The sub constructor allows subplanes of a projective or
affine plane to be created.
For classical planes, the SubfieldSubplane function is also provided.
sub<P | L> : Plane, List -> Plane
Given a plane P, construct the subplane of P generated by the points specified by L, where L is a list of one or more items of the following types:The set S of points defined by the list L must include a quadrangle if P is a projective plane and three non-collinear points if P is an affine plane. The function returns the smallest subplane of P containing S.
- A point of P;
- A set or sequence of points of P;
- A subplane of P;
- A set or sequence of subplanes of P.
The plane obtained from the classical plane P by taking only those points of P which have all coordinates lying in F, where F must be a subfield of Field(P).
> K<w> := GF(4);
> P, V, L := ProjectivePlane(K);
> S := sub< P | [ V | [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, w, 1] ] >;
> S: Maximal;
Projective Plane of order 2
Points: {@ ( 1 : 0 : 0 ), ( 0 : 1 : 0 ), ( 0 : 0 : 1 ), ( 1 : w : 0 ),
( 1 : 0 : 1 ), ( 1 : w : 1 ), ( 0 : 1 : w^2 ) @}
Lines:
{( 0 : 1 : 0 ), ( 0 : 0 : 1 ), ( 0 : 1 : w^2 )},
{( 1 : 0 : 0 ), ( 0 : 0 : 1 ), ( 1 : 0 : 1 )},
{( 1 : 0 : 0 ), ( 0 : 1 : 0 ), ( 1 : w : 0 )},
{( 1 : 0 : 0 ), ( 1 : w : 1 ), ( 0 : 1 : w^2 )},
{( 0 : 1 : 0 ), ( 1 : 0 : 1 ), ( 1 : w : 1 )},
{( 0 : 0 : 1 ), ( 1 : w : 0 ), ( 1 : w : 1 )},
{( 1 : w : 0 ), ( 1 : 0 : 1 ), ( 0 : 1 : w^2 )}
We next form the subplane of AG_2(4) over GF(2).
> A := AffinePlane(4); > S := SubfieldSubplane(A, GF(2)); > S: Maximal; Affine Plane AG(2, 2) > S subset A; true