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Preface

This book was written to be a readable introduction to algebraic topology with
rather broad coverage of the subject. The viewpoint is quite classical in spirit, and
stays well within the confines of pure algebraic topology. In a sense, the book could
have been written thirty or forty years ago since virtually everything in it is at least
that old. However, the passage of the intervening years has helped clarify what are
the most important results and techniques. For example, CW complexes have proved
over time to be the most natural class of spaces for algebraic topology, so they are
emphasized here much more than in the books of an earlier generation. This empha-
sis also illustrates the book’s general slant towards geometric, rather than algebraic,
aspects of the subject. The geometry of algebraic topology is so pretty, it would seem
a pity to slight it and to miss all the intuition it provides.

At the elementary level, algebraic topology separates naturally into the two broad
channels of homology and homotopy. This material is here divided into four chap-
ters, roughly according to increasing sophistication, with homotopy split between
Chapters 1 and 4, and homology and its mirror variant cohomology in Chapters 2
and 3. These four chapters do not have to be read in this order, however. One could
begin with homology and perhaps continue with cohomology before turning to ho-
motopy. In the other direction, one could postpone homology and cohomology until
after parts of Chapter 4. If this latter strategy is pushed to its natural limit, homology
and cohomology can be developed just as branches of homotopy theory. Appealing
as this approach is from a strictly logical point of view, it places more demands on the
reader, and since readability is one of the first priorities of the book, this homotopic
interpretation of homology and cohomology is described only after the latter theories
have been developed independently of homotopy theory.

Preceding the four main chapters there is a preliminary Chapter 0 introducing
some of the basic geometric concepts and constructions that play a central role in
both the homological and homotopical sides of the subject. This can either be read
before the other chapters or skipped and referred back to later for specific topics as
they become needed in the subsequent chapters.

Each of the four main chapters concludes with a selection of additional topics that
the reader can sample at will, independent of the basic core of the book contained in
the earlier parts of the chapters. Many of these extra topics are in fact rather important
in the overall scheme of algebraic topology, though they might not fit into the time
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constraints of a first course. Altogether, these additional topics amount to nearly half
the book, and they are included here both to make the book more comprehensive and
to give the reader who takes the time to delve into them a more substantial sample of
the true richness and beauty of the subject.

Not included in this book is the important but somewhat more sophisticated
topic of spectral sequences. It was very tempting to include something about this
marvelous tool here, but spectral sequences are such a big topic that it seemed best
to start with them afresh in a new volume. This is tentatively titled ‘Spectral Sequences
in Algebraic Topology’ and is referred to herein as [SSAT]. There is also a third book in
progress, on vector bundles, characteristic classes, and K-theory, which will be largely
independent of [SSAT] and also of much of the present book. This is referred to as
[VBKT], its provisional title being ‘Vector Bundles and K-Theory.’

In terms of prerequisites, the present book assumes the reader has some familiar-
ity with the content of the standard undergraduate courses in algebra and point-set
topology. In particular, the reader should know about quotient spaces, or identifi-
cation spaces as they are sometimes called, which are quite important for algebraic
topology. Good sources for this concept are the textbooks [Armstrong 1983] and
[Janich 1984] listed in the Bibliography.

A book such as this one, whose aim is to present classical material from a rather
classical viewpoint, is not the place to indulge in wild innovation. There is, however,
one small novelty in the exposition that may be worth commenting upon, even though
in the book as a whole it plays a relatively minor role. This is the use of what we call
A-complexes, which are a mild generalization of the classical notion of a simplicial
complex. The idea is to decompose a space into simplices allowing different faces of
a simplex to coincide and dropping the requirement that simplices are uniquely de-
termined by their vertices. For example, if one takes the standard picture of the torus
as a square with opposite edges identified and divides the square into two triangles
by cutting along a diagonal, then the result is a A-complex structure on the torus
having 2 triangles, 3 edges, and 1 vertex. By contrast, a simplicial complex structure
on the torus must have at least 14 triangles, 21 edges, and 7 vertices. So A-complexes
provide a significant improvement in efficiency, which is nice from a pedagogical view-
point since it cuts down on tedious calculations in examples. A more fundamental
reason for considering A-complexes is that they seem to be very natural objects from
the viewpoint of algebraic topology. They are the natural domain of definition for
simplicial homology, and a number of standard constructions produce A-complexes
rather than simplicial complexes, for instance the singular complex of a space, or the
classifying space of a discrete group or category. Historically, A-complexes were first
introduced by Eilenberg and Zilber in 1950 under the name of semisimplicial com-
plexes. This term later came to mean something different, however, and the original
notion seems to have been largely ignored since.
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This book will remain available online in electronic form after it has been printed
in the traditional fashion. The web address is

http://www.math.cornell.edu/ hatcher

One can also find here the parts of the other two books in the sequence that are
currently available. Although the present book has gone through countless revisions,
including the correction of many small errors both typographical and mathematical
found by careful readers of earlier versions, it is inevitable that some errors remain,
so the web page will include a list of corrections to the printed version. With the
electronic version of the book it will be possible not only to incorporate corrections
but also to make more substantial revisions and additions. Readers are encouraged
to send comments and suggestions as well as corrections to the email address posted
on the web page.
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Standard Notations

Z, Q, R, C, H, O: the integers, rationals, reals, complexes, quaternions,
and Cayley octonions

Z,,: the integers modn

R™: n-dimensional Euclidean space

C™: complex n-space

I =10,1]: the unit interval

S™: the unit sphere in R"*!, all vectors of length 1

D": the unit disk or ball in R", all vectors of length < 1

D™ = ™ 1: the boundary of the n-disk

1: the identity function from a set to itself

I1: disjoint union of sets or spaces

x, [ product of sets, groups, or spaces

~: isomorphism

A C B or B D A: set-theoretic containment, not necessarily proper

iff: if and only if
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Some Underlying
Geometric Notions

The aim of this short preliminary chapter is to introduce a few of the most com-
mon geometric concepts and constructions in algebraic topology. The exposition is
somewhat informal, with no theorems or proofs until the last couple pages, and it
should be read in this informal spirit, skipping bits here and there. In fact, this whole
chapter could be skipped now, to be referred back to later for basic definitions.

To avoid overusing the word ‘continuous’ we adopt the convention that maps be-
tween spaces are always assumed to be continuous unless otherwise stated.

Homotopy and Homotopy Type

One of the main ideas of algebraic topology is to consider two spaces to be equiv-
alent if they have ‘the same shape’ in a sense that is much broader than homeo-
morphism. To take an everyday example, the letters of the alphabet can be writ-
ten either as unions of finitely many
straight and curved line segments, or
in thickened forms that are compact
subsurfaces of the plane bounded by
simple closed curves. In each case the

thin letter is a subspace of the thick
letter, and we can continuously shrink the thick letter to the thin one. A nice way to
do this is to decompose a thick letter, call it X, into line segments connecting each
point on the outer boundary of X to a unique point of the thin subletter X, as indi-
cated in the figure. Then we can shrink X to X by sliding each point of X — X into X
along the line segment that contains it. Points that are already in X do not move.

We can think of this shrinking process as taking place during a time interval
0 <t <1, and then it defines a family of functions f;:X— X parametrizedby t € I =
[0,1], where f,(x) is the point to which a given point x € X has moved at time .
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Naturally we would like f;(x) to depend continuously on both ¢t and x, and this will
be true if we have each x € X — X move along its line segment at constant speed so
as to reach its image point in X at time t = 1, while points x € X are stationary, as
remarked earlier.

Examples of this sort lead to the following general definition. A deformation
retraction of a space X onto a subspace A is a family of maps f;: X— X, t € I, such
that f, = 1 (the identity map), f;(X) = A, and f;|A = 1 for all t. The family f;
should be continuous in the sense that the associated map X xI— X, (x,t) — f;(x),
is continuous.

It is easy to produce many more examples similar to the letter examples, with the
deformation retraction f; obtained by sliding along line segments. The figure on the
left below shows such a deformation retraction of a Mobius band onto its core circle.

The three figures on the right show deformation retractions in which a disk with two
smaller open subdisks removed shrinks to three different subspaces.

In all these examples the structure that gives rise to the deformation retraction can
be described by means of the following definition. For a map f: X —Y, the mapping
cylinder M, is the quotient space of the disjoint union (X xI) II'Y obtained by iden-
tifying each (x,1) € XXI
with f(x) € Y. In the let-
ter examples, the space X
is the outer boundary of the
thick letter, Y is the thin
letter, and f:X—Y sends
the outer endpoint of each line segment to its inner endpoint. A similar description

applies to the other examples. Then it is a general fact that a mapping cylinder My
deformation retracts to the subspace Y by sliding each point (x,t) along the segment
{x}xI C M, to the endpoint f(x) € Y.

Not all deformation retractions arise in this way from mapping cylinders, how-
ever. For example, the thick X deformation retracts to the thin X, which in turn
deformation retracts to the point of intersection of its two crossbars. The net result
is a deformation retraction of X onto a point, during which certain pairs of points
follow paths that merge before reaching their final destination. Later in this section
we will describe a considerably more complicated example, the so-called ‘house with
two rooms,” where a deformation retraction to a point can be constructed abstractly,
but seeing the deformation with the naked eye is a real challenge.
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A deformation retraction f;:X— X is a special case of the general notion of a
homotopy, which is simply any family of maps f;:X—Y, t € I, such that the asso-
ciated map F:XxI—Y given by F(x,t) = f;(x) is continuous. One says that two
maps f, f;:X—Y are homotopic if there exists a homotopy f; connecting them,
and one writes f;, = f].

In these terms, a deformation retraction of X onto a subspace A is a homotopy
from the identity map of X to a retraction of X onto A, amap 7:X— X such that
r(X) = A and 7 |A = 1. One could equally well regard a retraction as a map X — A
restricting to the identity on the subspace A C X. From a more formal viewpoint a
retractionis amap v : X — X with r? = r, since this equation says exactly that # is the
identity on its image. Retractions are the topological analogs of projection operators
in other parts of mathematics.

Not all retractions come from deformation retractions. For example, a space X
always retracts onto any point x, € X via the constant map sending all of X to x,
but a space that deformation retracts onto a point must be path-connected since a
deformation retraction of X to x, gives a path joining each x € X to x. It is less
trivial to show that there are path-connected spaces that do not deformation retract
onto a point. One would expect this to be the case for the letters ‘with holes,” A, B,
D, O, P, Q, R. In Chapter 1 we will develop techniques to prove this.

A homotopy f;:X— X that gives a deformation retraction of X onto a subspace
A has the property that f;|A = 1 for all t. In general, a homotopy f;: X —Y whose
restriction to a subspace A C X is independent of t is called a homotopy relative
to A, or more concisely, a homotopy rel A. Thus, a deformation retraction of X onto
A is a homotopy rel A from the identity map of X to a retraction of X onto A.

If a space X deformation retracts onto a subspace A via f;:X—X, then if
¥ : X — A denotes the resulting retraction and i: A— X the inclusion, we have i = 1
and ir = 1, the latter homotopy being given by f;. Generalizing this situation, a
map f:X—Y is called a homotopy equivalence if there is amap g:Y — X such that
fg =1 and gf =~ 1. The spaces X and Y are said to be homotopy equivalent or to
have the same homotopy type. The notation is X ~ Y. It is an easy exercise to check
that this is an equivalence relation, in contrast with the nonsymmetric notion of de-
formation retraction. For example, the three graphs O-O OO CID are all homotopy
equivalent since they are deformation retracts of the same space, as we saw earlier,
but none of the three is a deformation retract of any other.

It is true in general that two spaces X and Y are homotopy equivalent if and only
if there exists a third space Z containing both X and Y as deformation retracts. For
the less trivial implication one can in fact take Z to be the mapping cylinder My of
any homotopy equivalence f:X—Y. We observed previously that M, deformation
retracts to Y, so what needs to be proved is that M £ also deformation retracts to its
other end X if f is a homotopy equivalence. This is shown in Corollary 0.21.
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A space having the homotopy type of a point is called contractible. This amounts
to requiring that the identity map of the space be nullhomotopic, that is, homotopic
to a constant map. In general, this is slightly weaker than saying the space deforma-
tion retracts to a point; see the exercises at the end of the chapter for an example
distinguishing these two notions.

Let us describe now an example of a 2-dimensional subspace of R®, known as the
house with two rooms, which is contractible but not in any obvious way. To build this

space, start with a box divided into two chambers by a horizontal rectangle, where by a
‘rectangle’ we mean not just the four edges of arectangle but also its interior. Access to
the two chambers from outside the box is provided by two vertical tunnels. The upper
tunnel is made by punching out a square from the top of the box and another square
directly below it from the middle horizontal rectangle, then inserting four vertical
rectangles, the walls of the tunnel. This tunnel allows entry to the lower chamber
from outside the box. The lower tunnel is formed in similar fashion, providing entry
to the upper chamber. Finally, two vertical rectangles are inserted to form ‘support
walls’ for the two tunnels. The resulting space X thus consists of three horizontal
pieces homeomorphic to annuli plus all the vertical rectangles that form the walls of
the two chambers.

To see that X is contractible, consider a closed &-neighborhood N(X) of X.
This clearly deformation retracts onto X if ¢ is sufficiently small. In fact, N(X)
is the mapping cylinder of a map from the boundary surface of N(X) to X. Less
obvious is the fact that N(X) is homeomorphic to D3, the unit ball in R®. To see
this, imagine forming N (X) from a ball of clay by pushing a finger into the ball to
create the upper tunnel, then gradually hollowing out the lower chamber, and similarly
pushing a finger in to create the lower tunnel and hollowing out the upper chamber.
Mathematically, this process gives a family of embeddings h,: D> — R® starting with
the usual inclusion D? < R> and ending with a homeomorphism onto N(X).

Thus we have X ~ N(X) = D® ~ point, so X is contractible since homotopy
equivalence is an equivalence relation. In fact, X deformation retracts to a point. For
if f; is a deformation retraction of the ball N(X) to apoint x, € X andif v :N(X) =X
is a retraction, for example the end result of a deformation retraction of N(X) to X,
then the restriction of the composition 7 f; to X is a deformation retraction of X to
Xxo. However, it is quite a challenging exercise to see exactly what this deformation
retraction looks like.
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Cell Complexes

A familiar way of constructing the torus S 1% st is by identifying opposite sides
of a square. More generally, an orientable surface M, of genus g can be constructed

from a polygon with 4g sides
a

by identifying pairs of edges,
as shown in the figure in the

first three cases g = 1,2,3.

The 4g edges of the polygon
become a union of 2g circles
in the surface, all intersect-
ing in a single point. The in-
terior of the polygon can be
thought of as an open disk,
or a 2-cell, attached to the
union of the 2g circles. One
can also regard the union of
the circles as being obtained
from their common point of
intersection, by attaching 2g
open arcs, or 1-cells. Thus

the surface can be built up in stages: Start with a point, attach 1-cells to this point,
then attach a 2-cell.

A natural generalization of this is to construct a space by the following procedure:

(1) Start with a discrete set X 0, whose points are regarded as 0-cells.

(2) Inductively, form the n-skeleton X" from X"~! by attaching n-cells e” via maps
@u:8" 1= X""! This means that X" is the quotient space of the disjoint union
X" I,D" of X" ! with a collection of n-disks D" under the identifications
X ~ @u(x) for x € OD". Thus as a set, X" = X" [ e" where each " is an
open n-disk.

(3) One can either stop this inductive process at a finite stage, setting X = X" for
some 1 < oo, Or one can continue indefinitely, setting X = |J,, X". In the latter
case X is given the weak topology: A set A C X is open (or closed) iff A n X" is
open (or closed) in X" for each n.

A space X constructed in this way is called a cell complex or CW complex. The
explanation of the letters ‘CW’ is given in the Appendix, where a number of basic
topological properties of cell complexes are proved. The reader who wonders about
various point-set topological questions lurking in the background of the following
discussion should consult the Appendix for details.
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If X = X" for some n, then X is said to be finite-dimensional, and the smallest
such n is the dimension of X, the maximum dimension of cells of X.

Example 0.1. A 1-dimensional cell complex X = X' is what is called a graph in
algebraic topology. It consists of vertices (the 0-cells) to which edges (the 1-cells) are
attached. The two ends of an edge can be attached to the same vertex.

Example 0.2. The house with two rooms, pictured earlier, has a visually obvious
2-dimensional cell complex structure. The 0-cells are the vertices where three or more
of the depicted edges meet, and the 1-cells are the interiors of the edges connecting
these vertices. This gives the 1-skeleton X', and the 2-cells are the components of
the remainder of the space, X — X'. If one counts up, one finds there are 29 0-cells,
51 1-cells, and 23 2-cells, with the alternating sum 29 — 51 + 23 equal to 1. This is
the Euler characteristic, which for a cell complex with finitely many cells is defined
to be the number of even-dimensional cells minus the number of odd-dimensional
cells. As we shall show in Theorem 2.44, the Euler characteristic of a cell complex
depends only on its homotopy type, so the fact that the house with two rooms has the
homotopy type of a point implies that its Euler characteristic must be 1, no matter
how it is represented as a cell complex.

Example 0.3. The sphere S™ has the structure of a cell complex with just two cells, e°
and e", the n-cell being attached by the constant map S ! —e°. This is equivalent
to regarding S™ as the quotient space D"/oD".

Example 0.4. Real projective n-space RP" is defined to be the space of all lines
through the origin in R""!. Each such line is determined by a nonzero vector in R"*!,
unique up to scalar multiplication, and RP" is topologized as the quotient space of
R - {0} under the equivalence relation v ~ Av for scalars A + 0. We can restrict
to vectors of length 1, so RP" is also the quotient space S"/(v ~ —v), the sphere
with antipodal points identified. This is equivalent to saying that RP" is the quotient
space of a hemisphere D" with antipodal points of dD" identified. Since 0D™ with
antipodal points identified is just RP""!, we see that RP" is obtained from RP" ! by
attaching an n-cell, with the quotient projection S™ ' — RP™! as the attaching map.
It follows by induction on n that RP" has a cell complex structure e’ ue' U -+ U "

with one cell ¢! in each dimension i < n.

Example 0.5. Since RP" is obtained from RP™ ! by attaching an n-cell, the infinite
union RP” = J,, RP" becomes a cell complex with one cell in each dimension. We
can view RP* as the space of lines through the origin in R* = {J,, R".

Example 0.6. Complex projective n-space CP" is the space of complex lines through

cnHl . As in the case

the origin in , that is, 1-dimensional vector subspaces of C""!
of RP", each line is determined by a nonzero vector in C**!, unique up to scalar

multiplication, and CP" is topologized as the quotient space of C"*! — {0} under the
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equivalence relation v ~ Av for A # 0. Equivalently, this is the quotient of the unit
sphere $2""! ¢ C"*! with v ~ Av for |A| = 1. It is also possible to obtain CP" as a
quotient space of the disk D" under the identifications v ~ Av for v € dD*", in the
following way. The vectors in $2"*! ¢ C"*! with last coordinate real and nonnegative
are precisely the vectors of the form (w,+/1 — [w]?2) € C"xC with |w| < 1. Such
vectors form the graph of the function w — +/1 — [w|2. This is a disk D>" bounded
by the sphere $2"! ¢ §2"! consisting of vectors (w,0) € C"x C with |w| = 1. Each

§2m+1 jg equivalent under the identifications v ~ Av to a vector in D2", and

vector in
the latter vector is unique if its last coordinate is nonzero. If the last coordinate is
zero, we have just the identifications v ~ Av for v € §°"°!.

From this description of CP" as the quotient of Di" under the identifications
v ~ Av for v € $?"! it follows that CP" is obtained from CP" ! by attaching a
cell e®™ via the quotient map S°"* ' —CP" !. So by induction on n we obtain a cell

0

structure CP" = e® Ue® U - - - U e?" with cells only in even dimensions. Similarly, CP*

has a cell structure with one cell in each even dimension.

After these examples we return now to general theory. Each cell e} in a cell
complex X has a characteristic map ®,:Dj§— X which extends the attaching map
@, and is a homeomorphism from the interior of DX onto el;. Namely, we can take
®, to be the composition D — X" '[[,D!— X" — X where the middle map is
the quotient map defining X™. For example, in the canonical cell structure on S"
described in Example 0.3, a characteristic map for the n-cell is the quotient map
D" —S" collapsing dD™ to a point. For RP" a characteristic map for the cell e’ is
the quotient map D'— RP! c RP" identifying antipodal points of dD?, and similarly
for CP™.

A subcomplex of a cell complex X is a closed subspace A C X that is a union
of cells of X. Since A is closed, the characteristic map of each cell in A has image
contained in A, and in particular the image of the attaching map of each cell in A is
contained in A, so A is a cell complex in its own right. A pair (X, A) consisting of a
cell complex X and a subcomplex A will be called a CW pair.

For example, each skeleton X" of a cell complex X is a subcomplex. Particular
cases of this are the subcomplexes RP* ¢ RP" and CP* c CP" for k < n. These are
in fact the only subcomplexes of RP"™ and CP".

There are natural inclusions S° c S' c ... ¢ S™, but these subspheres are not
subcomplexes of S™ in its usual cell structure with just two cells. However, we can give
S™ a different cell structure in which each of the subspheres S kisa subcomplex, by
regarding each sk as being obtained inductively from the equatorial S 1 py attaching
two k-cells, the components of S k_sk=1 The infinite-dimensional sphere S = J,, S"
then becomes a cell complex as well. Note that the two-to-one quotient map S — RP®
that identifies antipodal points of S identifies the two n-cells of S* to the single
n-cell of RP”.
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In the examples of cell complexes given so far, the closure of each cell is a sub-
complex, and more generally the closure of any collection of cells is a subcomplex.
Most naturally arising cell structures have this property, but it need not hold in gen-
eral. For example, if we start with S with its minimal cell structure and attach to this
a 2-cell by a map S'—S' whose image is a nontrivial subarc of S!, then the closure
of the 2-cell is not a subcomplex since it contains only a part of the 1-cell.

Operations on Spaces

Cell complexes have a very nice mixture of rigidity and flexibility, with enough
rigidity to allow many arguments to proceed in a combinatorial cell-by-cell fashion
and enough flexibility to allow many natural constructions to be performed on them.
Here are some of those constructions.

Products. If X and Y are cell complexes, then XXY has the structure of a cell
complex with cells the products e’ x ey where ey’ ranges over the cells of X and
e’[} ranges over the cells of Y. For example, the cell structure on the torus S!xS!
described at the beginning of this section is obtained in this way from the standard
cell structure on S!. For completely general CW complexes X and Y there is one
small complication: The topology on XX Y as a cell complex is sometimes finer than
the product topology, with more open sets than the product topology has, though the
two topologies coincide if either X or Y has only finitely many cells, or if both X
and Y have countably many cells. This is explained in the Appendix. In practice this
subtle issue of point-set topology rarely causes problems, however.

Quotients. If (X, A) is a CW pair consisting of a cell complex X and a subcomplex A,
then the quotient space X/A inherits a natural cell complex structure from X. The
cells of X /A are the cells of X — A plus one new 0-cell, the image of A in X/A. For a
cell " of X — A attached by @, :S" ' —X""! the attaching map for the correspond-
ing cell in X/A is the composition "' — X" 1 — x"" /A" 1,

For example, if we give S ! any cell structure and build D" from S$"! by attach-
ing an n-cell, then the quotient D™/S™! is $™ with its usual cell structure. As another
example, take X to be a closed orientable surface with the cell structure described at
the beginning of this section, with a single 2-cell, and let A be the complement of this
2-cell, the 1-skeleton of X. Then X/A has a cell structure consisting of a 0-cell with
a 2-cell attached, and there is only one way to attach a cell to a 0-cell, by the constant
map, so X/A is s2.

Suspension. For a space X, the suspension SX is the quotient of

X X1 obtained by collapsing X x {0} to one point and X x {1} to an- £
other point. The motivating example is X = S, when SX = §"'! A
with the two ‘suspension points’ at the north and south poles of v

$"™*1 the points (0, ---,0,=1). One can regard SX as a double cone V
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on X, the union of two copies of the cone CX = (XxI)/(Xx{0}). If X is a CW com-
plex, so are SX and CX as quotients of X x I with its product cell structure, I being
given the standard cell structure of two 0-cells joined by a 1-cell.

Suspension becomes increasingly important the farther one goes into algebraic
topology, though why this should be so is certainly not evident in advance. One
especially useful property of suspension is that not only spaces but also maps can be
suspended. Namely, amap f:X—Y suspends to Sf:5SX—SY, the quotient map of
fX1:XxI—>YXI.

Join. The cone CX is the union of all line segments joining points of X to an external
vertex, and similarly the suspension SX is the union of all line segments joining points
of X to two external vertices. More generally, given X and a second space Y, one can
define the space of all lines segments joining points in X to points in Y. This is
the join X * Y, the quotient space of XxY xI under the identifications (x, y;,0) ~
(x,¥,,0) and (x;,y,1) ~ (x5,y,1). Thus we are collapsing the subspace X x Y x {0}
to X and XxYx {1} to Y. For example, if
X and Y are both closed intervals, then we
are collapsing two opposite faces of a cube

onto line segments so that the cube becomes
a tetrahedron. In the general case, X x Y X

I
contains copies of X and Y atits two ‘ends,’

and every other point (x,y,t) in X x Y is on a unique line segment joining the point
X €XCXxY tothepoint ¥y € Y C X * Y, the segment obtained by fixing x and y
and letting the coordinate ¢t in (x, y,t) vary.

A nice way to write points of X * Y is as formal linear combinations t;x + t,y
with 0 <t; <1 and t; +t, = 1, subject to therules Ox+1y = y and 1x+0y = x that
correspond exactly to the identifications defining X x Y. In much the same way, an
iterated join X, * - - - % X, can be regarded as the space of formal linear combinations
bixy + - +t,x, with 0 <t; <1andt; +---+t, =1, with the convention that
terms 0Ot; can be omitted. This viewpoint makes it easy to see that the join operation
is associative. A very special case that plays a central role in algebraic topology is
when each X; is just a point. For example, the join of two points is a line segment, the
join of three points is a triangle, and the join of four points is a tetrahedron. The join
of n points is a convex polyhedron of dimension n — 1 called a simplex. Concretely,
if the n points are the n standard basis vectors for R", then their join is the space
AV =t t,) ER" |t + - +t,=1andt; = 0}.

Another interesting example is when each X; is S 0 two points. If we take the two
points of X; to be the two unit vectors along the i* coordinate axis in R", then the
join X; * - -- ¥ X, is the union of 2" copies of the simplex A""!, and radial projection
from the origin gives a homeomorphism between X; * --- % X,, and sl
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If X and Y are CW complexes, then there is a natural CW structure on X % Y
having the subspaces X and Y as subcomplexes, with the remaining cells being the
product cells of XxY x (0,1). As usual with products, the CW topology on X * Y may
be weaker than the quotient of the product topology on X x Y X1.

Wedge Sum. This is arather trivial but still quite useful operation. Given spaces X and
Y with chosen points x, € X and y, € Y, then the wedge sum X v Y is the quotient
of the disjoint union X 1Y obtained by identifying x, and y, to a single point. For
example, S' v S! is homeomorphic to the figure ‘8, two circles touching at a point.
More generally one could form the wedge sum \/, X, of an arbitrary collection of
spaces X, by starting with the disjoint union [[, X, and identifying points x, € X,
to a single point. In case the spaces X, are cell complexes and the points x, are
0-cells, then \/, X, is a cell complex since it is obtained from the cell complex [, X
by collapsing a subcomplex to a point.

For any cell complex X, the quotient X"/ X" ! is a wedge sum of n-spheres \/, S™,
with one sphere for each n-cell of X.

Smash Product. Like suspension, this is another construction whose importance be-
comes evident only later. Inside a product space X XY there are copies of X and Y,
namely Xx {y,} and {x,}xY for points x, € X and y, € Y. These two copies of X
and Y in XxY intersect only at the point (x,y,), so their union can be identified
with the wedge sum X Vv Y. The smash product X A Y is then defined to be the quo-
tient XxXY/X v Y. One can think of X A Y as a reduced version of XxY obtained
by collapsing away the parts that are not genuinely a product, the separate factors X
and Y.

The smash product X AY is a cell complexif X and Y are cell complexes with x,
and y, 0-cells, assuming that we give X x Y the cell-complex topology rather than the
product topology in cases when these two topologies differ. For example, S™ A S™ has
a cell structure with just two cells, of dimensions 0 and m +n, hence S™ AS™ = S,
In particular, when m = n = 1 we see that collapsing longitude and meridian circles
of a torus to a point produces a 2-sphere.

Two Criteria for Homotopy Equivalence

Earlier in this chapter the main tool we used for constructing homotopy equiva-
lences was the fact that a mapping cylinder deformation retracts onto its ‘target’ end.
By repeated application of this fact one can often produce homotopy equivalences be-
tween rather different-looking spaces. However, this process can be a bit cambersome
in practice, so it is useful to have other techniques available as well. We will describe
two commonly used methods here. The first involves collapsing certain subspaces to
points, and the second involves varying the way in which the parts of a space are put
together.
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Collapsing Subspaces

The operation of collapsing a subspace to a point usually has a drastic effect
on homotopy type, but one might hope that if the subspace being collapsed already
has the homotopy type of a point, then collapsing it to a point might not change the
homotopy type of the whole space. Here is a positive result in this direction:

H If (X, A) is a CW pair consisting of a CW complex X and a contractible subcomplex A,
then the quotient map X — X /A is a homotopy equivalence.

A proof will be given later in Proposition 0.17, but for now let us look at some examples
showing how this result can be applied.

Example 0.7: Graphs. The three graphs 0-0 ©O 1D are homotopy equivalent since
each is a deformation retract of a disk with two holes, but we can also deduce this
from the collapsing criterion above since collapsing the middle edge of the first and
third graphs produces the second graph.

More generally, suppose X is any graph with finitely many vertices and edges. If
the two endpoints of any edge of X are distinct, we can collapse this edge to a point,
producing a homotopy equivalent graph with one fewer edge. This simplification can
be repeated until all edges of X are loops, and then each component of X is either
an isolated vertex or a wedge sum of circles.

This raises the question of whether two such graphs, having only one vertex in
each component, can be homotopy equivalent if they are not in fact just isomorphic
graphs. Exercise 12 at the end of the chapter reduces the question to the case of
connected graphs. Then the task is to prove that awedge sum \/,,, S L of m circles is not
homotopy equivalent to \/,, S Lif m = n. This sort of thing is hard to do directly. What
one would like is some sort of algebraic object associated to spaces, depending only
on their homotopy type, and taking different values for \/,, S ! and Vi S Vifm=n. In
fact the Euler characteristic does this since \/,, S' has Euler characteristic 1—m. Butit
is a rather nontrivial theorem that the Euler characteristic of a space depends only on
its homotopy type. A different algebraic invariant that works equally well for graphs,
and whose rigorous development requires less effort than the Euler characteristic, is
the fundamental group of a space, the subject of Chapter 1.

