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Overview

Ambient: (M, g) glob. hyp. s.t. with-timelike-boundary ∂M

⇝ intrisinsically ∂M identifiable to naked singularities

Systematic studies:

D. Soĺıs’ thesis ’06, arXiv:1803.01171
(background for P. Chrusciel, G. Galloway, D. Soĺıs ’09 )

Aké’s thesis’18
(which includes L. Aké, JL. Flores, M.S. ’21)
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Overview

Focus on geometric properties:

Development of causality/ causal ladder

Determination of properties of M from ∂M

Global orthogonal splitting (with orthogonality of ∂M )
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Overview

Background for topics including:

Mixed PDE problems (Dirac, Klein Gordon...)

Wave equation

Snell law at ∂M
Bounds for quantization

Initial boundary value problem (IBVP)

Asymptotic value problem at conformal infinity
Finite distance (Numerics)
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Overview

Aims:

1 Spacetimes M with timelike bd. ∂M

1 General properties
2 Causality (in M̄ and inherited by ∂M, M)
3 Convexity (of ∂M, M)
4 Relation with the causal bd.

2 Splitting for glob. hyperb. M

Statement
Involved techniques
Sketch of proof

3 Notes on the PDE viewpoint
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1. Spacetimes M
with timelike bd ∂M
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General properties

Connected (n + 1)-manifold with boundary M = M ∪ ∂M
M interior -manifold
∂M boundary n-manifold (possibly non-connected)

Note: M closure of open subset in M̃ (with no bd.)

In particular, M ⊂ M
d
“double mfold”
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Metric g on M
Lorentzian signature (−,+, . . . ,+︸ ︷︷ ︸

n

)

Smooth (natural sense)
Extensible (globally) to some (M̃, g̃) (with no bd.)

BUT the natural extension of g to M
d
is only C 0

(additional conditions required for smoothness)

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



Timelike boundary:

g Lorentz restricted to the mfd ∂M (−,+, . . . ,+︸ ︷︷ ︸
n−1

)

M and ∂M consistently time-oriented
(in particular, ∃T timelike v. on M tangent to ∂M)
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Two examples/ standard applications

1 Cut-off of some M̃ with no bd.

artificial bd. for numerics, quantization...

F. ex: R× B̄ in Ln+1 = (R×Rn, ⟨·, ·⟩)
B̄ ⊂ Rn: closure open subset with smooth topol. bd.
(tipycally compact B̄ “finite distance” problem)
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2 Conformal completion (and choice of conformal factor)
F. ex: (universal) anti-de Sitter

 

 

 Source: Wikipedia (M-theory) Creative Commons 
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Anti-de Sitter (Rn+1, gAdS)

gAdS = − cosh2 ρ dt2 + dρ2 + sinh2 ρ gSn−1 , t ∈ R, ρ > 0

Standard static “gauge” (extensible to ρ = 0)
Warped product with base hyperbolic Hn (totally geodesic)

Conformal choice (ρ > 0)

gAdS

sinh2 ρ
= − cosh2 y dt2 + dy2 + gSn−1 , t ∈ R, y ∈ (0,∞)

dy = −dρ/ sinh ρ⇝ y = − ln (tanh(ρ/2))

Conformal boundary y = 0
ESUn = (R× Sn−1,−dt2 + gSn−1)
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In this example (and other natural conformal choices):

∂M: timelike hypersurface

Intrinsically: isometric to ESUn

Extrinsically: totally geodesic

Weyl tensor ≡ 0

In general

Intrinsic/extrinsic properties in ∂M imposed
⇝ definition of asymptotic behaviours
Stresses the role of causality

Implicit smooth extensibility of Weyl (obstruction to ∂M)
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Causality: regularity of curves

Mimicking the case ∂M = ∅:
future/past directed timelike, causal curves γ

≪, ≤
I±(p), J±(p)

but...
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Caution

Regularity for causal curves above: H1 / locally Lipschitz

Case ∂M = ∅ enough piecewise smooth curves
Case ∂M ̸= ∅: Jps(p) ⫋ JH1(p) (even if ∂M is C∞)

