relation contained in ≤, d metric on
X, τ : X × X → [0, ∞] lower semicontinuous (with respect to d)

Definition
(X, d, ≪, ≤, τ) is a Lorentzian pre-length space if

τ(x, z) ≥ τ(x, y) + τ(y, z) (x ≤ y ≤ z) ,

and τ(x, y) = 0 if x ≰ y and τ(x, y) > 0 ⇔ x ≪ y;
τ is called time separation function

examples
smooth spacetimes (M, g) with usual time separation function
τ(p, q) := sup{Lg(γ) : γ f.d. causal from p to q} ∪ {0}
finite directed graphs

causal curves and their length, causality conditions, τ intrinsic,. . .
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Hausdorff measures and dimension

Definition
(X, d) metric space, A ⊆ X, δ > 0, N ∈ [0, ∞)

HN
δ (A) := inf{cN

∑
i

diam(Ai)N : A ⊆
⋃
i

Ai, diam(Ai) ≤ δ}

N -dimensional Hausdorff measure HN (A) := supδ>0 HN
δ (A)

Definition
Hausdorff dimension dimH(A) := inf{N ≥ 0 : HN (A) = 0}
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Lorentzian analog of Hausdorff measures

Definition
X Lorentzian pre-length space, J(x, y) := J+(x) ∩ J−(y)

ρN (J(x, y)) := ωN τ(x, y)N

ωN := π
N−1

2

N Γ( N+1
2 )2N−1 , Γ Euler’s gamma function, N ∈ [0, ∞)

N ∋ N ≥ 2: ρN (J(x, y)) = vol. CD in N -dim Minkowski w eq. time-sep.

Definition
X Lorentzian pre-length space, A ⊆ X, δ > 0, N ∈ [0, ∞)

VN
δ (A) := inf{

∑
i

ρN (Ji) : A ⊆
⋃
i

Ji, diam(Ji) ≤ δ, Ji = J(xi, yi)}

N -dimensional Lorentzian measure VN (A) := supδ>0 VN
δ (A)
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Synthetic dimension

Definition
(X, d, ≪, ≤, τ) Lorentzian pre-length space, A ⊆ X, the synthetic
dimension of A is

dimτ (A) := inf{N ≥ 0 : VN (A) < ∞}

Proposition
X locally d-uniform (τ = o(1)) Lorentzian pre-length space, A ⊆ X
N = dimτ (A) if and only if ∀k < N < K: Vk(A) = ∞, VK(A) = 0; thus

dimτ (A) = sup{N ≥ 0 : VN (A) = ∞}
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One-dimensional measure versus length

Null curves are zero-dimensional
γ : [a, b] → X future directed null curve in strongly causal Lorentzian
pre-length space: dimτ (γ([a, b])) = 0

Proposition
γ : [a, b] → X f.d. causal curve, X strongly causal: V1(γ([a, b])) ≤ Lτ (γ);
all causal diamonds J(x, y) closed (e.g. X is globally hyperbolic), then

V1(γ([a, b])) = Lτ (γ)

Countable sets are zero dimensional and measured by their cardinality
X strongly causal, N ∈ [0, ∞); additionally in case N > 0 assume ∀x ∈ X,
∀U nhd. of x ∃x± ∈ U s.t. x− < x < x+, x− ̸≪ x ̸≪ x+: A ⊆ X
countable, then VN (A) = 0 for N > 0; and A ⊆ X arbitrary then
V0(A) = |A| (cardinality of A)
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Dimension and measure of Minkowski subspaces (1/2)

Lemma
restriction of Vk to spacelike subspace of Minkowski spacetime Rn

1 with
algebraic dimension k is positive multiple of Hausdorff measure Hk

Linear null hypersurfaces have geometric codimension two

Lemma
n ≥ 2, S ⊂ Rn

1 null subspace of algebraic dimension k ̸= n, then
dimτ (S) = k − 1 and Lorentzian measure splits as Vk−1 = c Hk−1 × H0

on S = R × Rν, where R spacelike subspace of S, ν ∈ S null vector
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Dimension and measure of Minkowski subspaces (2/2)

∂i

∂0 = ∂t

∂j

S

1
2(δν + te1)

−1
2(δν + te1)