Example 0.8. Consider the space X obtained
from S by attaching the two ends of an arc ‘\
A to two distinct points on the sphere, say the ‘

north and south poles. Let B be an arc in s? ‘ - /A

joining the two points where A attaches. Then

X can be given a CW complex structure with ' ~ ‘
the two endpoints of A and B as 0-cells, the .
interiors of A and B as 1-cells, and the rest of X/B
§° as a 2-cell. Since A and B are contractible,
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X /A and X/B are homotopy equivalent to X. The space X /A is the quotient S 2 /S 0,
the sphere with two points identified, and X/B is S' v $2. Hence §°/S° and S' v §°2
are homotopy equivalent, a fact which may not be entirely obvious at first glance.

Example 0.9. Let X be the union of a torus with n meridional disks. To obtain
a CW structure on X, choose a longitudinal circle in the torus, intersecting each of
the meridional disks in one point. These intersection points are then the 0-cells, the
1-cells are the rest of the longitudinal circle and the boundary circles of the meridional
disks, and the 2-cells are the remaining regions of the torus and the interiors of
the meridional disks. Collapsing each meridional disk to a point yields a homotopy

S8 S
- - K
z w

equivalent space Y consisting of n 2-spheres, each tangent to its two neighbors, a
‘necklace with n beads.” The third space Z in the figure, a strand of n beads with a

string joining its two ends, collapses to Y by collapsing the string to a point, so this
collapse is a homotopy equivalence. Finally, by collapsing the arc in Z formed by the
front halves of the equators of the n beads, we obtain the fourth space W, a wedge
sum of S! with n 2-spheres. (One can see why a wedge sum is sometimes called a
‘bouquet’ in the older literature.)

Example 0.10: Reduced Suspension. Let X be a CW complex and x, € X a 0-cell.
Inside the suspension SX we have the line segment {x,}xI, and collapsing this to a
point yields a space XX homotopy equivalent to SX, called the reduced suspension
of X. For example, if we take X to be S' v S with x, the intersection point of the
two circles, then the ordinary suspension SX is the union of two spheres intersecting
along the arc {x,}xI, so the reduced suspension XX is $? v §2, a slightly simpler
space. More generally we have (X v Y) = ZX v XY for arbitrary CW complexes X
and Y. Another way in which the reduced suspension XX is slightly simpler than SX
is in its CW structure. In SX there are two 0-cells (the two suspension points) and an
(n+1)-cell e"x(0,1) for each n-cell e” of X, whereas in XX there is a single 0-cell
and an (n + 1)-cell for each n-cell of X other than the 0-cell x,.

The reduced suspension XX is actually the same as the smash product X A S*
since both spaces are the quotient of X xI with Xx oI U {x,}xI collapsed to a point.

Attaching Spaces

Another common way to change a space without changing its homotopy type in-
volves the idea of continuously varying how its parts are attached together. A general
definition of ‘attaching one space to another’ that includes the case of attaching cells
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is the following. We start with a space X, and another space X; that we wish to
attach to X, by identifying the points in a subspace A c X; with points of X,,. The
data needed to do this is a map f:A—X,, for then we can form a quotient space
of Xy II X; by identifying each point a € A with its image f(a) € X,,. Let us de-
note this quotient space by X, U, X;, the space X, with X, attached along A via f.
When (X;,A) = (D", S" ') we have the case of attaching an n-cell to X, via a map
fismlox,.

Mapping cylinders are examples of this construction, since the mapping cylinder
My of amap f:X—Y is the space obtained from Y by attaching X xI along X x {1}
via f. Closely related to the mapping cylinder M ¢ is the mapping cone C, =Y LI, CX
where CX is the cone (XxI)/(Xx{0}) and we attach thisto Y
along X x {1} via the identifications (x,1) ~ f(x). For exam-
ple, when X is a sphere $"! the mapping cone C ¢ is the space
obtained from Y by attaching an n-cell via f:S" !—>Y. A
mapping cone C; can also be viewed as the quotient My/X of

the mapping cylinder M, with the subspace X = Xx {0} collapsed to a point.

If one varies an attaching map f by a homotopy f;, one gets a family of spaces
whose shape is undergoing a continuous change, it would seem, and one might expect
these spaces all to have the same homotopy type. This is often the case:

If (X,,A) is a CW pair and the two attaching maps f,g: A— X, are homotopic, then

Again let us defer the proof and look at some examples.

Example 0.11. Let us rederive the result in Example 0.8 that a sphere with two points
identified is homotopy equivalent to S' v $2. The sphere
with two points identified can be obtained by attaching S 2
to S' by a map that wraps a closed arc A in §% around S',
as shown in the figure. Since A is contractible, this attach-
ing map is homotopic to a constant map, and attaching S?
to S! via a constant map of A yields S' v §°. The result
then follows since (S%,A) is a CW pair, S° being obtained from A by attaching a
2-cell.

Example 0.12. In similar fashion we can see that the necklace in Example 0.9 is
homotopy equivalent to the wedge sum of a circle with n 2-spheres. The necklace
can be obtained from a circle by attaching n 2-spheres along arcs, so the necklace
is homotopy equivalent to the space obtained by attaching n 2-spheres to a circle
at points. Then we can slide these attaching points around the circle until they all
coincide, producing the wedge sum.

Example 0.13. Here is an application of the earlier fact that collapsing a contractible
subcomplex is a homotopy equivalence: If (X,A) is a CW pair, consisting of a cell
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complex X and a subcomplex A, then X/A =~ X u CA, the mapping cone of the
inclusion A— X. Forwe have X/A = (XUCA)/CA ~ XUCA since CA is a contractible
subcomplex of X U CA.

Example 0.14. If (X, A) is a CW pair and A is contractible in X, that is, the inclusion
A — X is homotopic to a constant map, then X/A ~ X v SA. Namely, by the previous
example we have X/A ~ X U CA, and then since A is contractible in X, the mapping
cone X U CA of the inclusion A — X is homotopy equivalent to the mapping cone of
a constant map, which is X v SA. For example, S”/Si ~ S"v ST for i < n, since
S' is contractible in ™ if i < n. In particular this gives $%/S° ~ §% v §!, which is
Example 0.8 again.

The Homotopy Extension Property

In this final section of the chapter we will actually prove a few things. In partic-
ular we prove the two criteria for homotopy equivalence described above, along with
the fact that any two homotopy equivalent spaces can be embedded as deformation
retracts of the same space.

The proofs depend upon a technical property that arises in many other contexts
as well. Consider the following problem. Suppose one is given a map f;,: X—Y, and
on a subspace A C X one is also given a homotopy f;: A—Y of f;|A that one would
like to extend to a homotopy f;:X—Y of the given f,. If the pair (X, A) is such that
this extension problem can always be solved, one says that (X, A) has the homotopy
extension property. Thus (X, A) has the homotopy extension property if every map
XX {0} U AXI—Y canbe extended to amap XxXI—Y.

In particular, the homotopy extension property for (X, A) implies that the iden-
tity map XX {0} UAXTI—XXx {0} U AXI extends to amap XxXI—Xx {0} U AXI, so
Xx{0} u AXI is a retract of X xI. The converse is also true: If there is a retraction
XxI—Xx{0} u AxI, then by composing with this retraction we can extend every
map Xx {0} UAXI—Y toamap XxI—Y. Thus the homotopy extension property
for (X, A) is equivalent to X x {0} U AXI being a retract of X xI. This implies for ex-
ample thatif (X, A) has the homotopy extension property, then so does (XX Z,AX Z)
for any space Z, a fact that would not be so easy to prove directly from the definition.

If (X, A) has the homotopy extension property, then A mustbe a closed subspace
of X, at least when X is Hausdorff. For if :XxI— X xI is a retraction onto the
subspace Xx {0} U AXI, then the image of v is the set of points z € X xI with
r(z) = z, aclosed set if X is Hausdorff, so X x {0} UAXI is closed in X xI and hence
A is closed in X.

A simple example of a pair (X, A) with A closed for which the homotopy exten-
sion property fails is the pair (I, A) where A = {0, 1,Y,,3,Y,,---}. It is not hard to
show that there is no continuous retraction IxI—1Ix {0} U AxI. The breakdown of
homotopy extension here can be attributed to the bad structure of (X,A) near O.
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With nicer local structure the homotopy extension property does hold, as the next
example shows.

Example 0.15. A pair (X,A) has the homotopy extension property if A has a map-
ping cylinder neighborhood in X, by which we mean a closed A
neighborhood N containing a subspace B, thought of as the (_B
boundary of N, with N — B an open neighborhood of A, / ‘/\ N
such that there exists amap f :B— A and a homeomorphism "\
h:M;—N with h |A U B = 1. Mapping cylinder neighbor-

hoods like this occur fairly often. For example, the thick let- X
ters discussed at the beginning of the chapter provide such
neighborhoods of the thin letters, regarded as subspaces of the plane. To verify the
homotopy extension property, notice first that I X I retracts onto I x {0} UodI xI, hence
BXIXxI retracts onto BxIx {0} U Bx0dIxI, and this retraction induces a retraction
of M¢x1I onto Mx {0} U (AuB)xI. Thus (Mf,A U B) has the homotopy exten-
sion property. Hence so does the homeomorphic pair (N, A U B). Now given a map
X —Y and a homotopy of its restriction to A, we can take the constant homotopy on
X — (N — B) and then extend over N by applying the homotopy extension property
for (N, A U B) to the given homotopy on A and the constant homotopy on B.

Proposition 0.16. If (X, A) isa CW pair, then X x {0} UA X1 is a deformation retract
of XxI, hence (X,A) has the homotopy extension property.

Proof: There is a retraction ¥ : D" xI—D"x {0} u 0D" x I, for ex-

ample the radial projection from the point (0,2) € D"xR. Then

setting v, = tv + (1 — t)1 gives a deformation retraction of D" x I -

onto D" x {0} u 0D™x 1. This deformation retraction gives rise to

a deformation retraction of X" xI onto X"x {0} u (X" ' UA™)xI

since X" x I is obtained from X" x {0} U (X"~ ! U A™) xI by attach-

ing copies of D" xI along D" x {0} U dD" xI. If we perform the deformation retrac-
tion of X"xI onto X"x{0} U (X" ! UA™)xI during the t-interval [1/2""!, 1/2"],
this infinite concatenation of homotopies is a deformation retraction of XxI onto
Xx {0} U AxI. There is no problem with continuity of this deformation retraction
at t = 0 since it is continuous on X" x I, being stationary there during the t-interval

[0, 1/2"*1], and CW complexes have the weak topology with respect to their skeleta
so a map is continuous iff its restriction to each skeleton is continuous. O

Now we can prove a generalization of the earlier assertion that collapsing a con-
tractible subcomplex is a homotopy equivalence.

’ Proposition 0.17. If the pair (X, A) satisfies the homotopy extension property and
A is contractible, then the quotient map q: X — X /A is a homotopy equivalence.
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Proof: Let f,: X— X be a homotopy extending a contraction of A, with f, = 1. Since
fi(A) C A for all t, the composition qf;:X— X/A sends A to a point and hence fac-
tors as a composition X 4, X/A— X/A. Denoting the latter map by ft X/A—X/A,

we have qf, = f,q in the first of the two £ £
diagrams at the right. When t = 1 we have X X X X
f1(A) equal to a point, the point to which A q] lq ql / lq
contracts, so f; induces amap g:X/A—X X/A———X/A X/A—— X/A
with gq = f), as in the second diagram. It i h

follows that qg = f, since qg(x) = qga(x) = af,(x) = fia(x) = f,(x). The
maps g and q are inverse homotopy equivalences since gq = f; = f; = 1 via f; and

qg=f1=f0=]lviaft. o

Another application of the homotopy extension property, giving a slightly more
refined version of one of our earlier criteria for homotopy equivalence, is the following:

Proposition 0.18. If (X, A) is a CW pair and we have attaching maps f,g:A— X,

that are homotopic, then X, Ly X, =~ X, U, X; rel X;.

Here the definition of W ~ Z rel Y for pairs (W,Y) and (Z,Y) is that there are
maps @ :W—Z and y:Z— W restricting to the identity on Y, such that ¢y ~ 1
and @y ~ 1 via homotopies that restrict to the identity on Y at all times.

Proof: If F: AxXI— X, is a homotopy from f to g, consider the space X, U (X;x1I).
This contains both X, L X; and X, Li; X; as subspaces. A deformation retraction
of X;xI onto X;x{0} UAXI as in Proposition 0.16 induces a deformation retraction
of X Up (X;xI) onto X, Uy X;. Similarly X, Up (X, xI) deformation retracts onto
XoUgX; . Both these deformation retractions restrict to the identity on X, so together
they give a homotopy equivalence X, L1y X; = X, U, X rel X,. O

We finish this chapter with a technmical result whose proof will involve several
applications of the homotopy extension property:

Proposition 0.19. Suppose (X,A) and (Y, A) satisfy the homotopy extension prop-
erty, and f:X—Y is a homotopy equivalence with f|A = 1. Then f is a homotopy
equivalence rel A.

Corollary 0.20. If (X, A) satisfies the homotopy extension property and the inclusion
A — X is a homotopy equivalence, then A is a deformation retract of X .

Proof: Apply the proposition to the inclusion A — X. m|

Corollary 0.21. Amap f:X—Y is a homotopy equivalence iff X is a deformation
retract of the mapping cylinder M. Hence, two spaces X and Y are homotopy
equivalent iff there is a third space containing both X and Y as deformation retracts.



The Homotopy Extension Property Chapter 0 | 17

—

Proof: In the diagram at the right the maps i and j are the inclu-
sions and 7 is the canonical retraction, so f = vi and i =~ j f. Since
j and r are homotopy equivalences, it follows that f is a homotopy i\AJ HT

equivalence iff i is a homotopy equivalence, since the composition My

of two homotopy equivalences is a homotopy equivalence and a map homotopic to a
homotopy equivalence is a homotopy equivalence. Now apply the preceding corollary
to the pair (M, X), which satisfies the homotopy extension property by Example 0.15
using the neighborhood X x[0,1/,] of X in M. |

Proof of 0.19: Let g:Y — X be a homotopy inverse for f. There will be three steps
to the proof:
(1) Construct a homotopy from g to a map g; with g, |A = 1.
(2) Show g, f =1 rel A.
(3) Show fg, = 1 rel A.
(1) Let h;:X— X be a homotopy from gf = hy to 1 = h,. Since f|A = 1, we
can view h, | A as a homotopy from g|A to 1. Then since we assume (Y, A) has the
homotopy extension property, we can extend this homotopy to a homotopy g;: Y — X
from g = g, to amap g, with g, |A = 1.
(2) A homotopy from g, f to 1 is given by the formulas

_{g12tf: 0=t=<),

k; =
oy, I, <t=<1

Note that the two definitions agree when t = 1/,. Since f|A =1 and g, = h; on A,
the homotopy k;| A starts and ends with the identity, and its second half simply re-
traces its first half, thatis, k; = k;_; on A. We will define a ‘homotopy of homotopies’
k;, : A— X by means of the figure at the right showing the param-

eter domain IxI for the pairs (t,u), with the t-axis horizontal
and the u-axis vertical. On the bottom edge of the square we de-
fine k;, = k;|A. Below the ‘V’ we define k,, to be independent
of u, and above the V' we define k;, to be independent of t.

1
This is unambiguous since k; = k;_, on A. Since kj = 1 on A, af  of

we have k;,, = 1 for (t,u) in the left, right, and top edges of the square. Next we
extend k;, over X, as follows. Since (X, A) has the homotopy extension property,
so does (XxI,AxI) by a remark in the paragraph following the definition of the ho-
motopy extension property. Viewing k,, as a homotopy of k,|A, we can therefore
extend k;, :A— X to k;, : X — X with k;y = k;. If we restrict this k;,, to the left, top,
and right edges of the (¢, u)-square, we get a homotopy g,f =~ 1 rel A.

(3) Since g, = g, we have fg, = fg = 1,s0 fg; = 1 and steps (1) and (2) can be
repeated with the pair f,g replaced by g,,f. The result is a map f;:X—Y with
filA=1 and f,g, = 1 rel A. Hence f, ~ f,(g,.f) = (fi9,)f = f rel A. From this
we deduce that fg, = fig, = 1 rel A. |
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Exercises

1. Construct an explicit deformation retraction of the torus with one point deleted
onto a graph consisting of two circles intersecting in a point, namely, longitude and
meridian circles of the torus.

2. Construct an explicit deformation retraction of R — {0} onto S™!.

3. (a) Show that the composition of homotopy equivalences X—Y and Y—Z7 is a
homotopy equivalence X — Z. Deduce that homotopy equivalence is an equivalence
relation.

(b) Show that the relation of homotopy among maps X — Y is an equivalence relation.
(c) Show that a map homotopic to a homotopy equivalence is a homotopy equivalence.

4. A deformation retraction in the weak sense of a space X to a subspace A is a
homotopy f;:X— X such that f, = 1, f;(X) C A, and f;(A) C A for all t. Show
that if X deformation retracts to A in this weak sense, then the inclusion A — X is
a homotopy equivalence.

5. Show that if a space X deformation retracts to a point x € X, then for each
neighborhood U of x in X there exists a neighborhood V ¢ U of x such that the
inclusion map V — U is nullhomotopic.

6. (a) Let X be the subspace of R® consisting of the horizontal segment

[0,1]x {0} together with all the vertical segments {r}x[0,1 — ] for

v a rational number in [0,1]. Show that X deformation retracts to

any point in the segment [0, 1] x {0}, but not to any other point. [See

the preceding problem.]

(b) Let Y be the subspace of R? that is the union of an infinite number of copies of X
arranged as in the figure below. Show that Y is contractible but does not deformation
retract onto any point.

(c) Let Z be the zigzag subspace of Y homeomorphic to R indicated by the heavier
line. Show there is a deformation retraction in the weak sense (see Exercise 4) of Y
onto Z, but no true deformation retraction.

7. Fill in the details in the following construction from
[Edwards 1999] of a compact space Y c R? with the
same properties as the space Y in Exercise 6, that is, Y
is contractible but does not deformation retract to any
point. To begin, let X be the union of an infinite se-
quence of cones on the Cantor set arranged end-to-end,
as in the figure. Next, form the one-point compactifica- X Y
tion of Xx R. This embeds in R? as a closed disk with curved ‘fins’ attached along
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circular arcs, and with the one-point compactification of X as a cross-sectional slice.
The desired space Y is then obtained from this subspace of R® by wrapping one more
cone on the Cantor set around the boundary of the disk.

8. For n > 2, construct an n-room analog of the house with two rooms.

9. Show that a retract of a contractible space is contractible.

10. Show that a space X is contractible iff every map f:X—Y, for arbitrary Y, is
nullhomotopic. Similarly, show X is contractible iff every map f:Y— X is nullho-
motopic.

11. Show that f:X—Y is a homotopy equivalence if there exist maps g,h:Y —X
such that fg ~ 1 and hf ~ 1. More generally, show that f is a homotopy equiva-
lence if fg and hf are homotopy equivalences.

12. Show that a homotopy equivalence f:X—Y induces a bijection between the set
of path-components of X and the set of path-components of Y, and that f restricts to
a homotopy equivalence from each path-component of X to the corresponding path-
component of Y. Prove also the corresponding statements with components instead
of path-components. Deduce that if the components of a space X coincide with its

path-components, then the same holds for any space Y homotopy equivalent to X.
0

13. Show that any two deformation retractions v, and 7! of a space X onto a
subspace A can be joined by a continuous family of deformation retractions 7},
0 <s <1, of X onto A, where continuity means that the map XxXIxI— X sending
(x,s,t) to Vts(x) is continuous.

14. Given positive integers v, e, and f satisfying v — e + f = 2, construct a cell
structure on S? having v 0-cells, e 1-cells, and f 2-cells.

15. Enumerate all the subcomplexes of S*, with the cell structure on S that has S"
as its n-skeleton.

16. Show that S% is contractible.

17. (a) Show that the mapping cylinder of every map f:S ' ¢! is a CW complex.

(b) Construct a 2-dimensional CW complex that contains both an annulus S!xI and
a Mobius band as deformation retracts.

18. Show that S! % S! = §%, and more generally §™ % §" = g™ "+1,

19. Show that the space obtained from S? by attaching n 2-cells along any collection
of n circles in S? is homotopy equivalent to the wedge sum of n + 1 2-spheres.

20. Show that the subspace X c R® formed by a Klein bottle
intersecting itself in a circle, as shown in the figure, is homotopy
equivalent to S' v §' v §2.

21. If X is a connected space that is a union of a finite number of 2-spheres, any
two of which intersect in at most one point, show that X is homotopy equivalent to a
wedge sum of S'’s and $°’s.
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22. Let X be a finite graph lying in a half-plane P ¢ R® and intersecting the edge
of P in a subset of the vertices of X. Describe the homotopy type of the ‘surface of
revolution’ obtained by rotating X about the edge line of P.

23. Show that a CW complex is contractible if it is the union of two contractible
subcomplexes whose intersection is also contractible.

24. Let X and Y be CW complexes with 0-cells x, and y,. Show that the quotient
spaces X x Y /(X *x {yy}U{xy} *Y) and S(XAY)/S({xg} A{yy}) are homeomorphic,
and deduce that X * Y ~S(X AY).

25. If X is a CW complex with components X,, show that the suspension SX is
homotopy equivalent to Y V,SX, for some graph Y. In the case that X is a finite
graph, show that SX is homotopy equivalent to a wedge sum of circles and 2-spheres.

26. Use Corollary 0.20 to show that if (X, A) has the homotopy extension property,
then XxI deformation retracts to Xx {0} U AxI. Deduce from this that Proposi-
tion 0.18 holds more generally for any pair (X;, A) satisfying the homotopy extension
property.

27. Given a pair (X, A) and a homotopy equivalence f:A— B, show that the natural
map X — BU ;X is a homotopy equivalence if (X, A) satisfies the homotopy extension
property. [Hint: Consider X UM, and use the preceding problem.] An interesting
case is when f is a quotient map, hence the map X—B U, X is the quotient map
identifying each set f~!(b) to a point. When B is a point this gives another proof of
Proposition 0.17.

28. Show thatif (X;, A) satisfies the homotopy extension property, then so does every
pair (X, Uy Xy, X,) obtained by attaching X; to a space X, viaamap f:A—X,.
29. In case the CW complex X is obtained from a subcomplex A by attaching a single
cell e™, describe exactly what the extension of a homotopy f,:A—Y to X given by
the proof of Proposition 0.16 looks like. That is, for a point x € ", describe the path
Jfi(x) for the extended f;.



Chapter

The Fundamental Group

Algebraic topology can be roughly defined as the study of techniques for forming
algebraic images of topological spaces. Most often these algebraic images are groups,
but more elaborate structures such as rings, modules, and algebras also arise. The
mechanisms that create these images — the ‘lanterns’ of algebraic topology, one might
say — are known formally as functors and have the characteristic feature that they
form images not only of spaces but also of maps. Thus, continuous maps between
spaces are projected onto homomorphisms between their algebraic images, so topo-
logically related spaces have algebraically related images.

With suitably constructed lanterns one might hope to be able to form images with
enough detail to reconstruct accurately the shapes of all spaces, or at least of large
and interesting classes of spaces. This is one of the main goals of algebraic topology,
and to a surprising extent this goal is achieved. Of course, the lanterns necessary to
do this are somewhat complicated pieces of machinery. But this machinery also has
a certain intrinsic beauty.

This first chapter introduces one of the simplest and most important functors
of algebraic topology, the fundamental group, which creates an algebraic image of a
space from the loops in the space, the paths in the space starting and ending at the
same point.

The Idea of the Fundamental Group

To get a feeling for what the fundamental group is about, let us look at a few
preliminary examples before giving the formal definitions.
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Consider two linked circles A and B in R?, as shown
in the figure. Our experience with actual links and chains
tells us that since the two circles are linked, it is impossi-
ble to separate B from A by any continuous motion of B,

A B
such as pushing, pulling, or twisting. We could even take
B to be made of rubber or stretchable string and allow completely general continu-
ous deformations of B, staying in the complement of A at all times, and it would
still be impossible to pull B off A. At least that is what intuition suggests, and the

fundamental group will give a way of making this intuition mathematically rigorous.

Instead of having B link with A just once, we could

make it link with A two or more times, as in the figures to the

right. As a further variation, by assigning an orientation to B b

we can speak of B linking A a positive or a negative number A 4 B,
of times, say positive when B comes forward through A and

negative for the reverse direction. Thus for each nonzero b
integer n we have an oriented circle B, linking A n times, k’.)
where by ‘circle’ we mean a curve homeomorphic to a circle. A % z
To complete the scheme, we could let B, be a circle not 3

linked to A at all.

Now, integers not only measure quantity, but they form a group under addition.
Can the group operation be mimicked geometrically with some sort of addition op-
eration on the oriented circles B linking A? An oriented circle B can be thought
of as a path traversed in time, starting and ending at the same point x;, which we
can choose to be any point on the circle. Such a path starting and ending at the
same point is called a loop. Two different loops B and B’ both starting and end-
ing at the same point x,, can be ‘added’ to form a new loop B + B" that travels first
around B, then around B’. For example, if B; and B; are loops each linking A once in
the positive direction,

then their sum B, + B} B B

. 1 2

is d.eformabl'e to 1.32 ,. % X, A~ @ x,
linking A twice. Simi- — !

larly, B, + B_; canbe A ! A

deformed to the loop B
B, unlinked from A. !
0, I = X, NN~ = k X,
More generally, we see ] Z ]
that B,, + B, can be A ! A B,

deformed to B for
arbitrary integers m and n.

m+n

Note that in forming sums of loops we produce loops that pass through the base-
point more than once. This is one reason why loops are defined merely as continuous
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paths, which are allowed to pass through the same point many times. So if one is
thinking of a loop as something made of stretchable string, one has to give the string
the magical power of being able to pass through itself unharmed. However, we must
be sure not to allow our loops to intersect the fixed circle A at any time, otherwise we
could always unlink them from A.

Next we consider a slightly more complicated sort of linking, involving three cir-
cles forming a configuration known as the Borromean rings, shown at the left in the fig-
ure below. The interesting feature here is that if any one of the three circles is removed,
the other two are not
linked. In the same A B
spirit as before, let us )
regard one of the cir- / \ AN~ ) )
cles, say C, as a loop \
in the complement of C C
the other two, A and
B, and we ask whether C can be continuously deformed to unlink it completely from
A and B, always staying in the complement of A and B during the deformation. We
can redraw the picture by pulling A and B apart, dragging C along, and then we see
C winding back and forth between A and B as shown in the second figure above.
In this new position, if we start at the point of C indicated by the dot and proceed
in the direction given by the arrow, then we pass in sequence: (1) forward through
A, (2) forward through B, (3) backward through A, and (4) backward through B. If
we measure the linking of C with A and B by two integers, then the ‘forwards’ and
‘backwards’ cancel and both integers are zero. This reflects the fact that C is not
linked with A or B individually.

To get a more accurate measure of how C links with A and B together, we re-
gard the four parts (1)-(4) of C as an ordered sequence. Taking into account the
directions in which these segments of C pass
through A and B, we may deform C to the sum
a+b—a - Db of four loops as in the figure. We
write the third and fourth loops as the nega-
tives of the first two since they can be deformed
to the first two, but with the opposite orienta-
tions, and as we saw in the preceding exam-
ple, the sum of two oppositely oriented loops
is deformable to a trivial loop, not linked with

anything. We would like to view the expression

a+ b —a — b as lying in a nonabelian group, so that it is not automatically zero.
Changing to the more usual multiplicative notation for nonabelian groups, it would
be written aba 'b~!, the commutator of a and b.
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To shed further light on this example, suppose we modify it slightly so that the cir-
cles A and B are now linked, as in the next figure. The circle C can then be deformed
into the position shown at

the right, where it again rep- A B A B
resents the composite loop /

aba 'b~', where a and b / \ AN

are loops linking A and B. t\:// y

But from the picture on the C C
left it is apparent that C can

actually be unlinked completely from A and B. So in this case the product aba 'b~!
should be trivial.

The fundamental group of a space X will be defined so that its elements are
loops in X starting and ending at a fixed basepoint x, € X, but two such loops
are regarded as determining the same element of the fundamental group if one loop
can be continuously deformed to the other within the space X. (All loops that occur
during deformations must also start and end at x,.) In the first example above, X is
the complement of the circle A, while in the other two examples X is the complement
of the two circles A and B. In the second section in this chapter we will show:

= The fundamental group of the complement of the circle A in the first example is
infinite cyclic with the loop B as a generator. This amounts to saying that every
loop in the complement of A can be deformed to one of the loops B,,, and that
B,, cannot be deformed to B,, if n # m.

= The fundamental group of the complement of the two unlinked circles A and B in
the second example is the nonabelian free group on two generators, represented
by the loops a and b linking A and B. In particular, the commutator aba 'b™!
is a nontrivial element of this group.

= The fundamental group of the complement of the two linked circles A and B in
the third example is the free abelian group on two generators, represented by the
loops a and b linking A and B.

As a result of these calculations, we have two ways to tell when a pair of circles A
and B is linked. The direct approach is given by the first example, where one circle
is regarded as an element of the fundamental group of the complement of the other
circle. An alternative and somewhat more subtle method is given by the second and
third examples, where one distinguishes a pair of linked circles from a pair of unlinked
circles by the fundamental group of their complement, which is abelian in one case and
nonabelian in the other. This method is much more general: One can often show that
two spaces are not homeomorphic by showing that their fundamental groups are not
isomorphic, since it will be an easy consequence of the definition of the fundamental
group that homeomorphic spaces have isomorphic fundamental groups.
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1.1 Basic Constructions

This first section begins with the basic definitions and constructions, and then
proceeds quickly to an important calculation, the fundamental group of the circle,
using notions developed more fully in §1.3. More systematic methods of calculation
are given in §1.2. These are sufficient to show for example that every group is realized
as the fundamental group of some space. This idea is exploited in the Additional
Topics at the end of the chapter, which give some illustrations of how algebraic facts
about groups can be derived topologically, such as the fact that every subgroup of a
free group is free.

Paths and Homotopy

The fundamental group will be defined in terms of loops and deformations of
loops. Sometimes it will be useful to consider more generally paths and their defor-
mations, so we begin with this slight extra generality.

By a path in a space X we mean a continuous map f:I— X where I is the unit
interval [0,1]. The idea of continuously deforming a path, keeping its endpoints
fixed, is made precise by the following definition. A homotopy of paths in X is a
family f;:1—X, 0 <t <1, such that

(1) The endpoints f;(0) = x, and f;(1) = x;

are independent of t.

(2) The associated map F:I1xI— X defined by

F(s,t) = f;(s) is continuous.

When two paths f;, and f; are connected in this way by a homotopy f;, they are said
to be homotopic. The notation for this is f, = f;.

