The geometry of Globally Hyperbolic Spacetimes-with-timelike-boundary

Miguel Sánchez, Univ. Granada & IMAG

Based in joint work with L.A. AKÉ & J.L. FLORES, Rev. Mat. Iberoam. (2021)

Nijmegen, June 2023

Miguel Sánchez (U. Granada)

Globally hyperbolic spacetimes- with-timelike-boundary

Ambient: (\overline{M}, g) glob. hyp. s.t. with-timelike-boundary ∂M • \rightarrow intrisinsically ∂M identifiable to naked singularities Systematic studies:

- D. Solís' thesis '06, arXiv:1803.01171 (background for P. Chrusciel, G. Galloway, D. Solís '09)
- Aké's thesis'18

(which includes L. Aké, JL. Flores, M.S. '21)

.

Focus on geometric properties:

- Development of causality/ causal ladder
- Determination of properties of M from ∂M
- Global orthogonal splitting (with orthogonality of ∂M)

Background for topics including:

- Mixed PDE problems (Dirac, Klein Gordon...)
- Wave equation
 - Snell law at ∂M
 - Bounds for quantization
- Initial boundary value problem (IBVP)
 - Asymptotic value problem at conformal infinity
 - Finite distance (Numerics)

伺き イヨト イヨ

Aims:

1 Spacetimes \overline{M} with timelike bd. ∂M

- 1 General properties
- **2** Causality (in \overline{M} and inherited by ∂M , M)
- **3** Convexity (of ∂M , M)
- 4 Relation with the causal bd.
- **2** Splitting for glob. hyperb. \overline{M}
 - Statement
 - Involved techniques
 - Sketch of proof
- 3 Notes on the PDE viewpoint

1. Spacetimes \overline{M} with timelike bd ∂M

Timelike boundary:

• g Lorentz restricted to the mfd $\partial M(-,+,\dots,+)$

■ M and ∂M consistently time-oriented (in particular, ∃T timelike v. on M tangent to ∂M)

n-1

F 4 3 F 4

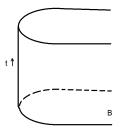
Two examples/ standard applications

1 Cut-off of some \tilde{M} with no bd.

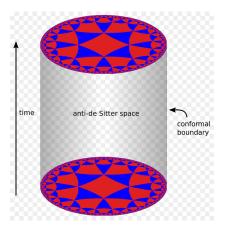
artificial bd. for numerics, quantization...

F. ex: $\mathbb{R} \times \overline{B}$ in $\mathbb{L}^{n+1} = (\mathbb{R} \times \mathbb{R}^n, \langle \cdot, \cdot \rangle)$

 $\overline{B} \subset \mathbb{R}^n$: closure open subset with smooth topol. bd. (tipycally compact \overline{B} "finite distance" problem)



2 Conformal completion (and choice of conformal factor) F. ex: (universal) anti-de Sitter



Source: Wikipedia (M-theory) Creative Commons

• Anti-de Sitter ($\mathbb{R}^{n+1}, g_{AdS}$)

 $g_{AdS} = -\cosh^2 \rho \ dt^2 + d\rho^2 + \sinh^2 \rho \ g_{\mathbb{S}^{n-1}}, \qquad t \in \mathbb{R}, \rho > 0$

• Standard static "gauge" (extensible to $\rho = 0$)

• Warped product with base hyperbolic \mathbb{H}^n (totally geodesic)

■ Conformal choice ($\rho > 0$)

$$\frac{g_{AdS}}{\sinh^2 \rho} = -\cosh^2 y \ dt^2 + dy^2 + g_{\mathbb{S}^{n-1}}, \qquad t \in \mathbb{R}, y \in (0, \infty)$$

$$dy = -d
ho/\sinh
ho \rightsquigarrow y = -\ln(anh(
ho/2))$$

• Conformal boundary y = 0 $\mathsf{ESU}^n = (\mathbb{R} \times \mathbb{S}^{n-1}, -dt^2 + g_{\mathbb{S}^{n-1}})$ In this example (and other natural conformal choices):

- ∂M : timelike hypersurface
 - Intrinsically: isometric to ESUⁿ
 - Extrinsically: totally geodesic
- Weyl tensor $\equiv 0$

N 4 3 N 4

In this example (and other natural conformal choices):

- ∂M : timelike hypersurface
 - Intrinsically: isometric to ESUⁿ
 - Extrinsically: totally geodesic
- Weyl tensor $\equiv 0$

In general

- Intrinsic/extrinsic properties in ∂*M* imposed → definition of asymptotic behaviours Stresses the role of causality
- Implicit smooth extensibility of Weyl (obstruction to ∂M)

Mimicking the case $\partial M = \emptyset$:

 \blacksquare future/past directed timelike, causal curves γ

• «,
$$\leq$$

• $I^{\pm}(p), J^{\pm}(p)$

but...

