[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Fundamental Invariants

Fundamental Invariants

Let R=K[V]^G be the invariant ring of the group G over the field K and suppose the degree of G is n. A set of fundamental invariants for R is a generating set of R as an algebra over K.

FundamentalInvariants(R) : RngInvar -> [ RngMPolElt ]
Construct fundamental invariants for the invariant ring R=K[V]^G as a sorted sequence (with increasing degrees) of polynomials of R. The fundamental invariants are constructed by minimalizing the set of generators obtained by combining primary and secondary invariants for R.

Example RngInvar_FundamentalInvariants (H30E8)

We construct fundamental invariants for the invariant ring R of the group G over Q, where G is permutation group consisting of two parallel copies of S_3 in degree 6. Notice that the sequence of fundamental invariants is shorter and simpler than the sequence consisting of the primary invariants combined with the secondary invariants.

> K := RationalField();
> G := PermutationGroup<6 | (1,2,3)(4,5,6), (1,2)(4,5)>;
> R := InvariantRing(G, K);
> PrimaryInvariants(R);    
[
    x1 + x2 + x3,
    x4 + x5 + x6,
    x1^2 + x2^2 + x3^2,
    x4^2 + x5^2 + x6^2,
    x1^3 + x2^3 + x3^3,
    x4^3 + x5^3 + x6^3
]
> SecondaryInvariants(R);  
[
    1,
    x1*x4 + x2*x5 + x3*x6,
    x1^2*x4 + x2^2*x5 + x3^2*x6,
    x1*x4^2 + x2*x5^2 + x3*x6^2,
    x1^2*x4^2 + 2*x1*x2*x4*x5 + 2*x1*x3*x4*x6 + x2^2*x5^2 + 2*x2*x3*x5*x6 + 
        x3^2*x6^2,
    x1^3*x4^3 + x1^2*x2*x4*x5^2 + x1^2*x3*x4*x6^2 + x1*x2^2*x4^2*x5 + 
        x1*x3^2*x4^2*x6 + x2^3*x5^3 + x2^2*x3*x5*x6^2 + x2*x3^2*x5^2*x6 + 
        x3^3*x6^3
]
> FundamentalInvariants(R);
[
    1,
    x1 + x2 + x3,
    x4 + x5 + x6,
    x1^2 + x2^2 + x3^2,
    x1*x4 + x2*x5 + x3*x6,
    x4^2 + x5^2 + x6^2,
    x1^3 + x2^3 + x3^3 + x4*x5*x6,
    x1^2*x4 + x2^2*x5 + x3^2*x6,
    x1*x4^2 + x2*x5^2 + x3*x6^2,
    x4^3 + x5^3 + x6^3
]

[Next] [Prev] [Right] [Left] [Up] [Index] [Root]