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Notation and conventions.

(0.1) In general, k denotes an arbitrary field, k denotes an algebraic closure of k, and k, a
separable closure.

(0.2) If A is a commutative ring, we sometimes simply write A for Spec(A). Thus, for instance,
by an A-scheme we mean a scheme over Spec(A). If A — B is a homomorphism of rings and X
is an A-scheme then we write Xp = X x4 B rather than X Xgpec(a) Spec(B).

(0.3) If X is a scheme then we write | X| for the topological space underlying X and Ox for its
structure sheaf. If f: X — Y is a morphism of schemes we write |f|: |X| — |Y| and f*: Oy —
f+Ox for the corresponding map on underlying spaces, resp. the corresponding homomorphism
of sheaves on Y. If x € |X| we write k(z) for the residue field. If X is an integral scheme we
write k(X)) for its field of rational functions.

If S is a scheme and X and 7" are S-schemes then we write X (T") for the set of T-valued
points of X, i.e., the set of morphisms of S-schemes T" — X. Often we simply write Xr for
the base change of X to T, i.e., X7 := X xg T, to be viewed as a T-scheme via the canonical
morphism X — T.

(0.4) If k is a field then by a variety over k we mean a separated k-scheme of finite type which
is geometrically integral. Recall that a k-scheme is said to be geometrically integral if for some
algebraically closed field K containing k the scheme X is irreducible and reduced. By EGA
IV, (4.5.1) and (4.6.1), if this holds for some algebraically closed overfield K then X is integral
for every field K containing k. A variety of dimension 1 (resp. 2, resp. n > 3) is called a curve
(resp. surface, resp. n-fold).

By a line bundle (resp. a vector bundle of rank d) on a scheme X we mean a locally free
O x-module of rank 1 (resp. of rank d). By a geometric vector bundle of rank d on X we mean a
group scheme m: V — X over X for which there exists a affine open covering X = UU,, such that
the restriction of V to each U, is isomorphic to G¢ over U,. In particular this means that we
have isomorphisms of U,-schemes ¢,: 771 (U,) — U, x A4, such that all transition morphisms

opp—1
tap: Uspg x AT Z2F2 5 7 5 5 A
are linear automorphisms of U, g x A% over U, s := U, N Ug; this last condition means that
ta,s is given by a O(U,, g)-linear automorphism of O(Uq g)[21, ..., xq4|. For d =1 we obtain the
notion of a geometric line bundle.

If V is a geometric vector bundle of rank d on X then its sheaf of sections is a vector bundle of
rank d. Conversely, if & is a vector bundle of rank d on X then the scheme V := Spec (Sym(ﬁ V))
has a natural structure of a geometric vector bundle of rank d. These two constructions are
quasi-inverse to each other and establish an equivalence between vector bundles and geometric
vector bundles.

(0.5) In our definition of an étale morphism of schemes we follow EGA; this means that we only
require the morphism to be locally of finite type. Note that in some literature étale morphisms
are assumed to be quasi-finite. Thus, for instance, if S is a scheme and [ is an index set, the
disjoint union [, ; S is étale over S according to our conventions, also if the set I is infinite.

1=



(0.6) If K is a number field then by a prime of K we mean an equivalence class of valuations
of K. See for instance Neukirch [1], Chap. 3. The finite primes of K are in bijection with
the maximal ideals of the ring of integers Og. An infinite prime corresponds either to a real
embedding K < R or to a pair {¢,7} of complex embeddings K < C.

If v is a prime of K, we have a corresponding homomorphism ord,: K* — R and a normal-
ized absolute value | ||,. If v is a finite prime then we let ord, be the corresponding valuation,
normalized such that ord, (K*) = Z, and we define | |, by

faf, := { (@)™ ifa 20,
N 0 if z =0,

where ¢, is the cardinality of the residue field at v. If v is an infinite prime then we let

2]y = |e(z)]  if v corresponds to a real embedding ¢: K — R,
Y1 |e(z)]? if v corresponds to a pair of complex embeddings {,},

and we define ord, by the rule ord, (z) := —log(|c(z)|). Here | |: C — Rxg is given by |a+ bi| =
VB,



Definition. Let p be a prime number. We say that a scheme X has characteristic p if the
unique morphism X — Spec(Z) factors through Spec(FF,) < Spec(Z). This is equivalent to the
requirement that p- f = 0 for every open U C X and every f € Ox(U). We say that a scheme X
has characteristic 0 if X — Spec(Z) factors through Spec(Q) < Spec(Z). This is equivalent to
the requirement that n € Ox (U)* for every n € Z \ {0} and every open U C X.

Note that if X — Y is a morphism of schemes and Y has characteristic p (with p a prime
number or p = 0) then X has characteristic p, too.

The absolute Frobenius. Let p be a prime number. Let Y be a scheme of characteristic p.
Then we have a morphism Froby: Y — Y, called the absolute Frobenius morphism of Y; it is
given by

(a) Froby is the identity on the underlying topological space |Y|;

(b) Frobg,: Oy — Oy is given on sections by f — fP.