Example 1.1: Linear Homotopies. Any two paths f;, and f; in R" having the same
endpoints x, and x; are homotopic via the homotopy f;(s) = (1 — ) fo(s) + tf;(s).
During this homotopy each point f,(s) travels along the line segment to f;(s) at con-
stant speed. This is because the line through f,(s) and f, (s) is linearly parametrized
as fo(s) +tLfi(s) — fo(s)] = (1 =) fy(s) + tfi(s), with the segment from f;(s) to
f1(s) covered by t values in the interval from 0 to 1. If f; (s) happens to equal f;(s)
then this segment degenerates to a point and f;(s) = f;(s) for all t. This occurs in
particular for s = 0 and s = 1, so each f; is a path from x; to x;. Continuity of
the homotopy f; as amap I xI—R" follows from continuity of f, and f; since the
algebraic operations of vector addition and scalar multiplication in the formula for f;
are continuous.

This construction shows more generally that for a convex subspace X c R", all
paths in X with given endpoints x, and x; are homotopic, since if f;, and f; lie in
X then so does the homotopy f;.
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Before proceeding further we need to verify a technical property:

Proposition 1.2. The relation of homotopy on paths with fixed endpoints in any space

is an equivalence relation.

The equivalence class of a path f under the equivalence relation of homotopy
will be denoted [ f] and called the homotopy class of f.

Proof: Reflexivity is evident since f ~ f by the constant homotopy f; = f. Symmetry
is also easy since if f, = f| via f;, then f; ~ f, via the inverse homotopy f;_;. For
transitivity, if f, =~ f} via f; and if f; = g, with g4 = g,
via g;, then f,, = g, via the homotopy h; that equals f,; for
0=<t=<l',and gy_; for Y/, <t < 1. These two definitions
agree for t = 1/, since we assume f; = g,. Continuity of the
associated map H(s,t) = h;(s) comes from the elementary

fact, which will be used frequently without explicit mention, that a function defined
on the union of two closed sets is continuous if it is continuous when restricted to
each of the closed sets separately. In the case at hand we have H(s,t) = F(s,2t) for
0<t<lyand H(s,t) = G(s,2t — 1) for 1/, <t < 1 where F and G are the maps
IxI— X associated to the homotopies f; and g,. Since H is continuous on I x [0, 1/,]
and on I x[1/,,1], it is continuous on Ix1. |

Given two paths f,g:I1— X such that f(1) = g(0), there is a composition or
product path f-g that traverses first f and then g, defined by the formula

f(2s), O<s<VYy
f-9(s) = ) ’
gi2s-1), Y =<s<1
Thus f and g are traversed twice as fast in order for f.g to be traversed in unit
time. This product operation respects homotopy classes
T . : Jo 9o
since if f, =~ f} and g, = g, via homotopies f; and g,,
and if f,(1) = g,(0) so that f,-g, is defined, then f;-g; @@
is defined and provides a homotopy f,-go = f1-9: - hi 9,

In particular, suppose we restrict attention to paths f:I— X with the same start-
ing and ending point f(0) = f(1) = x, € X. Such paths are called loops, and the
common starting and ending point x,, is referred to as the basepoint. The set of all
homotopy classes [ f] of loops f:I— X at the basepoint x is denoted 1, (X, x,).

|| Proposition 1.3. (X, xq) is a group with respect to the product [ f1lg]l = [f-g].

This group is called the fundamental group of X at the basepoint x,. We
will see in Chapter 4 that m, (X, x,) is the first in a sequence of groups m, (X, x,),
called homotopy groups, which are defined in an entirely analogous fashion using the
n-dimensional cube I" in place of I.



Basic Constructions Section 1.1 27

—

Proof: By restricting attention to loops with a fixed basepoint x, € X we guarantee
that the product f.g of any two such loops is defined. We have already observed
that the homotopy class of f.g depends only on the homotopy classes of f and g,
so the product [ f1[g] = [f-g] is well-defined. It remains to verify the three axioms
for a group.

As a preliminary step, define a reparametrization of a path f to be a composi-
tion f@ where @ :I—1 is any continuous map such that ¢ (0) = 0 and @ (1) = 1.
Reparametrizing a path preserves its homotopy class since f@ ~ f via the homotopy
fo; where @;(s) = (1 - t)@(s) +ts so that ¢y = @ and @,(s) = s. Note that
(1 -t)@p(s) + ts lies between @(s) and s, hence is in I, so the composition f@; is
defined.

If we are given paths f, g, h with f(1) = g(0) and g(1) = h(0), then both prod-
ucts (f-g)-h and f-(g-h) are defined, and f-(g-h) is areparametrization

of (f-g)-h by the piecewise linear function ¢ whose graph is shown
in the figure at the right. Hence (f.g)-h ~ f.(g-h). Restricting atten-

tion to loops at the basepoint x,, this says the product in T (X, x() is
associative.

Given a path f:T1— X, let ¢ be the constant path at f(1), defined by c(s) = f(1)
forall s € I. Then f-.c is areparametrization of f via the function ¢ whose graph is
shown in the first figure at the right, so f.c ~ f. Similarly,
c-f =~ f where c is now the constant path at f(0), using

the reparametrization function in the second figure. Taking

f to be a loop, we deduce that the homotopy class of the
constant path at x, is a two-sided identity in 71; (X, x;) .
For a path f from x, to x,, the inverse path f from x, back to x, is defined
by f(s) = f(1 —s). To see that f-f is homotopic to a constant path we use the
homotopy h; = f;-g; where f; is the path that equals f on the interval [0,1 — t]
and that is stationary at f(1 —t) on the interval [1 — ¢, 1], and g, is the inverse path
of f;. We could also describe h; in terms of the associated function
H:IxI— X using the decomposition of I xI shown in the figure. On

the bottom edge of the square H is given by f-f and below the ‘V’ we
let H(s,t) be independent of t, while above the V' we let H(s,t) be
independent of s. Going back to the first description of h;, we see that since f, = f
and f) is the constant path ¢ at x;, h, is a homotopy from f .f to c-¢ = c. Replacing
f by f gives f.f = ¢ for c the constant path at x,. Taking f to be a loop at the
basepoint x,, we deduce that [ f] is a two-sided inverse for [ f] in 11, (X, x,). O

Example 1.4. For a convex set X in R™ with basepoint Xo € X we have (X, x,) =0,
the trivial group, since any two loops f;, and f; based at x, are homotopic via the
linear homotopy f;(s) = (1 —t)f,(s) + t.f,(s), as described in Example 1.1.
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Itis not so easy to show that a space has a nontrivial fundamental group since one
must somehow demonstrate the nonexistence of homotopies between certain loops.
We will tackle the simplest example shortly, computing the fundamental group of the
circle.

It is natural to ask about the dependence of T, (X, x)) on the choice of the base-
point x;. Since T, (X, x,) involves only the path-component of X containing x,, it
is clear that we can hope to find a relation between T, (X, x,) and (X, x;) for two
basepoints x, and x; only if x, and x; lie in the same path-component of X. So
let h:1— X be a path from x,, to x;, with the inverse path
h(s) = h(1-s5) from x, back to x,. We can then associate /_;LQ
to each loop f based at x; the loop h- f-h based at x. Xo X1 f
Strictly speaking, we should choose an order of forming the product h- f - h, either
(h-f)-h or h-(f-h), but the two choices are homotopic and we are only interested in
homotopy classes here. Alternatively, to avoid any ambiguity we could define a gen-
eral n-fold product f,- --- - f,, in which the path f; is traversed in the time interval

(5 %]

Proposition 1.5. The map B,,: 11, (X, x,) — 11, (X, x,) defined by B,[f] = [h-f-h]
is an isomorphism.

Proof: If f, is a homotopy of loops based at x; then h-f,-h is a homotopy of
loops based at x,, so B, is well-defined. Further, §, is a homomorphism since
Bnlf-gl =[h-f-g-h] = [h-f-h-h-g-h] = B,[f1B,[g]. Finally, B, is an isomorphism
with inverse B since B,Bz[f]1 = Bulh-f-h] =[h-h-f-h-h] = [f], and similarly
BrBnlf1=1Lf]. O

Thus if X is path-connected, the group (X, x,) is, up to isomorphism, inde-
pendent of the choice of basepoint x,. In this case the notation , (X, x,) is often
abbreviated to 11, (X), or one could go further and write just 1, X.

In general, a space is called simply-connected if it is path-connected and has
trivial fundamental group. The following result explains the name.

Proposition 1.6. A space X is simply-connected iff there is a unique homotopy class

of paths connecting any two points in X.

Proof: Path-connectedness is the existence of paths connecting every pair of points,
so we need be concerned only with the uniqueness of connecting paths. Suppose
m(X) = 0. If f and g are two paths from x, to x;, then f = f.g-.-g = g since
the loops g-g and f-g are each homotopic to constant loops, using the assumption
1M, (X, xy) = 0 in the latter case. Conversely, if there is only one homotopy class of
paths connecting a basepoint x to itself, then all loops at x; are homotopic to the
constant loop and T, (X, x,) = 0. O



Basic Constructions Section 1.1 29

—

The Fundamental Group of the Circle

Our first real theorem will be the calculation 7, (S') ~ Z. Besides its intrinsic
interest, this basic result will have several immediate applications of some substance,
and it will be the starting point for many more calculations in the next section. It
should be no surprise then that the proof will involve some genuine work. To max-
imize the payoff for this work, the proof is written so that its main technical steps
apply in the more general setting of covering spaces, the main topic of §1.3.

Theorem 1.7. The map ¢:7— 1 (81 sending an integer n to the homotopy class

of the loop w,,(s) = (cos2mrns,sin2mns) based at (1,0) is an isomorphism.

Proof: The ideais to compare paths in S with pathsin R via the map
p: R—S! given by p(s) = (cos 27rs, sin 27rs). This map can be visu-
alized geometrically by embedding R in R® as the helix parametrized
by s — (cos27rs,sin27rs,s), and then p is the restriction to the he-
lix of the projection of R® onto R?, (x,y,z) — (x,y), as in the
figure. Observe that the loop w,, is the composition pw, where
w,, :I—R is the path @, (s) = ns, starting at 0 and ending at n,
winding around the helix |n| times, upward if n > 0 and downward

O?.._MQ,

if n < 0. The relation w,, = pw,, is expressed by saying that w,, is
a lift of w,,

The definition of ® can be reformulated by setting ®(n) equal to the homotopy
class of the loop p f for f any path in R from O to n. Such an f is homotopic to
w),, via the linear homotopy (1 — t) f + tw,,, hence pf is homotopic to pw,, = w,
and the new definition of ®(n) agrees with the old one.

To verify that ¢ is a homomorphism, let 7,,:R— R be the translation T,,(x) =
x + m. Then ®,, - (1,,@,) is a path in R from 0 to m + n, so ®(m + n) is the
homotopy class of the loop in S' that is the image of this path under p. This image
is just w,, -w,, s0 ®(m +n) =d(m)-d(n).

To show that & is an isomorphism we shall use two facts:

(a) For each path f:I—S' starting at a point x, € S' and each X, € p~'(x,) there
is a unique lift f: I—R starting at X,,.

(b) For each homotopy f;:I—S L of paths starting at x, and each X, € p’l(xo)
there is a unique lifted homotopy ft :I—R of paths starting at X,,.

Before proving these facts, let us see how they imply the theorem. To show that ® is
surjective, let f:I—S' be aloop at the basepoint (1, 0), representing a given element
of rrl(Sl). By (a) there is a lift fN starting at 0. This path f ends at some integer n
since pf(l) = f(1) = (1,0) and p’l(l,O) = 7Z C R. By the extended definition of &
we then have ®(n) = [pf] = [f]. Hence & is surjective.
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To show that ¢ is injective, suppose ®(m) = ®(n), which means w,, = w,,.
Let f; be a homotopy from w,, = f, to w, = f;. By (b) this homotopy lif‘[s to a
homotopy ft of paths startlng at 0. The uniqueness part of (a) 1mphes that fo =
and f1 = w,. Since ft is a homotopy of paths, the endpoint ft 1) is mdependent
of t. For t = 0 this endpoint is m and for t = 1 itis n, so m = n.

It remains to prove (a) and (b). Both statements can be deduced from a more
general assertion:

(c) Given a map F: YxI—S!' and a map F:Yx {0} —R lifting F|Y x {0}, then there
is a unique map F:YxI—R lifting F and restricting to the given F on Yx {0}.

Statement (a) is the special case that Y is a point, and (b) is obtained by applying (c)
with Y = I in the following way. The homotopy f; in (b) gives amap F:IxXI—S U py
setting F(s,t) = f;(s) as usual. A unique lift F:Ix{0}—R is obtained by an appli-
cation of (a). Then (c) gives a unique lift F:IxI—R. The restrictions F [{0} xI and
F1{1}xI are paths lifting the constant path at x,, hence they must also be constant
by the uniqueness part of (a). So ft(s) = F(s,t) is a homotopy of paths, and ft lifts
f;: since pF =F.

We shall prove (c) using just one special property of the projection p:R—S?,
namely:

There is an open cover {U,} of S' such that for each &, p~'(U,) can be
(*) decomposed as a disjoint union of open sets each of which is mapped homeo-
morphically onto U, by p.

For example, we could take the cover {U,} to consist of any two open arcs in st
whose union is S*.

To prove (c) we will first construct a lift F:NxI—R for N some neighborhood
in Y of a given point y, € Y. Since F is continuous, every point (y,,t) € YxI has
a product neighborhood N;x (a;,b;) such that F(N,x (a;,b;)) c U, for some «.
By compactness of {y,}xI, finitely many such products N;x (a;, b;) cover {y,}xI.
This implies that we can choose a single neighborhood N of y, and a partition
0=ty <t <---<t, =1ofI sothat for each i, F(NX[t;,t;,1]) is contained
in some U, which we denote U;. Assume inductively that F has been constructed
on Nx[0,¢;]. We have F(Nx[t;,t;,1]) € U;, so by () there is an open set ﬁi CR
projecting homeomorphically onto U; by p and containing the point F (¥, £;) . After
replacing N by a smaller neighborhood of y, we may assume that F(Nx {t;}) is con-
tained in lNIi , namely, replace N X {t;} by its intersection with (F | N x {ti})‘1 ([N]i). Now
we can define F on Nx[t;,t,,,] tobe the composition of F with the homeomorphism
p L U,— ﬁi. After finitely many repetitions of this induction step we eventually get
alift F:NxI—R for some neighborhood N of y,.

Next we show the uniqueness part of (c) in the special case that Y is a point. In this
case we can omit Y from the notation. So suppose F and F are two lifts of F:1—S!
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such that F(0) = l?,(O). As before, choose a partition 0 = t; <t; < --- <t, =1 of
I so that for each i, F([t;, t;,,]) is contained in some U;. Assume inductively that
F=Fon [0, t;]. Since [t;,t;,;] is connected, so is ﬁ([ti, t;.11), which must therefore
lie in a single one of the disjoint open sets ﬁi projecting homeomorphically to U; as
in (). By the same token, I?,([ti, t;;1 D liesin a single ﬁi, in fact in the same one that
contains ﬁ([ti, ti;1]) since f'(ti) = f(ti). Because p is injective on lN]i and pF = pl?',
it follows that F = F on [£;,t;,1], and the induction step is finished.

The last step in the proof of (c) is to observe that since the F’s constructed above
on sets of the form NXxI are unique when restricted to each segment {y}xI, they
must agree whenever two such sets NxI overlap. So we obtain a well-defined lift F
on all of YxI. This F is continuous since it is continuous on each Nx I , and it is
unique since it is unique on each segment {y}xI. m|

Now we turn to some applications of this theorem. Although algebraic topology
is usually ‘algebra serving topology,’ the roles are reversed in the following proof of
the Fundamental Theorem of Algebra.

H Theorem 1.8. Every nonconstant polynomial with coefficients in C has a root in C.

Proof: We may assume the polynomial is of the form p(z) = z" + alz”‘1 +--+a,.

If p(z) has no roots in C, then for each real number » > 0 the formula

p(re /p(r)

lp(re?mis)/p(r)]

defines a loop in the unit circle S' ¢ C based at 1. As 7 varies, f, is a homotopy of
loops based at 1. Since f; is the trivial loop, we deduce that the class [f, ] € Trl(Sl)

2T!'i5)

fr(s) =

is zero for all . Now fix a large value of 7, bigger than |a,| + --- + |a,| and bigger
than 1. Then for |z| = » we have

2" =" =r " s (ag + -+ a2V 2 a2+ ay

From the inequality |z"| > Ialzn’1
n-1

+---+a,l| it follows that the polynomial p,(z) =
z"+t(a z" " +---+a,) hasnoroots on the circle |z| = ¥ when 0 < t < 1. Replacing
p by p; in the formula for f, above and letting t go from 1 to 0, we obtain a homo-
2mins

topy from the loop f, to the loop w, (s) =e
n times a generator of the infinite cyclic group (S 1y Since we have shown that

. By Theorem 1.7, w,, represents

[w,]=1[f,]1=0,we conclude that n = 0. Thus the only polynomials without roots
in C are constants. O

Our next application is the Brouwer fixed point theorem in dimension 2.

‘ Theorem 1.9. Every continuous map h:D*— D? has a fixed point, that is, a point
x with h(x) = x.

Here we are using the standard notation D" for the closed unit disk in R", all
vectors x of length |x| < 1. Thus the boundary of D" is the unit sphere S™ !,



32 | Chapter 1 The Fundamental Group

RS

Proof: Suppose on the contrary that h(x) # x forall x € D°.

Then we can define a map r :D> St by letting 7 (x) be the

point of S where the ray in R? starting at h(x) and passing

through x leaves D?. Continuity of r is clear since small per-

turbations of x produce small perturbations of h(x), hence r(x)

also small perturbations of the ray through these two points.

The crucial property of 7, besides continuity, is that 7 (x) = x if x € S'. Thus 7 is
a retraction of D? onto S'. We will show that no such retraction can exist.

Let f, beanyloopin S ' In D? there is a homotopy of Jo to a constant loop, for
example the linear homotopy f;(s) = (1 — t) fy(s) + tx, where x is the basepoint
of f,. Since the retraction v is the identity on S ! the composition 7 f: is then a
homotopy in S' from 7 f, = f, to the constant loop at x,. But this contradicts the
fact that (S 1) is nonzero. m]

This theorem was first proved by Brouwer around 1910, one of the early triumphs
of algebraic topology. Brouwer in fact proved the corresponding result for D", and
we shall obtain this generalization in Corollary 2.11 using homology groups in place
of 7r;. One could also use the higher homotopy group ,,. Brouwer’s original proof
used neither homology nor homotopy groups, which had not been invented at the
time. Instead it used the notion of degree for maps S — S", which we shall define in
§2.2 using homology but which Brouwer defined directly in more geometric terms.

These proofs are all arguments by contradiction, and so they show just the exis-
tence of fixed points without giving any clue as to how to find one in explicit cases.
Our proof of the Fundamental Theorem of Algebra was similar in this regard. There
exist other proofs of the Brouwer fixed point theorem that are somewhat more con-
structive, for example the elegant and quite elementary proof by Sperner in 1928,
which is explained very nicely in [Aigner-Ziegler 1999].

The techniques used to calculate T, (S 1y can be applied to prove the Borsuk-Ulam
theorem in dimension two:

’ Theorem 1.10. For every continuous map f : $?—R? there exists a pair of antipodal
points x and —x in §% with f(x) = f(-x).

It may be that there is only one such pair of antipodal points x, —x, for example
if £ is simply orthogonal projection of the standard sphere S c R® onto a plane.

The Borsuk-Ulam theorem holds also for maps S — R", as we show in Proposi-
tion 2B.6. The proof for n = 1 is easy since the difference f(x)— f(—x) changes sign
as x goes halfway around the circle, hence this difference must be zero for some x.
For n > 2 the theorem is certainly less obvious. Is it apparent, for example, that
at every instant there must be a pair of antipodal points on the surface of the earth
having the same temperature and the same barometric pressure?
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The theorem says in particular that there is no one-to-one continuous map from
$? to R?, so S? is not homeomorphic to a subspace of R?, an intuitively obvious fact
that is not easy to prove directly.

Proof: If the conclusion is false for f:S*— R?, we can define a map g:5>—S' by
gx) = (f(x) = f(=x))/1f(x) — f(=x)|. Define a loop n circling the equator of
$2 c R® by n(s) = (cos 21s,sin27s,0), and let h:I1—S' be the composed loop an.
Since g(—x) = —g(x), we have the relation h(s +1/,) = —h(s) for all s in the interval
[0,1/,]1. As we showed in the calculation of 1T, (shH , the loop h can be lifted to a path
h:I—R. The equation h(s + 1/,) = —h(s) implies that I7L(5 + 1) = ]fNL(S) + 9/, for
some odd integer g that might conceivably depend on s € [0, !/,]. But in fact gq is
independent of s since by solving the equation ”Nl(S +1/,) = I’Nl(S) +9/, for g we see that
q depends continuously on s € [0, !/,], so ¢ must be a constant since it is constrained
to integer values. In particular, we have ]’Nl(l) = PNL(I/Z) + q/2 = fl(O) + gq. This means
that h represents g times a generator of T (S 1y, Since g is odd, we conclude that h
is not nullhomotopic. But h was the composition gn:I—S 2 s and n is obviously
nullhomotopic in $2, so gn is nullhomotopic in S' by composing a nullhomotopy of
n with g. Thus we have arrived at a contradiction. O

Corollary 1.11. Whenever S° is expressed as the union of three closed sets A, A,,

and A5, then at least one of these sets must contain a pair of antipodal points {x,—x} .

Proof: Let d;:S?— R measure distance to A;, that is, d;(x) = inf, ¢4, |x — »[. This
is a continuous function, so we may apply the Borsuk-Ulam theorem to the map
52—>[R2, x — (dy(x),d,(x)), obtaining a pair of antipodal points x and —x with
d,(x) =d,(-x) and d,(x) = d,(—x). If either of these two distances is zero, then
x and —x both lie in the same set A, or A, since these are closed sets. On the other
hand, if the distances from x and —x to A; and A, are both strictly positive, then
x and —x lie in neither A; nor A, so they must lie in Aj. O

To see that the number ‘three’ in this result is best possible, consider a sphere
inscribed in a tetrahedron. Projecting the four faces of the tetrahedron radially onto
the sphere, we obtain a cover of S by four closed sets, none of which contains a pair
of antipodal points.

Assuming the higher-dimensional version of the Borsuk-Ulam theorem, the same
arguments show that §" cannot be covered by n + 1 closed sets without antipodal
pairs of points, though it can be covered by n + 2 such sets, as the higher-dimensional
analog of a tetrahedron shows. Even the case n = 1 is somewhat interesting: If the
circle is covered by two closed sets, one of them must contain a pair of antipodal
points. This is of course false for nonclosed sets since the circle is the union of two
disjoint half-open semicircles.
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The relation between the fundamental group of a product space and the funda-
mental groups of its factors is as simple as one could wish:

Proposition 1.12. m(XXY) is isomorphic to 1w, (X)x 1, (Y) if X and Y are path-
connected.

Proof: A basic property of the product topology is that a map f:Z—XxY is con-
tinuous iff the maps g:Z— X and h:Z—Y defined by f(z) = (g(z),h(z)) are both
continuous. Hence aloop f in X XY based at (x, ) is equivalent to a pair of loops
g in X and h in Y based at x, and y, respectively. Similarly, a homotopy f; of aloop
in XxY is equivalent to a pair of homotopies g, and h; of the corresponding loops
in X and Y. Thus we obtain a bijection 11, (XX Y, (x4, o)) = T, (X, x0) X 11, (Y, 7)),
[f]1+~ ([g],[h]). This is obviously a group homomorphism, and hence an isomor-
phism. O

Example 1.13: The Torus. By the proposition we have an isomorphism 7t; (S Lwsh =
Zx 7. Under this isomorphism a pair (p,q) € ZxZ corresponds to a loop that winds
p times around one S! factor of the torus and g times around the
other S! factor, for example the loop wM(s) = (wp(s),wq(s)).
Interestingly, this loop can be knotted, as the figure shows for
the case p = 3, g = 2. The knots that arise in this fashion, the
so-called torus knots, are studied in Example 1.24.

More generally, the n-dimensional torus, which is the product of n circles, has
fundamental group isomorphic to the product of n copies of Z. This follows by
induction on n.

Induced Homomorphisms

Suppose @ : X —Y is amap taking the basepoint x, € X to the basepoint y, € Y.
For brevity we write @ : (X, xy) — (Y, ) in this situation. Then @ induces a homo-
morphism @, : 1, (X, x,) — 11, (Y, ), defined by composing loops f:I— X based at
xo with @, thatis, @,[f] = [@f]. This induced map @, is well-defined since a
homotopy f; of loops based at x|, yields a composed homotopy @ f; of loops based
at vy, 80 Q. [fol = [@fy] = [@fi]= @.[f1]. Furthermore, @, is a homomorphism
since @ (f-g) = (¢ f)-(®pg), both functions having the value @ f(2s) for 0 <s </,
and the value pg(2s — 1) forl/, <s < 1.

Two basic properties of induced homomorphisms are:

- (PY), = @, foracomposition (X,x,) 5 (Y, ¥y) - (Z,z).
= 1, =1, whichis a concise way of saying that the identity map 1 :X— X induces
the identity map 1 : 11 (X, x() — 11 (X, X¢) .

The first of these follows from the fact that composition of maps is associative, so
() f = @(yYf), and the second is obvious. These two properties of induced homo-
morphisms are what makes the fundamental group a functor. The formal definition
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of a functor requires the introduction of certain other preliminary concepts, however,
so we postpone this until it is needed in §2.3.

If @ is ahomeomorphism with inverse ¢ then @, is anisomorphism with inverse
Y, since @ Y, = (pyY), =1, =1 and similarly ¢, @, = 1. We will use this fact in
the following calculation of the fundamental groups of higher-dimensional spheres:

| Proposition 1.14. ,(S™) = 0 if n = 2.

Proof: Let f be aloop in S™ at a chosen basepoint x,. If the image of f is disjoint
from some other point x € S" then f is nullhomotopic since S — {x} is homeo-
morphic to R™, which is simply-connected. So it will suffice to homotope f to be
nonsurjective. To do this we will look at a small open ball B in S™ about any point
X # x, and see that the number of times that f enters B, passes

through x, and leaves B is finite, and each of these portions of f can

be pushed off x without changing the rest of f. At first glance this

might appear to be a difficult task to achieve since the parts of f in B

could be quite complicated geometrically, for example space-filling

curves. But in fact it turns out to be rather easy.

The set f -1 (B) isopenin (0, 1), hence is the union of a possibly infinite collection
of disjoint open intervals (a;, b;). The compact set f ~1(x) is contained in the union of
these intervals, so it must be contained in the union of finitely many of them. Consider
one of the intervals (a;, b;) meeting f~'(x). The path f; obtained by restricting f to
the closed interval [a;, b;] lies in the closure of B, and its endpoints f(a;) and f(b;)
lie in the boundary of B. If n > 2, we can choose a path g; from f(a;) to f(b;) in
the closure of B but disjoint from x. For example, we could choose g; to lie in the
boundary of B, which is a sphere of dimension n — 1, hence path-connected if n > 2.
Since the closure of B is homeomorphic to a convex set in R" and hence simply-
connected, the path f; is homotopic to g; by Proposition 1.6, so we may homotope f
by deforming f; to g;. After repeating this process for each of the intervals (a;, b;)
that meet f!(x), we obtain a loop g homotopic to the original f and with g(I)
disjoint from x. O

Example 1.15. For a point x in R", the complement R" — {x} is homeomorphic to
S"1xR, so by Proposition 1.12 m (R" — {x}) is isomorphic to Trl(S"_l)xrrl([R).
Hence Trl([R" —{x}) is Z for n = 2 and trivial for n > 2.

Here is an application of this calculation:

|| Corollary 1.16. R? is not homeomorphic to R" for n « 2.

Proof: Suppose f:R*>—R" is a homeomorphism. The case n = 1 is easily disposed
of since R? — {0} is path-connected but the homeomorphic space R"™ — {£(0)} is not
path-connected when n = 1. When n > 2 we cannot distinguish R? — {0} from
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R™ — {f(0)} by the number of path-components, but by the preceding calculation of
m (R™ — {x}) we can distinguish them by their fundamental groups. O

The more general statement that R™ is not homeomorphic to R" if m # n can
be proved in the same way using either the higher homotopy groups or homology
groups. In fact, nonempty open sets in R™ and R" can be homeomorphic only if
m = n, as we will show in Theorem 2.19 using homology.

Induced homomorphisms allow relations between spaces to be transformed into
relations between their fundamental groups. Here is an illustration of this principle:

Proposition 1.17. If a space X retracts onto a subspace A, then the homomorphism
i, 11 (4, x9) =1 (X, x() induced by the inclusion i:A — X is injective. If A is a
deformation retract of X, then i, is an isomorphism.

Proof: If »: X — A is aretraction, then ri = 1, hence r,i, = 1, which implies that i,
isinjective. If 7, : X — X is a deformation retraction of X onto A,so 7, =1, 7, |A=1,
and 7, (X) C A, then for any loop f:I— X based at x, € A the composition 7, f gives
a homotopy of f toaloopin A, so i, is also surjective. O

This gives another way of seeing that S! is not a retract of D?, a fact we showed
earlier in the proof of the Brouwer fixed point theorem, since the inclusion-induced
map 7T1(Sl) — T (DZ) is a homomorphism Z— 0 that cannot be injective.

The exact group-theoretic analog of a retraction is a homomorphism p of a group
G onto a subgroup H such that p restricts to the identity on H. In the notation
above, if we identify 1T, (A) with its image under i, , then v, is such a homomorphism
from 11, (X) onto the subgroup 1, (A). The existence of a retracting homomorphism
p:G— H is quite a strong condition on H. If H is a normal subgroup, it implies that
G is the direct product of H and the kernel of p. If H is not normal, then G is what
is called in group theory the semi-direct product of H and the kernel of p.

Recall from Chapter O the general definition of a homotopy as a family ¢, : X—Y,
t € I, such that the associated map ®: XxI—Y,®(x,t) = @,(x), is continuous. If ¢,
takes a subspace A C X to asubspace B C Y for all t, then we speak of a homotopy of
maps of pairs, @;:(X,A)— (Y,B). In particular, a basepoint-preserving homotopy
@; (X, x9)— (Y, y,) is the case that @, (x,) = y, for all {. Another basic property
of induced homomorphisms is their invariance under such homotopies:

= If @, : (X, xy) — (Y,y,) is a basepoint-preserving homotopy, then @, = @4,

This holds since @, [f] = [@of] = [@1.f] = @[ f], the middle equality coming
from the homotopy @, f.

There is a notion of homotopy equivalence for spaces with basepoints. One says
(X,x9) = (Y,y,) if there are maps @:(X,x,)—(Y,y,) and @ :(Y,yy) — (X, xy)
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with homotopies @y ~ 1 and @@ =~ 1 through maps fixing the basepoints. In
this case the induced maps on mr; satisfy @, p, = (@), = 1, = 1 and likewise
Y,.p, =1, s0 @, and y, are inverse isomorphisms 1, (X, x,) = m;(Y,y,). This
somewhat formal argument gives another proof that a deformation retraction induces
an isomorphism on fundamental groups, since if X deformation retracts onto A then
(X, xq) = (A, x,) for any choice of basepoint x, € A.

