[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Access Functions for PC-Groups

Access Functions for PC-Groups

The functions described here provide access to basic information stored for a pc-group G. We assume that the pc-generators of G are a_1, ..., a_n, with associated primes p_1, ..., p_n.

G . i : GrpPC, RngIntElt -> GrpPCElt
The i-th pc-generator for G. A negative subscript indicates that the inverse of the generator is to be created. G.0 is Identity(G).
Generators(G) : GrpPC -> { GrpPCElt }
A set containing the defining generators for G.
NumberOfGenerators(G) : GrpPC -> RngIntElt
Ngens(G) : GrpPC -> RngIntElt
The number of defining generators for the pc-group G.
NumberOfPCGenerators(G) : GrpPC -> RngIntElt
NPCgens(G) : GrpPC -> RngIntElt
The number of pc-generators for the pc-group G.
PCGenerators(G) : GrpPC -> {@ GrpPCElt @}
An indexed set containing the pc-generators for G.
pClass(G) : GrpPC -> RngIntElt
The lower exponent-p class of the p-group G.
pRanks(G) : GrpPC-> [ RngIntElt ]
A sequence whose i-th entry is the number of pc-generators for the lower exponent-p class i quotient of the p-group G.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]