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Notation and conventions.

(0.1) In general, k denotes an arbitrary field, k̄ denotes an algebraic closure of k, and ks a
separable closure.

(0.2) If A is a commutative ring, we sometimes simply write A for Spec(A). Thus, for instance,
by an A-scheme we mean a scheme over Spec(A). If A → B is a homomorphism of rings and X
is an A-scheme then we write XB = X ×A B rather than X ×Spec(A) Spec(B).

(0.3) If X is a scheme then we write |X| for the topological space underlying X and OX for its
structure sheaf. If f : X → Y is a morphism of schemes we write |f |: |X| → |Y | and f !: OY →
f∗OX for the corresponding map on underlying spaces, resp. the corresponding homomorphism
of sheaves on Y . If x ∈ |X| we write k(x) for the residue field. If X is an integral scheme we
write k(X) for its field of rational functions.

If S is a scheme and X and T are S-schemes then we write X(T ) for the set of T -valued
points of X, i.e., the set of morphisms of S-schemes T → X. Often we simply write XT for
the base change of X to T , i.e., XT := X ×S T , to be viewed as a T -scheme via the canonical
morphism XT → T .

(0.4) If k is a field then by a variety over k we mean a separated k-scheme of finite type which
is geometrically integral. Recall that a k-scheme is said to be geometrically integral if for some
algebraically closed field K containing k the scheme XK is irreducible and reduced. By EGA
IV, (4.5.1) and (4.6.1), if this holds for some algebraically closed overfield K then XK is integral
for every field K containing k. A variety of dimension 1 (resp. 2, resp. n ! 3) is called a curve
(resp. surface, resp. n-fold).

By a line bundle (resp. a vector bundle of rank d) on a scheme X we mean a locally free
OX -module of rank 1 (resp. of rank d). By a geometric vector bundle of rank d on X we mean a
group scheme π: V → X over X for which there exists a affine open covering X = ∪Uα such that
the restriction of V to each Uα is isomorphic to Gd

a over Uα. In particular this means that we
have isomorphisms of Uα-schemes ϕα: π−1(Uα)

∼−→ Uα×Ad, such that all transition morphisms

tα,β : Uα,β × Ad ϕβ ◦ϕ−1
α−−−−−−→ Uα,β × Ad

are linear automorphisms of Uα,β × Ad over Uα,β := Uα ∩ Uβ ; this last condition means that
tα,β is given by a O(Uα,β)-linear automorphism of O(Uα,β)[x1, . . . , xd]. For d = 1 we obtain the
notion of a geometric line bundle.

If V is a geometric vector bundle of rank d onX then its sheaf of sections is a vector bundle of
rank d. Conversely, if E is a vector bundle of rank d on X then the scheme V := Spec

(
Sym(E ∨)

)

has a natural structure of a geometric vector bundle of rank d. These two constructions are
quasi-inverse to each other and establish an equivalence between vector bundles and geometric
vector bundles.

(0.5) In our definition of an étale morphism of schemes we follow EGA; this means that we only
require the morphism to be locally of finite type. Note that in some literature étale morphisms
are assumed to be quasi-finite. Thus, for instance, if S is a scheme and I is an index set, the
disjoint union

∐
i∈I S is étale over S according to our conventions, also if the set I is infinite.
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(0.6) If K is a number field then by a prime of K we mean an equivalence class of valuations
of K. See for instance Neukirch [1], Chap. 3. The finite primes of K are in bijection with
the maximal ideals of the ring of integers OK . An infinite prime corresponds either to a real
embedding K ↪→ R or to a pair {ι, ῑ} of complex embeddings K ↪→ C.

If v is a prime of K, we have a corresponding homomorphism ordv: K∗ → R and a normal-
ized absolute value || ||v. If v is a finite prime then we let ordv be the corresponding valuation,
normalized such that ordv(K∗) = Z, and we define || ||v by

||x||v :=

{
(qv)−ordv(x) if x '= 0,
0 if x = 0,

where qv is the cardinality of the residue field at v. If v is an infinite prime then we let

||x||v =

{
|ι(x)| if v corresponds to a real embedding ι: K → R,
|ι(x)|2 if v corresponds to a pair of complex embeddings {ι, ῑ},

and we define ordv by the rule ordv(x) := − log
(
|ι(x)|

)
. Here | |: C → R!0 is given by |a+ bi| =√

a2 + b2.
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Definition. Let p be a prime number. We say that a scheme X has characteristic p if the
unique morphism X → Spec(Z) factors through Spec(Fp) ↪→ Spec(Z). This is equivalent to the
requirement that p ·f = 0 for every open U ⊂ X and every f ∈ OX(U). We say that a scheme X
has characteristic 0 if X → Spec(Z) factors through Spec(Q) ↪→ Spec(Z). This is equivalent to
the requirement that n ∈ OX(U)∗ for every n ∈ Z \ {0} and every open U ⊂ X.

Note that if X → Y is a morphism of schemes and Y has characteristic p (with p a prime
number or p = 0) then X has characteristic p, too.

The absolute Frobenius. Let p be a prime number. Let Y be a scheme of characteristic p.
Then we have a morphism FrobY : Y → Y , called the absolute Frobenius morphism of Y ; it is
given by
(a) FrobY is the identity on the underlying topological space |Y |;
(b) Frob!Y : OY → OY is given on sections by f *→ fp.
To describe FrobY in another way, consider a covering {Uα} of Y by affine open subsets, say
Uα = Spec(Aα). The endomorphism of Aα given by f *→ fp defines a morphism Frobα: Uα →
Uα. On the intersections Uα ∩ Uβ the morphisms Frobα and Frobβ agree, and by gluing we
obtain the absolute Frobenius morphism FrobY of Y . Note that Frobα is none other than the
absolute Frobenius morphism of the scheme Uα.