Caution

Regularity for causal curves above: H^1 / locally Lipschitz • Case $\partial M = \emptyset$ enough piecewise smooth curves Case $\partial M \neq \emptyset$: $J_{ps}(p) \subsetneq J_{H^1}(p)$ (even if ∂M is C^{∞})

H hypograph (including closed lower half-space) \exists Riemannian minimizers C^1 no piecewise C^2 $\overline{M} = \mathbb{R} \times \overline{H}, g = -dt^2 + dx^2 + dy^2$

Lower levels of the causal ladder: as when $\partial M = \emptyset$

Proposition

In any spacetime with timelike boundary:

- strongly causal \Rightarrow distinguishing $(p \neq q \Rightarrow I^+(p) \neq I^+(q), I^-(p) \neq I^-(q))$
- (future or past) distinguishing \Rightarrow causal \Rightarrow chronological.

Stable causality: consistency

Proposition

- For (\overline{M}, g) with timelike boundary, they are equivalent:
 - **1** Stability of causality: \exists causal g' with g < g'.
 - **2** \exists time function t

(continuous and strictly increasing on f.d. causal curves)

3 \exists temporal function τ

(τ is smooth with timelike past-directed $\nabla \tau$).

(Stably causal \Rightarrow strongly causal)

Proofs.

 $1 \Rightarrow 2$. As in Hawking'73

2 \Rightarrow 3. As in Bernal & S.'05, S.'05 or posterior approaches on cones (no restriction for $\nabla \tau$ on ∂M required)

 $3 \Rightarrow 1$ (and the last assertion). Standard.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Higher levels of the causal ladder: as when $\partial M = \emptyset$:

- Caus. cont.: I[±](p) characterizes p (distinguishing)
 + varies continuously (reflecting)
- Two highest:
 - caus. simple: causal + $J^{\pm}(p)$ closed
 - glob. hyp.: causal + $J^+(p) \cap J^-(q)$ compact

(including simplification strong causality \rightsquigarrow causality)

• Stably caus. \leftarrow Caus. contin. \leftarrow Caus. simple \leftarrow Glob. hyp.

■ Globally hyp. $\Leftrightarrow \exists$ Cauchy subset (\rightsquigarrow top. hyp. with bd.)

▲ □ ▶ ▲ □ ▶ ▲

Э

- Globally hyp. $\Leftrightarrow \exists$ Cauchy subset (\rightsquigarrow top. hyp. with bd.)
 - Lemma: an achronal set A ⊂ M with A ∩ edge(A) = Ø is a locally Lipschitz hypersurf. (with boundary) transverse to ∂M. Moreover, if edge(A) = Ø then A is closed (as a subset of M)
 Prop. Let F ≠ Ø, M be a future set (i.e I⁺(F) = F).
 - Its topological bd is an achronal closed locally Lipschitz hypers. transverse to ∂M.

In particular, so is any Cauchy subset.

伺下 イラト イラ

Causality: properties inherited by M, ∂M

Proposition

(M,g) causally continuous ⇒
 (M,g|_M) causally continuous, (∂M,g|_{∂M}) stably causal.
 (M,g) globally hyperbolic ⇒
 (∂M,g|_{∂M}) glob. hyperbolic
 (∂M possibly non-connected)

・ 戸 ト ・ 三 ト ・

Causality: properties inherited by M, ∂M

Proposition

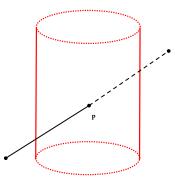
(M,g) causally continuous ⇒
 (M,g|_M) causally continuous, (∂M,g|_{∂M}) stably causal.
 (M,g) globally hyperbolic ⇒
 (∂M,g|_{∂M}) glob. hyperbolic

(*∂M* possibly non-connected)

- No more implications, except consequences of above:
 - \overline{M} causally simple $\Longrightarrow \partial M$ stably causal
 - \overline{M} glob. hyp. or caus. simple $\Longrightarrow M$ caus. continuous
- Or directly related: (\overline{M}, g) reflecting $\Rightarrow (M, g)$ reflecting (Galloway, Liang'23).

< ロ > < 同 > < 三 > < 三 >

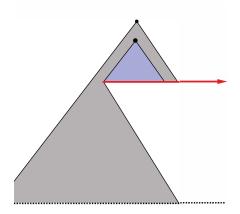
Example 1: Globally hyp. \overline{M} but non-causally simple M $\overline{M} = \mathbb{L}^3 - \{\text{Open cylinder }\}\ (\text{Solis'06})$



 $(\exists$ lightlike geod. in \overline{M} tangent to ∂M at !p)

.

