

**Gerard van der Geer
Ben Moonen**

ABELIAN VARIETIES

(PRELIMINARY VERSION OF THE FIRST CHAPTERS)

Contents

Notation and conventions	1
1. Definitions and basic examples	5
2. Line bundles and divisors on abelian varieties	17
§ 1. The theorem of the square	17
§ 2. Projectivity of abelian varieties	22
§ 3. Projective embeddings of abelian varieties	26
3. Basic theory of group schemes	29
§ 1. Definitions and examples	29
§ 2. Elementary properties of group schemes	34
§ 3. Cartier duality	41
§ 4. The component group of a group scheme	43
4. Quotients by group schemes	49
§ 1. Categorical quotients	49
§ 2. Geometric quotients, and quotients by finite group schemes	52
§ 3. FPPF quotients	61
§ 4. Finite group schemes over a field	66
5. Isogenies	72
§ 1. Definition of an isogeny, and basic properties	72
§ 2. Frobenius and Verschiebung	76
§ 3. Density of torsion points	83
6. The Picard scheme of an abelian variety	87
§ 1. Relative Picard functors	87
§ 2. Digression on graded bialgebras	91
§ 3. The dual of an abelian variety	95
7. Duality	98
§ 1. Formation of quotients and the descent of coherent sheaves	98
§ 2. Two duality theorems	100
§ 3. Further properties of $\mathrm{Pic}_{X/k}^0$	101
§ 4. Applications to cohomology	108
§ 5. The duality between Frobenius and Verschiebung	110
8. The Theta group of a line bundle	113
§ 1. The theta group $\mathcal{G}(L)$	113
§ 2. Descent of line bundles over homomorphisms	116
§ 3. Theta groups of non-degenerate line bundles	118
§ 4. Representation theory of non-degenerate theta groups	122
9. The cohomology of line bundles	126
10. Tate modules, p-divisible groups, and the fundamental group	141
§ 1. Tate- ℓ -modules	141

§ 2. The p -divisible group	145
§ 3. The algebraic fundamental group—generalities	149
§ 4. The fundamental group of an abelian variety	154
11. Polarizations and Weil pairings	159
§ 1. Polarizations	159
§ 2. Pairings	162
§ 3. Existence of polarizations, and Zarhin’s trick	169
§ 4. Polarizations associated to line bundles on torsors	174
§ 5. Symmetric line bundles	178
12. The endomorphism ring	180
§ 1. First basic results about the endomorphism algebra	180
§ 2. The characteristic polynomial of an endomorphism	184
§ 3. The Rosati involution	188
§ 4. The Albert classification	190
13. The Fourier transform and the Chow ring	192
§ 1. The Chow ring	192
§ 2. The Hodge bundle	196
§ 3. The Fourier transform of an abelian variety	199
§ 4. Decomposition of the diagonal	204
§ 5. Motivic decomposition	210
14. Jacobian Varieties	218
§ 1. The Jacobian variety of a curve	218
§ 2. Comparison with the g -th symmetric power of C	221
§ 3. Universal line bundles and the Theta divisor	224
§ 4. Riemann’s Theorem on the Theta Divisor	231
§ 5. Examples	233
§ 6. A universal property—the Jacobian as Albanese	235
§ 7. Any Abelian Variety is a Factor of a Jacobian	236
§ 8. The Theorem of Torelli	237
§ 9. The Criterion of Matsusaka-Ran	239
15. Dieudonné theory	245
§ 1. Dieudonné theory for finite commutative group schemes and for p -divisible groups	245
§ 2. Classification up to isogeny	246
§ 3. The Newton polygon of an abelian variety	262
16. Abelian Varieties over Finite Fields	265
§ 1. The eigenvalues of Frobenius	265
§ 2. The Hasse-Weil-Serre bound for curves	272
§ 3. The theorem of Tate	275
§ 4. Corollaries of Tate’s theorem, and the structure of the endomorphism algebra	281
§ 5. Abelian varieties up to isogeny and Weil numbers	289
§ 6. Isomorphism classes contained in an isogeny class	293
§ 7. Elliptic curves	296
§ 8. Newton polygons of abelian varieties over finite fields	302
§ 9. Ordinary abelian varieties over a finite field	303

Appendix A. Algebra	308
References	314
Index	321

Notation and conventions.

(0.1) In general, k denotes an arbitrary field, \bar{k} denotes an algebraic closure of k , and k_s a separable closure.

(0.2) If A is a commutative ring, we sometimes simply write A for $\text{Spec}(A)$. Thus, for instance, by an A -scheme we mean a scheme over $\text{Spec}(A)$. If $A \rightarrow B$ is a homomorphism of rings and X is an A -scheme then we write $X_B = X \times_A B$ rather than $X \times_{\text{Spec}(A)} \text{Spec}(B)$.