Having to pay so much attention to basepoints when dealing with the fundamental
group is something of a nuisance. For homotopy equivalences one does not have to
be quite so careful, as the conditions on basepoints can actually be dropped:

Proposition 1.18. If ¢ : X —Y is a homotopy equivalence, then the induced homo-
morphism @, : 10, (X, xy) — 11, (Y, @ (xy)) is an isomorphism for all x, € X .

The proof will use a simple fact about homotopies that do not fix the basepoint:

Lemma 1.19. If ©;:X—Y is a homotopy and - (Y, @,(x,))
h is the path @,(x,) formed by the images of /

. . 0,(X, %) |8
a basepoint x, € X, then the three maps in the
. . . _ Pox ‘lTl( Y, QD()(XO))
diagram at the right satisfy ®yy = Bp P14 -
Proof: Let h; be therestriction of h to theinterval [0, ],
with a reparametrization so that the domain of h, is still P (x)
[0, 1]. Explicitly, we can take h;(s) = h(ts). Thenif f is
aloopin X at the basepoint x,, the product ht-((ptf)-ﬁt
gives a homotopy of loops at @(x,). Restricting this Py(x,)
homotopy to t = 0 and t = 1, we see that @, ([f]) =
Br (@1 (LfD)- o

P1f
,Iqotf
@
Proof of 1.18: Let ¢ :Y— X be a homotopy-inverse for ¢, so that @ =~ 1 and
Y@ =~ 1. Consider the maps

T (X, X0) = 11 (Y, @ (%)) — ™ (X, W@ (x0)) == 1 (Y, @ (x))

The composition of the first two maps is an isomorphism since @ =~ 1 implies that
Y., = B for some h, by the lemma. In particular, since @, @, is an isomorphism,
@, is injective. The same reasoning with the second and third maps shows that ¢,
is injective. Thus the first two of the three maps are injections and their composition
is an isomorphism, so the first map @, must be surjective as well as injective. O
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Exercises

1. Show that composition of paths satisfies the following cancellation property: If
Jo+90 = f1-9, and g, = g, then f; = f;.

2. Show that the change-of-basepoint homomorphism f; depends only on the homo-
topy class of h.

3. For a path-connected space X, show that mr, (X) is abelian iff all basepoint-change
homomorphisms f; depend only on the endpoints of the path h.

4. A subspace X C R" is said to be star-shaped if there is a point x, € X such that,
for each x € X, the line segment from x, to x lies in X. Show that if a subspace
X c R" is locally star-shaped, in the sense that every point of X has a star-shaped
neighborhood in X, then every path in X is homotopic in X to a piecewise linear
path, that is, a path consisting of a finite number of straight line segments traversed
at constant speed. Show this applies in particular when X is open or when X is a
union of finitely many closed convex sets.

5. Show that for a space X, the following three conditions are equivalent:

(@) Every map S'— X is homotopic to a constant map, with image a point.

(b) Every map S'— X extends to a map D°>— X.

() (X, x() =0 forall x, € X.
Deduce that a space X is simply-connected iff all maps S!— X are homotopic. [In
this problem, ‘homotopic’ means ‘homotopic without regard to basepoints.’]

6. We can regard (X, x,) as the set of basepoint-preserving homotopy classes of
maps (Sl, So) — (X, xq) . Let [Sl, X1 be the set of homotopy classes of maps st —X,
with no conditions on basepoints. Thus there is a natural map &: 1 (X, x,) —[S 1 Xx]
obtained by ignoring basepoints. Show that ® is onto if X is path-connected, and that
O([f]) =d([g]) iff [f] and [g] are conjugate in 1T, (X, x,). Hence ® induces a one-
to-one correspondence between [S 1,X ] and the set of conjugacy classes in 11, (X),
when X is path-connected.

7. Define f:S'xI—S'xI by f(0,s) = (0 + 2ms,s), so f restricts to the identity
on the two boundary circles of S'xI. Show that f is homotopic to the identity by
a homotopy f; that is stationary on one of the boundary circles, but not by any ho-
motopy f; that is stationary on both boundary circles. [Consider what f does to the
path s — (6,,s) for fixed 6, € S*.]

8. Does the Borsuk-Ulam theorem hold for the torus? In other words, for every map

f:8'x 81— R? must there exist (x,y) € S'xS! such that f(x,y) = f(-x,-y)?

9. Let A;, A,, A; be compact sets in R?. Use the Borsuk-Ulam theorem to show
that there is one plane P ¢ R? that simultaneously divides each A; into two pieces of
equal measure.
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10. From the isomorphism 1, (X XY, (x4, 7)) = (X, x) X 11, (Y, »,) it follows that
loopsin XX {y,} and {x,} XY represent commuting elements of 71, (X XY, (x(, ,))-
Construct an explicit homotopy demonstrating this.

11. If X, is the path-component of a space X containing the basepoint x, show that
the inclusion X, — X induces an isomorphism 1, (X, xq) — 11, (X, X() .

12. Show that every homomorphism 7, (S 1) — (S 1) can be realized as the induced
homomorphism @, of amap @ :st—gt,

13. Given a space X and a path-connected subspace A containing the basepoint x,

show that the map T, (A, x) — 11, (X, X)) induced by the inclusion A< X is surjective
iff every path in X with endpoints in A is homotopic to a path in A.

14. Show that the isomorphism 1T (XXY) = 11 (X)X (Y) in Proposition 1.12 is
given by [f] — (p1.([f]), P, ([f])) where p, and p, are the projections of XxY
onto its two factors.

15. Given a map f:X—Y and a path h:I—X (X, x,) B (X, X,)
from x; to x;, show that f, B, = B, f, in the f*l lf*
diagram at the right. B

1Y, flx ) —L (Y, f(xy)
16. Show that there are no retractions 7 : X — A in the following cases:
(@) X = R® with A any subspace homeomorphic to S'.
b) X=5' x D? with A its boundary torus Sstxst.

< >

(¢) X = S'xD? and A the circle shown in the figure.

(d) X = D? v D? with A its boundary S' v S'.

(e) X a disk with two points on its boundary identified and A its boundary S' v S!.
(f) X the Mobius band and A its boundary circle.

17. Construct infinitely many nonhomotopic retractions S* v §' —S?.

18. Using the technique in the proof of Proposition 1.14, show that if a space X is

obtained from a path-connected subspace A by attaching a cell e with n > 2, then

the inclusion A — X induces a surjection on ;. Apply this to show:

(@) The wedge sum S' v $? has fundamental group Z.

(b) For a path-connected CW complex X the inclusion map X' < X of its 1-skeleton
induces a surjection 1 (X 1)—>1T1 (X). [For the case that X has infinitely many
cells, see Proposition A.1 in the Appendix.]

19. Modify the proof of Proposition 1.14 to show that if X is a path-connected
1-dimensional CW complex with basepoint x, a 0-cell, then every loop in X is ho-
motopic to a loop consisting of a finite sequence of edges traversed monotonically.
[This gives an elementary proof that 7, (S 1) is cyclic, generated by the standard loop
winding once around the circle. The more difficult part of the calculation of (S 1)
is therefore the fact that no iterate of this loop is nullhomotopic.]
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20. Suppose f;:X— X is a homotopy such that f;, and f, are each the identity map.
Use Lemma 1.19 to show that for any x, € X, the loop f; (x,) represents an element of
the center of T, (X, x). [One can interpret the result as saying that a loop represents
an element of the center of T, (X) if it extends to a loop of maps X — X .|

1.2 Van Kampen's Theorem

The van Kampen theorem gives a method for computing the fundamental groups
of spaces that can be decomposed into simpler spaces whose fundamental groups are
already known. By systematic use of this theorem one can compute the fundamental
groups of a very large number of spaces. We shall see for example that for every group
G there is a space X; whose fundamental group is isomorphic to G.

To give some idea of how one might hope to compute fundamental groups by
decomposing spaces into simpler pieces, let us look at an example. Consider the
space X formed by two circles A and B intersecting in a single point, which we
choose as the basepoint x,. By our preceding calculations we know that 71, (A) is
infinite cyclic, generated by a loop a that goes once around A.

Similarly, 1, (B) is a copy of Z generated by a loop b going b <><> a
once around B. Each product of powers of a and b then gives

an element of 1;(X). For example, the product a’b’a=3ba’ is the loop that goes
five times around A, then twice around B, then three times around A in the opposite
direction, then once around B, then twice around A. The set of all words like this
consisting of powers of a alternating with powers of b forms a group usually denoted
Z x Z. Multiplication in this group is defined just as one would expect, for example
(b4a5b2a’3) (a4b’1ab3) = b*a’b’ab 'ab®. The identity element is the empty word,
and inverses are what they have to be, for example (al72a’3b’4)’1 = v*a’pb?a .
It would be very nice if such words in a and b corresponded exactly to elements of
1T, (X), so that 71, (X) was isomorphic to the group Z * Z. The van Kampen theorem
will imply that this is indeed the case.

Similarly, if X is the union of three circles touching at a single point, the van
Kampen theorem will imply that 1, (X) is Z * Z * Z, the group consisting of words
in powers of three letters a, b, c. The generalization to a union of any number of
circles touching at one point will also follow.

The group Z x Z is an example of a general construction called the free product
of groups. The statement of van Kampen’s theorem will be in terms of free products,
so before stating the theorem we will make an algebraic digression to describe the
construction of free products in some detail.
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Free Products of Groups

Suppose one is given a collection of groups G, and one wishes to construct a
single group containing all these groups as subgroups. One way to do this would be
to take the product group [[,G,, whose elements can be regarded as the functions
& — gy € Gy. Or one could restrict to functions taking on nonidentity values at
most finitely often, forming the direct sum &, G. Both these constructions produce
groups containing all the G,’s as subgroups, but with the property that elements of
different subgroups G, commute with each other. In the realm of nonabelian groups
this commutativity is unnatural, and so one would like a ‘nonabelian’ version of [[,G 4
or @,G,. Since the sum P, G, is smaller and presumably simpler than [[,G,, it
should be easier to construct a nonabelian version of &, G, and this is what the free
product *, G, achieves.

Here is the precise definition. As a set, the free product *, G, consists of all
words g,9, - -+ g,, of arbitrary finite length m > 0, where each letter g; belongs to
a group G,, and is not the identity element of G, and adjacent letters g; and g;,,
belong to different groups G, thatis, «; # «;,;. Words satisfying these conditions
are called reduced, the idea being that unreduced words can always be simplified to
reduced words by writing adjacent letters that lie in the same G, as a single letter and
by canceling trivial letters. The empty word is allowed, and will be the identity element
of *,G,. The group operation in *,G, is juxtaposition, (g; -+ g,)(hy---h,) =
g1 Gmhy -+ h,,. This product may not be reduced, however: If g,, and h, belong
to the same G, they should be combined into a single letter (g,,,h;) according to the
multiplication in G, and if this new letter g,,h; happens to be the identity of G, it
should be canceled from the product. This may allow g,,_; and h, to be combined,
and possibly canceled too. Repetition of this process eventually produces a reduced
word. For example, in the product (g -+ g,)(gn, -+ g;") everything cancels and
we get the identity element of %, G, the empty word.

Verifying directly that this multiplication is associative would be rather tedious,
but there is an indirect approach that avoids most of the work. Let W be the set of
reduced words g, - -+ g,, as above, including the empty word. To each g € G, we
associate the function L, : W —W given by multiplication on the left, L, (g, - - - g,,) =
99: - 9, wWhere we combine g with g, if g, € G, to make gg, ---g,, a reduced
word. A key property of the association g ~— L, is the formula L,, = L,L, for
9,9 € Gy, thatis, g(g' (g, - - 9n)) = (99)(g, -+ g,,)- This special case of asso-
ciativity follows rather trivially from associativity in G,. The formula L;, = L L,
implies that L, is invertible with inverse L,-1. Therefore the association g — L, de-
fines a homomorphism from G, to the group P(W) of all permutations of W. More

generally, we can define L:W—P(W) by L(g, --- g,,) = L, - L, for eachreduced

g
word g, -+ g,,- This function L is injective since the permutation L(g, - - - g,,) sends

the empty word to g; --- g,,- The product operation in W corresponds under L to
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composition in P(W), because of the relation Lyg = LgLy. Since composition in
P (W) is associative, we conclude that the product in W is associative.

In particular, we have the free product Z % Z as described earlier. This is an
example of a free group, the free product of any number of copies of Z, finite or
infinite. The elements of a free group are uniquely representable as reduced words in
powers of generators for the various copies of Z, with one generator for each 7, just
as in the case of Z % Z. These generators are called a basis for the free group, and the
number of basis elements is the rank of the free group. The abelianization of a free
group is a free abelian group with basis the same set of generators, so since the rank
of a free abelian group is well-defined, independent of the choice of basis, the same
is true for the rank of a free group.

An interesting example of a free product that is not a free group is Z, * Z,. This
is like Z % Z but simpler since a® = e = b?, so powers of a and b are not needed, and
Z, % Z, consists of just the alternating words in a and b: a, b, ab, ba, aba, bab,
abab, baba, ababa, ---, together with the empty word. The structure of Z, * Z,
can be elucidated by looking at the homomorphism @:7, * Z,—Z, associating to
each word its length mod 2. Obviously @ is surjective, and its kernel consists of the
words of even length. These form an infinite cyclic subgroup generated by ab since
ba = (ab)™! in Z, * Z,. In fact, Z, * Z, is the semi-direct product of the subgroups
Z and Z, generated by ab and a, with the conjugation relation a(ab)a™! = (ab)7!.
This group is sometimes called the infinite dihedral group.

For a general free product *, G, each group G, is naturally identified with a
subgroup of *, G, the subgroup consisting of the empty word and the nonidentity
one-letter words g € G,. From this viewpoint the empty word is the common iden-
tity element of all the subgroups G, which are otherwise disjoint. A consequence
of associativity is that any product g, --- g,, of elements g; in the groups G, has a
unique reduced form, the element of *,G, obtained by performing the multiplica-
tions in any order. Any sequence of reduction operations on an unreduced product
g1+ 9m, combining adjacent letters g; and g,,; thatlie in the same G, or canceling
a g; thatis the identity, can be viewed as a way of inserting parentheses into g, - - - g,,,
and performing the resulting sequence of multiplications. Thus associativity implies
that any two sequences of reduction operations performed on the same unreduced
word always yield the same reduced word.

A basic property of the free product *, G, is that any collection of homomor-
phisms @, :G,— H extends uniquely to a homomorphism @ : *, G,— H. Namely,
the value of @ onaword g, --- g, with g; € G,, mustbe @, (g;) -+ P4, (g,), and
using this formula to define @ gives a well-defined homomorphism since the process
of reducing an unreduced product in *, G, does not affect its image under ¢. For
example, for a free product G x H the inclusions G — GXH and H — G X H induce
a surjective homomorphism G * H—GXH.
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The van Kampen Theorem

Suppose a space X is decomposed as the union of a collection of path-connected
open subsets A,, each of which contains the basepoint x, € X. By the remarks in the
preceding paragraph, the homomorphisms j,: 1 (A,) — 1 (X) induced by the inclu-
sions A, — X extend to a homomorphism &: *, 1, (A,) — 11, (X) . The van Kampen
theorem will say that @ is very often surjective, but we can expect ¢ to have a nontriv-
ial kernel in general. Forif i,z:11 (AyNAg) — 1 (A,) is the homomorphism induced
by the inclusion A, N Ag — A, then j,iypg = jgigy, both these compositions being
induced by the inclusion A, N Ay — X, so the kernel of ® contains all the elements
of the form iuﬁ(w)i[,,o‘(w)‘1 for w € 1 (A, N Ag). Van Kampen'’s theorem asserts
that under fairly broad hypotheses this gives a full description of ®:

Theorem 1.20. If X is the union of path-connected open sets A, each containing
the basepoint x, € X and if each intersection A, N Ag is path-connected, then the
homomorphism ®: x, 1, (A,) — 11 (X) is surjective. If in addition each intersection
AxNAgNA, is path-connected, then the kernel of ® is the normal subgroup N gener-
ated by all elements of the form i,g (w)ig(,((w)’1 , and so ® induces an isomorphism
T (X) = %, (Ay) /N.

Example 1.21: Wedge Sums. In Chapter 0 we defined the wedge sum \/, X, of a
collection of spaces X, with basepoints x, € X, to be the quotient space of the
disjoint union [[, X, in which all the basepoints x, are identified to a single point.
If each x, is a deformation retract of an open neighborhood U, in X, then X, is
a deformation retract of its open neighborhood A, = X, \j;.,Ug. The intersection
of two or more distinct A,’s is V, U,, which deformation retracts to a point. Van
Kampen's theorem then implies that &: x, 1, (X,) — 1, (V4 X,) is an isomorphism.

Thus for a wedge sum \/, S} of circles, 11, (\/, S%) is a free group, the free product
of copies of Z, one for each circle S. In particular, 1, (S' v S') is the free group Z*Z,
as in the example at the beginning of this section.

It is true more generally that the fundamental group of any connected graph is
free, as we show in §1.A. Here is an example illustrating the general technique.

Example 1.22. Let X be the graph shown in the figure, consist-

ing of the twelve edges of a cube. The seven heavily shaded edges

form a maximal tree T C X, a contractible subgraph containing all

the vertices of X. We claim that mr; (X) is the free product of five

copies of Z, one for each edge not in T. To deduce this from van
Kampen’s theorem, choose for each edge e, of X — T an open neighborhood A, of
T U e, in X that deformation retracts onto T U e,. The intersection of two or more
A,’s deformation retracts onto T, hence is contractible. The A,’s form a cover of
X satisfying the hypotheses of van Kampen’s theorem, and since the intersection of
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any two of them is simply-connected we obtain an isomorphism 71, (X) = %, 1 (A,).
Each A, deformation retracts onto a circle, so 1;(X) is free on five generators, as
claimed. As explicit generators we can choose for each edge e, of X — T aloop f,
that starts at a basepoint in T, travels in T to one end of e, then across e, then
back to the basepoint along a path in T.

Van Kampen’s theorem is often applied when there are just two sets A, and Ay in
the cover of X, so the condition on triple intersections A,NAzNA,, is superfluous and
one obtains an isomorphism 1, (X) =~ (11, (A,) * T, (AB)) /N, under the assumption
that A, N Ap is path-connected. The proof in this special case is virtually identical
with the proof in the general case, however.

One can see that the intersections A, N Ag need to be path-connected by con-
sidering the example of S decomposed as the union of two open arcs. In this case
@ is not surjective. For an example showing that triple intersections A, N Ag N A,
need to be path-connected, let X be the suspension of three points a, b, c, and let
Ay Aﬁ, and Ay be the complements of these three points. The theo-
rem does apply to the covering {A,, Ag}, so there are isomorphisms a <}> c
m(X) = m(Ay) * T (AB) ~ Z x Z since Ay N AB is contractible.

If we tried to use the covering {Aa,AB,Ay}, which has each of the

twofold intersections path-connected but not the triple intersection, then we would
get 1, (X) = Z % Z x Z, but this is not isomorphic to Z * Z since it has a different
abelianization.

Proof of van Kampen’s theorem: First we consider surjectivity of ®. Given a loop
f:I—X at the basepoint x,, we claim there is a partition 0 = s, < §; < --- <§,, =1
of I such that each subinterval [s;_;,s;] is mapped by f to a single A,. Namely,
since f is continuous, each s € I has an open neighborhood V; in I mapped by f
to some A,. We may in fact take V; to be an interval whose closure is mapped to a
single A,. Compactness of I implies that a finite number of these intervals cover I.
The endpoints of this finite set of intervals then define the desired partition of I.

Denote the A, containing f([s;_;,s;]) by A;, and let f; be the path obtained by
restricting f to [s;_;,s;]. Then f is the composition f;- --- - f,, with f; a path in
A;. Since we assume A; N A;,; is path-connected,
we may choose a path g; in A; n A;,, from x, to
the point f(s;) € A; N A;,;. Consider the loop

(f1:91) 91 f2-92) (G2 f5-93) =+ (Gm-1Sm)

which is homotopic to f. This loop is a composition
of loops each lying in a single A;, the loops indicated
by the parentheses. Hence [f] is in the image of ®, and & is surjective.

The harder part of the proof is to show that the kernel of ® is N. It may clarify
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matters to introduce some terminology. By a factorization of an element [ f] € 1, (X)
we shall mean a formal product [f;]--- [ f;] where:

= Each f; is a loop in some A, at the basepoint x,, and [f;] € m;(A,) is the
homotopy class of f;.

= The loop f is homotopic to f;- --- - f; in X.

A factorization of [f] is thus a word in *, 1, (A,), possibly unreduced, that is
mapped to [f] by ®. The proof of surjectivity of & showed that every [ f] € 1, (X)
has a factorization.

We will be concerned now with the uniqueness of factorizations. Call two factor-
izations of [ f] equivalent if they are related by a sequence of the following two sorts
of moves or their inverses:

= Combine adjacent terms [ f;]1[f;,1] into a single term [f;-f; 1] if [f;] and [ f;,1]
lie in the same group 11, (A,).

= Regard the term [ f;] € ;(A,) as lying in the group m, (AB) rather than m; (A,)
if f; isaloopin A, N Ag.

The first move does not change the element of *, 11, (A,) defined by the factorization.
The second move does not change the image of this element in the quotient group
Q = x4, 1 (AL) /N, by the definition of N. So equivalent factorizations give the same
element of Q.

If we can show that any two factorizations of [ f] are equivalent, this will say that
the map Q — 1, (X) induced by @ is injective, hence the kernel of ® is exactly N, and
the proof will be complete.

Let [f11---[fi] and [f7]1---[f;] be two factorizations of [f]. The composed

paths fy---- - f; and fi- .-+ - f, are then homotopic, so let F:IxI— X be a homo-
topy from f; - -+ - fi to fi- -+ - f,. There exist partitions 0 = 55 < §; < ++- <5, =1
and 0 =t; <t; <--- <t, =1 such that each rectangle R;; = [s;_,s;1x[t;_,t;]

is mapped by F into a single A,, which we label A;;. These partitions may be ob-
tained by covering I xI by finitely many rectangles [a,b]x[c,d] each mapping to a
single A,, using a compactness argument, then partitioning IxI by the union of all
the horizontal and vertical lines containing edges of these rectangles. We may assume
the s-partition subdivides the partitions giving the products

Sie-frand fi---- - fy. Since F maps a neighborhood 9 [10]11]12
of R;; to A;j,
angles R;; so that each point of IxI lies in at most three
R;;’s. We may assume there are at least three rows of rect- 123 ]|4

we may perturb the vertical sides of the rect- - o
6 7

angles, so we can do this perturbation just on the rectangles
in the intermediate rows, leaving the top and bottom rows unchanged. Let us relabel
the new rectangles R;,R,, - -+, R,,,,,, ordering them as in the figure.
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If y is a pathin I xI from the left edge to the right edge, then the restriction F|y
is aloop at the basepoint x|, since F maps both the left and right edges of I xI to xj.
Let y, be the path separating the first v rectangles R,,---,R, from the remaining
rectangles. Thus y, is the bottom edge of IxI and y,,, is the top edge. We pass
from y, to y,,,; by pushing across the rectangle R, , ;.

Let us call the corners of the R, ’s vertices. For each vertex v with F(v) # x;, let
g, be apath from x, to F(v). We can choose g, tolie in the intersection of the two or
three A;;’s corresponding to the R, ’s containing v since we assume the intersection
of any two or three A;;’s is path-connected. If we insert into F |y, the appropriate
paths g, g, atsuccessive vertices, as in the proof of surjectivity of &, then we obtain a
factorization of [F |y, ] by regarding the loop corresponding to a horizontal or vertical
segment between adjacent vertices as lying in the A;; for either of the R,’s containing
the segment. Different choices of these containing R;’s change the factorization of
[F|y,] to an equivalent factorization. Furthermore, the factorizations associated to
successive paths y, and y,.; are equivalent since pushing y, across R,,; t0 y, ;
changes F|y, to F|y,,; by a homotopy within the A;; corresponding to R, ;, and
we can choose this A;; for all the segments of y, and y, ., in R, ;.

We can arrange that the factorization associated to y, is equivalent to the factor-
ization [f,]--- [ fi] by choosing the path g, for each vertex v along the lower edge
of I'xI tolie not justin the two A;;’s corresponding to the R;’s containing v, but also
to lie in the A, for the f; containing v in its domain. In case v is the common end-
point of the domains of two consecutive f;’s we have F(v) = x,,, so there is no need
to choose a g, . In similar fashion we may assume that the factorization associated
to the final y,,, is equivalent to [f{]---[ fé]. Since the factorizations associated
to all the y,’s are equivalent, we conclude that the factorizations [f;]--- [fi] and
[fi1---[fy] are equivalent. O

Example 1.23: Linking of Circles. We can apply van Kampen’s theorem to calculate

the fundamental groups of three spaces discussed in the introduction to this chapter,

the complements in R? of a single circle, two unlinked circles, and two linked circles.
The complement R>— A of a single circle A

deformation retracts onto a wedge sum S* v §°

embedded in R® — A as shown in the first of

the two figures at the right. It may be easier

to see that R® — A deformation retracts onto v v

the the union of S with a diameter, as in the

second figure, where points outside S? deformation retract onto S, and points inside

$? and not in A can be pushed away from A toward S? or the diameter. Having

this deformation retraction in mind, one can then see how it must be modified if

the two endpoints of the diameter are gradually moved toward each other along the
equator until they coincide, forming the S' summand of S' v $?. Another way of
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seeing the deformation retraction of R® — A onto S' v $? is to note first that an
open &-neighborhood of S' v § 2 obviously deformation retracts onto S' v §? if ¢ is
sufficiently small. Then observe that this neighborhood is homeomorphic to R* — A
by a homeomorphism that is the identity on S' v $%. In fact, the neighborhood can
be gradually enlarged by homeomorphisms until it becomes all of R® — A.
In any event, once we see that R3 — A deformation retracts to S' v S 2, then we
immediately obtain isomorphisms 1T1([R3 -A)=Tm (' v §?) ~ Z since 171(52) =0.
In similar fashion, the complement R3 — (AUB)
of two unlinked circles A and B deformation retracts
onto S'vS'vS?vS? asin the figure to the right. From
this we get 1, (R®> = (AU B)) = vv
Z x 7. On the other hand, if A
and B are linked, then R3 — (A U B) deformation retracts onto
the wedge sum of S and a torus S'xS! separating A and B,
v as shown in the figure to the left, hence 1T1([R3 - (AUB)) =

m (S'xSh) =~ 7x1Z.

Example 1.24: Torus Knots. For relatively prime positive integers m and n, the
torus knot K = K, ,, C R3 is the image of the embedding f:S'—S$'xs! ¢ R3,
f(z) = (2™, z"), where the torus S'xS! is embedded in R® in the standard way.
The knot K winds around the torus a total of m

times in the longitudinal direction and n times in A

the meridional direction, as shown in the figure for ‘

the cases (m,n) = (2,3) and (3,4). One needs to V
assume that m and n are relatively prime in order

for the map f to be injective. Without this assumption f would be d-to-1 where
d is the greatest common divisor of m and n, and the image of f would be the
knot K, 4 ,,4- One could also allow negative values for m or n, but this would only
change K to a mirror-image knot.

Let us compute 11, ([R3 — K). It is slightly easier to do the calculation with R3 re-
placed by its one-point compactification S*. An application of van Kampen’s theorem
shows that this does not affect 7r,. Namely, write S* — K as the union of R® — K and
an open ball B formed by the compactification point together with the complement of
alarge closed ball in R3 containing K. Both B and Bn ([Ri3 —K) are simply-connected,
the latter space being homeomorphic to $?x R. Hence van Kampen’s theorem implies
that the inclusion R® — K — $% — K induces an isomorphism on ;..

We compute T, (8% — K) by showing that it deformation retracts onto a 2-dimen-
sional complex X = X, ,, homeomorphic to the quotient space of a cylinder § Ix1
under the identifications (z,0) ~ (e™/™z,0) and (z,1) ~ (e*™/"z,1). If we let X,,,
and X,, be the two halves of X formed by the quotients of stx [0,Y,]and stx [Y,,11,
then X,, and X,, are the mapping cylinders of z — z™ and z — z". The intersection
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X, N X, is the circle § L {1/,}, the domain end of each mapping cylinder.

To obtain an embedding of X in $° — K as a deformation retract we will use the
standard decomposition of S® into two solid tori S'xD? and D?x S!, the result of
regarding S° as 0D* = 3(D*xD?) = dD*xD? U D*xdD?. Geometrically, the first
solid torus S'x D? can be identified with the compact region in R? bounded by the
standard torus S'xS! containing K, and the second solid torus D?xS! is then the
closure of the complement of the first solid torus, together with the compactification
point at infinity. Notice that meridional circles in $!x S! bound disks in the first solid
torus, while it is longitudinal circles that bound disks in the second solid torus.

In the first solid torus, K intersects each of the meridian K
circles {x}xdD? in m equally spaced points, as indicated in (//'\\}
the figure at the right, which shows a meridian disk {x} x D?. / l\
These m points can be separated by a union of m radial line
segments. Letting x vary, these radial segments then trace out

a copy of the mapping cylinder X, in the first solid torus. Sym-
metrically, there is a copy of the other mapping cylinder X,, in the second solid torus.
The complement of K in the first solid torus deformation retracts onto X, by flowing
within each meridian disk as shown. In similar fashion the complement of K in the
second solid torus deformation retracts onto X,,. These two deformation retractions
do not agree on their common domain of definition S'xS§! — K, but this is easy to
correct by distorting the flows in the two solid tori so that in S'xS! — K both flows
are orthogonal to K. After this modification we now have a well-defined deformation
retraction of S® — K onto X. Another way of describing the situation would be to
say that for an open &-neighborhood N of K bounded by a torus T, the complement
$3 — N is the mapping cylinder of amap T — X.

To compute 17, (X) we apply van Kampen’s theorem to the decomposition of X
as the union of X,, and X,,, or more properly, open neighborhoods of these two
sets that deformation retract onto them. Both X,, and X, are mapping cylinders
that deformation retract onto circles, and X,, n X,, is a circle, so all three of these
spaces have fundamental group Z. A loop in X,, N X,, representing a generator of
M, (X,,, N X,,) is homotopic in X,, to aloop representing m times a generator, and in
X,, to aloop representing n times a generator. Van Kampen’s theorem then says that
1T, (X) is the quotient of the free group on generators a and b obtained by factoring

out the normal subgroup generated by the element a™b™".

Let us denote by G, , this group ,(X,,,) defined by two generators a and
b and one relation a™ = b". If m or n is 1, then G,,,, is infinite cyclic since in
these cases the relation just expresses one generator as a power of the other. To
describe the structure of G, , when m,n > 1 let us first compute the center of
G.n» the subgroup consisting of elements that commute with all elements of G, ,.
The element a™ = b"™ commutes with a and b, so the cyclic subgroup C generated
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by this element lies in the center. In particular, C is a normal subgroup, so we can
pass to the quotient group G, ,/C, which is the free product 7Z,, * Z,. According
to Exercise 1 at the end of this section, a free product of nontrivial groups has trivial
center. From this it follows that C is exactly the center of G,,, . As we will see in
Example 1.44, the elements a and b have infinite order in G, 80 Cis infinite cyclic,
but we will not need this fact here.