Example 2: **Caus. cont.** \overline{M} but **non-causally continuous** ∂M $M = \{ \text{ open half } y > 0 \text{ in } \mathbb{L}^3 \},$ $\partial M = \mathbb{L}^2 - \{ \text{half } x \text{-axis} \} \subset \{ y = 0 \}$



伺 ト イヨ ト イヨト

Moreover: caus. simple \overline{M} but non-causally continuous ∂M

- **1** Start with closed (solid) cylinder $\overline{C} = \mathbb{R} \times \overline{D} \subset \mathbb{L}^3$, where $\overline{D} = \{x^2 + y^2 \leq 1\} \subset \mathbb{R}^2$ (closed unit disk)
- 2 Remove the arc $A = \{(0, \cos \theta, \sin \theta) : 0 \le \theta \le \pi/4\}$ and consider the spacetime $\overline{M} = \overline{C} \setminus A$ (clearly ∂M is not causally continuous)
- $\overline{\mathbf{3}} \ \overline{M} := \overline{C} \setminus A \text{ is causally simple!}$

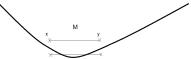
Question: Let \overline{M} be a GH-ST-TB

- M is always causally continuous
- *M* is never glob. hyperb.
- When is it causally simple?

Convexity: Riemannian (and Finslerian)

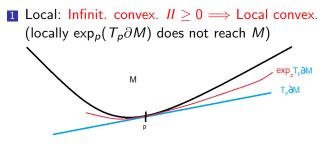
 (\overline{M}, g_R) complete Riemannian mfd smooth boundary ∂M . Easily,

M convex [p, q ∈ M connected by a minimizing geod. in M]
 ⇒ ∂M infinitesimally convex [2nd f.f. II ≥ 0]



- The converse also holds (even for Finsler metrics)
 - Bishop '74: when g_R is C^4
 - Bartolo, Caponio, Germinario, S. '11: for $C^{1,1}$ (and Finsler)

Basic ideas



2 Global: Local convex. $+ \overline{M}$ complete \implies convex M

Basic ideas

- Local: Infinit. convex. $H \ge 0 \implies$ Local convex. (locally $\exp_p(T_p \partial M)$ does not reach M) M $\exp_p T_p \partial M$ $T_p \partial M$
- **2** Global: Local convex. $+ \overline{M}$ complete \implies convex M
- Note: completeness of *M* weakened in the Finslerian setting: compactness of forward closed balls ∩ backward ones (weaker then forward or backward completeness)

Convexity: Lorentzian (Herrera, S. '23)

Spacetimes-with-timelike-boundary:

- logically independent convexities for ∂M: timelike/null/spacelike II(v, v) ≥ 0 for resp. v
 → null convexity conformally invariant
- ∂M timelike/null/spacelike infinit. convex
 ⇔ Locally convex exp. for timelike/null/spacelike geod. (see also null case in Hintz, Uhlmann '19)

Convexity: Lorentzian (Herrera, S. '23)

Spacetimes-with-timelike-boundary:

 ■ logically independent convexities for ∂M: timelike/null/spacelike II(v, v) ≥ 0 for resp. v
 → null convexity conformally invariant

 ∂M timelike/null/spacelike infinit. convex
 ⇔ Locally convex exp. for timelike/null/spacelike geod. (see also null case in Hintz, Uhlmann '19)

Proposition

For (\overline{M}, g) GH-ST-TB (or just caus. simple): M is causally simple $\iff \partial M$ is null convex

(Lorentzian glob. hyp. $\bar{M} \rightsquigarrow$ Riemannian completeness \bar{M})

・ 同 ト ・ ヨ ト ・ ヨ

Corollary

For a standard static s.t. $(\mathbb{R} \times S, g = -\Lambda(x)dt^2 + g_0)$: causally simple $\iff (S, g_R := g_0/\Lambda)$ convex Moreover, for $\overline{D} \subset S$ complete (open with bd) are equivalent: 1 The "cylinder" $\mathbb{R} \times D$ is causally simple 2 ∂D is infinitesimally g_R -convex 3 $\mathbb{R} \times \partial D$ is null-convex Standard stationary: $(\mathbb{R} \times S, g = -\Lambda dt^2 + \omega \otimes dt + dt \otimes \omega + g_0)$

Finsler metrics codifying causality (Caponio, Javaloyes, S. '11) $F = (\sqrt{\omega^2 + g_0} - \omega) / \Lambda \text{ Finsler metric}$ (play the role of $g_R = g_0 / \Lambda$ but $F(v) \neq F(-v)$) Standard stationary: $(\mathbb{R} \times S, g = -\Lambda dt^2 + \omega \otimes dt + dt \otimes \omega + g_0)$

• Finsler metrics codifying causality (Caponio, Javaloyes, S. '11) $F = (\sqrt{\omega^2 + g_0} - \omega)/\Lambda$ Finsler metric (play the role of $g_R = g_0/\Lambda$ but $F(v) \neq F(-v)$)

