The ζ-function and the Riemann Hypothesis

In the same paper Euler not only computed the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, but also for all even numbers $s=2,4,6, \ldots, 26$ he computed the value of

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

He found $\zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}, \ldots$
Furthermore it is not difficult to see that for each $s>1$ the value of $\zeta(s)$ is finite (compare $\zeta(s)$ with $\left.\int_{1}^{\infty} \frac{1}{x^{s}} d x\right)$.
It was the great mathematician Bernhard Riemann (1826-1866) who extended the ζ function for all complex numbers s with $\operatorname{Re}(s)>1$ and then showed that this function could be extended analyticely to the whole complex plane, minus $s=1$. The ζ-function turned out to have zeros at $s=-2, s=-4, s=-6, \ldots$, but it also has other zeros. All the zeros Riemann computed turned out to lay on the line $\operatorname{Re}(s)=\frac{1}{2}$.
This led him to formulate, what is nowadays known as, the most famous unsolved problem in Mathematics.
Riemann Hypothesis All (non-trivial) zeros of the ζ-function lay on the line $\operatorname{Re}(s)=\frac{1}{2}$. The Riemann Hypothesis is one of the seven so-called Millennium Problems of the Clay Mathematics Institute (http://www.claymath.org/millennium/).
The first to solve each one of these problem receives one million dollars from the CMI. In order, for almost all readers, to get a formulation of the Riemann Hypothesis which does not need complex numbers and highbrow mathematics, we give the following easy to understand reformulation of the Riemann Hypothesis.

Riemann Hypothesis for Dummies

A prime number p is positive integer greater than 1 which has no other divisors than p and 1. So for example 3,5,7 are prime numbers, but 9 and 15 are not (since $9=3 \times 3$ and $15=3 \times 5$).
Prime numbers can be considered as the atoms of all positive integers in the sense that each positive integer greater than 1 is a product of a finite number of prime numbers.
For example $14=2 \times 7,50=2 \times 5 \times 5,62=2 \times 31$ etc. In the number 50 the prime 5 appears more than once. In the sequel such numbers as 50 will be neglected. More precisely we only consider so-called square-free numbers, i.e. numbers in which all prime numbers are different. So for example $15=3 \times 5$ and $70=2 \times 5 \times 7$ are square free, while $40=2 \times 2 \times 2 \times 5$ and $75=2 \times 5 \times 5$ are not square free.

Now we call a square free number P-even (Prime-even) if it is a product of an even number of different prime numbers. Similarly we call a square free number P-odd if it is
a product of an odd number of different primes. So for example 70 is P-odd, while 15 is P-even.
Finally we define the so-called Mertens function $M(x)$ for all real numbers $x \geq 1$, as follows

$$
\begin{aligned}
M(x)= & \text { the difference between the number of } P \text {-even } \\
& \text { integers } \leq x \text { and the number of } P \text {-odd integers } \leq x .
\end{aligned}
$$

For example $M(34)=9-10=-1$, since the P-even integers ≤ 34 are $6(=2 \times 3)$, 10 $(=2 \times 5), 14(=2 \times 7), 22(=2 \times 11), 26(=2 \times 13), 34(=2 \times 17), 15(=3 \times 5), 21$ $(=3 \times 7), 33(=3 \times 11)$, while the P-odd integers ≤ 34 are $2,3,7,11,13,17,23,29,31$ and $30(=2 \times 3 \times 5)$.
Now the Riemann Hypothesis is equivalent to the following statement:
For every $\varepsilon>0$ there exists a positive number C_{ε} such that

$$
|M(x)|=C_{\varepsilon} x^{\frac{1}{2}+\varepsilon}
$$

