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Part I: Black Hole Interiors



Quick Review: Strong Cosmic Censorship and the Kerr Cauchy Horizons I

Let’s recall from the first lecture the Penrose diagram of the Kerr spacetime:
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The key “problem” is that the spacetime ends its unique development in a
smooth Cauchy horizon.
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Quick Review: Strong Cosmic Censorship and the Kerr Cauchy Horizons II

We also previously discussed Penrose’s blue-shift instability along the Cauchy
horizon:
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The hope/expectation is that for generic perturbations of Kerr, the Cauchy
horizon becomes singular.
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Spacelike Singularity?

How does this instability manifest itself for a perturbed Kerr black hole? There
was an initial expectation that a Schwarzschild-like spacelike singularity would
form:
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Unfortunately(?) this does not happen!
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Aside: The Characteristic Initial Value Problem

It is often convenient to consider an initial value problem with data posed along
two transversally intersecting null hypersurfaces:

Theorem (Rendall 1990, Luk 2012)

Suppose metric components are given along two transversally intersecting
intersecting null hypersurfaces in such a way that the null constraint equations
are satisfied. Then there exists a unique solution to the Einstein vacuum
equations in a future neighborhood of the union of the two hypersurfaces.

da
ta

data

(Remember that these Penrose diagrams have a precise meaning!)
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The Dafermos–Luk Theorem I

Theorem (Dafermos–Luk 2017)

Consider a characteristic initial value problem of the following form:

H
+

data

where along H+ the data decays to the data along the event horizon of a
rotating Kerr solution at an integrable polynomial rate.

Then there will be at least a small piece of a Cauchy horizon to which the
metric extends in C 0(!), and the spacetime will asymptotically be close to a
Kerr spacetime in the C 0(!) topology:
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The Dafermos–Luk Theorem II

Theorem (Dafermos–Luk 2017)

Consider a characteristic initial value problem of the following form:

H
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where along H+ the data is a small perturbation of the data along the Kerr
event horizons and moreover decays to the Kerr data at an integrable
polynomial rate.

Then the entire Cauchy horizon persists and the metric extends to the
boundary in C 0(!), and the spacetime will be everywhere close to a Kerr
spacetime in the C 0(!) topology:
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Remarks on the Theorems

I The point of the first theorem is that it can be applied in the case of
gravitational collapse of one ended data:

CH????

approaches Kerr

{r
=

0
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≈ R3

(Later we will see that one expects this to be the “generic” result of
gravitational collapse.)

I This result definitively disproves the previous expectation that a
Schwarzschild like spacelike singularity will emerge.

I We have stability in C 0, but what about higher order regularity? It is
useful to consider spherically symmetric model problems...
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The Einstein-Maxwell-Real Scalar Field System

The Einstein-Maxwell-real scalar field system is the following set of equations
for a Lorentzian manifold (M, g), function φ :M→ R, and 2-form
Fµν ∈ ∧2 (M):

Ricµν −
1

2
gµνR = T(sf)

µν + T(em)
µν ,

T(sf)
µν

.
= ∂µφ∂νφ−

1

2
gµν |∇φ|2g , T(em)

µν = gαβFµαFνβ −
1

4
gµν |F |2g ,

�gφ = 0, dF = 0, ∇αFµα = 0.

The Kerr solution is not spherically symmetric; however, there exists the
spherically symmetric Reissner–Nordström solution to the Einstein-Maxwell-real
scalar field system which has the same Penrose diagram as the Kerr black hole
and the same smooth Cauchy horizon phenomenon. This system thus provides
a spherically symmetric warm-up for the general problem.
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Luk-Oh’s Result

Theorem (Luk-Oh 2019)

Strong cosmic censorship holds for solutions to the spherically symmetric
Einstein-Maxwell-real scalar field system arising from asymptotically flat
Cauchy hypersurfaces diffeomorphic to R× S2. More specifically, the maximal
developments are generically inextendible as a C 2 solution.

I Very important precursor was the thesis of Dafermos (2003) who showed
the possibility of the persistence of the Cauchy horizon and also their
singularity under plausible assumptions along the event horizon.

I The result of Luk-Oh relies on a understanding of the precise (polynomial)
decay rate of the scalar field along the event horizon. They appeal to
earlier work of Dafermos–Rodnianski (2005) which established sharp upper
bounds for the scalar field, and in Luk-Oh (2017) they developed a new
technique to obtain lower bounds.