Proposition (Caponio, Germinario S. '16)

For a standard stationary s.t.: causally simple $\iff (S, F)$ is convex Moreover, for $\overline{D} \subset S$ complete (or just with forward \cap backward closed F-balls in \overline{D} compact) equivalent:

- The "cylinder" $\mathbb{R} \times D$ is causally simple
- ∂D is infinitesimally F-convex
- **R** $\times \partial D$ is null-convex

(4月) (4日) (4日)

For any asymptotically flat s.t. and D large ball:

- $\mathbb{R} \times \overline{D}$ is a GH-ST-TB
- $\mathbb{R} \times \partial D$ is null-convex
- $\Rightarrow \mathbb{R} \times D$ is causally simple

For any asymptotically flat s.t. and D large ball:

- $\mathbb{R} \times \overline{D}$ is a GH-ST-TB
- **R** $\times \partial D$ is null-convex
- $\Rightarrow \mathbb{R} \times D$ is causally simple

Caution not time-convex

for physical conformal choices: pebble tossed straight

- will reach a maximum radius
- ... and fall down

 \rightsquigarrow timelike geodesic violating (local) time-convexity!

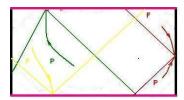
- Timelike bd ∂M : is a "conformal" one
- Causal boundary ∂_cM: intrinsic (valid for all strongly causal s.t. M without bd.)

Relation between ∂M and $\partial_c M$?

- **TIP:** $I^-(\gamma)$, γ timelike \uparrow inext, **TIF**: $I^+(\gamma)$, $\gamma \downarrow$
- Causal bd: TIP's + TIF's, some of them identified
 - Formally , pairs (P, F)
 - P TIP or \emptyset ; F TIF or \emptyset
 - S-relation (Szabados) $P \sim_s F$

Naked singularities: each TIP identified with some TIF

- Formally pairs (P, F) with $P \neq \emptyset \neq F$
- Agrees with classical notion of naked:
 ∃ Inextens. future-directed (resp past-directed) causal γ lying in the past (resp. future) of some p ∈ M
- $\quad \blacksquare \ \partial_{naked} M \subset \partial_c M$



Proposition

For $M \subset \overline{M}$ with timelike bd.:

■ $\partial M \subset \partial_{naked} M$ Indeed, each $p \in \partial M$ gives the naked singularity (P, F)with $P = I^{-}(p) \cap M$, $F = I^{+}(p) \cap M$

• If, additionally, \overline{M} is GH-ST-TB: $\partial M = \partial_{naked} M$

→ < Ξ → <</p>

2. Splitting for globally hyperbolic \overline{M}

Theorem. Any (M, g) globally hyperbolic with-timelike-boundary:
(A) Admits an "adapted" Cauchy temp. τ
(with ∇τ tangent to ∂M on bd.)

→ < Ξ → <</p>

Theorem. Any (\overline{M}, g) globally hyperbolic with-timelike-boundary:

- (A) Admits an "adapted" Cauchy temp. τ (with $\nabla \tau$ tangent to ∂M on bd.)
- (B) Then, \overline{M} splits as $\mathbb{R} \times \overline{\Sigma}$, $g = -\Lambda d\tau^2 + g_{\tau}$,
 - τ becomes the natural projection $\mathbb{R} \times \bar{\Sigma} \to \mathbb{R}$
 - $\Lambda : \mathbb{R} \times \overline{\Sigma} \to \mathbb{R}$ is positive (*lapse*)
 - $\overline{\Sigma}(n)$ -manifold with boundary
 - g_τ Riemannian metric on each slice {τ} × Σ
 (positive semidefinite metric tensor with radical= Span(∂_τ))
 - τ-slices are spacelike Cauchy hypersurfaces-with-bd

・ 同 ト ・ ヨ ト ・ ヨ ト

As a consequence:

• Interior $M = \mathbb{R} \times \Sigma$

 \rightsquigarrow class of causally continuous s.t. which splits

- **Boundary** ∂M (global. hyp. no bd., possibly non-connected):
 - admits $\tau|_{\partial M}$ as Cauchy temporal
 - orthogonal to the Cauchy τ slices

Moreover, any glob hyp. s.t.-with-timelike-bd \overline{M} can be isometrically embedded

- \hookrightarrow as the closure of an open set in a glob. hyp. s.t. \tilde{M} (without boundary)
- \hookrightarrow as a submanifold in \mathbb{L}^N for some $N \in \mathbb{N}$ applying to \tilde{M} Nash-type Müller & S.'11 (for $\partial M = \emptyset$)

Previous techniques for $\partial M = \emptyset$

- Starting point: Geroch '70 topological splitting
- Smoothness + orth. splitting: AN Bernal & MS '03, '05 (extended to other problems in AN Bernal & MS '06, '07; O Müller & MS '11; O Müller '16)
- New approaches:
 - 1 A. Fathi, A. Siconolfi '12: weak-KAM theory
 - 2 Sullivan'76 D. Monclair'14

Applicability of attractors, chain recurrency and Conley Th.

