Given the matrix bimodule M over the ring R, and the sequence Q = [a_(11), ..., a_(1n), a_(21), ..., a_(2n), ..., a_(m1), ..., a_(mn)] whose terms are elements of the ring R, construct the m x n matrix
[ a_11 a_12 ... a_1n ] [ a_21 a_22 ... a_2n ] [ ... ] [ ... ] [ a_m1 a_m2 ... a_mn ]as an element of M. In the context of the sub or quo constructors the coercion clause M ! may be omitted.
> Q := RationalField(); > R4 := RModule(Q, 4); > M := EndomorphismAlgebra(R4); > h4 := M ! [ 1/i : i in [1 .. 16 ] ]; > h4; [ 1 1/2 1/3 1/4] [ 1/5 1/6 1/7 1/8] [ 1/9 1/10 1/11 1/12] [1/13 1/14 1/15 1/16]