De Mann Whitney U toets

Deze toets wordt ookwel de Wilcoxon toets voor ongepaarde waarnemingen genoemd. Dit komt doordat de toetsingsgrootheid op twee verschillende manieren kan worden berekend. De toets kan worden gebruikt als er sprake is van één nominale variabele met twee categorieën en een variabele met rangschikbare waarnemingen die niet normaal verdeeld hoeven te zijn. Deze toets is feitelijk de non-parametrische variant van de t-toets voor ongepaarde steekproeven en bekijkt of de twee categorieën dezelfde mediaan hebben. De nulhypothese luidt: de mediaan van beide categorieën is gelijk.

Voorbeeld:
Een onderzoeker wil weten of padden uit de Hatert (n=16 ) en padden uit Zuid-Limburg (n=10) even zwaar zijn. De gewichten van de padden blijken niet normaal verdeeld te zijn. In beide categorieën sorteert hij nu zijn waarnemingen van hoog naar laag. Vervolgens telt hij voor iedere waarneming in de categorie met de minste waarnemingen hoeveel waarnemingen in de andere categorie kleiner zijn. Dus in het voorbeeld, voor elke pad uit Zuid-Limburg hoeveel padden uit de Hater lichter zijn. Als de medianen van de Hatertse en Limburgse padden gelijk zijn, zullen ongeveer de helft van de padden uit Limburg kleiner zijn en de andere helft groter dan die uit de Hatert. Door nu optellen hoeveel padden er telkens kleiner zijn kan dus bepaald worden of de medianen gelijk zijn.