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He starts with the following observation: if P is a polynomial of degree n in x, having n

different non-zero zeros a1, . . . , an
and such that P (0) = 1, then P (x) = Q(x), where
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) = 0. So P and Q have the same zeros and the same degrees, whence

P (x) = cQ(x), for some c in R.

Since P (0) = 1 and Q(0) = 1 it follows that P (x) = Q(x), hence
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Next consider f(x) = sinx
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+ · · · . Then f(0) = 1 and the zeros of f are

±π,±2π,±3π, . . .. Now Euler assumes that for the “infinite polynomial” f(x) a similar
result holds as the one above for P (x). So he concludes that
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Now expand the righthand side in powers of x. Then the coefficient of x2 is equal to
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−
1

6
= −

1

π2

∞
∑

n=1

1

n2

hence
∞

∑

n=1

1

n2
=

π2

6
!

1


