Lehel Banjai (Heriot-Watt University)

A tensor finite element method for a space fractional wave equation

Tuesday, 4 February 2020, 13:30-14:30 in HG02.802


We study solution techniques for an evolution equation involving second order derivative in time and the spectral fractional powers of symmetric, coercive, linear, elliptic, second-order operators in bounded spatial domains. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder. We thus rewrite our evolution problem as a quasi-stationary elliptic problem with a dynamic boundary condition and derive space, time, and space-time regularity estimates for its solution. The latter problem exhibits an exponential decay in the extended dimension and thus suggests a truncation that is suitable for numerical approximation. We propose and analyze two fully discrete schemes. The discretization in time is based on finite difference discretization techniques: trapezoidal and leapfrog schemes. The discretization in space relies on the tensorization of a first-degree FEM in with a suitable hp-FEM in the extended variable. For both schemes we derive stability and error estimates and present numerical results.