[____] [____] [_____] [____] [__] [Index] [Root]
Index T
T
# T : SeqEnum -> RngIntElt
T-key
T<char>
t-key
t<char>
tab-key
<Tab>
table
Coset Spaces and Tables (FINITELY PRESENTED GROUPS)
Coset Tables (FINITELY PRESENTED GROUPS)
Tails
Tails(~P: parameters) : Process(pQuot) ->
TamagawaNumber
TamagawaNumber(E, p) : CurveEll -> RngIntElt
TamagawaNumbers
TamagawaNumbers(E) : CurveEll -> [ RngIntElt ]
Tan
Tan(c) : FldComElt -> FldComElt
Tan(f) : RngSerElt -> RngSerElt
Tangent
Tangent(P, A, p) : Plane, { PlanePt }, PlanePt -> PlaneLn
Tanh
Tanh(s) : FldPrElt -> FldPrElt
Tanh(f) : RngSerElt -> RngSerElt
Tell
Tell(F) : File -> RngIntElt
Tempname
Tempname(P) : MonStgElt -> MonStgElt
Tensor
GrpMat_Tensor (Example H21E20)
tensor
Tensor Products (MATRIX GROUPS)
tensor-product
Tensor Products (MATRIX GROUPS)
TensorBasis
TensorBasis (G) : GrpMat -> GrpMatElt
TensorFactors
TensorFactors (G) : GrpMat -> GrpMat, GrpMat
TensorPower
TensorPower(M, k) : ModTupRng, RngIntElt -> ModTupRng
TensorProduct
TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat
TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt
TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir
TensorProduct(L, M) : Lat, Lat -> Lat
TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt
TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt
TensorProduct(M, N) : ModTupRng, ModTupRng -> ModTupRng
TensorWreathProduct
TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat
Term
Term(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngMPolElt
term
Coefficients and Terms (UNIVARIATE POLYNOMIAL RINGS)
Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)
Sequences (OVERVIEW)
termination
Control-C key (OVERVIEW)
Quitting (OVERVIEW)
Terms
Terms(f) : RngMPolElt -> [ RngMPolElt ]
Terms(p) : RngUPolElt -> [ RngUPolElt ]
TernaryGolayCode
Code_TernaryGolayCode (Example H58E1)
testinglabels
Testing for Labels (GRAPHS)
Tetrahedral
GrpFP_Tetrahedral (Example H16E5)
text
Strings (OVERVIEW)
theta
Successive Minima and Theta Series (LATTICES)
ThetaSeries
ThetaSeries(L, n) : Lat, RngIntElt -> RngPowElt
Lat_ThetaSeries (Example H45E11)
threegps
Database of Groups of Order Dividing 729 (OVERVIEW)
ThreeInvols
GrpFP_ThreeInvols (Example H16E6)
thrgps
Database of Groups of Order Dividing 729 (OVERVIEW)
throwaway
Multiple Assignment (OVERVIEW)
thue
Thue Equations (NUMBER FIELDS AND THEIR ORDERS)
ThueEval
ThueEval(t, a, b) : Thue, RngIntElt, RngIntElt -> RngIntElt
ThueObject
ThueObject(f) : RngUPolElt -> Thue
ThueSolve
ThueSolve(t, a) : Thue, RngInt -> [ [ RngIntElt, RngIntElt ] ]
ThueSolveInexact
ThueSolveInexact(t, a) : Thue, RngIntElt -> [ [ RngIntElt, RngIntElt ] ]
Tietze
Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)
TietzeProcess
TietzeProcess(G) : GrpFP -> Process(Tietze)
tilde
Procedures (OVERVIEW)
Time
State_Time (Example H1E17)
time
Timing (OVERVIEW)
time statement;
times
Operators (OVERVIEW)
timing
Timing (STATEMENTS AND EXPRESSIONS)
Todd
Index of a Subgroup: The Todd-Coxeter Algorithm (FINITELY PRESENTED GROUPS)
ToddCoxeter