H̄ hypograph (including closed lower half-space)
∃ Riemannian minimizers C 1 no piecewise C 2

M = R× H̄, g = −dt2 + dx2 + dy2
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Causality: ladder

Lower levels of the causal ladder: as when ∂M = ∅

Proposition

In any spacetime with timelike boundary:

strongly causal ⇒ distinguishing
(p ̸= q ⇒ I+(p) ̸= I+(q), I−(p) ̸= I−(q))

(future or past) distinguishing ⇒ causal ⇒ chronological.
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Stable causality: consistency

Proposition

For (M, g) with timelike boundary, they are equivalent:

1 Stability of causality: ∃ causal g ′ with g < g ′.

2 ∃ time function t
(continuous and strictly increasing on f.d. causal curves)

3 ∃ temporal function τ
(τ is smooth with timelike past-directed ∇τ).

(Stably causal ⇒ strongly causal)

Proofs.
1 ⇒ 2. As in Hawking’73
2 ⇒ 3. As in Bernal & S.’05, S.’05 or posterior approaches on
cones (no restriction for ∇τ on ∂M required)
3 ⇒ 1 (and the last assertion). Standard.

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



Higher levels of the causal ladder: as when ∂M = ∅ :

Caus. cont.: I±(p) characterizes p (distinguishing)
+ varies continuously (reflecting)

Two highest:

caus. simple: causal + J±(p) closed
glob. hyp.: causal + J+(p) ∩ J−(q) compact

(including simplification strong causality ⇝ causality )

Stably caus. ⇐ Caus. contin. ⇐ Caus. simple ⇐ Glob. hyp.

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



Globally hyp. ⇔ ∃ Cauchy subset (⇝ top. hyp. with bd.)

1 Lemma: an achronal set A ⊂ M with A ∩ edge(A) = ∅ is a
locally Lipschitz hypersurf. (with boundary) transverse to ∂M.
Moreover, if edge(A) = ∅ then A is closed (as a subset of M)

2 Prop. Let F ̸= ∅,M be a future set (i.e I+(F ) = F ).

Its topological bd is an achronal closed locally Lipschitz
hypers. transverse to ∂M.

In particular, so is any Cauchy subset.
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Causality: properties inherited by M , ∂M

Proposition

1 (M, g) causally continuous ⇒
(M, g |M) causally continuous, (∂M, g |∂M) stably causal.

2 (M, g) globally hyperbolic ⇒
(∂M, g |∂M) glob. hyperbolic

(∂M possibly non-connected)

No more implications, except consequences of above:

M causally simple =⇒ ∂M stably causal
M glob. hyp. or caus. simple =⇒ M caus. continuous

Or directly related: (M, g) reflecting ⇒ (M, g) reflecting
(Galloway, Liang’23).

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



Causality: properties inherited by M , ∂M

Proposition

1 (M, g) causally continuous ⇒
(M, g |M) causally continuous, (∂M, g |∂M) stably causal.

2 (M, g) globally hyperbolic ⇒
(∂M, g |∂M) glob. hyperbolic

(∂M possibly non-connected)

No more implications, except consequences of above:

M causally simple =⇒ ∂M stably causal
M glob. hyp. or caus. simple =⇒ M caus. continuous

Or directly related: (M, g) reflecting ⇒ (M, g) reflecting
(Galloway, Liang’23).

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



Example 1: Globally hyp. M but non-causally simple M
M = L3 − {Open cylinder } (Soĺıs’06)

p

(∃ lightlike geod. in M tangent to ∂M at !p)
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Example 2: Caus. cont. M but non-causally continuous ∂M
M = { open half y > 0 in L3},

∂M = L2 − {half x-axis} ⊂ {y = 0}
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••• 
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Moreover: caus. simple M but non-causally continuous ∂M

1 Start with closed (solid) cylinder C = R× D ⊂ L3,
where D = {x2 + y2 ≤ 1} ⊂ R2 (closed unit disk)

2 Remove the arc A = {(0, cos θ, sin θ) : 0 ≤ θ ≤ π/4}
and consider the spacetime M = C \ A
(clearly ∂M is not causally continuous)

3 M := C \ A is causally simple!
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Question: Let M̄ be a GH-ST-TB

M is always causally continuous

M is never glob. hyperb.