δ
√ δt

The intersection (in red) of the causal cones J±(∓(δν + te1)) (in blue)
with the null subspace S (in green)
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Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of dim n

Vn = volg

dimτ (M) = n

use appropriate cylindrical neighborhoods
machinery of Federer: Geometric measure theory 1969
doubling of causal diamonds and doubling of volg

Clemens Sämann, University of Oxford 12 / 18



Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of dim n

Vn = volg

dimτ (M) = n

use appropriate cylindrical neighborhoods
machinery of Federer: Geometric measure theory 1969
doubling of causal diamonds and doubling of volg

Clemens Sämann, University of Oxford 12 / 18



Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of dim n

Vn = volg

dimτ (M) = n

use appropriate cylindrical neighborhoods
machinery of Federer: Geometric measure theory 1969
doubling of causal diamonds and doubling of volg

Clemens Sämann, University of Oxford 12 / 18



Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of dim n

Vn = volg

dimτ (M) = n

use appropriate cylindrical neighborhoods
machinery of Federer: Geometric measure theory 1969
doubling of causal diamonds and doubling of volg

Clemens Sämann, University of Oxford 12 / 18



Compatibility for continuous spacetimes

Theorem
(M, g) continuous, strongly causal, causally plain spacetime of dim n

Vn = volg

dimτ (M) = n

use appropriate cylindrical neighborhoods
machinery of Federer: Geometric measure theory 1969
doubling of causal diamonds and doubling of volg

Clemens Sämann, University of Oxford 12 / 18



Doubling of causal diamonds in cont. spacetimes (1/2)

1 W open, conn., rel.
comp. chart

2 W = (0, B) × Z

3 ∂t = ∂x0 unif. TL
4 W ′ ⊆ W open,

caus. conv. in W s.t.
p = (t, x), q = (s, x) ∈ W ′:
p̂ = (t − λ(s − t), x),
q̂ = (s + λ(s − t), x) ∈ W

5 p = (t, x) ≪ q = (s, x),
u = (r, y) ≪ v = (l, y) ∈ W ′,
l − r ≤ 2(s − t),
J(p, q) ∩ J(u, v) ̸= ∅
⇒ J(u, v) ⊆ J(p̂, q̂, W )

6 W arb. small, inside g.h.
nhd. Rn−1

∂t

W = (0, B) × Z

p0

“doubling axis”

W ′

W

W ′

q

p

v

u

“doubling axis”
q̂

p̂
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Doubling of causal diamonds in cont. spacetimes (2/2)

cylindrical nhd. W: volg(J(p̂, q̂, W )) ≤ L volg(J(p, q))

Definition
Borel measure m on M is loc. causally doubling if ∀ cyl. nhds. (W ′, W )
∃L ≥ 1:

1 ∀p = (t, x), q = (s, x) ∈ W ′: m(J(p̂, q̂, W )) ≤ L m(J(p, q))
2 m(J(p, q, W )) > 0 (p, q ∈ W with p ≪ q)
3 m(W ) < ∞

Theorem
(M, g) cont., causally plain, strongly causal spacetime; m loc. causally
doubling measure, loc. doubling constant L on all suff. small cyl. nhds ⇒

dim(M) = dimτ (M) ≤ log1+2λ(L)
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Doubling of causal diamonds in cont. spacetimes (3/3)
Sketch of the proof:
Suffices to show Vκ(J) for small CD J (κ := log1+2λ(L)) in cyl. nhd.
Ji := J(pi, qi) (i ∈ Iξ) maximally Tξ-separated, i.e.,

1 pi = (ti, xi), qi = (si, xi) ∈ W̃ ,
2 si − ti = Tξ,
3 for all i, j ∈ Iξ, i ̸= j one has pi ̸≤ qj or |sj − ti| > 2Tξ or pj ̸≤ qi or

|si − tj | > 2Tξ, and finally
4 Ji ∩ J ̸= ∅ for all i ∈ Iξ.