Index(G, H: parameters) : GrpFP, GrpFP -> RngIntElt, Map, RngIntElt, RngIntElt
GrpFP_ToddCoxeter (Example H16E21)
ToddCoxeterSchreier
ToddCoxeterSchreier(G: parameters) : GrpMat : ->
ToddCoxeterSchreier(G: parameters) : GrpPerm : ->
Top
Top(L): SubGrpLat -> SubGrpLatElt
Top(L): SubModLat -> SubModLatElt
TorsionFreeRank
TorsionFreeRank(A) : GrpAb -> RngIntElt
TorsionFreeRank(G) : GrpFP -> RngIntElt
TorsionFreeSubgroup
TorsionFreeSubgroup(A) : GrpAb -> GrpAb
TorsionInvariants
TorsionInvariants(A) : GrpAb -> [ RngIntElt ]
TorsionSubgroup
TorsionSubgroup(E) : CurveEll -> GrpAb, Map
TorsionSubgroup(K) : FldQuad -> GrpAb, Map
TorsionSubgroup(A) : GrpAb -> GrpAb
TorsionUnitGroup
TorsionUnitGroup(O) : RngOrd -> GrpAb, Map
TotalDegree
TotalDegree(f) : RngMPolElt -> RngIntElt
Trace
Trace(a) : AlgGrpElt -> RngElt
Trace(a) : AlgMatElt -> RngElt
Trace(C, S) : Code, FldFin -> Code
Trace(E): CurveEll -> RngIntElt
Trace(a) : FldCycElt -> FldRatElt
Trace(a) : FldFinElt -> FldFinElt
Trace(a) : FldFunElt -> RngElt
Trace(a) : FldNumElt -> FldNumElt
Trace(a) : FldQuadElt -> FldRatElt
Trace(q) : FldRatElt -> FldRatElt
Trace(g) : GrpMatElt -> RngElt
Trace(u, F) : ModTupFldElt, Fld -> ModTupFldElt
Trace(u, S) : ModTupFldElt, FldFin -> ModTupFldElt
Trace(n) : RngIntElt -> RngIntElt
Elcu_Trace (Example H53E13)
trace
Conjugates, Minimal Polynomial (CYCLOTOMIC FIELDS)
Conjugates, Norm and Trace (RATIONAL FIELD)
Conjugates, Norm and Trace (RING OF INTEGERS)
Norm and Trace (FINITE FIELDS)
Norm, Trace, and Minimal Polynomial (NUMBER FIELDS AND THEIR ORDERS)
Norm, Trace, and More (FUNCTION FIELDS AND THEIR ORDERS)
TraceAbs
AbsoluteTrace(a) : FldFinElt -> FldFinElt
TraceMatrix
TraceMatrix(O) : RngOrd -> AlgMatElt
TrailingCoefficient
TrailingCoefficient(f) : RngMPolElt -> RngElt
TrailingCoefficient(p) : RngUPolElt -> RngElt
TrailingTerm
TrailingTerm(f) : RngMPolElt -> RngElt
TrailingTerm(p) : RngUPolElt -> RngUPolElt
trans
Plane_trans (Example H57E16)
transcendental
Transcendental Extension (INTRODUCTION [RINGS AND FIELDS])
Transcendental Functions (POWER SERIES AND LAURENT SERIES)
Transcendental Functions (REAL AND COMPLEX FIELDS)
transcendental-extension
Transcendental Extension (INTRODUCTION [RINGS AND FIELDS])
transfer
Transfer Functions Between Group Categories (GROUPS)
transformation
Modules (OVERVIEW)
Operations with Linear Transformations (VECTOR SPACES)
VECTOR SPACES
TransformationMatrix
TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt
TransformationMatrix(O, P) : RngOrd -> AlgMatElt, RngIntElt
TransformationMatrix(I) : RngOrdIdl -> AlgMatElt, RngIntElt
Transitive
GrpPerm_Transitive (Example H20E21)
transitive
Database of the Transitive Groups of Degrees from 2 to 22 (OVERVIEW)
TransitiveGroup
TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt
TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt
TransitiveGroupDatabaseLimit
TransitiveGroupDatabaseLimit() : -> RngIntElt
TransitiveGroupDescription
TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt
TransitiveGroupProcess
TransitiveGroupProcess(d) : RngIntElt -> Process
TransitiveGroups
TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]
TransitiveProcess
GrpPerm_TransitiveProcess (Example H20E22)
Transitivity
Transitivity(G, Y) : GrpPerm, GSet -> RngIntElt
TranslationMap
TranslationMap(E, P) : CurveEll, CurveEllPt -> Map
Transpose
Transpose(a) : AlgMatElt -> AlgMatElt
Transpose(g) : GrpMatElt -> GrpMatElt
Transpose(a) : ModMatElt -> ModMatElt
Transpose(a) : ModMatRngElt -> ModMatRngElt
Transversal
SchreierSystem(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
Transversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map
Transversal(G, H) : GrpAb, GrpAb -> {@ GrpAbElt @}, Map
Transversal(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map
Transversal(G, H, K) : GrpFP, GrpFP, GrpFP -> {@ GrpFPElt @}, Map
Transversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map
Transversal(G, H) : GrpPC, GrpPC -> {@ GrpPCElt @}, Map
Transversal(G, H) : GrpPerm, GrpPerm -> {@ GrpPermElt @}, Map
Transversal(V, U): ModTupFld, ModTupFld -> { ModTupFldELt }
trap
Traps for Young Players (MAGMA SEMANTICS)
trap1
Trap 1 (MAGMA SEMANTICS)
trap2
Trap 2 (MAGMA SEMANTICS)
tree
Spanning Trees of a Graph or Digraph (GRAPHS)
TrialDivision
TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]
Tricomponents
[Future release] Tricomponents(G) : GrphUnd -> { { GrphVert } }
trigonometric
Inverse Trigonometric Functions (REAL AND COMPLEX FIELDS)
Trigonometric Functions (REAL AND COMPLEX FIELDS)
Trinomials
RngMPol_Trinomials (Example H29E6)
TrivialModule
TrivialModule(G, R) : Grp, Rng -> ModGrp
trngp
The Database of Groups of Order up to 1000 (GROUPS)
trngp-database
The Database of Groups of Order up to 1000 (GROUPS)
trngps
Basic Small Group Functions (GROUPS)
Database of the Transitive Groups of Degrees from 2 to 22 (OVERVIEW)
true
Booleans (OVERVIEW)
true
Truncate
Truncate(q) : FldRatElt -> RngIntElt
Truncate(r) : FldReElt -> RngIntElt
Truncate(n) : RngIntElt -> RngIntElt
Truncate(f) : RngPowElt -> RngPowElt
Tuple
Tup_Tuple (Example H9E2)
tuple
Creating a Tuple (TUPLES AND CARTESIAN PRODUCTS)
Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)
TUPLES AND CARTESIAN PRODUCTS
tuple-access
Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)
tuple-cartesian-product
TUPLES AND CARTESIAN PRODUCTS
TupleAccess
Tup_TupleAccess (Example H9E3)
TupleToList
TupleToList(T) : Tup -> List
Tuplist
TupleToList(T) : Tup -> List
TutteCage
Graph_TutteCage (Example H55E2)
TwoElement
Two-Element Presentations (NUMBER FIELDS AND THEIR ORDERS)
TwoElement(I) : RngOrdIdl -> FldNumElt, FldNumElt
TwoElementNormal
TwoElementNormal(I) : RngOrdIdl -> FldNumElt, FldNumElt, RngIntElt
twogps
Database of Groups of Order Dividing 256 (OVERVIEW)
TwoTorsionPolynomial
TwoTorsionPolynomial(E) : CurveEll -> RngMPolElt, RngUPolElt
Type
Category(S) : Obj -> Cat
Category(R) : Rng -> Cat
Category(r) : RngElt -> Cat
type
Category (OVERVIEW)
Parent and Category (INTRODUCTION [RINGS AND FIELDS])
The Type of a Semisimple Lie Algebra (LIE ALGEBRAS)
typing
Dynamic Typing (MAGMA SEMANTICS)
[____] [____] [_____] [____] [__] [Index] [Root]