When is it causally simple?
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Convexity: Riemannian (and Finslerian)

(M̄, gR) complete Riemannian mfd smooth boundary ∂M. Easily,

M convex [p, q ∈ M connected by a minimizing geod. in M]
=⇒ ∂M infinitesimally convex [2nd f.f. II ≥ 0]

The converse also holds (even for Finsler metrics)

Bishop ’74: when gR is C 4

Bartolo, Caponio, Germinario, S. ’11: for C 1,1 (and Finsler)
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Basic ideas

1 Local: Infinit. convex. II ≥ 0 =⇒ Local convex.
(locally expp(Tp∂M) does not reach M)

2 Global: Local convex. + M̄ complete =⇒ convex M

Note: completeness of M̄ weakened in the Finslerian setting:
compactness of forward closed balls ∩ backward ones
(weaker then forward or backward completeness)
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Convexity: Lorentzian (Herrera, S. ’23)

Spacetimes-with-timelike-boundary:

logically independent convexities for ∂M:
timelike/null/spacelike II (v , v) ≥ 0 for resp. v
⇝ null convexity conformally invariant

∂M timelike/null/spacelike infinit. convex
⇐⇒ Locally convex exp. for timelike/null/spacelike geod.
(see also null case in Hintz, Uhlmann ’19)

Proposition

For (M̄, g) GH-ST-TB (or just caus. simple):
M is causally simple ⇐⇒ ∂M is null convex

(Lorentzian glob. hyp. M̄ ⇝ Riemannian completeness M̄)
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Convex for static/stationary spacetimes

Corollary

For a standard static s.t. (R× S , g = −Λ(x)dt2 + g0):
causally simple ⇐⇒ (S , gR := g0/Λ) convex
Moreover, for D̄ ⊂ S complete (open with bd) are equivalent:

1 The “cylinder” R× D is causally simple

2 ∂D is infinitesimally gR -convex

3 R× ∂D is null-convex
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Standard stationary: (R× S , g = −Λdt2 + ω ⊗ dt + dt ⊗ ω + g0)

Finsler metrics codifying causality (Caponio, Javaloyes, S. ’11)
F = (

√
ω2 + g0 − ω)/Λ Finsler metric

(play the role of gR = g0/Λ but F (v) ̸= F (−v))

Proposition (Caponio, Germinario S. ’16)

For a standard stationary s.t.:
causally simple ⇐⇒ (S ,F ) is convex
Moreover, for D̄ ⊂ S complete (or just with forward ∩ backward
closed F -balls in D̄ compact) equivalent:

The “cylinder” R× D is causally simple

∂D is infinitesimally F -convex

R× ∂D is null-convex
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Convexity in asymptotically flat s.t.

For any asymptotically flat s.t. and D large ball:

R× D̄ is a GH-ST-TB

R× ∂D is null-convex

⇒ R× D is causally simple

Caution not time-convex
for physical conformal choices: pebble tossed straight

will reach a maximum radius
... and fall down

⇝ timelike geodesic violating (local) time-convexity!
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Causal boundary and naked singularities

Timelike bd ∂M: is a “conformal” one

Causal boundary ∂cM: intrinsic
(valid for all strongly causal s.t. M without bd.)