I In view of (Siberski 22) in certain settings of the above theorem, C 2 may
be replaced by C 0,1. It remains an open problem to characterize the
regularity in a sharp way.

I It is interesting to extend this result to the case of solutions arising from
Cauchy hypersurfaces diffeomorphic to R3. (One must in fact modify the
matter model, e.g., consider a charged scalar field.) There are significant
additional difficulties in this case.
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Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Prior Work in the Physics Literature and “Weak Null Singularities”

I In the context of certain spherically symmetric matter models (simpler
than Einstein-Maxwell-scalar field), some earlier heuristic works in the
physics literature (Hiscock 1981, Poisson–Israel 1989, 1991, Burko–Ori
1998) had anticipated the possibility of the Cauchy horizon remaining and
becoming a type of “weak null singularity.”

I For the vacuum Einstein equations, a weak null singularity is a singularity
where the following hold true:

1. The singularity (in a limiting sense) lies along a null hypersurface.

2. The metric extends to the singularity in a C0 fashion.

3. There exist some derivatives of the metric which do not lie in L2loc near the
singularity.

I Weak null singularities for vacuum were first constructed in Luk 2018.
(We’ll discuss the nonlinear and geometric aspects of these more in the
final lecture.)



Instability Results for Linearized Perturbations around Kerr

There are no nonlinear results for the Einstein vacuum equations which
establish the singularity of the perturbed Cauchy horizon. However, recent
work gives a good understanding in the linear regime:

Theorem (Sbierski 2023)

Given suitable upper and lower bounds for linearized gravitational data along
the event horizon, then the corresponding solutions to the equations of
linearized gravity become singular at the Cauchy horizon in a way consistent
with the occurrence of a weak null singularity.

The proof uses a scattering theory method introduced by Luk–Oh–S. (2023) in
the context of the spherically symmetric Einstein-Maxwell-scalar field system.
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Aside: Importance of Decay Rates

I For all of these results the exact decay rates along the event horizon are
very important. Polynomial decay at integrable rates is associated with
obtaining C 0 stability of the Cauchy horizon, and (any) polynomial lower
bound is associated (conjecturally) with a weak null singularity.

I There are analogues of all of the questions we have posed in the case of
the Einstein equations with a positive cosmological constant Λ > 0. In this
case, one expects the event horizon of a perturbed black hole to settle
down at an exponential rate (Hintz–Vasy 2018).

I Particularly striking is the heuristic and numerical analysis of
Dias–Reall–Santos who studied linearized perturbations of a
Reissner–Nordström–de Sitter black hole, and found that for any large k,
one can find such a black hole so that linearized perturbations extend to
the Cauchy horizon in a C k fashion! (A way to “save” strong cosmic
censorhsip by considering rougher perturbations has been put forth in
Dafermos–S. 2018.)
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Part II: Black Hole Uniqueness and Stability Conjectures



The sub-extremal Kerr spacetimes

The sub-extremal Kerr exterior spacetimes (M, ga,M) are a 2-parameter family
M > 0 and a ∈ [−M,M] of manifolds with boundary solving the Einstein
vacuum equations such that

1. Each Kerr exterior spacetime is asymptotically flat, stationary, and
axisymmetric.

2. The Kerr exterior spacetimes possess a complete future null infinity.

H
+

H −

I +

I
−

In the extremal case |a| = M, the leftmost corner of the diagram is not actually
in the spacetime.
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The Uniqueness Conjecture

Conjecture (Black Hole Uniqueness, Informal Version)

Suppose that (M, g) solves the Einstein vacuum equations, arises from
asymptotically flat initial data, is stationary, and has a complete null infinity.
Then the “domain of outer communication” is isometric to a Kerr black hole.

I Stationary means there exists a Killing vector field which is timelike far out
in the asmptotically flat end.

I The domain of outer communication is the part of the spacetime which
does not lie in a black hole or white hole (time reversal of the black hole)
region.

I More precise statements of the conjecture include some additional
technical assumptions but we suppress them here.
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The Final State Conjecture

The black hole uniqueness conjecture informs the following conjecture:

Conjecture (Final State Conjecture)

Generic solutions to the Einstein vacuum equations arising from asymptotically
flat data have a domain of outer communication which eventually settles down
to a finite number of Kerr black holes moving away from each other.

I This is a very bold conjecture. While it is difficult to think of a likely way
it would fail, we don’t really have much direct evidence for the far reaching
aspects of the conjecture.

