[Next] [Prev] [Right] [Left] [Up] [Index] [Root]
Elementary Graph Predicates
Elementary Graph Predicates
u adj v : GrphVert, GrphVert -> BoolElt
True if the vertices u and v, both belonging to the same graph
G, are adjacent, otherwise false.
e adj f : GrphEdge, GrphEdge -> BoolElt
True if the edges e and f, both belonging to the same graph G,
share a common vertex, otherwise false.
u notadj v : GrphVert, GrphVert -> BoolElt
True if the vertices u and v, both belonging to the same graph
G, are not adjacent, otherwise false.
e notadj f : GrphEdge, GrphEdge -> BoolElt
True if the edges e and f, both belonging to the same graph G,
do not share a common vertex, otherwise false.
u in e : GrphVert, GrphEdge -> BoolElt
True if the vertex u is an endpoint of the edge e, where u and
e belong to the same graph, otherwise false.
u notin e : GrphVert, GrphEdge -> BoolElt
True if the vertex u is not an endpoint of the edge e, where u and
e belong to the same graph, otherwise false.
G eq H : GrphDir, GrphDir -> BoolElt
G eq H : GrphUnd, GrphUnd -> BoolElt
True if the graphs G and H are identical, otherwise false.
IsBipartite(G) : GrphUnd -> BoolElt
True if the graph G is a bipartite graph, otherwise false.
IsComplete(G) : Grph -> BoolElt
True if the graph G, on p vertices, is the complete graph on
p vertices, otherwise false.
IsConnected(G) : GrphUnd -> BoolElt
True if the graph G is a connected graph, otherwise false.
IsEulerian(G) : Grph -> BoolElt
True if the graph G is an eulerian graph, otherwise false.
IsForest(G) : GrphUnd -> BoolElt
True if the graph G is a forest, i.e. does not possess any cycles,
otherwise false.
IsEmpty(G) : Grph -> BoolElt
True if the graph G is a null graph, otherwise false.
IsPath(G) : Grph -> BoolElt
True if the graph G is a path graph, otherwise false.
IsPolygon(G) : Grph -> BoolElt
True if the graph G is a polygon graph, otherwise false.
[Future release] IsPlanar(G) : GrphUnd -> BoolElt
True if the graph G is a planar graph, otherwise false.
IsRegular(G) : Grph -> BoolElt
True if the graph G is a regular graph, otherwise false.
IsSeparable(G) : Grph -> BoolElt
True if the graph G is separable, i.e. if G has at least one
cut-vertex, otherwise false.
IsTree(G) : Grph -> BoolElt
True if the graph G is a tree, otherwise false.
[Next] [Prev] [Right] [Left] [Up] [Index] [Root]