Relation between ∂M and ∂cM?
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TIP: I−(γ) , γ timelike ↑ inext, TIF: I+(γ) , γ ↓
Causal bd: TIP’s + TIF’s, some of them identified

Formally , pairs (P,F )
P TIP or ∅; F TIF or ∅
S-relation (Szabados) P ∼s F

Naked singularities: each TIP identified with some TIF

Formally pairs (P,F ) with P ̸= ∅ ≠ F
Agrees with classical notion of naked:
∃ Inextens. future-directed (resp past-directed) causal γ
lying in the past (resp. future) of some p ∈ M
∂nakedM ⊂ ∂cM
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Proposition

For M ⊂ M with timelike bd.:

∂M ⊂ ∂nakedM
Indeed, each p ∈ ∂M gives the naked singularity (P,F )
with P = I−(p) ∩M, F = I+(p) ∩M

If, additionally, M is GH-ST-TB:
∂M = ∂nakedM
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2. Splitting for
globally hyperbolic M
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Statement

Theorem. Any (M, g) globally hyperbolic with-timelike-boundary:

(A) Admits an “adapted” Cauchy temp. τ
(with ∇τ tangent to ∂M on bd.)

(B) Then, M splits as R× Σ̄, g = −Λdτ2 + gτ ,

τ becomes the natural projection R× Σ̄ → R

Λ : R× Σ̄ → R is positive (lapse)
Σ̄ (n)-manifold with boundary
gτ Riemannian metric on each slice {τ} × Σ̄
(positive semidefinite metric tensor with radical= Span(∂τ ))
τ -slices are spacelike Cauchy hypersurfaces-with-bd
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As a consequence:

Interior M = R× Σ
⇝ class of causally continuous s.t. which splits

Boundary ∂M (global. hyp. no bd., possibly non-connected):

admits τ |∂M as Cauchy temporal
orthogonal to the Cauchy τ slices
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Moreover, any glob hyp. s.t.-with-timelike-bd M can be
isometrically embedded

↪→ as the closure of an open set in a glob. hyp. s.t. M̃
(without boundary)

↪→ as a submanifold in LN for some N ∈ N
applying to M̃ Nash-type Müller & S.’11 (for ∂M = ∅)
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Involved techniques

Previous techniques for ∂M = ∅
Starting point: Geroch ’70 topological splitting

Smoothness + orth. splitting: AN Bernal & MS ’03, ’05
(extended to other problems in AN Bernal & MS ’06, ’07;
O Müller & MS ’11; O Müller ’16 )

New approaches:

1 A. Fathi, A. Siconolfi ’12:
weak-KAM theory

2 Sullivan’76 - D. Monclair’14
Applicability of attractors, chain recurrency and Conley Th.

3 P. Chrusciel, J.D.E. Grant & E. Minguzzi ’16:
Seifert’s approach to smoothability

4 P. Bernard & S. Suhr ’18:
Conley theory, most general cones
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The orthogonal splitting (part (B) of Th.)
follows from τ (part (A))

1 Take τ :

temporal (smooth, with ∇τ past-directed timelike)
Cauchy (with Cauchy slices τ = constant)
adapted (with ∇τ tangent to ∂M on ∂M)

and put Σ̄ := τ−1(0)

2 Splitting obtained flowing Σ̄ with X = −∇τ/|∇τ |2.
3 Consistency: X is tangent to ∂M

(integral curves starting at ∂M remain in ∂M).
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Strategy to find τ :

1 Find any Cauchy temporal τ0 on M (non-adapted)

Any of the techniques of the case ∂M = ∅ work

2 Use τ0 to prove C 0-stability glob. hyp. in M
(or stability in the interval topology for conformal classes)

Intuitively clear

3 Using stability, reduce to the case of a very simple ∂M...

4 ... where the techniques for the case ∂M = ∅ are appliable
(in particular: Bernal, S.’05 + O Müller ’16)
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Steps to construct (adapted) τ :

1 ∃g ′ > g such that g ′ is globally hyperbolic.
(stability of global hyperbolicity, Steps 1, 2)
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Steps to construct (adapted) τ :

1 ∃g ′ > g such that g ′ is globally hyperbolic.
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Steps to construct (adapted) τ :