We will show now that the integers m and n are uniquely determined by the
group Z,, * Z,, hence also by G, , . The abelianization of 7,, * 7, is 7,,xZ2,,, of
order mmn, so the product mn is uniquely determined by Z,, * Z,,. To determine m
and n individually, we use another assertion from Exercise 1 at the end of the section,
that all torsion elements of Z,, * Z,, are conjugate to elements of the subgroups 7,
and Z,, hence have order dividing m or n. Thus the maximum order of torsion
elements of Z,, * Z,, is the larger of m and n. The larger of these two numbers is
therefore uniquely determined by the group Z,, * Z,,, hence also the smaller since the
product is uniquely determined.

The preceding analysis of 71, (X, ,,) did not need the assumption that m and n
are relatively prime, which was used only to relate X,, ,, to torus knots. An interesting
fact is that X, ,, can be embedded in R® only when m and n are relatively prime.
This is shown in the remarks following Corollary 3.45. For example, X, , is the Klein
bottle since it is the union of two copies of the Mobius band X, with their boundary
circles identified, so this nonembeddability statement generalizes the fact that the
Klein bottle cannot be embedded in R3.

An algorithm for computing a presentation for 1, (R®—K) for an arbitrary smooth
or piecewise linear knot K is described in the exercises, but the problem of determin-
ing when two of these fundamental groups are isomorphic is generally much more
difficult than in the special case of torus knots.

Example 1.25: The Shrinking Wedge of Circles. Consider the sub-
space X C R? that is the union of the circles C, of radius /,, and
center (1/,,0) for n = 1,2,---. At first glance one might confuse
X with the wedge sum of an infinite sequence of circles, but we will
show that X has a much larger fundamental group than the wedge
sum. Consider the retractions 7,,: X — C,, collapsing all C;’s except C,, to the origin.
Each r,, induces a surjection p,, : 1 (X)— 1, (C,) = Z, where we take the origin as
the basepoint. The product of the p,,’s is a homomorphism p: 7 (X)—[],Z to the
direct product (not the direct sum) of infinitely many copies of Z, and p is surjective
since for every sequence of integers k,, we can construct a loop f:I— X that wraps
k, times around C,, in the time interval [1 —1/,,1 -1/, ;1. This infinite composition
of loops is certainly continuous at each time less than 1, and it is continuous at time
1 since every neighborhood of the basepoint in X contains all but finitely many of the
circles C,,. Since 1, (X) maps onto the uncountable group [],,Z, it is uncountable.
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On the other hand, the fundamental group of a wedge sum of countably many circles
is countably generated, hence countable.

The group 7, (X) is actually far more complicated than [[,Z. For one thing,
it is nonabelian, since the retraction X—C; U --- U C,, that collapses all the circles
smaller than C,, to the basepoint induces a surjection from 7, (X) to a free group on
n generators. For a complete description of 7, (X) see [Cannon & Conner 2000].

It is a theorem of [Shelah 1988] that for a path-connected, locally path-connected
compact metric space X, 1, (X) is either finitely generated or uncountable.

Applications to Cell Complexes

For the remainder of this section we shall be interested in 2-dimensional cell
complexes, analyzing how the fundamental group is affected by attaching 2-cells.
According to an exercise at the end of this section, attaching cells of higher dimension
has no effect on 1, so all the interest lies in how the 2-cells are attached.

Suppose we attach a collection of 2-cells ei to a path-connected space X via maps
Py $'— X, producing a space Y. If So is abasepoint of S! then @ determines aloop
at @,(sy) that we shall call @, even though technically loops are maps I — X rather
than S!'— X. For different «’s the basepoints @4 (s9) of these loops @, may not all
coincide. To remedy this, choose a basepoint x, € X and a path y, in X from x, to
@4 (sy) foreach «. Then y, @,y is aloop at x,. This loop may not be nullhomotopic
in X, but it will certainly be nullhomotopic after the cell e2 is attached. Thus the
normal subgroup N C 11 (X, x,) generated by all the loops y,p,Y, for varying «
lies in the kernel of the map m, (X, x,) — 1, (Y, x() induced by the inclusion X — Y.

Proposition 1.26. The inclusion X — Y induces a surjection 1, (X, Xo) — 1 (Y, x0)
whose kernel is N. Thus 1, (Y) = 1 (X)/N.

It follows that N is independent of the choice of the paths y,, but this can also be
seen directly: If we replace y, by another path n, having the same endpoints, then

YaPoY« changes 10 ny@ iy = Nu¥ o) VaPo¥xYValla)s SO YaPo¥« ANA NPTy
define conjugate elements of 1 (X, x;).

Proof: Let us expand Y to a slightly larger space Z that deformation retracts onto Y
and is more convenient for applying van Kampen'’s theorem. The space Z is obtained
from Y by attaching rectangular strips S, = I xI, with the lower edge Ix {0} attached
along y,, therightedge {1} xI attached
along an arc in e2, and all the left edges
{0} x I of the different strips identified
together. The top edges of the strips are
not attached to anything, and this allows
us to deformation retract Z onto Y.
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In each cell e choose a point y, not in the arc along which S, is attached. Let
A=7-Uslyy) and let B =Z — X. Then A deformation retracts onto X, and B is
contractible. Since 11, (B) = 0, van Kampen’s theorem applied to the cover {A, B} says
that 1T, (Z) is isomorphic to the quotient of 1; (A) by the normal subgroup generated
by the image of the map 7, (AN B)— 1, (A). So it remains only to see that 77, (AN B)
is generated by the loops y,®,Y«, Or rather by loops in A n B homotopic to these
loops. This can be shown by another application of van Kampen’s theorem, this time
to the cover of AN B by the open sets A, = AnNB - Uﬁm e,zg. Since A, deformation
retracts onto a circle in e?x —{y4},wehave 1, (A,) = Z generated by aloop homotopic
t0 Y4®P Y« and the result follows. O

As afirst application we compute the fundamental group of the orientable surface
M, of genus g. This has a cell structure with one 0-cell, 2g 1-cells, and one 2-cell, as
we saw in Chapter 0. The 1-skeleton is a wedge sum of 2g circles, with fundamental
group free on 2g generators. The 2-cell is attached along the loop given by the
product of the commutators of these generators, say [a,,b;]---[a,4, b,]. Therefore

Trl(Mg) =~ ( al’bll ’ag’bg | [a'llbl] [aglbg] >

where (g, . TB> denotes the group with generators g, and relators 7g, in other
words, the free group on the generators g, modulo the normal subgroup generated
by the words 1 in these generators.

Corollary 1.27. The surface M, is not homeomorphic, or even homotopy equivalent,
toM, ifg=+h.

Proof: The abelianization of sl (Mg) is the direct sum of 2g copies of Z. So if
M, = M), then 11,(M,) ~ 11, (M},), hence the abelianizations of these groups are iso-
morphic, which implies g = h. |

Nonorientable surfaces can be treated in the same way. If we attach a 2-cell to the
wedge sum of g circles by the word a% s aé we obtain a nonorientable surface N, .
For example, N, is the projective plane RP?, the quotient of D? with antipodal points
of dD? identified. And N, is the Klein bottle, though the more usual representation

a
Nl: a NZ: 7]

_ _— ’

bY A b

a a a a

of the Klein bottle is as a square with opposite sides identified via the word aba 'b.
If one cuts the square along a diagonal and reassembles the resulting two triangles
as shown in the figure, one obtains the other representation as a square with sides
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identified via the word a’c?. By the proposition, (Ng) ~{a, - g | a% .- af] ).
This abelianizes to the direct sum of Z, with g — 1 copies of Z since in the abelian-
ization we can rechoose the generators to be a,, ---, ag_q and a; +--- + ag, with
2(a; + -+ +a,) = 0. Hence N, is not homotopy equivalent to Nj, if g # h, nor is

N, homotopy equivalent to any orientable surface M,.

Here is another application of the preceding proposition:

’ Corollary 1.28. For every group G there is a 2-dimensional cell complex X, with

Proof: Choose a presentation G = (Gu | rﬁ). This exists since every group is a
quotient of a free group, so the g,’s can be taken to be the generators of this free
group with the r;’s generators of the kernel of the map from the free group to G.
Now construct X from V, S} by attaching 2-cells ef; by the loops specified by the
words 7g. |

Example 1.29. If G = (a | a") = Z,, then X, is S* witha cell e? attached by the map
z — z", thinking of S' as the unit circle in C. When n = 2 we get X = RP? , but for
n > 2 the space X is not a surface since there are n ‘sheets’ of e attached at each
point of the circle S! c X . For example, when n = 3 one can construct a neighbor-
hood N of S! in X by taking the product of the
graph Y with the interval I, and then identifying
the two ends of this product via a one-third twist as
shown in the figure. The boundary of N consists
of a single circle, formed by the three endpoints of
each Y cross section of N. To complete the construction of X; from N one attaches
a disk along the boundary circle of N. This cannot be done in R3, though it can in
R*. For n = 4 one would use the graph X instead of Y, with a one-quarter twist

instead of a one-third twist. For larger n one would use an n-pointed ‘asterisk’ and
al/, twist.

Exercises

1. Show that the free product G * H of nontrivial groups G and H has trivial center,
and that the only elements of G * H of finite order are the conjugates of finite-order
elements of G and H.

2. Let X C R™ be the union of convex open sets X, - - -, X,, such that X;nX;n X, = @
for all i, j, k. Show that X is simply-connected.

3. Show that the complement of a finite set of points in R" is simply-connected if
n= 3.
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4. Let X c R® be the union of n lines through the origin. Compute Trl([R3 -X).

5. Let X C R? be a connected graph that is the union of a finite number of straight
line segments. Show that 11, (X) is free with a basis consisting of loops formed by
the boundaries of the bounded complementary regions of X, joined to a basepoint by
suitably chosen paths in X. [Assume the Jordan curve theorem for polygonal simple
closed curves, which is equivalent to the case that X is homeomorphic to S!.]

6. Suppose a space Y is obtained from a path-connected subspace X by attaching
n-cells for a fixed n > 3. Show that the inclusion X — Y induces an isomorphism
on ;. [See the proof of Proposition 1.26.] Apply this to show that the complement
of a discrete subspace of R" is simply-connected if n = 3.

7. Let X be the quotient space of S° obtained by identifying the north and south
poles to a single point. Put a cell complex structure on X and use this to compute
™ (X).

8. Compute the fundamental group of the space obtained from two tori S!xS! by
identifying a circle S T {xo} in one torus with the corresponding circle S L {xo} In
the other torus.

9. In the surface M, of genus g, let

C be a circle that separates M, into

two compact subsurfaces M, and M; ()
obtained from the closed surfaces M, vy C M
and M, by deleting an open disk from h k
each. Show that M;, does not retract onto its boundary circle C, and hence M 4 does
not retract onto C. [Hint: abelianize 7r;.] But show that M, does retract onto the

nonseparating circle C’ in the figure.

10. Consider two arcs « and B embedded in D?>xI as

\ \ B

shown in the figure. The loop y is obviously nullhomotopic A X WI_ -

QL
/

in D?xI, but show that there is no nullhomotopy of y in —

/] v
11. The mapping torus T, of a map f:X—X is the quotient of XxI obtained
by identifying each point (x,0) with (f(x),1). In the case X = S' v S! with f

basepoint-preserving, compute a presentation for m, (T) in terms of the induced
map f, :71,(X)— 1, (X). Do the same when X = S'xS'. [One way to do this is to

the complement of x U f3.

regard Ty as built from X v § ! by attaching cells.]

12. The Klein bottle is usually pictured as a sub-
space of R? like the subspace X c R® shown in
the first figure at the right. If one wanted a model
that could actually function as a bottle, one would

delete the open disk bounded by the circle of self-
intersection of X, producing a subspace Y C X. Show that 1;(X) = Z * Z and that
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m; (Y) has the presentation (a,b,c | aba’lb’lcbgc’l) for ¢ = 1. (Changing the
sign of ¢ gives an isomorphic group, as it happens.) Show also that 7T, (Y) is isomor-
phic to m; (R®—Z) for Z the graph shown in the figure. The groups M, (X) and 1 (Y)
are not isomorphic, but this is not easy to prove; see the discussion in Example 1B.13.

13. The space Y in the preceding exercise can be obtained from a disk with two holes
by identifying its three boundary circles. There are only two essentially different ways
of identifying the three boundary circles. Show that the other way yields a space Z
with 11, (Z) not isomorphic to m;(Y). [Abelianize the fundamental groups to show
they are not isomorphic.]

14. Consider the quotient space of a cube I° obtained by identifying each square
face with the opposite square face via the right-handed screw motion consisting of
a translation by one unit in the direction perpendicular to the face combined with a
one-quarter twist of the face about its center point. Show this quotient space X is a
cell complex with two 0-cells, four 1-cells, three 2-cells, and one 3-cell. Using this
structure, show that T, (X) is the quaternion group {=1, i, +j, =k}, of order eight.

15. Given a space X with basepoint x, € X, we may construct a CW complex L(X)
having a single 0-cell, a 1-cell egl, for each loop y in X based at x, and a 2-cell ei
for each map T of a standard triangle PQR into X taking the three vertices P, Q,
and R of the triangle to x,,. The 2-cell 2 is attached to the three 1-cells that are the
loops obtained by restricting T to the three oriented edges PQ, PR, and QR. Show
that the natural map L(X)— X induces an isomorphism 7, (L(X)) ~ 11, (X, x,).

16. Show that the fundamental group of the surface of infinite genus shown below is
free on an infinite number of generators.

R -

17. Show that 7T1([R2 - QZ) is uncountable.

18. In this problem we use the notions of suspension, reduced suspension, cone, and
mapping cone defined in Chapter 0. Let X be the subspace of R consisting of the
sequence 1, Y/, 1/5,1/,, - - - together with its limit point 0.

(a) For the suspension SX, show that 1, (SX) is free on a countably infinite set of
generators, and deduce that 11, (§X) is countable. In contrast to this, the reduced
suspension XX, obtained from SX by collapsing the segment {0} X I to a point, is
the shrinking wedge of circles in Example 1.25, with an uncountable fundamental
group.

(b) Let C be the mapping cone of the quotient map SX—2X. Show that 1, (C) is un-
countable by constructing a homomorphism from 7, (C) onto [],Z/®,, Z. Note
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that C is the reduced suspension of the cone CX. Thus the reduced suspension
of a contractible space need not be contractible, unlike the unreduced suspension.

19. Show that the subspace of R? that is the union of the spheres of radius 1/, and
center (1/,,,0,0) for n = 1,2, - - is simply-connected.

20. Let X be the subspace of R that is the union of the circles C,, of radius n and
center (n,0) for n =1,2,---. Show that 1, (X) is the free group *, 1, (C,,), the same
as for the infinite wedge sum \/_S'. Show that X and V,_S' are in fact homotopy
equivalent, but not homeomorphic.

21. Show that the join X * Y of two nonempty spaces X and Y is simply-connected
if X is path-connected.

22. In this exercise we describe an algorithm for computing a presentation of the
fundamental group of the complement of a smooth or piecewise linear knot K in R3,
called the Wirtinger presentation. To begin, we position the knot to lie almost flat on
a table, so that K consists of finitely many disjoint arcs «; where it intersects the
table top together with finitely many disjoint arcs B, where K crosses over itself.
The configuration at such a crossing is shown in the first figure below. We build a

2-dimensional complex X that is a deformation retract of R® — K by the following
three steps. First, start with the rectangle T formed by the table top. Next, just above
each arc «; place along, thin rectangular strip R;, curved to run parallel to «; along
the full length of «; and arched so that the two long edges of R; are identified with
points of T, as in the second figure. Any arcs 8, that cross over «; are positioned
to lie in R;. Finally, over each arc B, put a square S,, bent downward along its four
edges so that these edges are identified with points of three strips R;, R;, and R} as
in the third figure; namely, two opposite edges of S, are identified with short edges
of R; and R; and the other two opposite edges of S, are identified with two arcs
crossing the interior of R;. The knot K is now a subspace of X, but after we lift K up
slightly into the complement of X, it becomes evident that X is a deformation retract
of R - K.

(a) Assuming this bit of geometry, show that 1, ([R3 —K) has a presentation with one
generator x; for each strip R; and one relation of the form x;x;x; b= x, for
each square Sy, where the indices are as in the figures above. [To get the correct
signs it is helpful to use an orientation of K.]

(b) Use this presentation to show that the abelianization of ([R3 - K)is 7.
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1.3 Covering Spaces

We come now to the second main topic of this chapter, covering spaces. We
have in fact already encountered one example of a covering space in our calculation
of m (S'). This was the map R—S! that we pictured as the projection of a helix
onto a circle, with the helix lying above the circle, ‘covering’ it. A number of things
we proved for this covering space are valid for all covering spaces, and this allows
covering spaces to serve as a useful general tool for calculating fundamental groups.
But the connection between the fundamental group and covering spaces runs much
deeper than this, and in many ways they can be regarded as two viewpoints toward the
same thing. This means that algebraic features of the fundamental group can often
be translated into the geometric language of covering spaces. This is exemplified
in one of the main results in this section, giving an exact correspondence between
the various connected covering spaces of a given space X and subgroups of m; (X).
This is strikingly reminiscent of Galois theory, with its correspondence between field
extensions and subgroups of the Galois group.

~

Let us begin with the definition. A covering space of a space X is a space X
together with a map p X—X satisfying the following condition: There exists an
open cover {U,} of X such that for each «, p’l (Uy) is a disjoint union of open sets
in X, each of which is mapped by p homeomorphically onto U,. We do not require
p! (Uy) to be nonempty, so p need not be surjective.

In the helix example one has p: R—S! given by p(t) = (cos27rt,sin2mt), and
the cover {U,} can be taken to consist of any two open arcs whose union is § L
A related example is the helicoid surface S c R3 consisting of points of the form
(scos2rmrt,ssin2mt,t) for (s,t) € (0,0)xR. This projects onto R? — {0} via the
map (x,y,z)— (x,y), and this projection defines a covering space p:S— R% — {0}
since for each open disk U in R? — {0}, p’l (U) consists of countably many disjoint
open disks in S, each mapped homeomorphically onto U by p.

Another example is the map p:S g 1, p(z) = z" where we
view z as a complex number with |z| = 1 and n is any positive
integer. The closest one can come to realizing this covering space —
as a linear projection in 3-space analogous to the projection of the
helix is to draw a circle wrapping around a cylinder n times and 119
intersecting itself in n — 1 points that one has to imagine are not o
really intersections. For an alternative picture without this defect,
embed S! in the boundary torus of a solid torus S'xD? so that it winds n times
monotonically around the S* factor without self-intersections, then restrict the pro-
jection S'xD?>—Sstx {0} to this embedded circle. The figure for Example 1.29 in the
preceding section illustrates the case n = 3.
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As our general theory will show, these examples for n > 1 together with the
helix example exhaust all the connected coverings spaces of S'. There are many
other disconnected covering spaces of S!, such as n disjoint circles each mapped
homeomorphically onto S!, but these disconnected covering spaces are just disjoint
unions of connected ones. We will usually restrict our attention to connected covering
spaces as these contain most of the interesting features of covering spaces.

The covering spaces of S' v S! form a remarkably rich family illustrating most of
the general theory very concretely, so let us look at a few of these covering spaces to
get an idea of what is going on. To abbreviate notation, set X = S' v §1. We view this
as a graph with one vertex and two edges. We label the edges
a and b and we choose orientations for a and b. Now let bC><>a
X be any other graph with four edges meeting at each vertex,
and suppose the edges of X have been assigned labels a and b and orientations in
such a way that the local picture near each vertex is the same as in X, so there is an
a-edge oriented toward the vertex, an a-edge oriented away from the vertex, a b-edge
oriented toward the vertex, and a b-edge oriented away from the vertex. To give a
name to this structure, let us call X a 2-oriented graph.

The table on the next page shows just a small sample of the infinite variety of
possible examples.

Given a 2-oriented graph X we can construct a map p X—X sending all vertices
of X to the vertex of X and sending each edge of X to the edge of X with the same
label by a map that is a homeomorphism on the interior of the edge and preserves
orientation. It is clear that the covering space condition is satisfied for p. The con-
verse is also true: Every covering space of X is a graph that inherits a 2-orientation
from X.

As the reader will discover by experimentation, it seems that every graph having
four edges incident at each vertex can be 2-oriented. This can be proved for finite
graphs as follows. A very classical and easily shown fact is that every finite connected
graph with an even number of edges incident at each vertex has an Eulerian circuit,
a loop traversing each edge exactly once. If there are four edges at each vertex, then
labeling the edges of an Eulerian circuit alternately a and b produces a labeling with
two a and two b edges at each vertex. The union of the a edges is then a collection
of disjoint circles, as is the union of the b edges. Choosing orientations for all these
circles gives a 2-orientation.

Itis a theorem in graph theory that infinite graphs with four edges incident at each
vertex can also be 2-oriented; see Chapter 13 of [Koenig 1990] for a proof. There is
also a generalization to n-oriented graphs, which are covering spaces of the wedge
sum of n circles.
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A simply-connected covering space of X can be constructed in the following way.
Start with the open intervals (—1,1) in the coordinate
axes of R%. Next, for a fixed number A, 0 < A < 17,, for
example A = !/5, adjoin four open segments of length

2A, at distance A from the ends of the previous seg- £ s
ments and perpendicular to them, the new shorter seg- 11 11
ments being bisected by the older ones. For the third + -+

stage, add perpendicular open segments of length 2A2
at distance A’ from the endpoints of all the previous
segments and bisected by them. The process is now

$$¢i
s
i
#]
repeated indefinitely, at the nt" stage adding open segments of length 2A""! at dis-
tance A" ! from all the previous endpoints. The union of all these open segments is
a graph, with vertices the intersection points of horizontal and vertical segments, and

edges the subsegments between adjacent vertices. We label all the horizontal edges
a, oriented to the right, and all the vertical edges b, oriented upward.

This covering space is called the universal cover of X because, as our general
theory will show, it is a covering space of every other connected covering space of X.

The covering spaces (1)-(14) in the table are all nonsimply-connected. Their fun-
damental groups are free with bases represented by the loops specified by the listed
words in a and b, starting at the basepoint X, indicated by the heavily shaded ver-
tex. This can be proved in each case by applying van Kampen’s theorem. One can
also interpret the list of words as generators of the image subgroup p, (1 X , X))
in 1 (X,x,) = (a,b). A general fact we shall prove about covering spaces is that
the induced map p, :m, (X, Xy) — 11 (X, x,) is always injective. Thus we have the at-
first-glance paradoxical fact that the free group on two generators can contain as a
subgroup a free group on any finite number of generators, or even on a countably
infinite set of generators as in examples (10) and (11).

Changing the basepoint vertex changes the subgroup p, (1, (X, X,)) to a conju-
gate subgroup in 11, (X, x,). The conjugating element of 1, (X, x,) is represented by
any loop that is the projection of a path in X joining one basepoint to the other. For
example, the covering spaces (3) and (4) differ only in the choice of basepoints, and
the corresponding subgroups of T, (X, x,) differ by conjugation by b.

The main classification theorem for covering spaces says that by associating the
subgroup p, (1, (X,X,)) to the covering space p:X— X, we obtain a one-to-one
correspondence between all the different connected covering spaces of X and the
conjugacy classes of subgroups of (X, x,). If one keeps track of the basepoint
vertex X, € X, then this is a one-to-one correspondence between covering spaces
p: (X, Xy)— (X, x,) and actual subgroups of 1, (X, x,), not just conjugacy classes.
Of course, for these statements to make sense one has to have a precise notion of
when two covering spaces are the same, or ‘isomorphic.’ In the case at hand, an iso-
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morphism between covering spaces of X is just a graph isomorphism that preserves
the labeling and orientations of edges. Thus the covering spaces in (3) and (4) are
isomorphic, but not by an isomorphism preserving basepoints, so the two subgroups
of 1 (X, x,) corresponding to these covering spaces are distinct but conjugate. On
the other hand, the two covering spaces in (5) and (6) are not isomorphic, though the
graphs are homeomorphic, so the corresponding subgroups of (X, x,) are isomor-
phic but not conjugate.

Some of the covering spaces (1)-(14) are more symmetric than others, where by
a ‘symmetry’ we mean an automorphism of the graph preserving the labeling and
orientations. The most symmetric covering spaces are those having symmetries taking
any one vertex onto any other. The examples (1), (2), (5)-(8), and (11) are the ones with
this property. We shall see that a covering space of X has maximal symmetry exactly
when the corresponding subgroup of , (X, x) is a normal subgroup, and in this case
the symmetries form a group isomorphic to the quotient group of T, (X, x,) by the
normal subgroup. Since every group generated by two elements is a quotient group
of Z x Z, this implies that every two-generator group is the symmetry group of some
covering space of X.

Lifting Properties

Covering spaces are defined in fairly geometric terms, as maps p : X — X that are
local homeomorphisms in a rather strong sense. But from the viewpoint of algebraic
topology, the distinctive feature of covering spaces is their behavior with respect to
lifting of maps. Recall the terminology from the proof of Theorem 1.7: A lift of a map
f:Y—X is amap f: Y — X such that pf = f. We will describe three special lifting
properties of covering spaces, and derive a few applications of these.

First we have the homotopy lifting property, or covering homotopy property,
as it is sometimes called:

Proposition 1.30. Given a covering space p:)?—»X, a homotopy f;:Y—X, and a
map fO:Y—>)? lifting f,, then there exists a unique homotopy ft:Y—>)? of fy that
lifts f;.

Proof: For the covering space p:R—S ! this is property (c) in the proof of Theo-
rem 1.7, and the proof there applies to any covering space. a

Taking Y to be a point gives the path lifting property for a covering space
p : X — X, which says that for each path f:I—X and each lift X, of the starting
point f(0) = x there is a unique path f:I —X lifting f starting at X,. In particular,
the uniqueness of lifts implies that every lift of a constant path is constant, but this
could be deduced more simply from the fact that p’l (x() has the discrete topology,
by the definition of a covering space.



Covering Spaces Section 1.3 61

—

Taking Y to be I, we see that every homotopy f; of a path f, in X lifts to a
homotopy ft of each lift fo of fy. The lifted homotopy ft is a homotopy of paths,
fixing the endpoints, since as t varies each endpoint of ft traces out a path lifting a
constant path, which must therefore be constant.

Here is a simple application:

Proposition 1.31. Themap p, : 1, ()?, Xo) — 1 (X, x,) induced by a covering space
p:()?',?co)—%X, X,) is injective. The image subgroup p, (1, (X, Xo)) in (X, x0)
consists of the homotopy classes of loops in X based at x, whose lifts to X starting
at X, are loops.

Proof: An element of the kernel of p, is represented by a loop fo :I—X with a
homotopy f;:I—X of f, = pfo to the trivial loop f;. By the remarks preceding the
proposition, there is a lifted homotopy of loops ft starting with fo and ending with
a constant loop. Hence [fNO] =0in m (X, X,) and p, is injective.

For the second statement of the proposition, loops at x, lifting to loops at X,
certainly represent elements of the image of p, :m, ()? , X)) — 11, (X, x) . Conversely,
a loop representing an element of the image of p, is homotopic to a loop having such
a lift, so by homotopy lifting, the loop itself must have such a lift. O

If p:)? — X is a covering space, then the cardinality of the set p~!(x) is locally
constant over X. Hence if X is connected, this cardinality is constant as x ranges
over all of X. It is called the number of sheets of the covering.

Proposition 1.32. The number of sheets of a covering space p ()?,9?0)—> (X, x¢)
with X and X path-connected equals the index of p., (1r,(X, %)) in (X, x,).

Proof: For aloop g in X based at x,, let g be its lift to X starting at X,,. A product
h-g with [h] € H = p, (,(X,X,)) has the lift h-§ ending at the same point as §
since h is a loop. Thus we may define a function ® from cosets H[g] to p‘l(xo)
by sending H[g] to g(1). The path-connectedness of X implies that ® is surjective
since X, can be joined to any point in pt (xy) by a path g projecting to a loop g at
Xo. To see that & is injective, observe that ®(H[g,]) = ®(H[g,]) implies that g,g,
lifts to a loop in X based at )N(O, e} [gl][gz]_1 € H and hence H[g,] = H[g,]. O

It is important also to know about the existence and uniqueness of lifts of general
maps, not just lifts of homotopies. For the existence question an answer is provided
by the following lifting criterion:

Proposition 1.33. Suppose given a covering space p - (X, Xy)— (X, x,) and a map
Jf:1(Y,yy)— (X,x,) with Y path-connected and locally path-connected. Then a lift
Fi(Y, 30— (X,%)) of f exists iff f,(m,(Y,59)) C p.(m (X, %))
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When we say a space has a certain property locally, such as being locally path-
connected, we shall mean that each point has arbitrarily small open neighborhoods
with this property. Thus for Y to be locally path-connected means that for each point
v € Y and each neighborhood U of y there is an open neighborhood V C U of
v that is path-connected. Some authors weaken the requirement that V be path-
connected to the condition that any two points in V be joinable by a path in U.
This broader definition would work just as well for our purposes, necessitating only
small adjustments in the proofs, but for simplicity we shall use the more restrictive
definition.

Proof: The ‘only if’ statement is obvious since f, = p*f*. For the converse, let
¥ €Y and let y be a pathin Y from y, to y. The path fy in X starting at x,
has a unique lift E starting at X,. Define f(y) = j]?)_//(l). To show this is well-
defined, independent of the choice of y, let y’ be another path from y, to y. Then
(fy) - (fy) is aloop hg at x, with [hy] € f.(m,(Y,¥y) € p,(m(X,X,)). This
means there is a homotopy h, of h, to aloop h, that lifts to a N
loop }Nll in X based at X, Apply the covering homotopy fy fo)
property to h; to get alifting flt. Since I’Nll is aloop at ~

X, S0 is PNLO. By the uniqueness of lifted paths, %o fy

the first half of PNLO is f?’ and the second f/v l )
£y

half is ﬁ traversed backwards, with ,
the common midpoint E(l) = é y L,
f?’(l). This shows that f is Y y Xo
well-defined.

To see that f is continuous, let U C X be an open neighborhood of f(y) having

)

fy

alift U c X containing f(y) such that p: U—U is a homeomorphism. Choose a
path-connected open neighborhood V of y with f(V) c U. For paths from y, to
points ¥’ € V we can take a fixed path y from y, to » followed by paths n in
V from y to the points y’. Then the paths (fy)-(fn) in X have lifts (}7) . (}\ﬁ)
where ?ﬁ = p'fn and p’l:U—>LNI is the inverse of p:ﬁ—»U. Thus f(\/) c U and
fIV = p~'f, hence f is continuous at y. a

An example showing the necessity of the local path-connectedness assumption
on Y is described in Exercise 7 at the end of this section.
Next we have the unique lifting property:

Proposition 1.34. Given a covering space p :X— X and a map f:Y—X with two
lifts f1, f>: Y — X that agree at one point of Y, then if Y is connected, these two lifts
must agree on all of Y .