Then diam(Ji) ≤ ξ, diam(J(p̂i, q̂i)) ≤ ξ; τ(pi, qi) ≥ C1ξ, τ(p̂i, q̂i) ≤ C2ξ
(Ji)i∈Iξ

disjoint and J ⊆
⋃

i∈Iξ
J(p̂i, q̂i); m(Ji) ≥ K̃ τ(pi, qi)κ

∞ > m(W ) ≥ m(
⋃

i∈Iξ

Ji) =
∑
i∈Iξ

m(Ji) ≥ K̃
∑
i∈Iξ

τ(pi, qi)κ ≥ K̃Cκ
1 ξκ|Iξ|

; |Iξ| ≤ C3ξ−κ

Vκ
ξ (J) ≤

∑
i∈Iξ

ρκ(J(p̂i, q̂i)) = ωκ

∑
i∈Iξ

τ(p̂i, q̂i)κ ≤ ωκ|Iξ|Cκ
2 ξκ ≤ ωκC3Cκ

2 < ∞ ,
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Synthetic TL Ricci curvature bounds and doubling
Bτ

r (x) := {y ∈ X : τ(x, y) < r}, Er := E ∩ Bτ
r (x)

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat.
wTCDe

p(K, N) (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1)) ⇒ ∃L = L(K, N) ≥ 1:
∀x0 ∈ X, E ⊆ I+(x0) ∪ {x0} comp., τ -star-shaped wrt x0, r > 0 small

m(E2r) ≤ L m(Er)

! does NOT imply doubling for causal diamonds!

Theorem
(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat.
wTCDe

p(K, N) wrt volg (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1))
(+causally-reversed) ⇒

dim(M) = dimτ (M) ≤ N
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Synthetic TL Ricci curvature bounds and doubling
Bτ

r (x) := {y ∈ X : τ(x, y) < r}, Er := E ∩ Bτ
r (x)

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat.
wTCDe

p(K, N) (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1)) ⇒ ∃L = L(K, N) ≥ 1:
∀x0 ∈ X, E ⊆ I+(x0) ∪ {x0} comp., τ -star-shaped wrt x0, r > 0 small

m(E2r) ≤ L m(Er)

! does NOT imply doubling for causal diamonds!

Theorem
(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat.
wTCDe

p(K, N) wrt volg (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1))
(+causally-reversed) ⇒

dim(M) = dimτ (M) ≤ N

Clemens Sämann, University of Oxford 16 / 18



Synthetic TL Ricci curvature bounds and doubling
Bτ

r (x) := {y ∈ X : τ(x, y) < r}, Er := E ∩ Bτ
r (x)

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat.
wTCDe

p(K, N) (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1)) ⇒ ∃L = L(K, N) ≥ 1:
∀x0 ∈ X, E ⊆ I+(x0) ∪ {x0} comp., τ -star-shaped wrt x0, r > 0 small

m(E2r) ≤ L m(Er)

! does NOT imply doubling for causal diamonds!

Theorem
(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat.
wTCDe

p(K, N) wrt volg (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1))
(+causally-reversed) ⇒

dim(M) = dimτ (M) ≤ N

Clemens Sämann, University of Oxford 16 / 18



Synthetic TL Ricci curvature bounds and doubling
Bτ

r (x) := {y ∈ X : τ(x, y) < r}, Er := E ∩ Bτ
r (x)

Lemma
glob. hyp. locally causally closed measured Lorentzian length space sat.
wTCDe

p(K, N) (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1)) ⇒ ∃L = L(K, N) ≥ 1:
∀x0 ∈ X, E ⊆ I+(x0) ∪ {x0} comp., τ -star-shaped wrt x0, r > 0 small

m(E2r) ≤ L m(Er)

! does NOT imply doubling for causal diamonds!

Theorem
(M, g) cont., glob. hyp. TL non-branching, causally plain spacetime sat.
wTCDe

p(K, N) wrt volg (K ∈ R, N ∈ [1, ∞), p ∈ (0, 1))
(+causally-reversed) ⇒

dim(M) = dimτ (M) ≤ N

Clemens Sämann, University of Oxford 16 / 18



Outlook

synthetic dimension of semi-Riemannian submanifolds of spacetimes
how to define doubling of causal diamonds in general, i.e., not using
coordinates?
synthetic timelike Ricci curvature bounds wrt VN

applications to singularity theorems
relation to Hausdorff measure/dimension wrt Sormani-Vega null
distance
one-dimensional measures restricted to acausal sets / level sets of
(steep) time functions
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