1 Assume stability of global hyperbolicity, i.e,
there exist g ′ > g such that g ′ is globally hyperbolic.

2 Lemma: if g∗ satisfies g ≤ g∗ ≤ g ′ then:
τ g∗-Cauchy temporal ⇒ τ g -Cauchy temporal

3 Find such a g∗ such that:

1 ∂M⊥g= ∂M⊥g∗

2 the natural extension of g∗ to the double M
d
is smooth:

∃ a natural isometry i : M
d → M

d
“reflecting” on ∂M

(in particular, ∂M is g∗-totally geodesic)

Proof: technical, modify g using

a global tubular neighborhood E of ∂M and
a choice ĝ0 on ∂M s.t. g |∂M < ĝ0 < g ′|∂M
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To construct τ :

1 Assume stability of global hyperbolicity, i.e,
there exist g ′ > g such that g ′ is globally hyperbolic.

2 Lemma: if g∗ satisfies g ≤ g∗ ≤ g ′ then:
τ g∗-Cauchy temporal ⇒ τ g -Cauchy temporal

3 Find such a g∗ such that:

1 ∂M⊥g= ∂M⊥g∗

2 the natural extension of g∗ to the double M
d
is smooth:

∃ a natural isometry i : M
d → M

d
“reflecting” on ∂M

(in particular, ∂M is g∗-totally geodesic)

4 Find a g∗-Cauchy temporal τd on all M
d
invariant by i .
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4 Find a g∗-Cauchy temporal τd on all M
d
invariant by i .

Very particular case of O. Müller, LMP’16:

Let gd be a globally hyperbolic metric invariant by the action
of a compact Lie group G . Then, it admits a Cauchy
temporal function τd invariant by G .

In our case G = {1, i}
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To construct τ :

1 Assume stability of global hyperbolicity, i.e,
there exist g ′ > g such that g ′ is globally hyperbolic.

2 Lemma: if g∗ satisfies g ≤ g∗ ≤ g ′ then:
τ g∗-Cauchy temporal ⇒ τ g -Cauchy temporal

3 Find such a g∗ such that:

1 ∂M⊥g= ∂M⊥g∗

2 the natural extension of g∗ to the double M
d
is smooth:

∃ a natural isometry i : M
d → M

d
“reflecting” on ∂M

(in particular, ∂M is g∗-totally geodesic)

4 Find a g∗-Cauchy temporal τd on all M
d
invariant by i .

5 τ := τd |M works!

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary



3. Notes on the
PDE viewpoint
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GH-ST-TB: Arena for field eqns

Some examples:

K. O. Friedrichs ’58: general study of symmetric positive linear
differential equations, including Cauchy mixed problems

N. Ginoux, S. Murro ’22: systematic study of Friedrich
systems in GH-ST-TB

Symmetric hyperbolic: Dirac, energy momentum,
geometric wave op.
Symmetric positive: Klein-Gordon, reaction-difussion

(also Drago et al. ’20 Grosse & Murro ’20)
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Especially, GH-ST-TB ambient for wave eqn and quantization

Lupo’s thesis ’15 Ch. 5 “Notes towards a theory of spacetimes
with timelike boundaries and boundary value problems”
⇝ (local) uniqueness for wave eq with Dirichlet bd conditions

P. Hintz, G. Uhlmann ’19, with J. Zhai ’23: inverse boundary
problem for semilinear wave eqn. including Snell’s

Fundamental solutions, quantization :

C. Dappiaggi, N. Drago, H. Ferreira’20 Maxwell eqn.
C. Dappiaggi, N. Drago, R. Longhi ’19 waves in static s.t.
C. Dappiaggi, A. Marta ’22 Klein-Gordon asym. anti de Sitter
M. Benini, C. Dappiaggi, A. Schenkel ’18 algebraic QFT

W. Janssen ’22. Quantization of fields: glob. hyperb.
⇝ semi-glob. hyperb. (finite union in time of glob hyp pieces)
⇝ GH-ST-TB
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GH-ST-TB evolved from Einstein eqn: IBVP

Model: classic Cauchy initial value approach for Einstein eqns.:

Choquet-Bruhat ’52 — Choquet-Bruhat & Geroch ’69:
Well posedness, involves a (harmonic) gauge