One readily verifies that for any morphism f : X → Y of schemes of characteristic p we have
a commutative diagram

X
FrobX−−−−→ X

f

&
&f

Y
FrobY−−−−→ Y .

(1)

The relative Frobenius. Let us now consider the relative situation, i.e., we fix a base
scheme S and consider schemes over S. If π: X → S is an S-scheme then in general the absolute
Frobenius morphism FrobX is not a morphism of S-schemes, unless for instance S = Spec(Fp).
To remedy this we define π(p): X(p/S) → S to be the pull-back of π: X → S via FrobS : S → S.
Thus, by definition we have X(p/S) = S ×FrobS ,S X and we have a cartesian diagram

X(p/S) h−−−−→ X

π(p)

&
&π

S
FrobS−−−−→ S .

(2)

If there is no risk of confusion we often write X(p) for X(p/S); note however that in general this
scheme very much depends on the base scheme S over which we are working.

As the diagram (2) is cartesian, the commutative diagram (1), applied with Y = S, gives a
commutative diagram (nog aanpassen)

X

↘ FX/S

X(p/S) W−−→ X

π(p)

&
&π

S
FrobS−−−−→ S .

(3)
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The morphism of S-schemes FX/S : X → X(p/S) is called the relative Frobenius morphism of X
over S. By its definition, FX/S is a morphism of S-schemes (in other words, π(p) ◦FX/S = π)
and W ◦FX/S is the absolute Frobenius of X.

Example. Suppose S = Spec(R) and X = Spec
(
R[t1, . . . , tm]/I

)
for some ideal I =

(f1, . . . , fn) ⊂ R[t1, . . . , tm]. Let f (p)
i ∈ R[t1, . . . , tm] be the polynomial obtained from fi by

raising all coefficients (but not the variables!) to the pth power. Thus, if, in multi-index
notation, fi =

∑
cαtα then f (p)

i =
∑

cpαt
α. Then X(p) = Spec

(
R[t1, . . . , tm]/I(p)

)
with I(p) =

(f (p)
1 , . . . , f (p)

n ), and the relative Frobenius morphism FX/S : X → X(p) is given on rings by the
homomorphism

R[t1, . . . , tm]/I(p) −→ R[t1, . . . , tm]/I

with r *→ r for all r ∈ R and tj *→ tpj . Note that this is a well-defined homomorphism.

The morphism W : X(p) → X that appears in (3) does not have a standard name in the
literature. As one easily checks (see Exercise ??), FrobX/S ◦W : X(p) → X(p) equals the absolute
Frobenius morphism of X(p). Since an absolute Frobenius morphism is the identity on the
underlying topological space, it follows that FX/S : X → X(p) induces a homeomorphism |X| ∼−→
|X(p)|.

Formation of the relative Frobenius morphism is compatible with base change. This state-
ment means the following. Let π: X → S be an S-scheme. Let T → S be another scheme over S,
and consider the morphism πT : XT → T obtained from π by base-change. The first observation
is that (XT )(p/T ) is canonically isomorphic to (X(p/S))T . Identifying the two schemes, the rela-
tive Frobenius FXT /T of XT over T is equal to the pull-back (FX/S)T of the relative Frobenius
of X over S. Proofs of these assertions are left to the reader.

The absolute and relative Frobenii can be iterated. For the absolute Frobenius this is
immediate: FrobnY : Y → Y is simply the nth iterate of FrobY . The nth iterate of the relative
Frobenius is a morphism Fn

X/S : X → X(pn/S). Its definition is an easy generalization of the

definition of FX/S . Namely, we define π(pn): X(pn/S) → S as the pull-back of π: X → S via
FrobnS . Then FrobnX factors as

X
Fn

X/S−−−−→ X(pn/S) h(n)

−−−→ X

with π(pn) ◦Fn
X/S = π. Alternatively,

X(p2/S) =
(
X(p/S)

)(p/S)
, X(p3/S) =

(
X(p2/S)

)(p/S)
, etc.,

and

Fn
X/S =

(
X

FX/S−−−−→ X(p)
F

X(p)/S−−−−−→ X(p2) −→ · · ·
F

X(pn−1)/S−−−−−−−−→ X(pn)
)
.

The geometric Frobenius. Suppose S = Spec(Fq), with q = pn. If X is an S-scheme
then the nth iterate of the absolute Frobenius morphism FrobnX : X → X is a morphism of
S-schemes. In fact, FrobnX = Fn

X/S . We refer to πX := FrobnX as the geometric Frobenius of X.
More generally, suppose that S is a scheme over Spec(Fq). If X is an S-scheme then by

an Fq-structure on X we mean a scheme X0 → Spec(Fq) together with an isomorphism of
S-schemes X0 ⊗Fq S ∼= X. In practice we usually encounter this notion in the situation that
S = Spec(K), where Fq ⊂ K is a field extension. Given an Fq-structure on X, the geometric
Frobenius morphism πX0 induces, by extension of scalars, a morphism πX : X → X; we again
refer to this morphism as the geometric Frobenius of X (relative to the given Fq-structure).
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