Proof: For a point v € Y, let U be an open neighborhood of f(y) in X for which
p~1(U) is a disjoint union of open sets ﬁa each mapped homeomorphically to U
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by p, and let ﬁl and (72 be the ﬁa’s containing fl(y) and fz (v), respectively. By
continuity of fl and fz there is a neighborhood N of y mapped into ﬁl by fl and
into U, by fz. If fl (y) + fz (¥) then U, + U,, hence U, and U, are disjoint and
fl * fz throughout the neighborhood N. On the other hand, if fl (y) = fz( ) then
U, = U, so fl = fz on N since pfl = pfz and p is injective on U, = U,. Thus the
set of points where fl and fz agree is both open and closed in Y. a

The Classification of Covering Spaces

We consider next the problem of classifying all the different covering spaces of
a fixed space X. Since the whole chapter is about paths, it should not be surprising
that we will restrict attention to spaces X that are at least locally path-connected.
Path-components of X are then the same as components, and for the purpose of
classifying the covering spaces of X there is no loss in assuming that X is connected,
or equivalently, path-connected. Local path-connectedness is inherited by covering
spaces, so these too are connected iff they are path-connected. The main thrust of the
classification will be the Galois correspondence between connected covering spaces of
X and subgroups of 1, (X), but when this is finished we will also describe a different
method of classification that includes disconnected covering spaces as well.

The Galois correspondence arises from the function that assigns to each covering
space p:()?,)NcO)—%X,xO) the subgroup p, (11 ()?,)Nco)) of (X, x,). First we con-
sider whether this function is surjective. That is, we ask whether every subgroup of
™, (X, x,) is realized as p, (m; (X, X,)) for some covering space p: (X, Xo) — (X, xq).
In particular we can ask whether the trivial subgroup is realized. Since p, is always
injective, this amounts to asking whether X has a simply-connnected covering space.
Answering this will take some work.

A necessary condition for X to have a simply-connected covering space is the
following: Each point x € X has a neighborhood U such that the inclusion-induced
map 1, (U, x)— 1 (X, x) is trivial; one says X is semilocally simply-connected if
this holds. To see the necessity of this condition, suppose p:)? — X is a covering
space with X simply-connected. Every point x € X has a neighborhood U having a
lift U c X projecting homeomorphically to U by p. Each loop in U lifts to a loop
in U, and the lifted loop is nullhomotopic in X since M (X) = 0. So, composing this
nullhomotopy with p, the original loop in U is nullhomotopic in X.

A locally simply-connected space is certainly semilocally simply-connected. For
example, CW complexes have the much stronger property of being locally contractible,
as we show in the Appendix. An example of a space that is not semilocally simply-
connected is the shrinking wedge of circles, the subspace X c R? consisting of the
circles of radius !/,, centered at the point (Y/,,,0) for n = 1,2, - - -, introduced in Exam-
ple 1.25. On the other hand, the cone CX = (XX1I)/(Xx {0}) is semilocally simply-
connected since it is contractible, but it is not locally simply-connected.
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We shall now show how to construct a simply-connected covering space of X if
X is path-connected, locally path-connected, and semilocally simply-connected. To
motivate the construction, suppose p: ()? , Xo) — (X, x,) is a simply-connected cover-
ing space. Each point X € X can then be joined to X, by a unique homotopy class of
paths, by Proposition 1.6, so we can view points of X as homotopy classes of paths
starting at X,,. The advantage of this is that, by the homotopy lifting property, homo-
topy classes of paths in X starting at X, are the same as homotopy classes of paths
in X starting at x,,. This gives a way of describing X purely in terms of X.

Given a path-connected, locally path-connected, semilocally simply-connected
space X with a basepoint x, € X, we are therefore led to define

X={lyl | y is a pathin X starting at x, }

where, as usual, [y] denotes the homotopy class of y with respect to homotopies
that fix the endpoints y(0) and y(1). The function p X—>X sending [y] to y(1) is
then well-defined. Since X is path-connected, the endpoint y(1) can be any point of
X, SO p is surjective.

Before we define a topology on X we make a few preliminary observations. Let
U be the collection of path-connected open sets U C X such that m, (U) —m;(X) is
trivial. Note that if the map T, (U) — 1, (X) is trivial for one choice of basepointin U,
it is trivial for all choices of basepoint since U is path-connected. A path-connected
open subset V C U € U is also in U since the composition 11, (V) — 11, (U) — 11, (X)
will also be trivial. It follows that U is a basis for the topology on X if X is locally
path-connected and semilocally simply-connected.

Given a set U € U and a path y in X from x, to a point in U, let

Upy = {ly-nl| nisapathin U with n(0) = y(1) }

As the notation indicates, Up,,; depends only on the homotopy class [y]. Observe
that p:Up,,;—U is surjective since U is path-connected and injective since differ-
ent choices of n joining y(1) to a fixed x € U are all homotopic in X, the map
1, (U) — 11, (X) being trivial. Another property is

Uy = Uy if [y'] € Upyy. Forif y’ = y-n then elements of U, have the
(x) form [y-n-u] and hence lie in Uj,;, while elements of Uj,; have the form
[y-ul=1[y-n-n-ul =[y -n-ul and hence lie in Uj,.
This can be used to show that the sets Uj,; form a basis for a topology on X. For if
we are given two such sets Uys Viy and an element [y"'] € Upy) N Viyg, we have
Uty = Uy and Vg = Vi by (k). Soif W € U is contained in UNV and contains
y" (1) then W,y C Uiy NVyyeg and [y"'] € Wiy
The bijection p:Up,;— U is a homeomorphism since it gives a bijection between
the subsets V},,; C Up,; and the sets V € U contained in U. Namely, in one direction
we have p(V},;) =V and in the other direction we have p (V) n Upyy = Vo for
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any [y'] € Upyy with endpoint in V, since Viy C U
by the bijection p.

y1= Uy and V,,; maps onto V
The preceding paragraph implies that p : X — X is continuous. We can also de-
duce that this is a covering space since for fixed U € U, the sets Uj, for varying [y]
y] = U[y”] = U[y/] by (*)
It remains only to show that X is simply-connected. For a point [y] € X let y;
be the path in X obtained by restricting y to the interval [0,t]. Then the function
t—[y;]lisapathin X lifting y that starts at [x,1, the homotopy class of the constant

partition p 1 (U) because if [y"] € Uryy N Up, ) then U;

path at x(, and ends at [y]. Since [y] was an arbitrary point in X, this shows that X
is path-connected. To show that m; ()? ,[x¢]) = 0 it suffices to show that the image of
this group under p,, is trivial since p, is injective. Elements in the image of p, are
represented by loops y at x that lift to loops in X at [xo]. We have observed that
the path ¢t — [y;] lifts y starting at [x,], and for this lifted path to be a loop means
that [y;] = [x]. Since y; =y, this says that [y] = [x4], so y is nullhomotopic and
the image of p,, is trivial.
This completes the construction of a simply-connected covering space X—X.

In concrete cases one usually constructs a simply-connected covering space by
more direct methods. For example, suppose X is the union of subspaces A and B for
which simply-connected covering spaces A—A and B— B are already known. Then
one can attempt to build a simply-connected covering space X—X by assembling
copies of A and B. For example, for X = S' v §', if we take A and B to be the two
circles, then A and B are each R, and we can build the simply-connected cover X
described earlier in this section by glueing together infinitely many copies of A and
E, the horizontal and vertical lines in X. Here is another illustration of this method:

Example 1.35. For integers m,n = 2, let X,n.n be the quotient space of a cylinder
S'x I under the identifications (z,0) ~ (/™2 0) and (z,1) ~ (e*™/"z,1). Let
A C X and B C X be the quotients of S'x[0,/,] and S'x[!/,,1], so A and B are
the mapping cylinders of z — z™ and z — z", with A n B = S'. The simplest case
is m = n =2, when A and B are Mobius bands and X, , is the Klein bottle. We
encountered the complexes X,, ,, previously in analyzing torus knot complements in
Example 1.24.

The figure for Example 1.29 at the end of the preceding section
shows what A looks like in the typical case m = 3. We have 1, (A) = Z,

and the universal cover A is homeomorphic to a product C,, X R where
C,, is the graph that is a cone on m points, as shown in the figure to

the right. The situation for B is similar, and B is homeomorphic to

C, xR. Now we attempt to build the universal cover )?m,n from copies
of A and B. Start with a copy of A. Tts boundary, the outer edges of

AVAVAVA

its fins, consists of m copies of R. Along each of these m boundary
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lines we attach a copy of B. Each of these copies of B has one of its boundary lines
attached to the initial copy of A, leaving n — 1 boundary lines free, and we attach a
new copy of A to each of these free boundary lines. Thus we now have m(n —1) +1
copies of A. Each of the newly attached copies of A has m — 1 free boundary lines,
and to each of these lines we attach a new copy of B. The process is now repeated ad
infinitim in the evident way. Let )?m’n be the resulting space.

The product structures A = C,, xR and B = C, xR
give )?m‘n the structure of a product T, ,, x R where T, ,,
is an infinite graph constructed by an inductive scheme
justlike the construction of )?m‘n. Thus T, ,, is the union
of a sequence of finite subgraphs, each obtained from the
preceding by attaching new copies of C,, or C,. Each
of these finite subgraphs deformation retracts onto the
preceding one. The infinite concatenation of these defor-
mation retractions, with the k" graph deformation retracting to the previous one

during the time interval [1 /2K 172517, gives a deformation retraction of T, ,, onto

n
the initial stage C,,. Since C,, is contractible, this means T,, ,, is contractible, hence

also )?m‘n, which is the product T,, , XxR. In particular, )?m‘n is simply-connected.
The map that projects each copy of A in )?m’n to A and
each copy of B to B is a covering space. To define this map ™ ]
precisely, choose a point x,; € S ! and then the image of the < >
line segment {x,} X1 in X,, , meets A in aline segment whose . N ~]
preimage in A consists of an infinite number of line segments, h N -
appearing in the earlier figure as the horizontal segments spi- I >
raling around the central vertical axis. The picture Nin B if ] >
similar, and when we glue together all the copies of A and B

to form )?m,n, we do so in such a way that these horizontal segments always line up
exactly. This decomposes )?m’n into infinitely many rectangles, each formed from a
rectangle in an A and a rectangle in a B. The covering projection )?m,n_’Xm,n is the
quotient map that identifies all these rectangles.

Now we return to the general theory. The hypotheses for constructing a simply-
connected covering space of X in fact suffice for constructing covering spaces realiz-
ing arbitrary subgroups of 1, (X):

Proposition 1.36. Suppose X is path-connected, locally path-connected, and semilo-
cally simply-connected. Then for every subgroup H C 1,(X,x,) there is a covering
space p:Xy— X such that p, (m,(Xy,X,)) = H for a suitably chosen basepoint
Xo € Xy

Proof: For points [y], [y'] in the simply-connected covering space X constructed
above, define [y] ~ [y’] to mean y(1) = y'(1) and [yy’] € H. It is easy to see
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that this is an equivalence relation since H is a subgroup; namely, it is reflexive since
H contains the identity element, symmetric since H is closed under inverses, and
transitive since H is closed under multiplication. Let X} be the quotient space of X
obtained by identifying [y] with [y'] if [y] ~ [y’]. Note that if y(1) = y'(1), then
[yl ~ [y'1iff [yn] ~ [y'n]. This means that if any two points in basic neighborhoods
Uy and Uy, are identified in Xj; then the whole neighborhoods are identified. Hence
the natural projection X — X induced by [y] — y(1) is a covering space.

If we choose for the basepoint X, € X;; the equivalence class of the constant path
¢ at x,, then the image of p, : 1, (Xy, X,) — 1, (X, X)) is exactly H. This is because
for aloop y in X based at x, its lift to X starting at [c] ends at [y], so the image
of this lifted path in X} is a loop iff [y] ~ [c], or equivalently, [y] € H. O

Having taken care of the existence of covering spaces of X corresponding to all
subgroups of 1, (X), we turn now to the question of uniqueness. More specifically,
we are interested in uniqueness up to isomorphism, where an isomorphism between
covering spaces p;:X;—X and p,:X,—X is a homeomorphism f:X, —X, such
that p; = p,f. This condition means exactly that f preserves the covering space
structures, taking pfl(x) to pz’l(x) for each x € X. The inverse f’1 is then also an
isomorphism, and the composition of two isomorphisms is an isomorphism, so we
have an equivalence relation.

Proposition 1.37. If X is path-connected and locally path-connected, then two path-
connected covering spaces p, :)?1 —X and p, :)?2 — X are isomorphic via an isomor-
phism f:X,— X, taking a basepoint %, € p7'(x,) to a basepoint X, € p;'(x,) iff
pl*(nl(gli%l)) = pZ*(-’Tl()?Z!}NQ))-
Proof: If there is an isomorphism f: ()?1,)?1) — ()?2, X,), then from the two relations
p, = pof and p, = p,f7" it follows that p,, (11,(X},%))) = s, (71,(X,,%,)). Con-
versely, suppose that p;, (11, (X;,%,)) = Pos(m,(X,,%5,)). By the lifting criterion,
we may lift p, to amap p,:(X,,%,)— (X,,%,) with p,P, = p,. Symmetrically, we
obtain P, : (X,,%,)— (X;,%,) with p,P, = p,. Then by the unique lifting property,
P1P> = 1 and p,p, = 1 since these composed lifts fix the basepoints. Thus p; and
P, are inverse isomorphisms. i

We have proved the first half of the following classification theorem:

Theorem 1.38. Let X be path-connected, locally path-connected, and semilocally
simply-connected. Then there is a bijection between the set of basepoint-preserving
isomorphism classes of path-connected covering spaces p : (X, Xy)— (X, x,) and the
set of subgroups of T, (X, x,), obtained by associating the subgroup p., (1, (X, %,))
to the covering space (X, Xy) . If basepoints are ignored, this correspondence gives a
bijection between isomorphism classes of path-connected covering spaces p X—X
and conjugacy classes of subgroups of 1, (X, x,) .
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Proof: It remains only to prove the last statement. We show that for a covering space
p: ()N(, )Nco) — (X, x), changing the basepoint )Nco within p‘l(xo) corresponds exactly
to changing p, (1, (X,%,)) to a conjugate subgroup of 1, (X,x,). Suppose that X,
is another basepoint in p~'(x,), and let ¥ be a path from %X, to X,. Then ¥ projects
to aloop y in X representing some element g € 1, (X, x,). Set H; = p, (1, (X, %,))
for i = 0,1. We have an inclusion g 'H,g ¢ H, since for F aloop at X0» Py isa
loop at X;. Similarly we have ngg’l C H,. Conjugating the latter relation by gt
gives H; ¢ g 'Hyg, so g 'Hyg = H,. Thus, changing the basepoint from X, to X,
changes H,, to the conjugate subgroup H; = g’lHOg.

Conversely, to change H, to a conjugate subgroup H; = g’lHOg, choose a loop
y representing g, lift this to a path y starting at X,, and let X, = ¥(1). The preceding
argument then shows that we have the desired relation H; = g’lHog. O

A consequence of the lifting criterion is that a simply-connected covering space of
a path-connected, locally path-connected space X is a covering space of every other
path-connected covering space of X. A simply-connected covering space of X is
therefore called a universal cover. It is unique up to isomorphism, so one is justified
in calling it the universal cover.

More generally, there is a partial ordering on the various path-connected covering
spaces of X, according to which ones cover which others. This corresponds to the
partial ordering by inclusion of the corresponding subgroups of 1, (X), or conjugacy
classes of subgroups if basepoints are ignored.

Representing Covering Spaces by Permutations

We wish to describe now another way of classifying the different covering spaces
of a connected, locally path-connected, semilocally simply-connected space X, with-
outrestricting just to connected covering spaces. To give the idea, con-
sider the 3-sheeted covering spaces of S!. There are three of these,

X,, X,, and X;, with the subscript indicating the number of compo- Q
nents. For each of these covering spaces p :)?'i — S the three different

lifts of a loop in S' generating ™ (S L Xo) determine a permutation of

p‘l (x() sending the starting point of the lift to the ending point of the O
lift. For )?1 this is a cyclic permutation, for )?2 it is a transposition of

two points fixing the third point, and for )?3 it is the identity permu-

tation. These permutations obviously determine the covering spaces

uniquely, up to isomorphism. The same would be true for n-sheeted

covering spaces of S ! for arbitrary n, even for n infinite.

The covering spaces of S' v S can be encoded using the same idea. Referring
back to the large table of examples near the beginning of this section, we see in the
covering space (1) that the loop a lifts to the identity permutation of the two vertices
and b lifts to the permutation that transposes the two vertices. In (2), both a and b
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lift to transpositions of the two vertices. In (3) and (4), a and b lift to transpositions of
different pairs of the three vertices, while in (5) and (6) they lift to cyclic permutations
of the vertices. In (11) the vertices can be labeled by Z, with a lifting to the identity
permutation and b lifting to the shift n — n + 1. Indeed, one can see from these
examples that a covering space of S' v §! is nothing more than an efficient graphical
representation of a pair of permutations of a given set.

This idea of lifting loops to permutations generalizes to arbitrary covering spaces.
For a covering space p :X— X, a path y in X has a unique lift y starting at a given
point of p~'(y(0)), so we obtain a well-defined map L, :p " (y(0))—p ' (y(1)) by
sending the starting point ¥ (0) of each lift y to its ending point y(1). It is evident
that L, is a bijection since Ly is its inverse. For a composition of paths yn we have
L,, = L,L,, rather than L,L,, since composition of paths is written from left to
right while composition of functions is written from right to left. To compensate for
this, let us modify the definition by replacing L, by its inverse. Thus the new L, is
a bijection p’l(y(l))qp_l(y(O)), and L,,=L,L,. Since L, depends only on the
homotopy class of y, this means that if we restrict attention to loops at a basepoint
Xo € X, then the association y +— L, gives a homomorphism from 1, (X, x) to the
group of permutations of p_l (xg). This is called the action of 1, (X, x,) on the fiber
P~ (xg).

Let us see how the covering space p : X — X can be reconstructed from the asso-
ciated action of 11, (X, x,) on the fiber F = p~'(x,), assuming that X is connected,
path-connected, and semilocally simply-connected, so it has a universal cover )?0 —X.
We can take the points of )?0 to be homotopy classes of paths in X starting at x,,
as in the general construction of a universal cover. Define a map h:X,xF— X send-
ing a pair ([y],%,) to y(1) where ¥ is the lift of y to X starting at X,,. Then h is
continuous, and in fact a local homeomorphism, since a neighborhood of ([y],X,) in
)?OXF consists of the pairs ([ynl,X,) with n a path in a suitable neighborhood of
y(1). It is obvious that h is surjective since X is path-connected. If h were injec-
tive as well, it would be a homeomorphism, which is unlikely since X is probably not
homeomorphic to )?0 X F. Even if h is not injective, it will induce a homeomorphism
from some quotient space of )?OXF onto X. To see what this quotient space is,
suppose h([yl,X,) = h([y'],X;). Then y and y’ are both -
paths from x, to the same endpoint, and from the figure %, :y>
we see that X, = L, (X,). Letting A be the loop yy, this P —
means that h([y],X,) = h([Ay],L,(X,)). Conversely, for
any loop A we have h([y],X,) = h([Ay],L (X;)). Thus h y
induces a well-defined map to X from the quotient space of X <:>
X, x F obtained by identifying ([y],%,) with ([Ay],L,(%)) Y’
for each [A] € 11 (X, x(). Let this quotient space be denoted )?p where p is the ho-
momorphism from 1, (X, x) to the permutation group of F specified by the action.
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Notice that the definition of )?p makes sense whenever we are given an action
p of m (X, x,) on a set F. There is a natural projection Xp—>X sending ([y],)NcO)
to y(1), and this is a covering space since if U C X is an open set over which the
universal cover X, is a product Ux 1, (X, X,), then the identifications defining X P
simply collapse U x 1, (X, xq) XF to UXF.

Returning to our given covering space X — X with associated action p, the map
X P — X induced by h is a bijection and therefore a homeomorphism since h was a
local homeomorphism. Since this homeomorphism X P — X takes each fiber of X , o
the corresponding fiber of X, it is an isomorphism of covering spaces.

If two covering spaces p,: X, —X and p,:X,— X are isomorphic, one may ask
how the corresponding actions of (X, x,) on the fibers F; and F, over x, are
related. An isomorphism h:X, — X, restricts to a bijection F,—F,, and evidently
Ly(h(%o)) = h(Ly()?o)). Using the less cumbersome notation yX,, for Ly(y?o), this
relation can be written more concisely as yh(X,) = h(y)Nco) . A bijection F; —F, with
this property is what one would naturally call an isomorphism of sets with 1, (X, x,)
action. Thus isomorphic covering spaces have isomorphic actions on fibers. The
converse is also true, and easy to prove. One just observes that for isomorphic actions
p, and p,, an isomorphism h:F, —F, induces a map )?'pl —»)?'pz and h™! induces a
similar map in the opposite direction, such that the compositions of these two maps,
in either order, are the identity.

This shows that n-sheeted covering spaces of X are classified by equivalence
classes of homomorphisms , (X, x,) —%,,, where X, is the symmetric group on n
symbols and the equivalence relation identifies a homomorphism p with each of its
conjugates h~'ph by elements h € 3, . The study of the various homomorphisms
from a given group to X, is a very classical topic in group theory, so we see that this
algebraic question has a nice geometric interpretation.

Deck Transformations and Group Actions

For a covering space p : X — X the isomorphisms X — X are called deck transfor-
mations or covering transformations. These form a group G(X) under composition.
For example, for the covering space p:R—S' projecting a vertical helix onto a circle,
the deck transformations are the vertical translations taking the helix onto itself, so
G()?) ~ 7 in this case. For the n-sheeted covering space st —»Sl, z — 2", the deck
transformations are the rotations of §! through angles that are multiples of 21 /n,
so G(X) = Z,.

By the unique lifting property, a deck transformation is completely determined
by where it sends a single point, assuming X is path-connected. In particular, only
the identity deck transformation can fix a point of X.

A covering space p : X — X is called normal if for each x € X and each pair of lifts

X,X" of x there is a deck transformation taking X to X" For example, the covering
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space R—S! and the n-sheeted covering spaces S'—S! are normal. Intuitively, a
normal covering space is one with maximal symmetry. This can be seen in the covering
spaces of S' v S! shown in the table earlier in this section, where the normal covering
spaces are (1), (2), (5)-(8), and (11). Note that in (7) the group of deck transformations
is Z, while in (8) itis Z,xZ,.

Sometimes normal covering spaces are called regular covering spaces. The term
‘normal’ is motivated by the following result.

Proposition 1.39. Let p: X ,Xo) — (X,x,) be a path-connected covering space of

the path-connected, locally path-connected space X, and let H be the subgroup

p.(m (X, %,)) c m,(X,x,). Then:

(a) This covering space is normal iff H is a normal subgroup of 1, (X, x;) .

b) G(X) is isomorphic to the quotient N(H)/H where N(H) is the normalizer of
H in m (X, xg).

In particular, G(X) is isomorphic to 1, (X, xq)/H if)? is a normal covering. Hence

for the universal cover X— X we have G()N() = 1 (X).

Proof: We observed earlier in the proof of the classification theorem that changing
the basepoint X, € p‘l(xo) to X, € p‘l(xo) corresponds precisely to conjugating
H Dby an element [y] € 1, (X, x,) where y lifts to a path y from X, to X,. Thus [y]
is in the normalizer N(H) iff p, (1 (X, X)) = py(m (X, X1)), which by the lifting
criterion is equivalent to the existence of a deck transformation taking X, to X;.
Hence the covering space is normal iff N(H) = m; (X, x,), that is, iff H is a normal
subgroup of T, (X, xq) -

Define @ :N(H )—G(X) sending [y] to the deck transformation T taking X to
X, in the notation above. Then @ is a homomorphism, for if y’ is another loop corre-
sponding to the deck transformation 7’ taking X, to X; then y.y’ lifts to y-(7(y")),
a path from X, to T(}?i) =77 (Xy), SO 7T’ is the deck transformation corresponding
to [y][y']. By the preceding paragraph @ is surjective. Its kernel consists of classes
[y] lifting to loops in X. These are exactly the elements of p. (1 (X, Xy))=H. 0O

The group of deck transformations is a special case of the general notion of
‘groups acting on spaces.” Given a group G and a space Y, then an action of G
on Y is a homomorphism p from G to the group Homeo(Y') of all homeomorphisms
from Y to itself. Thus to each g € G is associated a homeomorphism p(g):Y—Y,
which for notational simplicity we write simply as g:Y—Y. For p to be a homo-
morphism amounts to requiring that g,(g,(y)) = (g,9,)(y) for all g,,g, € G and
v € Y. If p is injective then it identifies G with a subgroup of Homeo(Y), and in
practice not much is lost in assuming p is an inclusion G — Homeo(Y) since in any
case the subgroup p(G) C Homeo(Y) contains all the topological information about
the action.
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We shall be interested in actions satisfying the following condition:

Each y € Y has a neighborhood U such that all the images g(U) for varying

*
(x) g € G are disjoint. In other words, g,(U) n g,(U) # © implies g, = g,.

The action of the deck transformation group G(X) on X satisfies (x). To see this,
let U c X project homeomorphically to U ¢ X. If gl(lN]) N gz(ﬁ) + & for some
g1, 9> € G(X), then g,(X,) = g,(%,) for some %,,%, € U. Since ¥, and %, must lie
in the same set p’l (x), which intersects U in only one point, we must have X, = X,.
Then g;'g, fixes this point, so g;'g, = 1 and g, = g,.

Note that in () it suffices to take g, to be the identity since g,(U) ng,(U) = &
is equivalent to U n g7 1g2(U) + . Thus we have the equivalent condition that
Ung(U) = @ only when g is the identity.

Given an action of a group G on a space Y, we can form a space Y /G, the quotient
space of Y in which each point y is identified with all its images g(y) as g ranges
over G. The points of Y /G are thus the orbits Gy = {g(y) | g € G} in Y, and
Y /G is called the orbit space of the action. For example, for a normal covering space
)?—»X, the orbit space )?/G()?) is just X.

Proposition 1.40. If an action of a group G on a space Y satisfies (x), then:

(@) The quotient map p:Y—Y /G, p(y) = Gy, is a normal covering space.

(b) G is the group of deck transformations of this covering space Y =Y /G if Y is
path-connected.

(c) G isisomorphicto (Y /G)/p, (1t,(Y)) if Y is path-connected and locally path-
connected.

Proof: Given an open set U C Y as in condition (*), the quotient map p simply
identifies all the disjoint homeomorphic sets {g(U) | g € G} to a single open set
p(U) in Y/G. By the definition of the quotient topology on Y /G, p restricts to
a homeomorphism from g(U) onto p(U) for each g € G so we have a covering
space. Each element of G acts as a deck transformation, and the covering space is
normal since g,g; ! takes g, (U) to g,(U). The deck transformation group contains
G as a subgroup, and equals this subgroup if Y is path-connected, since if f is any
deck transformation, then for an arbitrarily chosen point vy € Y, v and f(y) are
in the same orbit and there is a g € G with g(y) = f(»), hence f = g since deck
transformations of a path-connected covering space are uniquely determined by where
they send a point. The final statement of the proposition is immediate from part (b)
of Proposition 1.39. a

In view of the preceding proposition, we shall call an action satisfying (%) a
covering space action. This is not standard terminology, but there does not seem to
be a universally accepted name for actions satisfying (*). Sometimes these are called
‘properly discontinuous’ actions, but more often this rather unattractive term means
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something weaker: Every point x € X has a neighborhood U such that U n g(U)
is nonempty for only finitely many g € G. Many symmetry groups have this proper
discontinuity property without satisfying (%), for example the group of symmetries
of the familiar tiling of R? by regular hexagons. The reason why the action of this
group on R? fails to satisfy () is that there are fixed points: points v for which
there is a nontrivial element g € G with g(y) = y. For example, the vertices of the
hexagons are fixed by the 120 degree rotations about these points, and the midpoints
of edges are fixed by 180 degree rotations. An action without fixed points is called a
free action. Thus for a free action of G on Y, only the identity element of G fixes any
point of Y. This is equivalent to requiring that all the images g(y) of each y € Y are
distinct, or in other words g, (y) = g,(y) only when g, = g,, since g,(y) = g>(»)
is equivalent to g, lgz () = y. Though condition (%) implies freeness, the converse
is not always true. An example is the action of Z on S! in which a generator of Z acts
by rotation through an angle « that is an irrational multiple of 2. In this case each
orbit Zy is dense in S 1, so condition (%) cannot hold since it implies that orbits are
discrete subspaces. An exercise at the end of the section is to show that for actions
on Hausdorff spaces, freeness plus proper discontinuity implies condition (x). Note
that proper discontinuity is automatic for actions by a finite group.

Example 1.41. Let Y be the closed orientable surface of genus 11, an ‘11-hole torus’ as
shown in the figure. This has a 5-fold rotational symme-
try, generated by a rotation of angle 27r/5. Thus we have
the cyclic group Z5 acting on Y, and the condition (*) is
obviously satisfied. The quotient space Y /Z; is a surface
of genus 3, obtained from one of the five subsurfaces of
Y cut off by the circles Cj, - --, C; by identifying its two
boundary circles C; and C;,; to form the circle C as
shown. Thus we have a covering space M,, —M; where
M, denotes the closed orientable surface of genus g.
In particular, we see that 1, (M;) contains the ‘larger’

group 11, (M;;) as a normal subgroup of index 5, with
quotient Z5. This example obviously generalizes by re-
placing the two holes in each ‘arm’ of M;; by m holes and the 5-fold symmetry by
n-fold symmetry. This gives a covering space M,,,,.; —M,,.;. An exercise in §2.2 is
to show by an Euler characteristic argument that if there is a covering space M, — M,
then g=mn+1 and h = m + 1 for some m and n.

As a special case of the final statement of the preceding proposition we see that
for a covering space action of a group G on a simply-connected locally path-connected
space Y, the orbit space Y/G has fundamental group isomorphic to G. Under this
isomorphism an element g € G corresponds to aloopin Y /G thatis the projection of
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apathin Y from a chosen basepoint y, to g(y,). Any two such paths are homotopic
since Y is simply-connected, so we get a well-defined element of 7, (Y/G) associated
to g.

This method for computing fundamental groups via group actions on simply-
connected spaces is essentially how we computed 1, (S 1Y in §1.1, via the covering
space R— S! arising from the action of Z on R by translations. This is a useful gen-
eral technique for computing fundamental groups, in fact. Here are some examples
illustrating this idea.