⇝ Initial boundary value problem on (R× ∂Σ) ∪ Σ
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Cauchy initial value vs IBVP

(For vacuum, following Z. An & M. Andersson’22)

Cauchy value problem

Let Σ, (n) manifold ∂Σ = ∅ with initial data (γ, κ)
(Riem. γ, 2 cov sym tensor κ; Gauss, Codazzi Ricc = 0 )

(V , g) vacuum development:
glob. hyperb. Ricc = 0 s-t containing the data (Σ, γ, κ)

Equivalent vacuum developments (V1, g1), (V2, g2):
if they contain a common subdevelopment:
∃ vacuum development (V ′, g) and isometric embeddings
ψi : V

′ → Vi such that ψ∗
i gi = g , (i = 1, 2)

V: space of equivalence classes of vacuum developments
I: moduli space of initial data up to Diff(Σ)

Main classic result: ∃ canonic bijective map D : V → I.
D yields a parametrization of solutions

To obtain D−1: solve PDE (using a gauge)
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Initial boundary value problem (IBVP)

Initial data (γ, κ) on some Σ̄, ∂Σ ̸= ∅
Corner boundary : (R× ∂Σ) ∪ Σ̄⇝ ([0, 1)× ∂Σ) ∪ Σ

Ideally seeked th.: ∃ canonic bijective D : V → I ×c B.

B boundary data on ∂M ≡ [0, 1)× ∂Σ up to some diffeom.

Data: geometry of ∂M
intrinsic (Lorentzian metric) and/or extrinsic (2nd ff II )
Diffeom.: Ideally Diff0(M̄) (diff. M identity on ∂M)

×c compatibility at the corner {0} × ∂Σ.

Basic open problem (for appropiate geometric bd data):

Is there a choice of gauge for which IBVP is well posed?
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IBVP, asymptotic case

Asympt. AdS (vacuum cosmol. const) Ricc = λg , λ < 0

AdS: (Σ, γ) = Hn, κ = 0,B = ESUn

Some results:

Friedrich ’95 well posed IBVP (dim 3+1 or even)

Geometric data: conformal class of the metric at infinity
Reduction to a finite maximally dissipative flux
Mixed problem: tractable using O. Guès ’90
Riemannian background: Graham, Lee’90

A. Enciso, N. Kamran ’19 approach valid also for odd dim

Make use of key algebraic similarities Lorentz/ Riemann
Improve regularity of initial data (polyhomogeneity)
⇝ no problem log terms in Fefferman-Graham expansion

G. Holzegel, J. Luk, J. Smulevici, C. Warnick’20 ,
stability of AdS under optimally dissipative flux on ∂M
+ (conjectured) non-stability for flux= 0
(reflecting Dirichlet/ Neuman)
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Some results: IBVP, finite distance

Primary application to numerical relativity:

Simulation isolated astrophys. systems (neutron stars, BH’s)
⇝ introduce as ∂M the boundary of the computational grid

Especially complicated (even Riemanian counterparts)
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Some results: IBVP, finite distance

Σ̄ compact, Ric = 0

Friedrich-Nagy ’99 (MR: “rarely studied problem”)
well-posed under gauge-dependent conditions

Σ: first-order frame formalism, orthonormal tetrad, associated
metric connection, Weyl components
Bd: mean curv. + gauge-dependent Weyl

Kreiss-Reula-Sarbach-Winicour ’09 ’07:
well-posed in a harmonic (wave eqn.) gauge
⇝ closer to classic Cauchy problem

Gauge-dependent conditions on bd and Σ
Kreiss-Winicour ’14: identifies local geometric meaning
(intrinsic or extrinsic) of pieces of the data

An-Andersson ’22 (arxiv): progress on harmonic gauge and
uniqueness ⇝ construction of unique maximal globally
hyperbolic vacuum development

Fournadavlos-Smulevici ’21 ’23:
well posedness for totally geodesic/ umbilic ∂M.
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Thank you
for your attention
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