(0.3) If X is a scheme then we write $|X|$ for the topological space underlying X and \mathcal{O}_X for its structure sheaf. If $f: X \rightarrow Y$ is a morphism of schemes we write $|f|: |X| \rightarrow |Y|$ and $f^\sharp: \mathcal{O}_Y \rightarrow f_* \mathcal{O}_X$ for the corresponding map on underlying spaces, resp. the corresponding homomorphism of sheaves on Y . If $x \in |X|$ we write $k(x)$ for the residue field. If X is an integral scheme we write $k(X)$ for its field of rational functions.

If S is a scheme and X and T are S -schemes then we write $X(T)$ for the set of T -valued points of X , i.e., the set of morphisms of S -schemes $T \rightarrow X$. Often we simply write X_T for the base change of X to T , i.e., $X_T := X \times_S T$, to be viewed as a T -scheme via the canonical morphism $X_T \rightarrow T$.

(0.4) If k is a field then by a *variety over k* we mean a separated k -scheme of finite type which is geometrically integral. Recall that a k -scheme is said to be geometrically integral if for some algebraically closed field K containing k the scheme X_K is irreducible and reduced. By EGA IV, (4.5.1) and (4.6.1), if this holds for some algebraically closed overfield K then X_K is integral for every field K containing k . A variety of dimension 1 (resp. 2, resp. $n \geq 3$) is called a *curve* (resp. *surface*, resp. *n -fold*).

By a *line bundle* (resp. a *vector bundle of rank d*) on a scheme X we mean a locally free \mathcal{O}_X -module of rank 1 (resp. of rank d). By a *geometric vector bundle of rank d* on X we mean a group scheme $\pi: \mathbb{V} \rightarrow X$ over X for which there exists a affine open covering $X = \bigcup U_\alpha$ such that the restriction of \mathbb{V} to each U_α is isomorphic to \mathbb{G}_a^d over U_α . In particular this means that we have isomorphisms of U_α -schemes $\varphi_\alpha: \pi^{-1}(U_\alpha) \xrightarrow{\sim} U_\alpha \times \mathbb{A}^d$, such that all transition morphisms

$$t_{\alpha,\beta}: U_{\alpha,\beta} \times \mathbb{A}^d \xrightarrow{\varphi_\beta \circ \varphi_\alpha^{-1}} U_{\alpha,\beta} \times \mathbb{A}^d$$

are linear automorphisms of $U_{\alpha,\beta} \times \mathbb{A}^d$ over $U_{\alpha,\beta} := U_\alpha \cap U_\beta$; this last condition means that $t_{\alpha,\beta}$ is given by a $\mathcal{O}(U_{\alpha,\beta})$ -linear automorphism of $\mathcal{O}(U_{\alpha,\beta})[x_1, \dots, x_d]$. For $d = 1$ we obtain the notion of a *geometric line bundle*.

If \mathbb{V} is a geometric vector bundle of rank d on X then its sheaf of sections is a vector bundle of rank d . Conversely, if \mathcal{E} is a vector bundle of rank d on X then the scheme $\mathbb{V} := \text{Spec}(\text{Sym}(\mathcal{E}^\vee))$ has a natural structure of a geometric vector bundle of rank d . These two constructions are quasi-inverse to each other and establish an equivalence between vector bundles and geometric vector bundles.

(0.5) In our definition of an étale morphism of schemes we follow EGA; this means that we only require the morphism to be locally of finite type. Note that in some literature étale morphisms are assumed to be quasi-finite. Thus, for instance, if S is a scheme and I is an index set, the disjoint union $\coprod_{i \in I} S$ is étale over S according to our conventions, also if the set I is infinite.

(0.6) If K is a number field then by a *prime of K* we mean an equivalence class of valuations of K . See for instance Neukirch [1], Chap. 3. The finite primes of K are in bijection with the maximal ideals of the ring of integers O_K . An infinite prime corresponds either to a real embedding $K \hookrightarrow \mathbb{R}$ or to a pair $\{\iota, \bar{\iota}\}$ of complex embeddings $K \hookrightarrow \mathbb{C}$.

If v is a prime of K , we have a corresponding homomorphism $\text{ord}_v: K^* \rightarrow \mathbb{R}$ and a normalized absolute value $\|\cdot\|_v$. If v is a finite prime then we let ord_v be the corresponding valuation, normalized such that $\text{ord}_v(K^*) = \mathbb{Z}$, and we define $\|\cdot\|_v$ by

$$\|x\|_v := \begin{cases} (q_v)^{-\text{ord}_v(x)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

where q_v is the cardinality of the residue field at v . If v is an infinite prime then we let

$$\|x\|_v = \begin{cases} |\iota(x)| & \text{if } v \text{ corresponds to a real embedding } \iota: K \rightarrow \mathbb{R}, \\ |\iota(x)|^2 & \text{if } v \text{ corresponds to a pair of complex embeddings } \{\iota, \bar{\iota}\}, \end{cases}$$

and we define ord_v by the rule $\text{ord}_v(x) := -\log(|\iota(x)|)$. Here $|\cdot|: \mathbb{C} \rightarrow \mathbb{R}_{\geq 0}$ is given by $|a+bi| = \sqrt{a^2 + b^2}$.

