[____] [____] [_____] [____] [__] [Index] [Root]

Index T


T

# T : SeqEnum -> RngIntElt

T-key

T<char>

t-key

t<char>

tab-key

<Tab>

table

Coset Spaces and Tables (FINITELY PRESENTED GROUPS)

Coset Tables (FINITELY PRESENTED GROUPS)

Tails

Tails(~P: parameters) : Process(pQuot) ->

TamagawaNumber

TamagawaNumber(E, p) : CurveEll -> RngIntElt

TamagawaNumbers

TamagawaNumbers(E) : CurveEll -> [ RngIntElt ]

Tan

Tan(c) : FldComElt -> FldComElt

Tan(f) : RngSerElt -> RngSerElt

Tangent

Tangent(P, A, p) : Plane, { PlanePt }, PlanePt -> PlaneLn

Tanh

Tanh(s) : FldPrElt -> FldPrElt

Tanh(f) : RngSerElt -> RngSerElt

Tell

Tell(F) : File -> RngIntElt

Tempname

Tempname(P) : MonStgElt -> MonStgElt

Tensor

GrpMat_Tensor (Example H21E20)

tensor

Tensor Products (MATRIX GROUPS)

tensor-product

Tensor Products (MATRIX GROUPS)

TensorBasis

TensorBasis (G) : GrpMat -> GrpMatElt

TensorFactors

TensorFactors (G) : GrpMat -> GrpMat, GrpMat

TensorPower

TensorPower(M, k) : ModTupRng, RngIntElt -> ModTupRng

TensorProduct

TensorProduct(A, B) : AlgMat, AlgMat -> AlgMat

TensorProduct(a, b) : AlgMatElt, AlgMatElt -> AlgMatElt

TensorProduct(G, H) : GrphDir, GrphDir -> GrphDir

TensorProduct(L, M) : Lat, Lat -> Lat

TensorProduct(U, V) : ModTupFld, ModTupFld -> FldElt

TensorProduct(u, v) : ModTupFldElt, ModTupFldElt -> FldElt

TensorProduct(M, N) : ModTupRng, ModTupRng -> ModTupRng

TensorWreathProduct

TensorWreathProduct(G, H) : GrpMat, GrpPerm -> GrpMat

Term

Term(f, i, k) : RngMPolElt, RngIntElt, RngIntElt -> RngMPolElt

term

Coefficients and Terms (UNIVARIATE POLYNOMIAL RINGS)

Coefficients, Monomials and Terms (MULTIVARIATE POLYNOMIAL RINGS)

Sequences (OVERVIEW)

termination

Control-C key (OVERVIEW)

Quitting (OVERVIEW)

Terms

Terms(f) : RngMPolElt -> [ RngMPolElt ]

Terms(p) : RngUPolElt -> [ RngUPolElt ]

TernaryGolayCode

Code_TernaryGolayCode (Example H58E1)

testinglabels

Testing for Labels (GRAPHS)

Tetrahedral

GrpFP_Tetrahedral (Example H16E5)

text

Strings (OVERVIEW)

theta

Successive Minima and Theta Series (LATTICES)

ThetaSeries

ThetaSeries(L, n) : Lat, RngIntElt -> RngPowElt

Lat_ThetaSeries (Example H45E11)

threegps

Database of Groups of Order Dividing 729 (OVERVIEW)

ThreeInvols

GrpFP_ThreeInvols (Example H16E6)

thrgps

Database of Groups of Order Dividing 729 (OVERVIEW)

throwaway

Multiple Assignment (OVERVIEW)

thue

Thue Equations (NUMBER FIELDS AND THEIR ORDERS)

ThueEval

ThueEval(t, a, b) : Thue, RngIntElt, RngIntElt -> RngIntElt

ThueObject

ThueObject(f) : RngUPolElt -> Thue

ThueSolve

ThueSolve(t, a) : Thue, RngInt -> [ [ RngIntElt, RngIntElt ] ]

ThueSolveInexact

ThueSolveInexact(t, a) : Thue, RngIntElt -> [ [ RngIntElt, RngIntElt ] ]

Tietze

Elementary Tietze Transformations (FINITELY PRESENTED SEMIGROUPS)

TietzeProcess

TietzeProcess(G) : GrpFP -> Process(Tietze)

tilde

Procedures (OVERVIEW)

Time

State_Time (Example H1E17)

time

Timing (OVERVIEW)

time statement;

times

Operators (OVERVIEW)

timing

Timing (STATEMENTS AND EXPRESSIONS)

Todd

Index of a Subgroup: The Todd-Coxeter Algorithm (FINITELY PRESENTED GROUPS)