I If we take this conjecture as given, then it is a consequence of the
Dafermos–Luk theorem and the correspondoning heuristics that weak null
singularities should be ubiquitous.
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Black Hole Stability

An important first step towards weak cosmic censorship (and the final state
conjecture) is the black hole stability conjecture.

Conjecture (Black Hole Stability)

Small perturbations of a Cauchy hypersurface in a maximal sub-extremal Kerr
spacetime lead to spacetimes with a complete null infinity and whose domain of
outer communication asymptote to a nearby Kerr solution.

I Note that the extremal case is left out of the conjecture. One does not
exhibit full stability in that case, though we don’t have time here to get
into the full story.

I We emphasize that it is only the domain of outer communication that one
expects to be stable. In the interior we have seen that we expect the
formation of weak null singularities.



Black Hole Stability

An important first step towards weak cosmic censorship (and the final state
conjecture) is the black hole stability conjecture.

Conjecture (Black Hole Stability)

Small perturbations of a Cauchy hypersurface in a maximal sub-extremal Kerr
spacetime lead to spacetimes with a complete null infinity and whose domain of
outer communication asymptote to a nearby Kerr solution.

I Note that the extremal case is left out of the conjecture. One does not
exhibit full stability in that case, though we don’t have time here to get
into the full story.

I We emphasize that it is only the domain of outer communication that one
expects to be stable. In the interior we have seen that we expect the
formation of weak null singularities.



Black Hole Stability

An important first step towards weak cosmic censorship (and the final state
conjecture) is the black hole stability conjecture.

Conjecture (Black Hole Stability)

Small perturbations of a Cauchy hypersurface in a maximal sub-extremal Kerr
spacetime lead to spacetimes with a complete null infinity and whose domain of
outer communication asymptote to a nearby Kerr solution.

I Note that the extremal case is left out of the conjecture. One does not
exhibit full stability in that case, though we don’t have time here to get
into the full story.

I We emphasize that it is only the domain of outer communication that one
expects to be stable. In the interior we have seen that we expect the
formation of weak null singularities.



Progress Towards Uniqueness

I Work of Carter 1971 and Robinson 1975, established the conjecture under
the additional assumption of axisymmetry.

I If the stationary field agrees with the normal to the event horizon, then
Israel 67 shows that the spacetime must be Schwarzschild. (See also
Chruściel 2010 and Chruściel–Galloway 2010).

I If the stationary field is not normal to the horizon then Hawking 1972
showed there must exist an axisymmetric Killing vector field along the
event horizon. In the analytic category one then expects to be able to
extend the Killing vector field and apply the Carter and Robinson theory.
(This was carried out in Chruściel–Costa 2008).

I Klainerman and Ionescu, and later Alexakis, initiated a program to remove
the need for analyticity from the above. Among other results,
Alexakis–Ionescu–Klainerman (2010) showed that any stationary black
hole solution which is close to a Kerr solution must be a Kerr solution.
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Progress Towards the Black Hole Stability Conjecture: Nonlinear Results

I In a combination of works (2019-2022), Klainerman, Szeftel, Giorgi, and
Shen have established the stability of Kerr spacetimes with |a| � M,
which corresponds to a very slowly rotating black hole.

I Dafermos–Holzegel–Rodnianski–Taylor (2021) proved the (sharp) finite
co-dimension stability of the Schwarzschild solution.

I Klainerman–Szeftel (2018) proved the stability of Schwarzschild to
polarized axisymmetric perturbations.
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Progress Towards the Black Hole Stability Conjecture: Linear Results

I Dafermos–Holzegel–Rodnianski (2019) established the linear stability of
Schwarzschild (using a double-null gauge). A key preliminary step is to
prove estimates for the so-called Teukolsky equation which governs the
gauge-invariant part of the linear perturbations.

I Dafermos–Holzegel–Rodnianski (2019) and Ma (2020) extended the
analysis of Teukolsky to the slowly rotating case |a| � M.

I In the full sub-extremal range |a| < M, uniform boundedness and decay
results for the Teukolsky equation have been established by S.–Teixeira da
Costa (2020,2023). Millet has also established decay results for Teukolsky
in the range |a| < M (2023).

I If one takes the Teukolsky equation analysis as given, then Andersson,
Bäckdahl, Blue and Ma (2019, 2022) have an approach to linear stability
in the full sub-extremal range |a| < M using the “outgoing radiation
gauge.” Häfner, Hintz, and Vasy established decay statements for
linearized gravity for |a| � M using a modified wave coordinate gauge.
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