Definition. Let p be a prime number. We say that a scheme X has characteristic p if the unique morphism $X \rightarrow \text{Spec}(\mathbb{Z})$ factors through $\text{Spec}(\mathbb{F}_p) \hookrightarrow \text{Spec}(\mathbb{Z})$. This is equivalent to the requirement that $p \cdot f = 0$ for every open $U \subset X$ and every $f \in \mathcal{O}_X(U)$. We say that a scheme X has characteristic 0 if $X \rightarrow \text{Spec}(\mathbb{Z})$ factors through $\text{Spec}(\mathbb{Q}) \hookrightarrow \text{Spec}(\mathbb{Z})$. This is equivalent to the requirement that $n \in \mathcal{O}_X(U)^*$ for every $n \in \mathbb{Z} \setminus \{0\}$ and every open $U \subset X$.

Note that if $X \rightarrow Y$ is a morphism of schemes and Y has characteristic p (with p a prime number or $p = 0$) then X has characteristic p , too.

The absolute Frobenius. Let p be a prime number. Let Y be a scheme of characteristic p . Then we have a morphism $\text{Frob}_Y: Y \rightarrow Y$, called the *absolute Frobenius morphism* of Y ; it is given by

- (a) Frob_Y is the identity on the underlying topological space $|Y|$;
- (b) $\text{Frob}_Y^\sharp: \mathcal{O}_Y \rightarrow \mathcal{O}_Y$ is given on sections by $f \mapsto f^p$.

To describe Frob_Y in another way, consider a covering $\{U_\alpha\}$ of Y by affine open subsets, say $U_\alpha = \text{Spec}(A_\alpha)$. The endomorphism of A_α given by $f \mapsto f^p$ defines a morphism $\text{Frob}_\alpha: U_\alpha \rightarrow U_\alpha$. On the intersections $U_\alpha \cap U_\beta$ the morphisms Frob_α and Frob_β agree, and by gluing we obtain the absolute Frobenius morphism Frob_Y of Y . Note that Frob_α is none other than the absolute Frobenius morphism of the scheme U_α .

One readily verifies that for any morphism $f: X \rightarrow Y$ of schemes of characteristic p we have a commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{\text{Frob}_X} & X \\ f \downarrow & & \downarrow f \\ Y & \xrightarrow{\text{Frob}_Y} & Y \end{array} . \quad (1)$$

The relative Frobenius. Let us now consider the relative situation, i.e., we fix a base scheme S and consider schemes over S . If $\pi: X \rightarrow S$ is an S -scheme then in general the absolute Frobenius morphism Frob_X is not a morphism of S -schemes, unless for instance $S = \text{Spec}(\mathbb{F}_p)$. To remedy this we define $\pi^{(p)}: X^{(p/S)} \rightarrow S$ to be the pull-back of $\pi: X \rightarrow S$ via $\text{Frob}_S: S \rightarrow S$. Thus, by definition we have $X^{(p/S)} = S \times_{\text{Frob}_S, S} X$ and we have a cartesian diagram

$$\begin{array}{ccc} X^{(p/S)} & \xrightarrow{h} & X \\ \pi^{(p)} \downarrow & & \downarrow \pi \\ S & \xrightarrow{\text{Frob}_S} & S \end{array} . \quad (2)$$

If there is no risk of confusion we often write $X^{(p)}$ for $X^{(p/S)}$; note however that in general this scheme very much depends on the base scheme S over which we are working.

As the diagram (2) is cartesian, the commutative diagram (1), applied with $Y = S$, gives a commutative diagram (**nog aanpassen**)

$$\begin{array}{ccc} X & & \\ \searrow F_{X/S} & & \\ & X^{(p/S)} & \xrightarrow{W} X \\ \pi^{(p)} \downarrow & & \downarrow \pi \\ S & \xrightarrow{\text{Frob}_S} & S \end{array} . \quad (3)$$

The morphism of S -schemes $F_{X/S}: X \rightarrow X^{(p/S)}$ is called the *relative Frobenius morphism of X over S* . By its definition, $F_{X/S}$ is a morphism of S -schemes (in other words, $\pi^{(p)} \circ F_{X/S} = \pi$) and $W \circ F_{X/S}$ is the absolute Frobenius of X .

