[Next] [Prev] [_____] [Left] [Up] [Index] [Root]
Solution of a System of Linear Equations
Solution of a System of Linear Equations
IsConsistent(a, v) : ModMatFldElt, ModTupFld -> BoolElt, ModTupFldElt, ModTupFld
Given a matrix a belonging to K^((m x n)) and a vector v
belonging to the vector space K^((m)), return true iff the system of linear
equations x * a = v is consistent. If the system is consistent, then the
function will also return:
- A particular solution v;
- The kernel K of a so that (v + k) * a = w for k in K.
Solution(a, v) : ModMatFldElt, ModTupFld -> ModTupFldElt, ModTupFld
Given a matrix a belonging to K^((m x n)) and a vector v
belonging to the vector space K^((m)), solve the system of linear
equations x * a = v for x. The function returns two values:
- A particular solution v;
- The kernel K of a so that (v + k) * a = w for k in K.
[Next] [Prev] [_____] [Left] [Up] [Index] [Root]