The unrestricted partitions of the positive integer n. This function returns a sequence of integer sequences, each of which is a different sequence of positive integers (in descending order) adding up to n. The integer n must be small.
The number of unrestricted partitions of the non-negative integer n. The integer n must be small.
The partitions of the positive integer n, restricted to elements of the set Q, which must contain positive integers only. This function returns a sequence of integer sequences, each of which is a different sequence of positive integers (in descending order) adding up to n and each contained in Q (repetitions are allowed in the partition).
> PartitionToElt := function(G, p) > x := []; > s := 0; > for d in p do > x cat:= Rotate([s+1 .. s+d], -1); > s +:= d; > end for; > return G!x; > end function; > > ConjClasses := function(n) > G := Sym(n); > return [ PartitionToElt(G, p) : p in Partitions(n) ]; > end function; > > ConjClasses(5); [ (1, 2, 3, 4, 5), (1, 2, 3, 4), (1, 2, 3)(4, 5), (1, 2, 3), (1, 2)(3, 4), (1, 2), Id($) ] > Classes(Sym(5)); Conjugacy Classes ----------------- [1] Order 1 Length 1 Rep Id($)
[2] Order 2 Length 10 Rep (1, 2)
[3] Order 2 Length 15 Rep (1, 2)(3, 4)
[4] Order 3 Length 20 Rep (1, 2, 3)
[5] Order 4 Length 30 Rep (1, 2, 3, 4)
[6] Order 5 Length 24 Rep (1, 2, 3, 4, 5)
[7] Order 6 Length 20 Rep (1, 2, 3)(4, 5)
> coins := {5, 10, 20, 50}; > T := [#RestrictedPartitions(n, coins) : n in [0 .. 100 by 5]]; > T; [ 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49 ] > F<t> := PowerSeriesAlgebra(RationalField(), 101); > &*[1/(1-t^i) : i in coins]; 1 + t^5 + 2*t^10 + 2*t^15 + 4*t^20 + 4*t^25 + 6*t^30 + 6*t^35 + 9*t^40 + 9*t^45 + 13*t^50 + 13*t^55 + 18*t^60 + 18*t^65 + 24*t^70 + 24*t^75 + 31*t^80 + 31*t^85 + 39*t^90 + 39*t^95 + 49*t^100 + O(t^101)[Next] [Prev] [_____] [Left] [Up] [Index] [Root]