[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Combinatorial Functions
Combinatorial Functions
Binomial(n, r) : RngIntElt, RngIntElt -> RngIntElt
The binomial coefficient n choose r.
Multinomial(n, [a_1, ... a_n]) : RngIntElt, [RngIntElt] -> RngIntElt
Given a sequence Q = [r_1, ..., r_k] of positive integers
such that n = r_1 + ... + r_k, return the multinomial
coefficient n choose r_1, ..., r_k.
Factorial(n) : RngIntElt -> RngIntElt
The factorial n! for positive small integer n.
Partitions(n) : RngIntElt -> [ [ RngIntElt ] ]
The unrestricted partitions of the positive integer n.
This function returns a sequence of integer sequences, each
of which is a different sequence of positive integers (in descending
order) adding up to n.
The integer n must be small.
NumberOfPartitions(n) : RngIntElt -> RngIntElt
The number of unrestricted partitions of the non-negative integer n.
The integer n must be small.
RestrictedPartitions(n, Q) : RngIntElt, SeqEnum -> [ [ RngIntElt ] ]
The partitions of the positive integer n, restricted to
elements of the positive integer sequence Q.
StirlingFirst(m, n) : RngIntElt, RngIntElt -> RngIntElt
The Stirling number of the first type, [(m atop n)],
where m and n are non-negative integers.
StirlingSecond(m, n) : RngIntElt, RngIntElt -> RngIntElt
The Stirling number of the second type, {(m atop n)},
where m and n are non-negative integers.
Fibonacci(n) : RngIntElt -> RngIntElt
Given an integer n, this function returns the n-th Fibonacci
number F_n, which can be defined via the recursion F_0=0, F_1=1
and F_n=F_(n - 1) + F_(n - 2). Note that n is allowed to be negative,
and that F_n=( - 1)^(n - 1)F_(-n).
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]