- 3 P. Chrusciel, J.D.E. Grant & E. Minguzzi '16: Seifert's approach to smoothability
- 4 P. Bernard & S. Suhr '18:

Conley theory, most general cones

・ 同 ト ・ ヨ ト ・ ヨ ト

The orthogonal splitting (part (B) of Th.) follows from τ (part (A))

→ < Ξ → <</p>

The orthogonal splitting (part (B) of Th.) follows from τ (part (A))

1 Take τ :

- *temporal* (smooth, with $\nabla \tau$ past-directed timelike)
- Cauchy (with Cauchy slices $\tau = \text{constant}$)
- adapted (with $\nabla \tau$ tangent to ∂M on ∂M)

and put $\overline{\Sigma} := \tau^{-1}(0)$

- **2** Splitting obtained flowing $\overline{\Sigma}$ with $X = -\nabla \tau / |\nabla \tau|^2$.
- **3** Consistency: X is tangent to ∂M (integral curves starting at ∂M remain in ∂M).

Strategy to find τ :

- **1** Find any Cauchy temporal τ_0 on \overline{M} (non-adapted)
 - Any of the techniques of the case $\partial M = \emptyset$ work
- 2 Use τ₀ to prove C⁰-stability glob. hyp. in M
 (or stability in the interval topology for conformal classes)
 Intuitively clear
- **3** Using stability, reduce to the case of a very simple ∂M ...
- 4 ... where the techniques for the case ∂M = Ø are appliable (in particular: Bernal, S.'05 + O Müller '16)

 ∃g' > g such that g' is globally hyperbolic. (stability of global hyperbolicity, Steps 1, 2)

• • • • • • •

- ∃g' > g such that g' is globally hyperbolic. (stability of global hyperbolicity, Steps 1, 2)
- 2 Lemma: if g* satisfies g ≤ g* ≤ g' then: τ g*-Cauchy temporal ⇒ τ g-Cauchy temporal

- Assume stability of global hyperbolicity, i.e, there exist g' > g such that g' is globally hyperbolic.
- 2 Lemma: if g* satisfies g ≤ g* ≤ g' then: τ g*-Cauchy temporal ⇒ τ g-Cauchy temporal
- Find such a g* such that:
 - $1 \ \partial M^{\perp_g} = \partial M^{\perp_g*}$
 - **2** the natural extension of g^* to the double \overline{M}^d is smooth:
 - ∃ a natural isometry $i : \overline{M}^d \to \overline{M}^d$ "reflecting" on ∂M (in particular, ∂M is g^* -totally geodesic)

- Assume stability of global hyperbolicity, i.e, there exist g' > g such that g' is globally hyperbolic.
- 2 Lemma: if g* satisfies g ≤ g* ≤ g' then: τ g*-Cauchy temporal ⇒ τ g-Cauchy temporal
- Find such a g* such that:
 - $1 \ \partial M^{\perp_g} = \partial M^{\perp_g*}$
 - **2** the natural extension of g^* to the double \overline{M}^d is smooth:
 - ∃ a natural isometry $i : \overline{M}^d \to \overline{M}^d$ "reflecting" on ∂M (in particular, ∂M is g^* -totally geodesic)
 - **Proof**: technical, modify g using
 - **a** global tubular neighborhood E of ∂M and
 - a choice \hat{g}_0 on ∂M s.t. $g|_{\partial M} < \hat{g}_0 < g'|_{\partial M}$

To construct τ :

- Assume stability of global hyperbolicity, i.e, there exist g' > g such that g' is globally hyperbolic.
- 2 Lemma: if g* satisfies g ≤ g* ≤ g' then: τ g*-Cauchy temporal ⇒ τ g-Cauchy temporal
- **3** Find such a g^* such that:

$$1 \ \partial M^{\perp_g} = \partial M^{\perp_g^*}$$

- **2** the natural extension of g^* to the double \overline{M}^d is smooth:
 - ∃ a natural isometry $i : \overline{M}^d \to \overline{M}^d$ "reflecting" on ∂M (in particular, ∂M is g^* -totally geodesic)

4 Find a g^* -Cauchy temporal τ^d on all \overline{M}^d invariant by *i*.

4 Find a g^* -Cauchy temporal τ^d on all \overline{M}^d invariant by *i*. Very particular case of O. Müller, LMP'16:

 Let g^d be a globally hyperbolic metric invariant by the action of a compact Lie group G. Then, it admits a Cauchy temporal function τ^d invariant by G.

