
Holmes theorem

In chapter 7 we described a remarkable property of the Lo Shu, namely that the numbers
“formed by its rows” satisfy the equality

(∗) 8162 + 3572 + 4922 = 6182 + 7532 + 2932.

Also we remarked that such a property holds for any magic square of order three, if
interpreted correctly. More precisely this means the following

Theorem Let

a1 b1 c1

a2 b2 c2

a3 b3 c3

be a magic square. Then

(∗∗)

{

[a1x
2 + b1x + c1]

2 + [a2x
2 + b2x + c2]

2 + [a3x
2 + b3x + c3]

2 =

[c1x
2 + b1x + a1]

2 + [c2x
2 + b2x + a2]

2 + [c3x
2 + b3x + a3]

2

Before we prove this result, let us show how it implies the equation (∗). In this case we
have

a1 = 8, b1 = 1, c1 = 6, a2 = 3, b2 = 5, c2 = 7, a3 = 4, b3 = 9, c3 = 2.

Now one only needs to observe that

816 = 8.102 + 1.10 + 6, 618 = 6.102 + 1.10 + 8

357 = 3.102 + 5.10 + 7, 753 = 7.102 + 5.10 + 3

etc.

Then (∗) follows from (∗∗) by making the substitution x = 10.

To prove the theorem we will show that the coefficient of x4 (the highest x-power) in the
lefthand side of (∗∗) is equal to the coefficient of x4 in the righthand side of (∗∗) and in
the same way we show that similar results hold for the coefficients of x3, x2, x and x0.
First of all equating the coefficients of x4 gives the following equation

a2

1
+ a2

2
+ a2

3
= c2

1
+ c2

2
+ c2

3
.

In order to simplify this and the other equations which we find by comparing the co-
efficients of x3, x2, . . ., we introduce the notion of the inner product of two vectors: if
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v =





x1

x2

x3



 and w =





y1

y2

y3



 are two column vectors in R
3, then we define the innerproduct

〈v, w〉 by the formula
〈v, w〉 = x1y1 + x2y2 + x3y3.

So for example 〈v, v〉 = x2

1
+ x2

2
+ x2

3
.

Now let us return to the magic square

a1 b1 c1

a2 b2 c2

a3 b3 c3

We denote its first column by v1, the second by b2 and the third by v3.
Then the equation a2

1
+ a2

2
+ a2

3
= c2

1
+ c2

2
+ c2

3
can be written as

〈v1, v1〉 = 〈v3, v3〉.

More generally one can check that the equality (∗∗) can be written in the form

〈v1, v1〉x
4 + 2〈v1, v2〉x

3 + (〈v2, v2〉 + 2〈v2, v3〉)x
2 + 2〈v2, v3〉x + 〈v3, v3〉 =

〈v3, v3〉x
4 + 2〈v3, v2〉x

3 + (〈v2, v2〉 + 2〈v2, v1〉)x
2 + 2〈v2, v1〉x + 〈v1, v1〉.

It follows that the theorem is proved if we can show that

〈v1, v1〉 = 〈v3, v3〉

and

〈v1, v2〉 = 〈v3, v2〉.

To show these equalities we finally use Lucas’ formula, which asserts that every magic
square of order three is of the form

a+b a-b-c a+c
a-b+c a a+b-c

a-c a+b+c a-b

So v1 =





a + b

a − b + c

a − c



, v2 =





a − b − c

a

a + b + c



 and v3 =





a + c

a + b − c

a − b



. To see that 〈v1, v1〉 =

〈v3, v3〉 one has to check that

(a + b)2 + (a − b + c)2 + (a − c)2 = (a + c)2 + (a + b − c)2 + (a − b)2.
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This can be done easily by expanding both sides of this equation.
Similarly one can check that 〈v1, v2〉 = 〈v3, v2〉 by verifying that

(a + b)(a − b − c) + (a − b + c)a + (a − c)(a + b + c) =

(a + c)(a − b − c) + (a + b − c)a + (a − b)(a + b + c).

These easy verifications are left to the reader. This completes the proof of the theorem.
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