Example. Suppose $S = \text{Spec}(R)$ and $X = \text{Spec}(R[t_1, \dots, t_m]/I)$ for some ideal $I = (f_1, \dots, f_n) \subset R[t_1, \dots, t_m]$. Let $f_i^{(p)} \in R[t_1, \dots, t_m]$ be the polynomial obtained from f_i by raising all coefficients (but not the variables!) to the p th power. Thus, if, in multi-index notation, $f_i = \sum c_\alpha t^\alpha$ then $f_i^{(p)} = \sum c_\alpha^p t^\alpha$. Then $X^{(p)} = \text{Spec}(R[t_1, \dots, t_m]/I^{(p)})$ with $I^{(p)} = (f_1^{(p)}, \dots, f_n^{(p)})$, and the relative Frobenius morphism $F_{X/S}: X \rightarrow X^{(p)}$ is given on rings by the homomorphism

$$R[t_1, \dots, t_m]/I^{(p)} \longrightarrow R[t_1, \dots, t_m]/I$$

with $r \mapsto r$ for all $r \in R$ and $t_j \mapsto t_j^p$. Note that this is a well-defined homomorphism.

The morphism $W: X^{(p)} \rightarrow X$ that appears in (3) does not have a standard name in the literature. As one easily checks (see Exercise ??), $\text{Frob}_{X/S} \circ W: X^{(p)} \rightarrow X^{(p)}$ equals the absolute Frobenius morphism of $X^{(p)}$. Since an absolute Frobenius morphism is the identity on the underlying topological space, it follows that $F_{X/S}: X \rightarrow X^{(p)}$ induces a homeomorphism $|X| \xrightarrow{\sim} |X^{(p)}|$.

Formation of the relative Frobenius morphism is compatible with base change. This statement means the following. Let $\pi: X \rightarrow S$ be an S -scheme. Let $T \rightarrow S$ be another scheme over S , and consider the morphism $\pi_T: X_T \rightarrow T$ obtained from π by base-change. The first observation is that $(X_T)^{(p/T)}$ is canonically isomorphic to $(X^{(p/S)})_T$. Identifying the two schemes, the relative Frobenius $F_{X_T/T}$ of X_T over T is equal to the pull-back $(F_{X/S})_T$ of the relative Frobenius of X over S . Proofs of these assertions are left to the reader.

The absolute and relative Frobenii can be iterated. For the absolute Frobenius this is immediate: $\text{Frob}_Y^n: Y \rightarrow Y$ is simply the n th iterate of Frob_Y . The n th iterate of the relative Frobenius is a morphism $F_{X/S}^n: X \rightarrow X^{(p^n/S)}$. Its definition is an easy generalization of the definition of $F_{X/S}$. Namely, we define $\pi^{(p^n)}: X^{(p^n/S)} \rightarrow S$ as the pull-back of $\pi: X \rightarrow S$ via Frob_S^n . Then Frob_X^n factors as

$$X \xrightarrow{F_{X/S}^n} X^{(p^n/S)} \xrightarrow{h^{(n)}} X$$

with $\pi^{(p^n)} \circ F_{X/S}^n = \pi$. Alternatively,

$$X^{(p^2/S)} = (X^{(p/S)})^{(p/S)}, \quad X^{(p^3/S)} = (X^{(p^2/S)})^{(p/S)}, \quad \text{etc.},$$

and

$$F_{X/S}^n = \left(X \xrightarrow{F_{X/S}} X^{(p)} \xrightarrow{F_{X^{(p)/S}}} X^{(p^2)} \xrightarrow{\dots} X^{(p^{n-1})} \xrightarrow{F_{X^{(p^{n-1})/S}}} X^{(p^n)} \right).$$

The geometric Frobenius. Suppose $S = \text{Spec}(\mathbb{F}_q)$, with $q = p^n$. If X is an S -scheme then the n th iterate of the absolute Frobenius morphism $\text{Frob}_X^n: X \rightarrow X$ is a morphism of S -schemes. In fact, $\text{Frob}_X^n = F_{X/S}^n$. We refer to $\pi_X := \text{Frob}_X^n$ as the *geometric Frobenius of X* .

More generally, suppose that S is a scheme over $\text{Spec}(\mathbb{F}_q)$. If X is an S -scheme then by an \mathbb{F}_q -structure on X we mean a scheme $X_0 \rightarrow \text{Spec}(\mathbb{F}_q)$ together with an isomorphism of S -schemes $X_0 \otimes_{\mathbb{F}_q} S \cong X$. In practice we usually encounter this notion in the situation that $S = \text{Spec}(K)$, where $\mathbb{F}_q \subset K$ is a field extension. Given an \mathbb{F}_q -structure on X , the geometric Frobenius morphism π_{X_0} induces, by extension of scalars, a morphism $\pi_X: X \rightarrow X$; we again refer to this morphism as the geometric Frobenius of X (relative to the given \mathbb{F}_q -structure).