In our case $G = \{1, i\}$

To construct τ :

- Assume stability of global hyperbolicity, i.e, there exist g' > g such that g' is globally hyperbolic.
- 2 Lemma: if g* satisfies g ≤ g* ≤ g' then: τ g*-Cauchy temporal ⇒ τ g-Cauchy temporal
- Find such a g* such that:
 - $1 \ \partial M^{\perp_g} = \partial M^{\perp_g*}$
 - **2** the natural extension of g^* to the double \overline{M}^d is smooth:
 - ∃ a natural isometry $i: \overline{M}^d \to \overline{M}^d$ "reflecting" on ∂M (in particular, ∂M is g^* -totally geodesic)
- 4 Find a g*-Cauchy temporal τ^d on all M^d invariant by i.
 5 τ := τ^d |_M works!

伺下 イヨト イヨト

3. Notes on the PDE viewpoint

Miguel Sánchez (U. Granada) Globally hyperbolic spacetimes- with-timelike-boundary

< ∃ > <

Some examples:

- K. O. Friedrichs '58: general study of symmetric positive linear differential equations, including Cauchy mixed problems
- N. Ginoux, S. Murro '22: systematic study of Friedrich systems in GH-ST-TB
 - Symmetric hyperbolic: Dirac, energy momentum, geometric wave op.
 - Symmetric positive: Klein-Gordon, reaction-difussion

(also Drago et al. '20 Grosse & Murro '20)

同 ト 4 ヨ ト 4 ヨ

Especially, GH-ST-TB ambient for wave eqn and quantization

- Lupo's thesis '15 Ch. 5 "Notes towards a theory of spacetimes with timelike boundaries and boundary value problems"
 → (local) uniqueness for wave eq with Dirichlet bd conditions
- P. Hintz, G. Uhlmann '19, with J. Zhai '23: inverse boundary problem for semilinear wave eqn. including Snell's
- Fundamental solutions, quantization :
 - C. Dappiaggi, N. Drago, H. Ferreira'20 Maxwell eqn.
 - C. Dappiaggi, N. Drago, R. Longhi '19 waves in static s.t.
 - C. Dappiaggi, A. Marta '22 Klein-Gordon asym. anti de Sitter
 - M. Benini, C. Dappiaggi, A. Schenkel '18 algebraic QFT
- W. Janssen '22. Quantization of fields: glob. hyperb.
 → semi-glob. hyperb. (finite union in time of glob hyp pieces)
 → GH-ST-TB

-

Model: classic Cauchy initial value approach for Einstein eqns.:

Choquet-Bruhat '52 — Choquet-Bruhat & Geroch '69:
 Well posedness, involves a (harmonic) gauge

 \rightsquigarrow Initial boundary value problem on $(\mathbb{R}\times\partial\Sigma)\cup\Sigma$

Cauchy initial value vs IBVP

(For vacuum, following Z. An & M. Andersson'22)

Cauchy value problem

Let Σ , (*n*) manifold $\partial \Sigma = \emptyset$ with initial data (γ, κ) (Riem. γ , 2 cov sym tensor κ ; Gauss, Codazzi *Ricc* = 0)

- (V, g) vacuum development:
 glob. hyperb. *Ricc* = 0 s-t containing the data (Σ, γ, κ)
- Equivalent vacuum developments (V₁, g₁), (V₂, g₂): if they contain a *common subdevelopment*:

 \exists vacuum development (V', g) and isometric embeddings $\psi_i : V' \rightarrow V_i$ such that $\psi_i^* g_i = g, (i = 1, 2)$

V: space of equivalence classes of vacuum developments

 L: moduli space of initial data up to Diff(Σ)

Main classic result: \exists canonic bijective map $D: \mathcal{V} \to \mathcal{I}$.

- D yields a parametrization of solutions
- To obtain D^{-1} : solve PDE (using a gauge)

Initial boundary value problem (IBVP)
 Initial data (γ, κ) on some Σ̄, ∂Σ ≠ Ø
 Corner boundary : (ℝ × ∂Σ) ∪ Σ̄ → ([0, 1) × ∂Σ) ∪ Σ
 Ideally seeked th.: ∃ canonic bijective D : V → I×_c B.

- \mathcal{B} boundary data on $\partial M \equiv [0,1) \times \partial \Sigma$ up to some diffeom.
 - Data: geometry of ∂M intrinsic (Lorentzian metric) and/or extrinsic (2nd ff II)
 - Diffeom.: Ideally $\text{Diff}_0(\overline{M})$ (diff. M identity on ∂M)
- \times_c compatibility at the corner $\{0\} \times \partial \Sigma$.
- **Basic open problem** (for appropriate geometric bd data):

Is there a choice of gauge for which IBVP is well posed?

