[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Power Groups

Power Groups

Parent(G) : GrpPC -> PowerStructure
The PowerStructure of category GrpPC.
PowerGroup(G) : GrpPC -> PowerGroup
The set of all subgroups of G. This is very useful when constructing sets of pc-groups. If the user will be building a set of subgroups of a pc-group G, then it is best to specify the set's universe to be PowerGroup(G). If the set's universe is not specified it will be Parent(G).

Example GrpPC_PowerGroup (H19E8)

Given the subgroup H of G, construct the set of subgroups conjugate to H in G using the default set universe.

> G := ExtraSpecialGroup( GrpPC, 2, 2 );
> H := sub< G | Random(G), Random(G) >;
> S := { H^x : x in G };
Given the subgroup H of G, construct the set of subgroups conjugate to H in G using PowerGroup(G) as the set universe.

> G := ExtraSpecialGroup( GrpPC, 2, 2 );
> H := sub< G | Random(G), Random(G) >;
> P := PowerGroup(G);
> S := { P | H^x : x in G };
The second example will spend far less time in the set constructor and the resulting set will have faster membership testing.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]