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Goal of these Lectures

The title of the minicourse is “Recent Developments in Mathematical General
Relativity.” In view of time (and knowledge) constraints the scope will not be
quite as broad as the title might suggests. My main goals are the following:

1. Within the context of the initial value problem and the study of 3 + 1
dimensional isolated systems (that is, asymptotically flat solutions and a
vanishing cosmological constant), explain the basic expectations and
conjectures regarding singularities.

2. Explain some of the progress towards answering these questions that has
been made.

3. Give some examples of how the study of low-regularity solutions can be
useful to understand these problems.
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(Review of) The Initial Value Problem

Theorem (Choquet-Bruhat 1952 and Choquet-Bruhat–Geroch 1969)

Given a (suitably regular) Riemannian manifold (N , h) and symmetric 2-tensor
kab along N which satisfy the “constraint equations,” there exists a unique
maximal globally hyperbolic Lorentzian manifold (M, g) which solves the
Einstein vacuum equations

Ric (g) = 0

so that N embeds as a Cauchy hypersurface into M with first and second
fundamental form given by h and k respectively.

I Cauchy surface is a spacelike hypersurface Σ so that every inextendible
timelike curve intersects intersects Σ exactly once.

I The constraint equations for h and k are consequences of the Gauss and
Codazzi equations and Ric (g) = 0.

I Proof uses that in a suitable coordinate system, Ric (g) = 0 becomes a
system of quasilinear wave equations for the metric g .
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Part I: Crash Course in Penrose Diagrams



Null Coordinates on Spherically Symmetric Spacetimes

Fact: Every spherically symmetric globally hyperbolic spacetime (M, g) may
locally be equipped with coordinates

(
u, v , θA

)
∈ U × S2 for suitable U ⊂ R2,

so that
g = −Ω2 (u, v) dudv + r 2 (u, v) dS2.

Quick Example: Minkowski space is

(R4,m = −dt2 + dx2 + dy 2 + dz2).

In spherical coordinates the metric becomes

m = −dt2 + dr 2 + r 2dS2 = −dudv + r 2dS2,

for u = t − r and v = t + r .
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Penrose Diagram

Quotienting out by the SO(3) actions leads to the metric

g̃ = −Ω2 (u, v) dudv .

Fact: Can define new coordinates ũ (u) and ṽ (v), so that ũ and ṽ now range
over a bounded subset Ũ ⊂ R2:

g̃ = −Ω̃2 (ũ, ṽ) dũdṽ .

The Penrose diagram then corresponds to considering the Minkowski metric
m = −dũdṽ on this finite region Ũ. The key points are then that

1. Since m and g̃ are conformal to each other, they have the same light
cones, which moreover lift to null hypersurfaces in the original spacetimes.

2. Since Ũ is finite, you can easily depict it visually.

3. Causal relations in Ũ are respected by their lifts to the original spacetime.
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over a bounded subset Ũ ⊂ R2:
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2. Since Ũ is finite, you can easily depict it visually.
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Penrose Diagram of Minkowski Space
After quotienting we have that m = −dudv where

U = {(u, v) : v − u ≥ 0}.

We then set ũ
.

= arctan(u) and ṽ
.

= arctan(v), so that

Ũ = {(ũ, ṽ) ∈ (−π/2, π/2)2 : ṽ ≥ ũ}.

The Penrose diagram is

{r
=

0
}

I +

=
future

null infinity

I
−

=
pas

t
null

in
finity
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Part II: The Schwarzschild Black Hole, Gravitational Collapse,
and Weak Cosmic Censorship



Schwarzschild Metric

The Schwarzschild metric, discovered in 1916(!), is the following metric in
coordinates (t, r , θ, φ) ∈ R× (2|M|,∞)× S2, for any M ∈ R:

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr 2 + r 2
(
dθ2 + sin2 θdφ2

)
.

The metric has a timelike Killing field ∂t and is asymptotically flat as r →∞.
This metric expression breaks down at r = min (2M, 0), but in the case when
M > 0, it can be extended to a larger manifold. Instead of describing this
explicitly, let us see the Penrose diagram:
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Penrose Diagram of Schwarzschild
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{r = 0}

I +

I
−

I
+

I −

The rightmost diamond corresponds to the original coordinate system, with r
converging to 2M on H+

A ∪H
−
A . The metric approaches the I± of Minkowski

space as one approaches I±. The leftmost diamond is a isometric copy of the
rightmost diamond.
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Penrose Diagram of Schwarzschild

H
+

L H
+
R
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H −
R
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{r = 0}

{r = 0}

I +
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The hypersurface ΣR corresponds to the original {t = 0}. The hypersurface
Σ = ΣL ∪ ΣR is a Cauchy hypersurface which is diffeomorphic to R× S2 (not
R3!).



Penrose Diagram of Schwarzschild
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Every geodesic which enters the top region B ends in finite time at the {r = 0}
boundary. A computation shows that curvature blows along these geodesics. In
fact, the spacetime is inextendible as even a C 0 manifold (Sbierski 2018)!



Penrose Diagram of Schwarzschild
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The region B is the complement in M of the past of I+. Since one imagines
that a far away observer “lives” on I+ we call B the black hole region in that it
cannot communicate with the far away observers. The nasty singularity is thus
completely hidden inside B. The boundaries of B (and it’s time reversed image)
and denoted by H± and called the future and past event horizons.