・ 同 ト ・ ヨ ト ・ ヨ ト

IBVP, asymptotic case

Asympt. AdS (vacuum cosmol. const) $Ricc = \lambda g$, $\lambda < 0$

• AdS:
$$(\Sigma, \gamma) = \mathbb{H}^n, \kappa = 0, B = \mathsf{ESU}^n$$

Some results:

- Friedrich '95 well posed IBVP (dim 3+1 or even)
 - Geometric data: conformal class of the metric at infinity
 - Reduction to a finite maximally dissipative flux
 - Mixed problem: tractable using O. Guès '90
 - Riemannian background: Graham, Lee'90

IBVP, asymptotic case

Asympt. AdS (vacuum cosmol. const) $Ricc = \lambda g$, $\lambda < 0$

• AdS:
$$(\Sigma, \gamma) = \mathbb{H}^n, \kappa = 0, B = \mathsf{ESU}^n$$

Some results:

- Friedrich '95 well posed IBVP (dim 3+1 or even)
 - Geometric data: conformal class of the metric at infinity
 - Reduction to a finite maximally dissipative flux
 - Mixed problem: tractable using O. Guès '90
 - Riemannian background: Graham, Lee'90

A. Enciso, N. Kamran '19 approach valid also for odd dim

- Make use of key algebraic similarities Lorentz/ Riemann
- Improve regularity of initial data (polyhomogeneity) → no problem log terms in Fefferman-Graham expansion
- G. Holzegel, J. Luk, J. Smulevici, C. Warnick'20, stability of AdS under optimally dissipative flux on ∂M + (conjectured) non-stability for flux= 0 (reflecting Dirichlet/ Neuman)

Primary application to **numerical relativity**:

■ Simulation isolated astrophys. systems (neutron stars, BH's) → introduce as ∂M the boundary of the computational grid Especially complicated (even Riemanian counterparts)

Some results: IBVP, finite distance

- $\bar{\Sigma}$ compact, Ric=0
 - Friedrich-Nagy '99 (MR: "rarely studied problem") well-posed under gauge-dependent conditions
 - Σ: first-order frame formalism, orthonormal tetrad, associated metric connection, Weyl components
 - Bd: mean curv. + gauge-dependent Weyl

Some results: IBVP, finite distance

$\bar{\Sigma}$ compact, Ric=0

- Friedrich-Nagy '99 (MR: "rarely studied problem") well-posed under gauge-dependent conditions
 - Σ: first-order frame formalism, orthonormal tetrad, associated metric connection, Weyl components
 - $\blacksquare \ Bd: \ mean \ curv. \ + \ gauge-dependent \ Weyl$
- Kreiss-Reula-Sarbach-Winicour '09 '07:

well-posed in a harmonic (wave eqn.) gauge

- \rightsquigarrow closer to classic Cauchy problem
 - \blacksquare Gauge-dependent conditions on bd and Σ
 - Kreiss-Winicour '14: identifies local geometric meaning (intrinsic or extrinsic) of pieces of the data

An-Andersson '22 (arxiv): progress on harmonic gauge and uniqueness \rightsquigarrow construction of unique maximal globally hyperbolic vacuum development

・ 同 ト ・ ヨ ト ・ ヨ ト

Some results: IBVP, finite distance

- $\bar{\Sigma}$ compact, Ric=0
 - Friedrich-Nagy '99 (MR: "rarely studied problem") well-posed under gauge-dependent conditions
 - Σ: first-order frame formalism, orthonormal tetrad, associated metric connection, Weyl components
 - $\blacksquare \ Bd: \ mean \ curv. \ + \ gauge-dependent \ Weyl$
 - Kreiss-Reula-Sarbach-Winicour '09 '07:

well-posed in a harmonic (wave eqn.) gauge

- \rightsquigarrow closer to classic Cauchy problem
 - \blacksquare Gauge-dependent conditions on bd and Σ
 - Kreiss-Winicour '14: identifies local geometric meaning (intrinsic or extrinsic) of pieces of the data

An-Andersson '22 (arxiv): progress on harmonic gauge and uniqueness \rightsquigarrow construction of unique maximal globally hyperbolic vacuum development

■ Fournadavlos-Smulevici '21 '23: well posedness for totally geodesic/ umbilic ∂M.

Thank you for your attention

- D. Solís, Global properties of asymptotically de Sitter and Anti de Sitter spacetimes, Phd. Thesis, University of Miami, (2006).
- P. Chrusciel, G. Galloway and D. Solís, Ann. Henri Poincaré 10, no. 5, 893-912 (2009)
- L. Aké, Some global causal properties of certain classes of spacetimes, PhD. Thesis, University of Málaga, (2018).
- L. Aké, J.L. Flores, M. Sánchez, Rev. Mat. Iberoam. 37 (2021), no. 1, 45-94.

