We investigate pitchfork bifurcations for a stochastic reaction diffusion equation perturbed by an infinite-dimensional Wiener process. It is well-known that the random attractor is a singleton, independently of the value of the bifurcation parameter; this phenomenon is often referred to as the "destruction" of the bifurcation by the noise.
Analogous to the results of Callaway et al. (AIHP Prob Stat 53:1548–1574, 2017) for a 1D stochastic ODE, we show that some remnant of the bifurcation persists for this SPDE model in the form of a positive finite-time Lyapunov exponent. Additionally, we prove finite-time expansion of volume with increasing dimension as the bifurcation parameter crosses further eigenvalues of the Laplacian.