Euler's proof of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

He starts with the following observation: if P is a polynomial of degree n in x, having n different non-zero zeros a_{1}, \ldots, a_{n} and such that $P(0)=1$, then $P(x)=Q(x)$, where

$$
Q(x):=\left(1-\frac{x}{a_{1}}\right)\left(1-\frac{x}{a_{2}}\right) \ldots\left(1-\frac{x}{a_{n}}\right) .
$$

To see this, observe that $Q\left(a_{1}\right)=\left(1-\frac{a_{1}}{a_{1}}\right)\left(1-\frac{a_{1}}{a_{2}}\right) \ldots\left(1-\frac{a_{1}}{a_{n}}\right)=0$. Similarly $Q\left(a_{2}\right)=$ $\ldots=Q\left(a_{n}\right)=0$. So P and Q have the same zeros and the same degrees, whence

$$
P(x)=c Q(x), \quad \text { for some } c \text { in } \mathbb{R} .
$$

Since $P(0)=1$ and $Q(0)=1$ it follows that $P(x)=Q(x)$, hence

$$
P(x)=\left(1-\frac{x}{a_{1}}\right)\left(1-\frac{x}{a_{2}}\right) \ldots\left(1-\frac{x}{a_{n}}\right) .
$$

Next consider $f(x)=\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots$. Then $f(0)=1$ and the zeros of f are $\pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$. Now Euler assumes that for the "infinite polynomial" $f(x)$ a similar result holds as the one above for $P(x)$. So he concludes that

$$
\begin{align*}
1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots & =\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)\left(1-\frac{x}{2 \pi}\right)\left(1+\frac{x}{2 \pi}\right) \ldots \\
& =\left(1-\frac{x^{2}}{\pi^{2}}\right)\left(1-\frac{x^{2}}{2^{2} \pi^{2}}\right)\left(1-\frac{x^{3}}{3^{2} \pi^{2}}\right) \cdots \tag{*}
\end{align*}
$$

Now expand the righthand side in powers of x. Then the coefficient of x^{2} is equal to

$$
-\left(\frac{1}{\pi^{2}}+\frac{1}{2^{2} \pi^{2}}+\frac{1}{3^{2} \pi^{2}}+\cdots\right)=-\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Since the coefficient of x^{2} in the lefthand side is equal to $-\frac{1}{3!}=-\frac{1}{6}$, equating of the coefficients of x^{2} leads to

$$
-\frac{1}{6}=-\frac{1}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

hence

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}!
$$