To describe Froby in another way, consider a covering {U,} of Y by affine open subsets, say
Uy = Spec(Ay). The endomorphism of A, given by f + fP defines a morphism Frob,: U, —
Uy. On the intersections U, N Ug the morphisms Frob, and Frobg agree, and by gluing we
obtain the absolute Frobenius morphism Froby of Y. Note that Frob, is none other than the
absolute Frobenius morphism of the scheme U,,.

One readily verifies that for any morphism f: X — Y of schemes of characteristic p we have
a commutative diagram

X Frob x X
7| |7 (1)
vy Froby Yy

The relative Frobenius. Let us now consider the relative situation, i.e., we fix a base
scheme S and consider schemes over S. If m: X — S is an S-scheme then in general the absolute
Frobenius morphism Froby is not a morphism of S-schemes, unless for instance S = Spec(FF,).
To remedy this we define 7(®): X®/5) — § to be the pull-back of 7: X — S via Frobg: S — S.
Thus, by definition we have X ®/5) = g XFrobg,s X and we have a cartesian diagram

xw/s) _h o x

”(ml lw 2)

Frob
S Zrobs, g

If there is no risk of confusion we often write X ® for X ®/9); note however that in general this
scheme very much depends on the base scheme S over which we are working.

As the diagram (2) is cartesian, the commutative diagram (1), applied with Y = S, gives a
commutative diagram (nog aanpassen)

X
N Fx/s
xws W x (3)
”(’”l Jﬂ
RN
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The morphism of S-schemes Fy,g: X — X (P/9) is called the relative Frobenius morphism of X
over S. By its definition, Fx/g is a morphism of S-schemes (in other words, 7(P) oFx/5 =)
and We Fy /g is the absolute Frobenius of X.

Example. Suppose S = Spec(R) and X = Spec (R[t1,...,tm]/I) for some ideal I =
(fi,--yfn) C R[t1,...,tm]. Let fi(p) € Rlty,...,ty] be the polynomial obtained from f; by
raising all coefficients (but not the variables!) to the pth power. Thus, if, in multi-index
notation, f; = > c,t® then fi(p) =Ykt Then X = Spec (R[ty,...,tm,]/I®)) with 1) =
( fl(p ), cel » )), and the relative Frobenius morphism Fx/g: X — X (P) is given on rings by the

homomorphism

Rlt1,. .. twm] /TP — R[t1,... tm]/]

with r +— r for all r € R and t; — t? . Note that this is a well-defined homomorphism.

The morphism W: X® — X that appears in (3) does not have a standard name in the
literature. As one easily checks (see Exercise 77), Frobx /g W: X (®) 5 X®) equals the absolute
Frobenius morphism of X . Since an absolute Frobenius morphism is the identity on the
underlying topological space, it follows that Fix,g: X — X (P) induces a homeomorphism | X| =
| X @),

Formation of the relative Frobenius morphism is compatible with base change. This state-
ment means the following. Let m: X — S be an S-scheme. Let T" — S be another scheme over S,
and consider the morphism 7p: X7 — T obtained from 7 by base-change. The first observation
is that (XT)(”/ T) is canonically isomorphic to (X /8 ))T. Identifying the two schemes, the rela-
tive Frobenius Fx, ,r of X7 over T is equal to the pull-back (Fy,g)r of the relative Frobenius
of X over S. Proofs of these assertions are left to the reader.

The absolute and relative Frobenii can be iterated. For the absolute Frobenius this is
immediate: Froby:Y — Y is simply the nth iterate of Froby. The nth iterate of the relative
Frobenius is a morphism F'g /s X — X®"/9  Tts definition is an easy generalization of the
definition of Fx,g. Namely, we define 7®"): X("/9) 5 § as the pull-back of 7: X — S via
Frobg. Then Frob’y factors as

X &) x (P"/9) ﬂ X

with 7(®") oF;g/S = 7. Alternatively,

x@©°/5) — (X(JD/S))(?’/S)7 x@°/8) — (X(p2/5)>(p/s)’ ete

b

and
Fx/s

Fs = (X x) XS vt M> X@")).

The geometric Frobenius. Suppose S = Spec(F,), with ¢ = p™. If X is an S-scheme
then the nth iterate of the absolute Frobenius morphism Frob’y: X — X is a morphism of
S-schemes. In fact, Froby = F§ g+ We refer to mx := Frob’y as the geometric Frobenius of X.

More generally, suppose that S is a scheme over Spec(F,). If X is an S-scheme then by
an [ -structure on X we mean a scheme X, — Spec(F,) together with an isomorphism of
S-schemes Xo®p, S = X. In practice we usually encounter this notion in the situation that
S = Spec(K), where F, C K is a field extension. Given an F,-structure on X, the geometric
Frobenius morphism mx, induces, by extension of scalars, a morphism 7x: X — X; we again
refer to this morphism as the geometric Frobenius of X (relative to the given F,-structure).
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