Holmes theorem

In chapter 7 we described a remarkable property of the Lo Shu, namely that the numbers "formed by its rows" satisfy the equality

$$
\begin{equation*}
816^{2}+357^{2}+492^{2}=618^{2}+753^{2}+293^{2} \tag{*}
\end{equation*}
$$

Also we remarked that such a property holds for any magic square of order three, if interpreted correctly. More precisely this means the following

Theorem Let

a_{1}	b_{1}	c_{1}
a_{2}	b_{2}	c_{2}
a_{3}	b_{3}	c_{3}

be a magic square. Then

$$
\left\{\begin{array}{l}
{\left[a_{1} x^{2}+b_{1} x+c_{1}\right]^{2}+\left[a_{2} x^{2}+b_{2} x+c_{2}\right]^{2}+\left[a_{3} x^{2}+b_{3} x+c_{3}\right]^{2}=} \tag{**}\\
{\left[c_{1} x^{2}+b_{1} x+a_{1}\right]^{2}+\left[c_{2} x^{2}+b_{2} x+a_{2}\right]^{2}+\left[c_{3} x^{2}+b_{3} x+a_{3}\right]^{2}}
\end{array}\right.
$$

Before we prove this result, let us show how it implies the equation (*). In this case we have

$$
a_{1}=8, b_{1}=1, c_{1}=6, a_{2}=3, b_{2}=5, c_{2}=7, a_{3}=4, b_{3}=9, c_{3}=2
$$

Now one only needs to observe that

$$
\begin{array}{ll}
816=8.10^{2}+1.10+6, & 618=6.10^{2}+1.10+8 \\
357=3.10^{2}+5.10+7, & 753=7.10^{2}+5.10+3
\end{array}
$$

etc.
Then ($*$) follows from ($* *$) by making the substitution $x=10$.
To prove the theorem we will show that the coefficient of x^{4} (the highest x-power) in the lefthand side of $(* *)$ is equal to the coefficient of x^{4} in the righthand side of $(* *)$ and in the same way we show that similar results hold for the coefficients of x^{3}, x^{2}, x and x^{0}. First of all equating the coefficients of x^{4} gives the following equation

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=c_{1}^{2}+c_{2}^{2}+c_{3}^{2} .
$$

In order to simplify this and the other equations which we find by comparing the coefficients of x^{3}, x^{2}, \ldots, we introduce the notion of the inner product of two vectors: if
$v=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $w=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ are two column vectors in \mathbb{R}^{3}, then we define the innerproduct $\langle v, w\rangle$ by the formula

$$
\langle v, w\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} .
$$

So for example $\langle v, v\rangle=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
Now let us return to the magic square

a_{1}	b_{1}	c_{1}
a_{2}	b_{2}	c_{2}
a_{3}	b_{3}	c_{3}

We denote its first column by v_{1}, the second by b_{2} and the third by v_{3}.
Then the equation $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=c_{1}^{2}+c_{2}^{2}+c_{3}^{2}$ can be written as

$$
\left\langle v_{1}, v_{1}\right\rangle=\left\langle v_{3}, v_{3}\right\rangle .
$$

More generally one can check that the equality ($* *$) can be written in the form

$$
\begin{aligned}
& \left\langle v_{1}, v_{1}\right\rangle x^{4}+2\left\langle v_{1}, v_{2}\right\rangle x^{3}+\left(\left\langle v_{2}, v_{2}\right\rangle+2\left\langle v_{2}, v_{3}\right\rangle\right) x^{2}+2\left\langle v_{2}, v_{3}\right\rangle x+\left\langle v_{3}, v_{3}\right\rangle= \\
& \left\langle v_{3}, v_{3}\right\rangle x^{4}+2\left\langle v_{3}, v_{2}\right\rangle x^{3}+\left(\left\langle v_{2}, v_{2}\right\rangle+2\left\langle v_{2}, v_{1}\right\rangle\right) x^{2}+2\left\langle v_{2}, v_{1}\right\rangle x+\left\langle v_{1}, v_{1}\right\rangle .
\end{aligned}
$$

It follows that the theorem is proved if we can show that

$$
\begin{gathered}
\left\langle v_{1}, v_{1}\right\rangle=\left\langle v_{3}, v_{3}\right\rangle \\
\text { and } \\
\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{3}, v_{2}\right\rangle .
\end{gathered}
$$

To show these equalities we finally use Lucas' formula, which asserts that every magic square of order three is of the form

$a+b$	$a-b-c$	$a+c$
$a-b+c$	a	$a+b-c$
$a-c$	$a+b+c$	$a-b$

So $v_{1}=\left(\begin{array}{c}a+b \\ a-b+c \\ a-c\end{array}\right), v_{2}=\left(\begin{array}{c}a-b-c \\ a \\ a+b+c\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}a+c \\ a+b-c \\ a-b\end{array}\right)$. To see that $\left\langle v_{1}, v_{1}\right\rangle=$ $\left\langle v_{3}, v_{3}\right\rangle$ one has to check that

$$
(a+b)^{2}+(a-b+c)^{2}+(a-c)^{2}=(a+c)^{2}+(a+b-c)^{2}+(a-b)^{2} .
$$

This can be done easily by expanding both sides of this equation.
Similarly one can check that $\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{3}, v_{2}\right\rangle$ by verifying that

$$
\begin{aligned}
& (a+b)(a-b-c)+(a-b+c) a+(a-c)(a+b+c)= \\
& (a+c)(a-b-c)+(a+b-c) a+(a-b)(a+b+c)
\end{aligned}
$$

These easy verifications are left to the reader. This completes the proof of the theorem.