ToddCoxeter

Index(G, H: parameters) : GrpFP, GrpFP -> RngIntElt, Map, RngIntElt, RngIntElt

GrpFP_ToddCoxeter (Example H16E21)

ToddCoxeterSchreier

ToddCoxeterSchreier(G: parameters) : GrpMat : ->

ToddCoxeterSchreier(G: parameters) : GrpPerm : ->

Top

Top(L): SubGrpLat -> SubGrpLatElt

Top(L): SubModLat -> SubModLatElt

TorsionFreeRank

TorsionFreeRank(A) : GrpAb -> RngIntElt

TorsionFreeRank(G) : GrpFP -> RngIntElt

TorsionFreeSubgroup

TorsionFreeSubgroup(A) : GrpAb -> GrpAb

TorsionInvariants

TorsionInvariants(A) : GrpAb -> [ RngIntElt ]

TorsionSubgroup

TorsionSubgroup(E) : CurveEll -> GrpAb, Map

TorsionSubgroup(K) : FldQuad -> GrpAb, Map

TorsionSubgroup(A) : GrpAb -> GrpAb

TorsionUnitGroup

TorsionUnitGroup(O) : RngOrd -> GrpAb, Map

TotalDegree

TotalDegree(f) : RngMPolElt -> RngIntElt

Trace

Trace(a) : AlgGrpElt -> RngElt

Trace(a) : AlgMatElt -> RngElt

Trace(C, S) : Code, FldFin -> Code

Trace(E): CurveEll -> RngIntElt

Trace(a) : FldCycElt -> FldRatElt

Trace(a) : FldFinElt -> FldFinElt

Trace(a) : FldFunElt -> RngElt

Trace(a) : FldNumElt -> FldNumElt

Trace(a) : FldQuadElt -> FldRatElt

Trace(q) : FldRatElt -> FldRatElt

Trace(g) : GrpMatElt -> RngElt

Trace(u, F) : ModTupFldElt, Fld -> ModTupFldElt

Trace(u, S) : ModTupFldElt, FldFin -> ModTupFldElt

Trace(n) : RngIntElt -> RngIntElt

Elcu_Trace (Example H53E13)

trace

Conjugates, Minimal Polynomial (CYCLOTOMIC FIELDS)

Conjugates, Norm and Trace (RATIONAL FIELD)

Conjugates, Norm and Trace (RING OF INTEGERS)

Norm and Trace (FINITE FIELDS)

Norm, Trace, and Minimal Polynomial (NUMBER FIELDS AND THEIR ORDERS)

Norm, Trace, and More (FUNCTION FIELDS AND THEIR ORDERS)

TraceAbs

AbsoluteTrace(a) : FldFinElt -> FldFinElt

TraceMatrix

TraceMatrix(O) : RngOrd -> AlgMatElt

TrailingCoefficient

TrailingCoefficient(f) : RngMPolElt -> RngElt

TrailingCoefficient(p) : RngUPolElt -> RngElt

TrailingTerm

TrailingTerm(f) : RngMPolElt -> RngElt

TrailingTerm(p) : RngUPolElt -> RngUPolElt

trans

Plane_trans (Example H57E16)

transcendental

Transcendental Extension (INTRODUCTION [RINGS AND FIELDS])

Transcendental Functions (POWER SERIES AND LAURENT SERIES)

Transcendental Functions (REAL AND COMPLEX FIELDS)

transcendental-extension

Transcendental Extension (INTRODUCTION [RINGS AND FIELDS])

transfer

Transfer Functions Between Group Categories (GROUPS)

transformation

Modules (OVERVIEW)

Operations with Linear Transformations (VECTOR SPACES)

VECTOR SPACES

TransformationMatrix

TransformationMatrix(I) : RngFunOrdIdl -> AlgMatElt, RngElt

TransformationMatrix(O, P) : RngOrd -> AlgMatElt, RngIntElt

TransformationMatrix(I) : RngOrdIdl -> AlgMatElt, RngIntElt

Transitive

GrpPerm_Transitive (Example H20E21)

transitive

Database of the Transitive Groups of Degrees from 2 to 22 (OVERVIEW)

TransitiveGroup

TransitiveGroup(d) : RngIntElt -> GrpPerm, MonStgElt

TransitiveGroup(d, n) : RngIntElt, RngIntElt -> GrpPerm, MonStgElt

TransitiveGroupDatabaseLimit

TransitiveGroupDatabaseLimit() : -> RngIntElt

TransitiveGroupDescription

TransitiveGroupDescription(d, n) : RngIntElt, RngIntElt -> MonStgElt

TransitiveGroupProcess

TransitiveGroupProcess(d) : RngIntElt -> Process

TransitiveGroups

TransitiveGroups(d: parameters) : RngIntElt -> [GrpPerm]