Example 1.42. Consider the grid in R?> formed by the horizontal and vertical lines
through points in Z°. Let us decorate this grid with arrows in either of the two ways
shown in the figure, the difference between the two

cases being that in the second case the horizontal

arrows in adjacent lines point in opposition direc-

tions. The group G consisting of all symmetries

of the first decorated grid is isomorphic to Zx7Z

since it consists of all translations (x,y) — (x + m,y + n) for m,n € Z. For the
second grid the symmetry group G contains a subgroup of translations of the form
(x,y) — (x +m,y + 2n) for m,n € Z, but there are also glide-reflection symme-
tries consisting of vertical translation by an odd integer distance followed by reflection
across a vertical line, either a vertical line of the grid or a vertical line halfway between
two adjacent grid lines. For both decorated grids there are elements of G taking any
square to any other, but only the identity element of G takes a square to itself. The
minimum distance any point is moved by a nontrivial element of G is 1, which easily
implies the covering space condition (). The orbit space R*/G is the quotient space
of a square in the grid with opposite edges identified according to the arrows. Thus
we see that the fundamental groups of the torus and the Klein bottle are the symme-
try groups G in the two cases. In the second case the subgroup of G formed by the
translations has index two, and the orbit space for this subgroup is a torus forming a
two-sheeted covering space of the Klein bottle.

Example 1.43: RP". The antipodal map of S", x — —x, generates an action of Z,
on S™ with orbit space RP", real projective n-space, as defined in Example 0.4. The
action is a covering space action since each open hemisphere in S” is disjoint from
its antipodal image. As we saw in Proposition 1.14, S™ is simply-connected if n > 2,
so from the covering space S" —RP" we deduce that 1, (RP") ~ Z, for n > 2. A
generator for 7r; (RP") is any loop obtained by projecting a path in ™ connecting two
antipodal points. One can see explicitly that such a loop y has order two in 1, (RP")
if n > 2 since the composition y-y lifts to aloop in $", and this can be homotoped to
the trivial loop since 71, (S™) = 0, so the projection of this homotopy into RP" gives
a nullhomotopy of y.y.
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One may ask whether there are other finite groups that act freely on S", defining
covering spaces S""—S"/G. We will show in Proposition 2.29 that Z, is the only
possibility when 7 is even, but for odd n the question is much more difficult. It is
easy to construct a free action of any cyclic group Z,, on $2k=1 the action generated

2milmy, of the unit sphere S°¢~! in C* = R?*. This action is free

2mil/m

by the rotation v — e
since an equation v = e v with 0 < ¥ < m implies v = 0, but 0 is not a point
of %1, The orbit space SZk’l/Zm is one of a family of spaces called lens spaces
defined in Example 2.43.

There are also noncyclic finite groups that act freely as rotations of S™ for odd
n > 1. These actions are classified quite explicitly in [Wolf 1984]. Examples in the
simplest case n = 3 can be produced as follows. View R* as the quaternion algebra H.
Multiplication of quaternions satisfies |ab| = |a||b| where |a| denotes the usual
Euclidean length of a vector a € R*. Thus if a and b are unit vectors, so is ab, and
hence quaternion multiplication defines a map $°xS$>—S$3. This in fact makes $3
into a group, though associativity is all we need now since associativity implies that
any subgroup G of $3 acts on S° by left-multiplication, g(x) = gx. This action is
free since an equation x = gx in the division algebra H implies g =1 or x = 0. As
a concrete example, G could be the familiar quaternion group Qg = {+1, +i, +j, +k}
from group theory. More generally, for a positive integer m, let Q,,, be the subgroup
of S* generated by the two quaternions a = e™/™ and b = j. Thus a has order
2m and b has order 4. The easily verified relations a™ = b®> = —1 and bab™ ! =
a~! imply that the subgroup Z,,, generated by a is normal and of index 2 in Qy,,.
Hence Q,,, is a group of order 4m, called the generalized quaternion group. Another
common name for this group is the binary dihedral group D}, since its quotient by
the subgroup {=1} is the ordinary dihedral group D, of order 2m.

Besides the groups Q,, = Dj,, there are just three other noncyclic finite sub-
groups of $3: the binary tetrahedral, octahedral, and icosahedral groups Ty, O,
and I}, of orders indicated by the subscripts. These project two-to-one onto the
groups of rotational symmetries of a regular tetrahedron, octahedron (or cube), and
icosahedron (or dodecahedron). In fact, it is not hard to see that the homomorphism
$3—S0(3) sending u € S® c H to the isometry v —u 'vu of R?, viewing R? as the
‘pure imaginary’ quaternions v = ai + bj + ck, is surjective with kernel {+1}. Then
the groups Dj,,, T5y, Olks, I}5, are the preimages in S° of the groups of rotational
symmetries of a regular polygon or polyhedron in R3.

There are two conditions that a finite group G acting freely on S" must satisfy:

(a) Every abelian subgroup of G is cyclic. This is equivalent to saying that G contains
no subgroup 7, xZ, with p prime.
(b) G contains at most one element of order 2.

A proof of (a) is sketched in an exercise for §4.2. For a proof of (b) the original
source [Milnor 1957] is recommended reading. The groups satisfying (a) have been
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completely classified; see [Brown 1982], section V1.9, for details. An example of a
group satisfying (a) but not (b) is the dihedral group D,,, for odd m > 1.

There is also a much more difficult converse: A finite group satisfying (a) and (b)
acts freely on S for some n. References for this are [Madsen, Thomas, & Wall 1976]
and [Davis & Milgram 1985]. There is also almost complete information about which
n’s are possible for a given group.

Example 1.44. In Example 1.35 we constructed a contractible 2-complex )?m’n
T,,n xR as the universal cover of a finite 2-complex X,,, that was the union of
the mapping cylinders of the two maps S ' 58! z+— z™ and z — z". The group
of deck transformations of this covering space is therefore the fundamental group
111 (X, ) - From van Kampen'’s theorem applied to the decomposition of X,, , into
the two mapping cylinders we have the presentation (a,b | a™b™™) for this group
Gy = T (Xy, ). Itis interesting to look at the action of G,, , on )?m,n more closely.
We described a decomposition of X,, , into rectangles, with X,, , the quotient of
one rectangle. These rectangles in fact define a cell structure on )?'m,n lifting a cell
structure on X,, ,, with two vertices, three edges, and one 2-cell. The group G,, ,, is
thus a group of symmetries of this cell structure on )?m’n. If we orient the three edges
of X,,, and lift these orientations to the edges of )?m’n, then G,, , is the group of all
symmetries of )?m,n preserving the orientations of edges. For example, the element a
acts as a ‘screw motion’ about an axis that is a vertical line {v,} xR with v, a vertex
of T,, ,,, and b acts similarly for a vertex v,,.

Since the action of G,,, on )?m‘n preserves the cell structure, it also preserves
the product structure T,, , X R. This means that there are actions of G,,, on T,, ,
and R such that the action on the product X, , = T,, , xR is the diagonal action
g(x,y) = (g(x),g(y)) for g € G, ,,. If we make the rectangles of unit height in the
R coordinate, then the element a™ = b™ acts on R as unit translation, while a acts
by !/,, translation and b by !/, translation. The translation actions of a and b on R
generate a group of translations of R that is infinite cyclic, generated by translation
by the reciprocal of the least common multiple of m and n.

The action of G,,, on T, , has kernel consisting of the powers of the element
a™ = b™. This infinite cyclic subgroup is precisely the center of Gyn» @S We saw in
Example 1.24. There is an induced action of the quotient group 7, * Z,, on T,, ,,,
but this is not a free action since the elements a and b and all their conjugates fix
vertices of T,, . On the other hand, if we restrict the action of G,,, on T,,, to
the kernel K of the map G,,,, —Z given by the action of G,,, on the R factor of
Xnn» then we do obtain a free action of K on T, ,,. Since this action takes vertices
to vertices and edges to edges, it is a covering space action, so K is a free group, the
fundamental group of the graph T, ,,/K. An exercise at the end of the section is to
determine T, , /K explicitly and compute the number of generators of K.
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Cayley Complexes

Covering spaces can be used to describe a very classical method for viewing
groups geometrically as graphs. Recall from Corollary 1.28 how we associated to each
group presentation G = (g | 7 ) a 2-dimensional cell complex X with 1 (X;) = G
by taking a wedge-sum of circles, one for each generator g,, and then attaching a
2-cell for each relator 7. We can construct a cell complex )?G with a covering space
action of G such that X;/G = X, in the following way. Let the vertices of X, be
the elements of G themselves. Then, at each vertex g € G, insert an edge joining
g o gg, for each of the chosen generators g,. The resulting graph is known as
the Cayley graph of G with respect to the generators g,. This graph is connected
since every element of G is a product of g,’s, so there is a path in the graph joining
each vertex to the identity vertex e. Each relation 75 determines a loop in the graph,
starting at any vertex g, and we attach a 2-cell for each such loop. The resulting cell
complex )?G is the Cayley complex of G. The group G acts on )?G by multiplication
on the left. Thus, an element g € G sends a vertex g’ € G to the vertex gg’, and the
edge from g’ to g'g, is sent to the edge from gg’ to gg'g,. The action extends to
2-cells in the obvious way. This is clearly a covering space action, and the orbit space
is just X.

In fact X is the universal cover of X since it is simply-connected. This can be
seen by considering the homomorphism @ : 11, (X;) — G defined in the proof of Propo-
sition 1.39. For an edge e, in X; corresponding to a generator g, of G, it is clear
from the definition of ¢ that @([e,]) = g4, SO @ is an isomorphism. In particular
the kernel of @, p, (m ()?G)) , is zero, hence also T, ()N(G) since p,, is injective.

Let us look at some examples of Cayley complexes.

Example 1.45. When G is the free group on

2
two generators a and b, X, is stvs! and ba-l b xiiijg/— b ba
)?G is the Cayley graph of Z % Z pictured at }ﬂ:—%’fo_
the right. The action of a on this graph is a a'b H 4 ab
rightward shift along the central horizontal “_lﬁ_ja e i__i/{ 4
axis, while b acts by an upward shift along a2 S AN g2
the central vertical axis. The composition a'p? _ﬁ:} &:ﬁi ab™?
ab of these two shifts then takes the vertex it _},{I:—%j\»_ .
e to the vertex ab. Similarly, the action of 2 41::}\ sfla

any w € Z x 7 takes e to the vertex w.

Example 1.46. The group G = ZxZ with presentation {x, | xyx 'y~!) has X¢
the torus S'xS!, and )?'G is R? with vertices the integer lattice Z> c R® and edges
the horizontal and vertical segments between these lattice points. The action of G is
by translations (x,y) +— (x +m,y +n).
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Example 1.47. For G = 7, = (x | x*), X; is RP? and X, = S*. More generally, for
Z, = (x| x"), X¢ is S! with a disk attached by the map z — z" and X consists of
n disks Dy, -- -, D,, with their boundary circles identified. A generator of Z,, acts on
this union of disks by sending D; to D;,; via a 21t/n rotation, the subscript i being
taken mod n. The common boundary circle of the disks is rotated by 27t/n.

Example 1.48. If G =7, xZ, = (a,b | a?,b*) then the Cayley graph is a union of
an infinite sequence of circles each tangent to its two neighbors.

e e b (G b e
We obtain )?G from this graph by making each circle the equator of a 2-sphere, yield-
ing an infinite sequence of tangent 2-spheres. Elements of the index-two normal
subgroup Z C Z, * Z, generated by ab act on )?G as translations by an even number
of units, while each of the remaining elements of Z, x Z, acts as the antipodal map on
one of the spheres and flips the whole chain of spheres end-for-end about this sphere.
The orbit space X, is RP? v RP>.

It is not hard to see the generalization of this example to Z,, * Z,, with the pre-
sentation {a,b | a™,b"), so that X, consists of an infinite union of copies of the
Cayley complexes for Z,, and Z,, constructed in Example 1.47, arranged in a tree-like
pattern. The case of Z, * Z; is pictured below.
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Exercises

1. For a covering space p :X—X and a subspace A C X, let A= p’l (A). Show that
the restriction p ‘A—Aisa covering space.

2. Show that if p,:X; — X, and p,:X,— X, are covering spaces, so is their product
pP1Xp> :flx)?z—nXlxXZ.

3. Letp :X—X bea covering space with p~!(x) finite and nonempty for all x € X.
Show that X is compact Hausdorff iff X is compact Hausdorff.

4. Construct a simply-connected covering space of the space X C R? that is the union
of a sphere and a diameter. Do the same when X is the union of a sphere and a circle
intersecting it in two points.

5. Let X be the subspace of R® consisting of the four sides of the square [0,1]x[0,1]
together with the segments of the vertical lines x = 1/, 1/5,1/,, - - - inside the square.
Show that for every covering space X— X there is some neighborhood of the left
edge of X that lifts homeomorphically to X. Deduce that X has no simply-connected
covering space.

6. Let X be the shrinking wedge of circles in Example 1.25, and let X beits covering
space shown in the figure below.

Construct a two-sheeted covering space Y — X such that the composition Y->X—X

of the two covering spaces is not a covering space. Note that a composition of two
covering spaces does have the unique path lifting property, however.

7. Let Y be the quasi-circle shown in the figure, a closed subspace
of R? consisting of a portion of the graph of y = sin(1/x), the
segment [—1,1] in the y-axis, and an arc connecting these two
pieces. Collapsing the segment of Y in the y-axis to a point
gives a quotient map f:Y—S'. Show that f does not lift to
the covering space R— S 1, even though 1 (Y) = 0. Thus local
path-connectedness of Y is a necessary hypothesis in the lifting criterion.

8. Let X and Y be simply-connected covering spaces of the path-connected, locally
path-connected spaces X and Y. Show that if X ~ Y then X ~ Y. [Exercise 10 in
Chapter 0 may be helpful.]

9. Show that if a path-connected, locally path-connected space X has 7, (X) finite,
then every map X —S' is nullhomotopic. [Use the covering space R—S 1]

10. Find all the connected 2-sheeted and 3-sheeted covering spaces of S Ly st upto
isomorphism of covering spaces without basepoints.
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11. Construct finite graphs X; and X, having a common finite-sheeted covering space
X, = X,, but such that there is no space having both X, and X, as covering spaces.

12. Let a and b be the generators of m,(S' v S') corresponding to the two S!
summands. Draw a picture of the covering space of S' v § ! corresponding to the
normal subgroup generated by az, hz, and (ab)4, and prove that this covering space
is indeed the correct one.

13. Determine the covering space of S! v S corresponding to the subgroup of
(S lyvs 1) generated by the cubes of all elements. The covering space is 27-sheeted
and can be drawn on a torus so that the complementary regions are nine triangles
with edges labeled aaa, nine triangles with edges labeled bbb, and nine hexagons
with edges labeled ababab. [For the analogous problem with sixth powers instead
of cubes, the resulting covering space would have 2283%° sheets! And for k" powers
with k sufficiently large, the covering space would have infinitely many sheets. The
underlying group theory question here, whether the quotient of Z *x Z obtained by
factoring out all k" powers is finite, is known as Burnside’s problem. It can also be
asked for a free group on n generators.]

14. Find all the connected covering spaces of RP? v RP?.

15. Let p:)?—»X be a simply-connected covering space of X and let A C X be a
path-connected, locally path-connected subspace, with AcXa path-component of
p’l (A). Show that p: A— A is the covering space corresponding to the kernel of the
map 1, (A) — 11, (X).

16. Given maps X —Y — Z such that both Y —Z and the composition X— Z are
covering spaces, show that X—Y is a covering space if Z is locally path-connected,
and show that this covering space is normal if X — Z is a normal covering space.

17. Given a group G and a normal subgroup N, show that there exists a normal
covering space X — X with m(X) =G, m (X) ~ N, and deck transformation group
G(X) ~ G/N.

18. For a path-connected, locally path-connected, and semilocally simply-connected
space X, call a path-connected covering space X — X abelian if it is normal and has
abelian deck transformation group. Show that X has an abelian covering space that is
a covering space of every other abelian covering space of X, and that such a ‘universal’
abelian covering space is unique up to isomorphism. Describe this covering space
explicitly for X =S' vS!' and X =S' v st v st

19. Use the preceding problem to show that a closed orientable surface M, of genus
g has a connected normal covering space with deck transformation group isomorphic
to Z" (the product of n copies of 7) iff n < 2g. For n = 3 and g = 3, describe such
a covering space explicitly as a subspace of R? with translations of R® as deck trans-
formations. Show that such a covering space in R® exists iff there is an embedding
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of M, in the 3-torus T3 = S'xS!x S such that the induced map T, (Mg)—>7T1(T3)
is surjective.

20. Construct nonnormal covering spaces of the Klein bottle by a Klein bottle and by
a torus.

21. Let X be the space obtained from a torus S'x S! by attaching a Mobius band via a
homeomorphism from the boundary circle of the Mébius band to the circle S*x {x,}
in the torus. Compute 71, (X), describe the universal cover of X, and describe the
action of 71, (X) on the universal cover. Do the same for the space Y obtained by
attaching a Mobius band to RP? via a homeomorphism from its boundary circle to
the circle in RP? formed by the 1-skeleton of the usual CW structure on RP?.

22. Given covering space actions of groups G; on X; and G, on X5, show that the ac-
tion of G; X G, on X; X X, defined by (g,,9,) (x1,x,) = (g,(x,),9>(x>,)) is a covering
space action, and that (X; xX,)/(G; X G,) is homeomorphic to X, /G, xX,/G,.

23. Show that if a group G acts freely and properly discontinuously on a Hausdorff
space X, then the action is a covering space action. (Here ‘properly discontinuously’
means that each x € X has a neighborhood U suchthat {ge G|UngU) += @} is
finite.) In particular, a free action of a finite group on a Hausdorff space is a covering
space action.

24. Given a covering space action of a group G on a path-connected, locally path-

connected space X, then each subgroup H C G determines a composition of covering

spaces X— X/H— X/G. Show:

(a) Every path-connected covering space between X and X/G is isomorphic to X/H
for some subgroup H C G.

(b) Two such covering spaces X/H, and X/H, of X/G are isomorphic iff H, and
H, are conjugate subgroups of G.

(c) The covering space X/H — X /G is normal iff H is a normal subgroup of G, in
which case the group of deck transformations of this coveris G/H.

25. Let @: R?— R? be the linear transformation @(x,v) = (2x,y/2). This generates
an action of Z on X = R® — {0}. Show this action is a covering space action and
compute 17, (X/Z). Show the orbit space X/Z is non-Hausdorff, and describe how it is
a union of four subspaces homeomorphic to S' x R, coming from the complementary
components of the x-axis and the y-axis.

26. For a covering space p :X— X with X connected, locally path-connected, and

semilocally simply-connected, show:

(a) The components of X are in one-to-one correspondence with the orbits of the
action of 1 (X, x,) on the fiber p’l(xo).

(b) Under the Galois correspondence between connected covering spaces of X and
subgroups of (X, x,), the subgroup corresponding to the component of X
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containing a given lift X, of x, is the stabilizer of X, the subgroup consisting
of elements whose action on the fiber leaves X, fixed.

27. For a universal cover p:)? — X we have two actions of (X, x,) on the fiber
p‘l(xo), namely the action given by lifting loops at x, and the action given by re-
stricting deck transformations to the fiber. Are these two actions the same when
X =5S'v ! or X =5'x5'? Do the actions always agree when 11, (X, x,,) is abelian?

28. Generalize the proof of Theorem 1.7 to show that for a covering space action of a
group G on a simply-connected space Y, 1, (Y/G) is isomorphic to G. [If Y islocally
path-connected, this is a special case of part (b) of Proposition 1.40.]

29. Let Y be path-connected, locally path-connected, and simply-connected, and let
G, and G, be subgroups of Homeo(Y) defining covering space actions on Y. Show
that the orbit spaces Y /G, and Y/G, are homeomorphic iff G, and G, are conjugate
subgroups of Homeo(Y).

30. Draw the Cayley graph of the group Z * Z, = (a,b | b*).

31. Show that the normal covering spaces of S' v S! are precisely the graphs that
are Cayley graphs of groups with two generators. More generally, the normal cov-
ering spaces of the wedge sum of n circles are the Cayley graphs of groups with n
generators.

32. Consider covering spaces p:)? — X with X and X connected CW complexes,

the cells of X projecting homeomorphically onto cells of X. Restricting p to the

1-skeleton then gives a covering space X' — X! over the 1-skeleton of X. Show:

(a) Two such covering spaces X; — X and X, — X are isomorphic iff the restrictions
X! — X' and X! — X! are isomorphic.

(b) X— X is a normal covering space iff X'—Xx" is normal.

(c) The groups of deck transformations of the coverings X—X and X'— X! are
isomorphic, via the restriction map.

33. In Example 1.44 let d be the greatest common divisor of m and n, and let
m’ = m/d and n’ = n/d. Show that the graph T, , /K consists of m’ vertices
labeled a, n’ vertices labeled b, together with d edges joining each a vertex to
each b vertex. Deduce that the subgroup K C G, , is freeon dm'n’ —m’ —n' +1

generators.
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Additional Topics
1.A Graphs and Free Groups

Since all groups can be realized as fundamental groups of spaces, this opens the
way for using topology to study algebraic properties of groups. The topics in this
section and the next give some illustrations of this principle, mainly using covering
space theory.

We remind the reader that the Additional Topics which form the remainder of
this chapter are not to be regarded as an essential part of the basic core of the book.
Readers who are eager to move on to new topics should feel free to skip ahead.

By definition, a graph is a 1-dimensional CW complex, in other words, a space
X obtained from a discrete set X° by attaching a collection of 1-cells ey Thus X
is obtained from the disjoint union of X° with closed intervals I « by identifying the
two endpoints of each I, with points of X°. The points of X° are the vertices and
the 1-cells the edges of X. Note that with this definition an edge does not include its
endpoints, so an edge is an open subset of X. The two endpoints of an edge can be
the same vertex, so the closure ¢, of an edge e, is homeomorphic either to I or S'.

Since X has the quotient topology from the disjoint union X° [, 1,, a subset of X
is open (or closed) iff it intersects the closure e, of each edge e, in an open (or closed)
setin e,. One says that X has the weak topology with respect to the subspaces e, .
In this topology a sequence of points in the interiors of distinct edges forms a closed
subset, hence never converges. This is true in particular if the edges containing the
sequence all have a common vertex and one tries to choose the sequence so that it
gets ‘closer and closer’ to the vertex. Thus if there is a vertex that is the endpoint
of infinitely many edges, then the weak topology cannot be a metric topology. An
exercise at the end of this section is to show the converse, that the weak topology is
a metric topology if each vertex is an endpoint of only finitely many edges.

A basis for the topology of X consists of the open intervals in the edges together
with the path-connected neighborhoods of the vertices. A neighborhood of the latter
sort about a vertex v is the union of connected open neighborhoods U, of v in e,
for all e, containing v. In particular, we see that X is locally path-connected. Hence
a graph is connected iff it is path-connected.

If X has only finitely many vertices and edges, then X is compact, being the
continuous image of the compact space X° [ «1«- The converse is also true, and more
generally, a compact subset C of a graph X can meet only finitely many vertices and
edges of X. To see this, let the subspace D C C consist of the vertices in C together
with one point in each edge that C meets. Then D is a closed subset of X since it
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meets each ¢, in a closed set. For the same reason, any subset of D is closed, so D
has the discrete topology. But D is compact, being a closed subset of the compact
space C, so D must be finite. By the definition of D this means that C can meet only
finitely many vertices and edges.

A subgraph of a graph X is a subspace Y C X that is a union of vertices and
edges of X, such that e, c Y implies e, c Y. The latter condition just says that
Y is a closed subspace of X. A tree is a contractible graph. By a tree in a graph X
we mean a subgraph that is a tree. We call a tree in X maximal if it contains all the
vertices of X. This is equivalent to the more obvious meaning of maximality, as we
will see below.

Proposition 1A.1. Every connected graph contains a maximal tree, and in fact any

tree in the graph is contained in a maximal tree.

Proof: Let X be a connected graph. We will describe a construction that embeds
an arbitrary subgraph X, ¢ X as a deformation retract of a subgraph Y C X that
contains all the vertices of X. By choosing X, to be any subtree of X, for example a
single vertex, this will prove the proposition.

As a preliminary step, we construct a sequence of subgraphs X, c X; c X, C ---,
letting X, be obtained from X; by adjoining the closures e, of all edges e, C X - X;
having at least one endpoint in X;. The union |J; X; is openin X since a neighborhood
of a point in X; is contained in X;,,. Furthermore, |J; X; is closed since it is a union
of closed edges and X has the weak topology. So X = J; X; since X is connected.

Now to construct Y we begin by setting Y, = X,,. Then inductively, assuming
that Y; C X; has been constructed so as to contain all the vertices of X;, let Y;,; be
obtained from Y; by adjoining one edge connecting each vertex of X;,; —X; to Y;, and
let Y = U;Y;. Itis evident that Y;,; deformation retracts to Y;, and we may obtain
a deformation retraction of Y to Y, = X, by performing the deformation retraction
of Y;,, to Y, during the time interval [1/2""!,1/2']. Thus a point x € Y;,; - Y; is
stationary until this interval, when it moves into Y; and thereafter continues mov-
ing until it reaches Y. The resulting homotopy h,;:Y—Y is continuous since it is
continuous on the closure of each edge and Y has the weak topology. O

Given a maximal tree T C X and a base vertex x, € T, then each edge e, of
X — T determines a loop f, in X that goes first from x, to one endpoint of e, by
a path in T, then across e, then back to x, by a path in T. Strictly speaking, we
should first orient the edge e, in order to specify which direction to cross it. Note
that the homotopy class of f,, is independent of the choice of the paths in T since T
is simply-connected.

Proposition 1A.2. For a connected graph X with maximal tree T, 11,(X) is a free
group with basis the classes [ f,] corresponding to the edges e, of X — T.
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In particular this implies that a maximal tree is maximal in the sense of not being
contained in any larger tree, since adjoining any edge to a maximal tree produces a
graph with nontrivial fundamental group. Another consequence is that a graph is a
tree iff it is simply-connected.

Proof: The quotient map X— X/T is a homotopy equivalence by Proposition 0.17.
The quotient X/T is a graph with only one vertex, hence is a wedge sum of circles,
whose fundamental group we showed in Example 1.21 to be free with basis the loops
given by the edges of X/T, which are the images of the loops f,, in X. ]

Here is a very useful fact about graphs:

Lemma 1A.3. Every covering space of a graph is also a graph, with vertices and
edges the lifts of the vertices and edges in the base graph.

Proof: Let p: X— X be the covering space. For the vertices of X we take the discrete
set X0 = p’l(XO). Writing X as a quotient space of X° [1,I, as in the definition
of a graph and applying the path lifting property to the resulting maps I,— X, we
get a unique lift Ia—>)? passing through each point in p~'(x), for x € ey- These
lifts define the edges of a graph structure on X. The resulting topology on X is the
same as its original topology since both topologies have the same basic open sets, the
covering projection X—X being a local homeomorphism. a

We can now apply what we have proved about graphs and their fundamental
groups to prove a basic fact of group theory:

|| Theorem 1A.4. Every subgroup of a free group is free.

Proof: Given a free group F, choose a graph X with 1, (X) =~ F, for example a wedge
of circles corresponding to a basis for F. For each subgroup G of F there is by
Proposition 1.36 a covering space p : X — X with p*(Trl()?)) = G, hence m; ()?) =G
since p,, is injective by Proposition 1.31. Since Xisa graph by the preceding lemma,
the group G = m,; (X) is free by Proposition 1A.2. m]

The structure of trees can be elucidated by looking more closely at the construc-

tions in the proof of Proposition 1A.1. If X is a tree and v, is any vertex of X, then the
construction of a maximal tree Y C X starting with Y, = {vy}
yields an increasing sequence of subtrees Y,, C X whose union is
all of X since a tree has only one maximal subtree, namely itself.
We can think of the vertices in Y,, — Y,,_; as being at ‘height’ n,
with the edges of Y,, — Y,,_; connecting these vertices to vertices
of height n — 1. In this way we get a ‘height function’ h: X—R
assigning to each vertex its height, and monotone on edges.
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For each vertex v of X there is exactly one edge leading downward from v, so
by following these downward edges we obtain a path from v to the base vertex vy.
This is an example of an edgepath, which is a composition of finitely many paths each
consisting of a single edge traversed monotonically. For any edgepath joining v to v
other than the downward edgepath, the height function would not be monotone and
hence would have local maxima, occurring when the edgepath backtracked, retracing
some edge it had just crossed. Thus in a tree there is a unique nonbacktracking
edgepath joining any two points. All the vertices and edges along this edgepath are
distinct.

A tree can contain no subgraph homeomorphic to a circle, since two vertices
in such a subgraph could be joined by more than one nonbacktracking edgepath.
Conversely, if a connected graph X contains no circle subgraph, then it must be a
tree. For if T is a maximal tree in X that is not equal to X, then the union of an edge
of X — T with the nonbacktracking edgepath in T joining the endpoints of this edge is
a circle subgraph of X. So if there are no circle subgraphs of X, we must have X = T,
a tree.

For an arbitrary connected graph X and a pair of vertices vy and v; in X there is
a unique nonbacktracking edgepath in each homotopy class of paths from v, to v;.
This can be seen by lifting to the universal cover X, which is a tree since it is simply-
connected. Choosing alift ¥, of v,, a homotopy class of paths from v, to v, lifts to
a homotopy class of paths starting at v, and ending at a unique lift ¥, of v,. Then
the unique nonbacktracking edgepath in X from Uy to U, projects to the desired
nonbacktracking edgepath in X.

Exercises

1. Let X be a graph in which each vertex is an endpoint of only finitely many edges.
Show that the weak topology on X is a metric topology.

2. Show that a connected graph retracts onto any connected subgraph.

3. For a finite graph X define the Euler characteristic X (X) to be the number of
vertices minus the number of edges. Show that X (X) =1 if X is a tree, and that the
rank (number of elements in a basis) of mm;(X) is 1 — X (X) if X is connected.

4. 1f X is a finite graph and Y is a subgraph homeomorphic to S' and containing the
basepoint x, show that T (X, x;) has a basis in which one element is represented
by the loop Y.

5. Construct a connected graph X and maps f, g:X— X such that fg = 1 but f
and g do not induce isomorphisms on ;. [Note that f,g, = 1 implies that f, is
surjective and g, is injective.]

6. Let F be the free group on two generators and let F’ be its commutator subgroup.
Find a set of free generators for F’' by considering the covering space of the graph
st v st corresponding to F'.
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7. If F is a finitely generated free group and N is a nontrivial normal subgroup of
infinite index, show, using covering spaces, that N is not finitely generated.

8. Show that a finitely generated group has only a finite number of subgroups of a
given finite index. [First do the case of free groups, using covering spaces of graphs.
The general case then follows since every group is a quotient group of a free group.]

9. Using covering spaces, show that an index n subgroup H of a group G has at most
n conjugate subgroups gH g_1 in G. Apply this to show that there exists a normal
subgroup K C G of finite index with K C H. [For the latter statement, consider
the intersection of all the conjugate subgroups gHg’l. This is the maximal normal
subgroup of G contained in H.]