Problems with Schwarzschild

Basing the black hole concept only on the Schwarzschild solution has some
problems:

1. Schwarzschild has a Cauchy hypersurface which is diffeomorphic to
R× S2, while we want R3...

2. All spherically solutions to the Einstein vacuum equations are isometric
locally to Schwarzschild! So we need to either drop spherical symmetry or
change the equations to have a guide for dynamics.
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Gravitational Collapse

In 1939 Oppenheimer–Synder provided a (highly simplified) model for the
gravitational collapse of a star which solves the previous problems and
otherwise keeps the conceptual take aways from Schwarzschild.

The Penrose diagram is the following:

star

{r
=

0
}

{r = 0}

H
+

I +

I Outside of the star, the metric is isometric to Schwarzschild.

I Again there is a nasty singularity at {r = 0} which is hidden from I+ by
the event horizon.
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Completeness of I+

The following definition is a convenient way to formalize the assertion that
observers which lie on I+ “live forever.”

Definition
Let (M, g) be a maximal development associated to an asymptotically flat
initial data set. Let N be a null hypersurface which is complete in the outgoing
direction and converges to a Minkowski cone.*

Then we say that I+ is complete if the following holds: Let v(s) be a
1-parameter family of null vectors transverse to I+ which are parallel
transported to the asymptotically flat end of N . We then require that the
maximal affine length of the null geodesics starting at v(s) must converge to
infinity as s →∞.

I +

N

v

*You can always find such a cone by the stability of Minkowski space
(Christodoulou–Klainerman 93).
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Weak Cosmic Censorship

Conjecture (Weak Cosmic Censorship)

Generic solutions to the Einstein vacuum equations arising from suitably regular
asymptotically flat data have a complete future null infinity.

I It is not a priori clear why the word “generic” is necessary.

I A version of this conjecture has been understood in (Christodoulou 99) for
the spherically symmetric Einstein-scalar field model.

I One expects a resolution of this to involve, as a preliminary step, the
identification of all stationary black hole solutions and an understanding of
their stability.
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Part III: The Kerr Black Hole and Strong Cosmic Censorship



Penrose Diagrams Outside Spherical Symmetry

It is very useful to have a version of Penrose diagrams which works outside of
spherical symmetry. Key point is that any spacetime (M, g) may be locally
equipped with a coordinate system

(
u, v , θA

)
⊂ U × S2 for suitable U ⊂ R2 so

that

g = −2Ω2 (du ⊗ dv + dv ⊗ du) + /gAB

(
dθA − bAdu

)
⊗
(
dθB − bBdu

)
.

The hypersurfaces of constant u and constant v in such a coordinate system
will be null hypersurfaces. Like before, we can rescale u and v to produce a
new functions ũ(u) and ṽ(v) so that the new coordinates

(
ũ, ṽ , θA

)
⊂ Ũ × S2

for Ũ lying in a finite subset of R2. Then, just as before we may consider the
region Ũ ⊂ R2 equipped with the Minkowski metric. Again, causal relations in
the Penrose diagram can be lifted to the actual spacetime.
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Kerr Spacetime

Let M > 0 and a ∈ (−M,M).* In Boyer–Lindquist coordinates

(t, r , θ, φ) ∈ R× (r+,∞)× S2, r+
.

= M +
√

M2 − a2,

the Kerr metric (discovered in 1963) is given by

g = −∆

ρ2

(
dt − a2 sin2 dφ

)2

+
ρ2

∆
dr 2 + ρ2dθ2 +

sin2 θ

ρ2

(
adt −

(
r 2 + a2

)
dφ
)2

,

∆
.

= r 2 − 2Mr + a2, ρ2 .
= r 2 + a2 cos2 θ.

This is axisymmetric, stationary, and asymptotically flat. Like with
Schwarzschild, we have an extension to a larger manifold.

*The case |a| = M is the “extremal case.” It is extremely interesting, but I
won’t talk about it here.
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Penrose Diagram of Kerr
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I There is no singularity in the black hole region! Instead the maximal
globally hyperbolic development ends in a smooth Cauchy horizon CH+.

I There are many non-unique ways to smoothly extend the spacetime as a
solution; thus the theory loses its predictive power in this example even
though nothing appears to go wrong with the regularity.
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Penrose’s Blue Shift Instability

Consider the situation where a free falling observer A falls into the black hole
and crosses the Cauchy horizon and a free falling observer B stays outside the
black hole. Penrose observed that if B sends a null geodesic towards A at time
t (measured by B’s proper time), then the energies* of the null geodesics when
they intersect A will diverge as t →∞. This is the famous blue-shift instability
along CH+.
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A

*The energy of a future oriented null geodesic γ is g (γ̇,N) where N is some
choice of a gloablly defined timelike vector field.



Strong Cosmic Censorship

Since null geodesics are related to the high frequency behavior of waves, it is
natural to conjecture that there is some type of instability for solutions to the
wave equation near the Cauchy horizon. In turn, it is then natural to conjecture
that a gravitational perturbation of Kerr would create some type of instability.
Extrapolating this lead Penrose to the following:*

Conjecture (Strong Cosmic Censorship)

The maximal development of a generic solution to the Einstein vacuum
equations should be inextendible as a suitably regular solution.

I *This is a bit revisionist. The original expectation was that for generic
solutions, some type of Schwarzschild like (i.e. spacelike) singularity should
emerge. We will see later that this is incorrect.

I It is unclear what the correct notion of genericity and regularity should be.
A popular proposal (due to Christodoulou) for the regularity is “Christoffel
symbols in L2

loc.” This is motivated by the fact that such a condition is
useful for naive weak formulations of the Einstein equations.
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