[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Permutation Representations of Linear Groups
Permutation Representations of Linear Groups
Each of the functions in this family returns two values:
- A permutation group G corresponding to the action of a designated
matrix group M on a vector space V; and
- An indexed set of affine or projective points on which M acts,
such that the indexing gives the correspondence between this set and the G-set
of M.
Furthermore, most of the function in this family are parametrised by
two objects: the degree and the coefficient field of the matrix
group. These can be supplied in one of the following three forms:
- Integers n and q corresponding to the degree and the
field GF(q) of M (GF(q^2) in the case of the unitary groups).
- An integer n and a finite field K corresponding to the
degree and the coefficient field of M.
- A vector space V = K^n on which M natrually acts.
The Suzuki group, however, is only parametrised by the field, as the
degree is always four. As such, it can be described by the integer q,
the field K = GF(q), or the vector space K^4.
AffineGeneralLinearGroup(arguments)
AGL(arguments)
AffineGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineGeneralLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
AGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AGL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AGL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine general linear group G = AGL(n, q),
i.e., the group corresponding to
the action of GL(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q).
The function returns:
- The group G;
- An indexed set giving the correspondence between
the affine points and the G-set of G.
AffineSpecialLinearGroup(arguments)
ASL(arguments)
AffineSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSpecialLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine special linear group G = ASL(n, q),
i.e., the group corresponding to
the action of SL(n, q) on the affine points of the
n-dimensional vector space V over K = GF(q).
The function returns:
- The group G;
- An indexed set giving the correspondence between
the affine points and the G-set of G.
AffineGammaLinearGroup(arguments)
AGammaL(arguments)
AffineGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineGammaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
AGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AGammaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine gamma linear group G = AGammaL(n, q),
i.e., the group corresponding to
the action of GammaL(n, q) (the automorphism group of GL(n, q))
on the affine points of the n-dimensional vector space V over K = GF(q).
The function returns:
- The group G;
- An indexed set giving the correspondence between
the points and the G-set of G.
AffineSigmaLinearGroup(arguments)
ASigmaL(arguments)
AffineSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
AffineSigmaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ASigmaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the affine sigma linear group G = ASigmaL(n, q),
i.e., the group corresponding to
the action of SigmaL(n, q) (the automorphism group of SL(n, q))
on the affine points of the n-dimensional vector space V over K = GF(q).
The function returns:
- The group G;
- An indexed set giving the correspondence between
the points and the G-set of G.
ProjectiveGeneralLinearGroup(arguments)
PGL(arguments)
ProjectiveGeneralLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general linear group G = PGL(n, q),
i.e., the group corresponding to
the action of GL(n, q) on the projective points of the
n-dimensional vector space V over K = GF(q),
where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSpecialLinearGroup(arguments)
PSL(arguments)
ProjectiveSpecialLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special linear group G = PSL(n, q),
i.e., the group corresponding to
the action of SL(n, q) on the projective points of the
n-dimensional vector space V over K = GF(q),
where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveGammaLinearGroup(arguments)
PGammaL(arguments)
ProjectiveGammaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGammaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGammaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGammaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PGammaL(n, q) of the
projective general linear group PGL(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set giving the correspondence between the points
and the G-set of G.
ProjectiveSigmaLinearGroup(arguments)
PSigmaL(arguments)
ProjectiveSigmaLinearGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaLinearGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaLinearGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaL(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PSigmaL(n, q) of the
projective special linear group PSL(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set giving the correspondence between the points
and the G-set of G.
ProjectiveGeneralUnitaryGroup(arguments)
PGU(arguments)
ProjectiveGeneralUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGeneralUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective general unitary group G = PGU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q^2), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSpecialUnitaryGroup(arguments)
PSU(arguments)
ProjectiveSpecialUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSpecialUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective special unitary group G = PSU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q^2), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of V, giving the correspondence between these vectors
and the G-set of G.
ProjectiveGammaUnitaryGroup(arguments)
PGammaU(arguments)
ProjectiveGammaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveGammaUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PGammaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PGammaU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PGammaU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PGammaU(n, q) of the
projective general unitary group PGU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q^2), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set giving the correspondence between
the points and the G-set of G.
ProjectiveSigmaUnitaryGroup(arguments)
PSigmaU(arguments)
ProjectiveSigmaUnitaryGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaUnitaryGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaUnitaryGroup(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaU(V): ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PSigmaU(n, q) of the
projective special unitary group PSU(n, q)
corresponding to the n-dimensional vector space V over the field
K = GF(q^2), where n >= 2 and q is a prime power.
The function returns:
- The group G;
- An indexed set giving the correspondence between
the points and the G-set of G.
ProjectiveSymplecticGroup(arguments)
PSp(arguments)
ProjectiveSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the projective symplectic group G = PSp(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 4.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSigmaSymplecticGroup(arguments)
PSigmaSp(arguments)
ProjectiveSigmaSymplecticGroup(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaSymplecticGroup(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSigmaSymplecticGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(n, q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(n, K) : RngIntElt, FldFin -> GrpPerm, {@ ModTupFldElt @}
PSigmaSp(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the automorphism group G = PSigmaSp(n, q) of the
projective symplectic group PSp(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 4.
