The PowerStructure of category GrpPC.
The set of all subgroups of G. This is very useful when constructing sets of pc-groups. If the user will be building a set of subgroups of a pc-group G, then it is best to specify the set's universe to be PowerGroup(G). If the set's universe is not specified it will be Parent(G).
> G := ExtraSpecialGroup( GrpPC, 2, 2 ); > H := sub< G | Random(G), Random(G) >; > S := { H^x : x in G };Given the subgroup H of G, construct the set of subgroups conjugate to H in G using PowerGroup(G) as the set universe.
> G := ExtraSpecialGroup( GrpPC, 2, 2 ); > H := sub< G | Random(G), Random(G) >; > P := PowerGroup(G); > S := { P | H^x : x in G };The second example will spend far less time in the set constructor and the resulting set will have faster membership testing.