伺 ト イ ヨ ト イ ヨ

Some references: global hyperbolicity (without boundary)

- R. P. Geroch, J. Math. Phys. 11 (1970) 437 -449
- A.N. Bernal, M. Sánchez,
 - 1 Comm. Math. Phys. 243 (2003) 461-470
 - 2 Comm. Math. Phys. 257 (2005) 43-50
 - 3 Lett. Math. Phys. 77 (2006) 183-197
 - 4 Class. Quant. Grav. 24 (2007) 745-750
 - O. Müller, M. Sánchez, Trans. AMS 363 (2011) 5367-5379
 - O. Müller, Lett. Math. Phys. 106 (2016), no. 7, 959-971
- D. Sullivan, Inventiones Math. 36 (1976) 225-255
 - D. Monclair, Attractors in s-t & time f. arXiv: 1603.06994
 - Dynamique lorentzienne et groupes de difféomorphismes du cercle. PhD thesis, ENS Lyon (2014)
 - P. Bernard, S. Suhr, Comm. Math. Phys. 359 (2018) 467-498
- A. Fathi, A. Siconolfi, M. P. Cambridge 152 (2012) 303-339
- P. Chrusciel, E. Minguzzi, J. Grant, Ann. H. Poincaré (2016) 2801-2824

- R.L. Bishop, Indiana Univ. Math. J. 24, (1974) 169-172
- R. Bartolo, E. Caponio, A. V. Germinario and M. Sánchez, Calc. Var, PDE 40 (2011) 335-356
- E. Caponio, A.V. Germinario, M. Sánchez, J. Geom. Anal. 26, 2 (2016) 791-83
- J. Herrera, M. Sánchez, in progress.

- K. O. Friedrichs, Comm Pure Appl Math. 11 333-418 (1958)
- N Ginoux, S. Murro, Adv Differential Eqn. 27 1693-1738 (2022)
 N. Drago, N. Ginoux, S. Murro, Doc. Math. 27 497-542 (2022)
 N. Grosse, S. Murro, Doc. Math. 737-765 (2020)

Some references: mixed Cauchy problem in waves

- C. Bär, N. Ginoux and F. Pfäffle, Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures (2007)
- U. Lupo, Ph.D. thesis, University of York, (2015).
 U. Lupo, Lett. Math. Phys. 108 (2018) 2315-2362.
- P. Hintz, G. Uhlmann, IMRN 22, 6949-6987 (2019)
 P. Hintz, G. Uhlmann, J. Zhai, IMRN 17 13181-13211 (2022)
- M. Benini, C. Dappiaggi, A. Schenkel Ann. Henri Poinc. 19(8), 2401-2433 (2018)
 C. Dappiaggi, N. Drago; H. Ferreira, Lett. Math. Phys. 109 (2019), no. 10, 2157-2186.
 C. Dappiaggi, N. Drago, R. Longhi, Ann. Henri Poincaré 21 (2020), no. 7, 2367-2409
 C. Dappiaggi, A. Marta Math. Phys. Anal. Geom. 24 (2021), no. 3, Paper No. 28, 36 pp.

DW. Janssen, Commun. Math. Phys. 391, 669-705 (2022)

Some references: IBVP, asymptotic case

- Y. Fourès-Bruhat, Acta Math. 88 (1952), 141-225
 Y. Choquet-Bruhat, R. Geroch, Comm. Math. Phys. 14 (1969), 329-335.
- H. Friedrich, J. Geom. Phys. 17 (1995), no. 2, 125-184
 O. Guès, Commun. Part. Diff. Equ. 15 (1990) 595-645
- A. Enciso and N. Kamran
 - J. Differential Geom. 112 (2019), no. 3, 505-554.
 - Gen. Rel. Grav. 47, no. 12, Art. 147, 11 pp, (2015), expanded at arxiv: 1412.4376.
 - D. A. Carranza, J. A. Valiente Kroon, Class. Quantum Grav. 35 (2018), no. 24, 245006, 34 pp.
- G. Holzegel, J. Luk, J. Smulevici, C. Warnick, Comm. Math. Phys. 374 (2020), no. 2, 1125-1178.

・ 同 ト ・ ヨ ト ・ ヨ ト

H. Friedrich, G. Nagy, Comm Math Phys 201 619-655 (1999)

- H.-O. Kreiss, O. Reula, O. Sarbach, J. Winicour,
 - Comm. Math. Phys. 289 (2009), no. 3, 1099-1129
 - Class. Quantum Grav. 24 (2007), no. 23, 5973-5984.

H.-O. Kreiss, J. Winicour, Class. Quantum Grav. 31 (2014), no. 6, 065004.

Z. An, M. Andersson arXiv:2005.01623.

- G. Fournodavlos, J. Smulevici
 - Comm. Math. Phys. 385 (2021), no. 3, 1615-1653.
 - Int. Math. Res. Not. IMRN 2023, no. 5, 3790-3807.