The function returns:
- The group G;
- An indexed set giving the correspondence between
the points and the G-set of G.
PGO(arguments)
ProjectiveGeneralOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveGeneralOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveGeneralOrthogonalGroup(V): ModTupRng -> GrpMat
PGO(n, q) : RngIntElt, RngIntElt -> GrpMat
PGO(n, K) : RngIntElt, FldFin -> GrpMat
PGO(V): ModTupRng -> GrpMat
Construct the projective general orthogonal group G = PGO(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
PGOPlus(arguments)
ProjectiveGeneralOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveGeneralOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveGeneralOrthogonalGroupPlus(V): ModTupRng -> GrpMat
PGOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
PGOPlus(n, K) : RngIntElt, FldFin -> GrpMat
PGOPlus(V): ModTupRng -> GrpMat
Construct the projective general orthogonal group G = PGO^ + (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
PGOMinus(arguments)
ProjectiveGeneralOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveGeneralOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveGeneralOrthogonalGroupMinus(V): ModTupRng -> GrpMat
PGOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
PGOMinus(n, K) : RngIntElt, FldFin -> GrpMat
PGOMinus(V): ModTupRng -> GrpMat
Construct the projective general orthogonal group G = PGO^ - (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
PSO(arguments)
ProjectiveSpecialOrthogonalGroup(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveSpecialOrthogonalGroup(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveSpecialOrthogonalGroup(V): ModTupRng -> GrpMat
PSO(n, q) : RngIntElt, RngIntElt -> GrpMat
PSO(n, K) : RngIntElt, FldFin -> GrpMat
PSO(V): ModTupRng -> GrpMat
Construct the projective special orthogonal group G = PSO(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
PSOPlus(arguments)
ProjectiveSpecialOrthogonalGroupPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveSpecialOrthogonalGroupPlus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveSpecialOrthogonalGroupPlus(V): ModTupRng -> GrpMat
PSOPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
PSOPlus(n, K) : RngIntElt, FldFin -> GrpMat
PSOPlus(V): ModTupRng -> GrpMat
Construct the projective special orthogonal group G = PSO^ + (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
PSOMinus(arguments)
ProjectiveSpecialOrthogonalGroupMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveSpecialOrthogonalGroupMinus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveSpecialOrthogonalGroupMinus(V): ModTupRng -> GrpMat
PSOMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
PSOMinus(n, K) : RngIntElt, FldFin -> GrpMat
PSOMinus(V): ModTupRng -> GrpMat
Construct the projective general orthogonal group G = PSO^ - (n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveOmega(arguments)
POmega(arguments)
ProjectiveOmega(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveOmega(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveOmega(V): ModTupRng -> GrpMat
POmega(n, q) : RngIntElt, RngIntElt -> GrpMat
POmega(n, K) : RngIntElt, FldFin -> GrpMat
POmega(V): ModTupRng -> GrpMat
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an odd integer greater than or equal to 3.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveOmegaPlus(arguments)
POmegaPlus(arguments)
ProjectiveOmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveOmegaPlus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveOmegaPlus(V): ModTupRng -> GrpMat
POmegaPlus(n, q) : RngIntElt, RngIntElt -> GrpMat
POmegaPlus(n, K) : RngIntElt, FldFin -> GrpMat
POmegaPlus(V): ModTupRng -> GrpMat
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveOmegaMinus(arguments)
POmegaMinus(arguments)
ProjectiveOmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
ProjectiveOmegaMinus(n, K) : RngIntElt, FldFin -> GrpMat
ProjectiveOmegaMinus(V): ModTupRng -> GrpMat
POmegaMinus(n, q) : RngIntElt, RngIntElt -> GrpMat
POmegaMinus(n, K) : RngIntElt, FldFin -> GrpMat
POmegaMinus(V): ModTupRng -> GrpMat
Construct the projective orthogonal group G = POmega(n, q), where
K = GF(q), V is an n-dimensional vector space over K,
and n is an even integer greater than or equal to 2.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
ProjectiveSuzukiGroup(arguments)
PSz(arguments)
ProjectiveSuzukiGroup(q) : RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSuzukiGroup(K) : FldFin -> GrpPerm, {@ ModTupFldElt @}
ProjectiveSuzukiGroup(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
PSz(q): RngIntElt, RngIntElt -> GrpPerm, {@ ModTupFldElt @}
PSz(K) : FldFin -> GrpPerm, {@ ModTupFldElt @}
PSz(V) : ModTupRng -> GrpPerm, {@ ModTupFldElt @}
Construct the permutation representation G = PSz(q) of the
Suzuki simple group Sz(q), given by its action on projective points,
where q is of the form 2^(2n + 1).
If K is given, its cardinality is q.
If V is given, it must be 4-dimensional, and over K.
The function returns:
- The group G;
- An indexed set of the generators of the 1-dimensional
subspaces of K^((n)), giving the correspondence between these vectors
and the G-set of G.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]