TransitiveProcess

GrpPerm_TransitiveProcess (Example H20E22)

Transitivity

Transitivity(G, Y) : GrpPerm, GSet -> RngIntElt

TranslationMap

TranslationMap(E, P) : CurveEll, CurveEllPt -> Map

Transpose

Transpose(a) : AlgMatElt -> AlgMatElt

Transpose(g) : GrpMatElt -> GrpMatElt

Transpose(a) : ModMatElt -> ModMatElt

Transpose(a) : ModMatRngElt -> ModMatRngElt

Transversal

SchreierSystem(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map

Transversal(G, H) : Grp, Grp -> {@ GrpElt @}, Map

Transversal(G, H) : GrpAb, GrpAb -> {@ GrpAbElt @}, Map

Transversal(G, H) : GrpFP, GrpFP -> {@ GrpFPElt @}, Map

Transversal(G, H, K) : GrpFP, GrpFP, GrpFP -> {@ GrpFPElt @}, Map

Transversal(G, H) : GrpMat, GrpMat -> {@ GrpMatElt @}, Map

Transversal(G, H) : GrpPC, GrpPC -> {@ GrpPCElt @}, Map

Transversal(G, H) : GrpPerm, GrpPerm -> {@ GrpPermElt @}, Map

Transversal(V, U): ModTupFld, ModTupFld -> { ModTupFldELt }

trap

Traps for Young Players (MAGMA SEMANTICS)

trap1

Trap 1 (MAGMA SEMANTICS)

trap2

Trap 2 (MAGMA SEMANTICS)

tree

Spanning Trees of a Graph or Digraph (GRAPHS)

TrialDivision

TrialDivision(n) : RngIntElt -> RngIntEltFact, [ RngIntElt ]

Tricomponents

[Future release] Tricomponents(G) : GrphUnd -> { { GrphVert } }

trigonometric

Inverse Trigonometric Functions (REAL AND COMPLEX FIELDS)

Trigonometric Functions (REAL AND COMPLEX FIELDS)

Trinomials

RngMPol_Trinomials (Example H29E6)

TrivialModule

TrivialModule(G, R) : Grp, Rng -> ModGrp

trngp

The Database of Groups of Order up to 1000 (GROUPS)

trngp-database

The Database of Groups of Order up to 1000 (GROUPS)

trngps

Basic Small Group Functions (GROUPS)

Database of the Transitive Groups of Degrees from 2 to 22 (OVERVIEW)

true

Booleans (OVERVIEW)

true

Truncate

Truncate(q) : FldRatElt -> RngIntElt

Truncate(r) : FldReElt -> RngIntElt

Truncate(n) : RngIntElt -> RngIntElt

Truncate(f) : RngPowElt -> RngPowElt

Tuple

Tup_Tuple (Example H9E2)

tuple

Creating a Tuple (TUPLES AND CARTESIAN PRODUCTS)

Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)

TUPLES AND CARTESIAN PRODUCTS

tuple-access

Tuple Access Functions (TUPLES AND CARTESIAN PRODUCTS)

tuple-cartesian-product

TUPLES AND CARTESIAN PRODUCTS

TupleAccess

Tup_TupleAccess (Example H9E3)

TupleToList

TupleToList(T) : Tup -> List

Tuplist

TupleToList(T) : Tup -> List

TutteCage

Graph_TutteCage (Example H55E2)

TwoElement

Two-Element Presentations (NUMBER FIELDS AND THEIR ORDERS)

TwoElement(I) : RngOrdIdl -> FldNumElt, FldNumElt

TwoElementNormal

TwoElementNormal(I) : RngOrdIdl -> FldNumElt, FldNumElt, RngIntElt

twogps

Database of Groups of Order Dividing 256 (OVERVIEW)

TwoTorsionPolynomial

TwoTorsionPolynomial(E) : CurveEll -> RngMPolElt, RngUPolElt

Type

Category(S) : Obj -> Cat

Category(R) : Rng -> Cat

Category(r) : RngElt -> Cat

type

Category (OVERVIEW)

Parent and Category (INTRODUCTION [RINGS AND FIELDS])

The Type of a Semisimple Lie Algebra (LIE ALGEBRAS)

typing

Dynamic Typing (MAGMA SEMANTICS)


[____] [____] [_____] [____] [__] [Index] [Root]