10. Let X be the wedge sum of n circles, with its natural graph structure, and let
X—X bea covering space with Y C X a finite connected subgraph. Show there is
a finite graph Z > Y having the same vertices as Y, such that the projection Y —» X
extends to a covering space Z—X.

11. Apply the two preceding problems to show that if F is a finitely generated free
group and x € F is not the identity element, then there is a normal subgroup H C F
of finite index such that x ¢ H. Hence x has nontrivial image in a finite quotient
group of F. In this situation one says F is residually finite.

12. Let F be a finitely generated free group, H C F a finitely generated subgroup, and
x € F — H. Show there is a subgroup K of finite index in F such that K > H and
x ¢ K. [Apply Exercise 10.]

13. Let x be a nontrivial element of a finitely generated free group F. Show there is
a finite-index subgroup H C F in which x is one element of a basis. [Exercises 4 and
10 may be helpful.]

14. Show that the existence of maximal trees is equivalent to the Axiom of Choice.

1.B K(G,1) Spaces and Graphs of Groups

In this section we introduce a class of spaces whose homotopy type depends only
on their fundamental group. These spaces arise many places in topology, especially
in its interactions with group theory.

A path-connected space whose fundamental group is isomorphic to a given group
G and which has a contractible universal covering space is called a K(G,1) space. The
‘1’ here refers to 7T, . More general K (G, n) spaces are studied in §4.2. All these spaces
are called Eilenberg-MacLane spaces, though in the case n = 1 they were studied by
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Hurewicz before Eilenberg and MacLane took up the general case. Here are some
examples:

Example 1B.1. slisa K(Z,1). More generally, a connected graph is a K(G, 1) with
G a free group, since by the results of §1.A its universal cover is a tree, hence con-
tractible.

Example 1B.2. Closed surfaces with infinite T, , in other words, closed surfaces other
than S° and [RPZ, are K(G,1)’s. This will be shown in Example 1B.14 below. It also
follows from the theorem in surface theory that the only simply-connected surfaces
without boundary are S° and R?, so the universal cover of a closed surface with
infinite fundamental group must be R? since it is noncompact. Nonclosed surfaces
deformation retract onto graphs, so such surfaces are K(G, 1)’s with G free.

Example 1B.3. The infinite-dimensional projective space RP* is a K(Z,,1) since its
universal cover is S®, which is contractible. To show the latter fact, a homotopy from
the identity map of S® to a constant map can be constructed in two stages as follows.
First, define f;:R*—R* by fi(x;,Xp,--) = (1 — £)(x],Xp, ) + (0, X1, Xy, -+).
This takes nonzero vectors to nonzero vectors for all t € [0,1], so f;/|f;| gives a ho-
motopy from the identity map of §* to the map (x;, x5, - -) — (0,x1,X,,---). Thena
homotopy from this map to a constant map is given by g,/1g;| where g, (x;,x,,--+) =
(1-1)(0,x;,%xp,---) +t(1,0,0,---).

Example 1B.4. Generalizing the preceding example, we can construct a K(Z,,,1) as
an infinite-dimensional lens space $%/Z,,, where Z,, acts on S%, regarded as the
unit sphere in C%, by scalar multiplication by m ! roots of unity, a generator of this
action being the map (z;,z,,--+) — ez"i/m(zl,zz, --+). It is not hard to check that
this is a covering space action.

Example 1B.5. A product K(G,1)xK(H,1) isa K(GxH, 1) since its universal cover
is the product of the universal covers of K(G,1) and K(H, 1). By taking products of
circles and infinite-dimensional lens spaces we therefore get K(G,1)’s for arbitrary
finitely generated abelian groups G. For example the n-dimensional torus T", the
product of n circles, is a K(Z",1).

Example 1B.6. For a closed connected subspace K of $° that is nonempty, the com-
plement S° —K isa K(G,1). This is a theorem in 3-manifold theory, but in the special
case that K is a torus knot the result follows from our study of torus knot comple-
ments in Examples 1.24 and 1.35. Namely, we showed that for K the torus knot K, ,,
there is a deformation retraction of $° — K onto a certain 2-dimensional complex
X, n having contractible universal cover. The homotopy lifting property then implies
that the universal cover of S® — K is homotopy equivalent to the universal cover of
Xnn» hence is also contractible.
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Example 1B.7. It is not hard to construct a K(G,1) for an arbitrary group G, us-
ing the notion of a A-complex defined in §2.1. Let EG be the A-complex whose
n-simplices are the ordered (n + 1)-tuples [gy, - -,d,] of elements of G. Such an
n-simplex attaches to the (n — 1)-simplices [gg, -, J;, -, 9y ] in the obvious way,
just as a standard simplex attaches to its faces. (The notation g; means that this
vertex is deleted.) The complex EG is contractible by the homotopy h, that slides
each point x € [gy, -+, 9,] along the line segment in [e, gy, -, g,] from x to the
vertex [e], where e is the identity element of G. This is well-defined in EG since
when we restrict to a face [gy, - -*,J;, -, d,] we have the linear deformation to [e]
in e, g9, *,Ji» " »9n]. Note that h, carries [e] around the loop [e,e], so h; is not
actually a deformation retraction of EG onto [e].

The group G acts on EG by left multiplication, an element g € G taking the
simplex [gg, -, d,] linearly onto the simplex [ggg,---,d9d,]. Only the identity e
takes any simplex to itself, so by an exercise at the end of this section, the action
of G on EG is a covering space action. Hence the quotient map EG— EG/G is the
universal cover of the orbit space BG = EG/G, and BG is a K(G,1).

Since G acts on EG by freely permuting simplices, BG inherits a A-complex
structure from EG. The action of G on EG identifies all the vertices of EG, so BG
has just one vertex. To describe the A-complex structure on BG explicitly, note first
that every n-simplex of EG can be written uniquely in the form

[90,9091:9091925 "+ 19091 " " 9nl = 9ol€,91,9192, 191 - I

The image of this simplex in BG may be denoted unambiguously by the symbol
(911921 ---1g9,]. In this ‘bar’ notation the g;’s and their ordered products can be
used to label edges, viewing an

. 909,9,95 93 g,9,9.

edge label as the ratio between 9099, ! . T
the two labels on the vertices 273
at the endpoints of the edge, 9.9, 9, 919293 g,
as indicated in the figure. With

. . 99>
this notation, the boundary of g 9.9

0 91 091 go gl gogl

a simplex [g;|---1g,] of BG

consists of the simplices [g,|--- 19,1, [g1] - 19,11, and [gy|---19:9i41] -+ 194 ]
fori=1,---,n-1.

This construction of a K(G,1) produces a rather large space, since BG is al-
ways infinite-dimensional, and if G is infinite, BG has an infinite number of cells in
each positive dimension. For example, BZ is much bigger than S*, the most efficient
K(Z,1). On the other hand, BG has the virtue of being functorial: A homomorphism
f:G—H induces amap Bf:BG— BH sending a simplex [g; ] ---1g,] to the simplex
[f(g)!---1f(g,)]. A different construction of a K(G, 1) is given in §4.2. Here one
starts with any 2-dimensional complex having fundamental group G, for example
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the complex X associated to a presentation of G, and then one attaches cells of di-
mension 3 and higher to make the universal cover contractible without affecting ;.
In general, it is hard to get any control on the number of higher-dimensional cells
needed in this construction, so it too can be rather inefficient. Indeed, finding an
efficient K(G, 1) for a given group G is often a difficult problem.

Itis a curious and almost paradoxical fact that if G contains any elements of finite
order, then every K(G,1) CW complex must be infinite-dimensional. This is shown
in Proposition 2.45. In particular the infinite-dimensional lens space K(Z,,,1)’s in
Example 1B.4 cannot be replaced by any finite-dimensional complex.

In spite of the great latitude possible in the construction of K(G,1)’s, there is a
very nice homotopical uniqueness property that accounts for much of the interest in
K(G,1)’s:

‘ Theorem 1B.8. The homotopy type of a CW complex K (G, 1) is uniquely determined
by G.

Having a unique homotopy type of K(G, 1)’s associated to each group G means
that algebraic invariants of spaces that depend only on homotopy type, such as ho-
mology and cohomology groups, become invariants of groups. This has proved to be a
quite fruitful idea, and has been much studied both from the algebraic and topological
viewpoints. The discussion following Proposition 2.45 gives a few references.

The preceding theorem will follow easily from:

Proposition 1B.9. Let X be a connected CW complex and let Y be a K(G,1). Then
every homomorphism 1, (X, x,) — 1, (Y, ) is induced by a map (X, x,) — (Y, y,)
that is unique up to homotopy fixing x .

To deduce the theorem from this, let X and Y be CW complex K(G, 1)’s with iso-
morphic fundamental groups. The proposition gives maps f: (X, x,) — (Y, »,) and
g:(Y,yy) — (X, x,) inducing inverse isomorphisms m, (X, x,) = 1m;(Y, ). Then fg
and gf induce the identity on 7r; and hence are homotopic to the identity maps.

Proof of 1B.9: Let us first consider the case that X has a single 0-cell, the base-
point x,. Given a homomorphism @ : 11, (X, xy) — 1, (Y, ), we begin the construc-
tion of a map f:(X,xy)—(Y,y,) with f, = @ by setting f(x,) = »,. Each 1-cell
el of X has closure a circle determining an element ' £
[es] € (X, x,), and we let f on the closure of e}, m(X, x0) —— m(Y,¥,)
be a map representing (p([e}x]). If i:X' < X denotes k‘ /p
the inclusion, then @i, = f, since 1 (X', x,) is gen- ™, (X, X,)
erated by the elements [e(lx].

To extend f over a cell e} with attaching map yg:S' — X', all we need is for the
composition fg tobe nullhomotopic. Choosing abasepoint s, € S ! and apathin X!
from yg(sy) to x(, g determines an element [yg] € 11, (X ',x,), and the existence
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of a nullhomotopy of fyy; is equivalent to f,([@g]) being zero in 11, (Y,y,). We
have i, ([yg]) = 0 since the cell ef; provides a nullhomotopy of @ in X. Hence
FelwgD) = @i, ([ygl) = 0, and so f can be extended over eé.

Extending f inductively over cells e;l with n > 2 is possible since the attaching
maps Lp},:S”’1 — X" ! have nullhomotopic compositions fw, :S"" 'S y. This is
because f, lifts to the universal cover of Y if n > 2, and this cover is contractible
by hypothesis, so the lift of fy, is nullhomotopic, hence also fy,, itself.

Turning to the uniqueness statement, if two maps f, f;: (X, xy) — (Y, ) in-
duce the same homomorphism on 7, then we see immediately that their restrictions
to X! are homotopic, fixing Xy. To extend the resulting map X LI U Xx3I—Y
over the remaining cells e x (0,1) of XxI we can proceed just as in the preceding
paragraph since these cells have dimension n + 1 > 2. Thus we obtain a homotopy
fi: (X, xy) — (Y, ), finishing the proof in the case that X has a single 0-cell.

The case that X has more than one 0-cell can be treated by a small elaboration
on this argument. Choose a maximal tree T C X. To construct a map f realizing a
given @, begin by setting f(T) = y,. Then each edge e}x in X — T determines an
element [e&] e m (X, x,), and we let f on the closure of e}x be a map representing
qo([ei(]). Extending f over higher-dimensional cells then proceeds just as before.
Constructing a homotopy f; joining two given maps f, and f; with f;, = f;, also
has an extra step. Let h;: X ! X! be a homotopy starting with hy = 1 and restricting
to a deformation retraction of T onto x,. (It is easy to extend such a deformation
retraction to a homotopy defined on all of X'.) We can construct a homotopy from
fOIX1 to f,1X' by first deforming fOIX1 and f;|X"' totake T to ¥y by composing with
h,, then applying the earlier argument to obtain a homotopy between the modified
JolX l'and f,|X'. Having a homotopy SolX 1~ f,1X! we extend this over all of X in
the same way as before. m|

The first part of the preceding proof also works for the 2-dimensional complexes
X associated to presentations of groups. Thus every homomorphism G— H is re-
alized as the induced homomorphism of some map X;— X;;. However, there is no
uniqueness statement for this map, and it can easily happen that different presenta-
tions of a group G give X ’s that are not homotopy equivalent.

Graphs of Groups

As an illustration of how K (G, 1) spaces can be useful in group theory, we shall
describe a procedure for assembling a collection of K(G,1)’s together into a K(G, 1)
for a larger group G. Group-theoretically, this gives a method for assembling smaller
groups together to form a larger group, generalizing the notion of free products.

Let T be a graph that is connected and oriented, that is, its edges are viewed as
arrows, each edge having a specified direction. Suppose that at each vertex v of I we
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place a group G, and along each edge e of I we put a homomorphism @, from the
group at the tail of the edge to the group at the head of the edge. We call this data a
graph of groups. Now build a space BT by putting the space BG,, from Example 1B.7
at each vertex v of I' and then filling in a mapping cylinder of the map Bg, along
each edge e of T', identifying the two ends of the mapping cylinder with the two BG,,’s
at the ends of e. The resulting space BT is then a CW complex since the maps B,
take m-cells homeomorphically onto n-cells. In fact, the cell structure on BT can be
canonically subdivided into a A-complex structure using the prism construction from
the proof of Theorem 2.10, but we will not need to do this here.

More generally, instead of BG,, one could take any CW complex K(G,,1) at the
vertex v, and then along edges put mapping cylinders of maps realizing the homo-
morphisms @,. We leave it for the reader to check that the resulting space KT is
homotopy equivalent to the BI' constructed above.

Example 1B.10. Suppose T consists of one central vertex with a number of edges
radiating out from it, and the group G, at this central vertex is trivial, hence also all
the edge homomorphisms. Then van Kampen’s theorem implies that 7r, (KT) is the
free product of the groups at all the outer vertices.

In view of this example, we shall call 1, (KT) for a general graph of groups I the
graph product of the vertex groups G, with respect to the edge homomorphisms @,.
The name for T, (KT) that is generally used in the literature is the rather awkward
phrase, ‘the fundamental group of the graph of groups.’

Here is the main result we shall prove about graphs of groups:

Theorem 1B.11. If all the edge homomorphisms @, are injective, then KT is a
K(G,1) and the inclusions K(G,,,1) — KT induce injective maps on .

Before giving the proof, let us look at some interesting special cases:

Example 1B.12: Free Products with Amalgamation. Suppose the graph of groups is
A «— C— B, with the two maps monomorphisms. One can regard this data as speci-
fying embeddings of C as subgroups of A and B. Applying van Kampen’s theorem
to the decomposition of KT into its two mapping cylinders, we see that 7T, (KT) is
the quotient of A * B obtained by identifying the subgroup C C A with the subgroup
C C B. The standard notation for this group is A *. B, the free product of A and
B amalgamated along the subgroup C. According to the theorem, A *- B contains
both A and B as subgroups.

For example, a free product with amalgamation Z *; Z can be realized by map-
ping cylinders of the maps S' < S' —$! that are m-sheeted and n-sheeted covering
spaces, respectively. We studied this case in Examples 1.24 and 1.35 where we showed
that the complex KT is a deformation retract of the complement of a torus knot in
$3 if m and n are relatively prime. It is a basic result in 3-manifold theory that the
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complement of every smooth knot in S* can be built up by iterated graph of groups
constructions with injective edge homomorphisms, starting with free groups, so the
theorem implies that these knot complements are K(G,1)’s. Their universal covers
are all R?, in fact.

@

Example 1B.13: HNN Extensions. Consider a graph of groups C A with @

and ¢ both monomorphisms. This is analogous to the previous case A<« C—B,

but with the two groups A and B coalesced to a single group. The group T, (KT),
which was denoted A *. B in the previous case, is now denoted A* .. To see what
this group looks like, let us regard KT as being obtained from K (A, 1) by attaching
K(C,1)x1I along the two ends K(C,1)xdI via maps realizing the monomorphisms
@ and . Using a K(C, 1) with a single 0-cell, we see that KI' can be obtained from
K(A,1)VvS 1 by attaching cells of dimension two and greater, so 1T, (KT) is a quotient
of AxZ, and itis not hard to figure out that the relations defining this quotient are of
the form t(p(c)t‘1 = (c) where t is a generator of the Z factor and ¢ ranges over
C, or a set of generators for C. We leave the verification of this for the Exercises.

As a very special case, taking @ = ¢ = 1 gives Ax, = AXZ since we can take
KT = K(A,1)xS! in this case. More generally, taking @ = 1 with ¢ an arbitrary
automorphism of A, we realize any semidirect product of A and Z as Ax,. For
example, the Klein bottle occurs this way, with @ realized by the identity map of S*
and Y by a reflection. In these cases when @ = 1 we could realize the same group
1T, (KT) using a slightly simpler graph of groups, with a single vertex, labeled A, and
a single edge, labeled .

Here is another special case. Suppose we take a torus, delete a small open disk,
then identify the resulting boundary circle with a longitudinal circle of the torus. This
produces a space X that happens to be homeomorphic to a subspace of the stan-
dard picture of a Klein bottle in R?; see Exercise 12 of §1.2. The fundamental group
1, (X) has the form (Z * Z) %5, Z with the defining relation th*'t ' = aba 'b!
where a is a meridional loop and b is a longitudinal loop on the torus. The sign
of the exponent in the term b*! is immaterial since the two ways of glueing the
boundary circle to the longitude produce homeomorphic spaces. The group 1T, (X) =
(a,b,t | tht*aba'b™') abelianizes to ZxZ, but to show that mm;(X) is not iso-
morphic to Z * Z takes some work. There is a surjection 17, (X)—Z * Z obtained by
setting b = 1. This has nontrivial kernel since b is nontrivial in 71, (X) by the pre-
ceding theorem. If 1T, (X) were isomorphic to Z * Z we would then have a surjective
homomorphism Z x Z— 7 x Z that was not an isomorphism. However, it is a theorem
in group theory that a free group F is hopfian — every surjective homomorphism
F — F must be injective. Hence 71, (X) is not free.

Example 1B.14: Closed Surfaces. A closed orientable surface M of genus two or
greater can be cut along a circle into two compact surfaces M; and M, such that the
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closed surfaces obtained from M; and M, by filling in their boundary circle with a
disk have smaller genus than M. Each of M; and M, is the mapping cylinder of a
map from S' to a finite graph. Namely, view M; as obtained from a closed surface
by deleting an open disk in the interior of the 2-cell in the standard CW structure
described in Chapter 0, so that M; becomes the mapping cylinder of the attaching
map of the 2-cell. This attaching map is not nullhomotopic, so it induces an injection
on Tr; since free groups are torsionfree. Thus we have realized the original surface
M as KT for T' a graph of groups of the form F, «— Z — F, with F; and F, free and
the two maps injective. The theorem then says that M is a K(G,1).

A similar argument works for closed nonorientable surfaces other than RP?. For
example, the Klein bottle is obtained from two Mobius bands by identifying their
boundary circles, and a Mobius band is the mapping cylinder of the 2-sheeted covering
space S e

Proof of 1B.11: We shall construct a covering space K—KT by gluing together copies
of the universal covering spaces of the various mapping cylinders in KT in such a way
that K will be contractible. Hence K will be the universal cover of KT, which will
therefore be a K(G, 1).

First a preliminary observation: Given a universal covering space p :X—X and a
connected, locally path-connected subspace A C X such that the inclusion A — X in-
duces an injection on 1, , then each component A of p~1(A) is auniversal cover of A.
To see this, note that p tA—>Aisa covering space, so the induced map 1, (ﬁ) — 1, (A)
is injective, and this map factors through m, (X) = 0, hence e (A) = 0. For exam-
ple, if X is the torus S'x S and A is the circle S'x {xo}, then p’l(A) consists of
infinitely many parallel lines in R?, each of which is a universal cover of A.

For a map f:A— B between connected CW complexes, let p :I\N/.ff—>Mf be the
universal cover of the mapping cylinder M. Then M + is itself the mapping cylinder
of a map f: p 1 (A)— p~1(B) since the line segments in the mapping cylinder struc-
ture on M lift to line segments in M + defining a mapping cylinder structure. Since
M  is a mapping cylinder, it deformation retracts onto p’l(B), SO p’l(B) is also
simply-connected, hence is the universal cover of B. If f induces an injection on T,
then the remarks in the preceding paragraph apply, and the components of p’l (A)
are universal covers of A. If we assume further that A and B are K(G,1)’s, then M f
and the components of p’l(A) are contractible, and we claim that M f deformation
retracts onto each component A of A. Namely, the inclusion A < M, is a homo-
topy equivalence since both spaces are contractible, and then Corollary 0.20 implies
that M  deformation retracts onto A since the pair (M f,ﬁ) satisfies the homotopy
extension property, as shown in Example 0.15.

Now we can describe the construction of the covering space K of KT. It will be
the union of an increasing sequence of spaces K, ¢ K, c ---. For the first stage,
let I?l be the universal cover of one of the mapping cylinders M, of KT. By the
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preceding remarks, this contains various disjoint copies of universal covers of the
two K(G,,1)’s at the ends of M;. We build K, from K, by attaching to each of these
universal covers of K(G,,1)’s a copy of the universal cover of each mapping cylinder
M, of KT meeting M, at the end of M, in question. Now repeat the process to
construct K5 by attaching universal covers of mapping cylinders at all the universal
covers of K(G,,1)’s created in the previous step. In the same way, we construct K,
from K,, for all n, and then we set K = U, K,,.

Note that K,,,, deformation retracts onto K, since it is formed by attaching
pieces to I?n that deformation retract onto the subspaces along which they attach,
by our earlier remarks. It follows that K is contractible since we can deformation
retract K,,,; onto K,, during the time interval [1/2"*!,1/2"], and then finish with a
contraction of ﬁl to a point during the time interval [1/,,1].

The natural projection KR—KT is clearly a covering space, so this finishes the
proof that KT is a K(G,1).

The remaining statement that each inclusion K(G,, 1) — KT induces an injection
on Tr; can easily be deduced from the preceding constructions. For suppose a loop
y:S'—K (G,,1) is nullhomotopic in KT. By the lifting criterion for covering spaces,
there is a lift y: S* — K. This has image contained in one of the copies of the universal
cover of K(G,,1), so ¥y is nullhomotopic in this universal cover, and hence y is
nullhomotopic in K(G,,1). O

The various mapping cylinders that make up the universal cover of KT are ar-
ranged in a treelike pattern. The tree in question, call it TT, has one vertex for each
copy of a universal cover of a K(G,,1) in K, and two vertices are joined by an edge
whenever the two universal covers of K(G,,1)’s corresponding to these vertices are
connected by a line segment lifting a line segment in the mapping cylinder structure of
amapping cylinder of KT'. The inductive construction of K is reflected in an inductive
construction of TT as a union of an increasing sequence of subtrees T} ¢ T, C ---.
Corresponding to K, is a subtree T; C TT consisting of a central vertex with a number
of edges radiating out from it, an ‘asterisk’ with possibly an infinite number of edges.
When we enlarge K, to K,, T, is correspondingly enlarged to a tree T, by attaching
a similar asterisk at the end of each outer vertex of T,, and each subsequent enlarge-
ment is handled in the same way. The action of 1, (KT) on K as deck transformations
induces an action on TT, permuting its vertices and edges, and the orbit space of TT
under this action is just the original graph I'. The action on TT will not generally
be a free action since the elements of a subgroup G, c 1, (KT) fix the vertex of TT
corresponding to one of the universal covers of K(G,,1).

There is in fact an exact correspondence between graphs of groups and groups
acting on trees. See [Scott & Wall 1979] for an exposition of this rather nice theory.
From the viewpoint of groups acting on trees, the definition of a graph of groups is
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usually taken to be slightly more restrictive than the one we have given here, namely,
one considers only oriented graphs obtained from an unoriented graph by subdividing
each edge by adding a vertex at its midpoint, then orienting the two resulting edges
outward, away from the new vertex.

Exercises

1. Suppose a group G acts simplicially on a A-complex X, where ‘simplicially’ means
that each element of G takes each simplex of X onto another simplex by a linear
homeomorphism. If the action is free, show it is a covering space action.

2. Let X be a connected CW complex and G a group such that every homomorphism
17, (X) — G is trivial. Show that every map X — K (G, 1) is nullhomotopic.

3. Show that every graph product of trivial groups is free.

4. Use van Kampen’s theorem to compute A* . as a quotient of A x Z, as stated in
the text.

5. Consider the graph of groups I' having one vertex, Z, and one edge, the map Z—Z
that is multiplication by 2, realized by the 2-sheeted covering space S 15!, Show
that 77, (KT) has presentation (a,b | bab~'a~?) and describe the universal cover
of KT explicitly as a product T xR with T a tree. [The group ; (KT) is the first in
a family of groups called Baumslag-Solitar groups, having presentations of the form
(a,b | ba™b 'a™). These are HNN extensions Zx;.]

6. Show that for a graph of groups all of whose edge homomorphisms are injective
maps Z—Z, we can choose KT to have universal cover a product TxR with T a
tree. Work out in detail the case that the graph of groups is the infinite sequence
7% 7-7-%7— ... where the map Z — Z is multiplication by n. Show
that 7r;(KT) is isomorphic to Q in this case. How would one modify this example
to get 11, (KT) isomorphic to the subgroup of Q consisting of rational numbers with
denominator a power of 2?

7. Show that every graph product of groups can be realized by a graph whose vertices
are partitioned into two subsets, with every oriented edge going from a vertex in the
first subset to a vertex in the second subset.

8. Show that a finite graph product of finitely generated groups is finitely generated,
and similarly for finitely presented groups.

9. Show that a finite graph product of finite groups has a free subgroup of finite
index, by constructing a finite-sheeted covering space of KT from universal covers of
the mapping cylinders of KT'. [The converse is also true for finitely generated groups;
see [Scott & Wall 1979] for more on this.]



Chapter

Homology

The fundamental group 1, (X) is especially useful when studying spaces of low
dimension, as one would expect from its definition which involves only maps from
low-dimensional spaces into X, namely loops I— X and homotopies of loops, maps
IxI— X. The definition in terms of objects that are at most 2-dimensional manifests
itself for example in the fact that when X is a CW complex, 1T, (X) depends only on
the 2-skeleton of X. In view of the low-dimensional nature of the fundamental group,
we should not expect it to be a very refined tool for dealing with high-dimensional
spaces. Thus it cannot distinguish between spheres S with n > 2. This limitation
to low dimensions can be removed by considering the natural higher-dimensional
analogs of T, (X), the homotopy groups 7, (X), which are defined in terms of maps
of the n-dimensional cube I" into X and homotopies I xI— X of such maps. Not
surprisingly, when X is a CW complex, 1, (X) depends only on the (n + 1)-skeleton
of X. And as one might hope, homotopy groups do indeed distinguish spheres of all
dimensions since ;(S") is 0 for i < n and Z for i = n.

However, the higher-dimensional homotopy groups have the serious drawback
that they are extremely difficult to compute in general. Even for simple spaces like
spheres, the calculation of ;(S™) for i > n turns out to be a huge problem. For-
tunately there is a more computable alternative to homotopy groups: the homology
groups H, (X). Like m,(X), the homology group H, (X) for a CW complex X de-
pends only on the (n + 1)-skeleton. For spheres, the homology groups H,(S™) are
isomorphic to the homotopy groups ;(S") in the range 1 < i < n, but homology
groups have the advantage that H,(S™) = 0 for i > n.

The computability of homology groups does not come for free, unfortunately.
The definition of homology groups is decidedly less transparent than the definition
of homotopy groups, and once one gets beyond the definition there is a certain amount
of technical machinery to be set up before any real calculations and applications can
be given. In the exposition below we approach the definition of H,,(X) by two prelim-
inary stages, first giving a few motivating examples nonrigorously, then constructing
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a restricted model of homology theory called simplicial homology, before plunging
into the general theory, known as singular homology. After the definition of singular
homology has been assimilated, the real work of establishing its basic properties be-
gins. This takes close to 20 pages, and there is no getting around the fact that it is a
substantial effort. This takes up most of the first section of the chapter, with small
digressions only for two applications to classical theorems of Brouwer: the fixed point
theorem and ‘invariance of dimension.’

The second section of the chapter gives more applications, including the ho-
mology definition of Euler characteristic and Brouwer’s notion of degree for maps
S"—S™. However, the main thrust of this section is toward developing techniques
for calculating homology groups efficiently. The maximally efficient method is known
as cellular homology, whose power comes perhaps from the fact that it is ‘homology
squared’ — homology defined in terms of homology. Another quite useful tool is
Mayer-Vietoris sequences, the analog for homology of van Kampen’s theorem for the
fundamental group.

An interesting feature of homology that begins to emerge after one has worked
with it for a while is that it is the basic properties of homology that are used most
often, and not the actual definition itself. This suggests that an axiomatic approach
to homology might be possible. This is indeed the case, and in the third section of
the chapter we list axioms which completely characterize homology groups for CW
complexes. One could take the viewpoint that these rather algebraic axioms are all that
really matters about homology groups, that the geometry involved in the definition of
homology is secondary, needed only to show that the axiomatic theory is not vacuous.
The extent to which one adopts this viewpoint is a matter of taste, and the route taken
here of postponing the axioms until the theory is well-established is just one of several
possible approaches.

The chapter then concludes with three optional sections of Additional Topics. The
first is rather brief, relating H, (X) to 1T, (X), while the other two contain a selection
of classical applications of homology. These include the n-dimensional version of the
Jordan curve theorem and the ‘invariance of domain’ theorem, both due to Brouwer,
along with the Lefschetz fixed point theorem.

The Idea of Homology

The difficulty with the higher homotopy groups m,, is that they are not directly
computable from a cell structure as 7, is. For example, the 2-sphere has no cells in
dimensions greater than 2, yet its n-dimensional homotopy group 7, (5°) is nonzero
for infinitely many values of n. Homology groups, by contrast, are quite directly
related to cell structures, and may indeed be regarded as simply an algebraization of
the first layer of geometry in cell structures: how cells of dimension # attach to cells
of dimension n — 1.
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Letus look at some examples to see what the ideais. Consider the graph X; shown
in the figure, consisting of two vertices joined by four edges. y
When studying the fundamental group of X; we consider
loops formed by sequences of edges, starting and ending
at a fixed basepoint. For example, at the basepoint x, the a d
loop ab™! travels forward along the edge a, then backward
along b, as indicated by the exponent —1. A more compli-
cated loop would be ac 'bd 'ca™!. A salient feature of the X
fundamental group is that it is generally nonabelian, which both enriches and compli-
cates the theory. Suppose we simplify matters by abelianizing. Thus for example the
two loops ab™! and b~ 'a are to be regarded as equal if we make a commute with
b~!. These two loops ab~! and b~'a are really the same circle, just with a different
choice of starting and ending point: x for ab™! and y for b~ 'a. The same thing
happens for all loops: Rechoosing the basepoint in a loop just permutes its letters
cyclically, so a byproduct of abelianizing is that we no longer have to pin all our loops
down to a fixed basepoint. Thus loops become cycles, without a chosen basepoint.

Having abelianized, let us switch to additive notation, so cycles become linear
combinations of edges with integer coefficients, such as a — b + ¢ — d. Let us call
these linear combinations chains of edges. Some chains can be decomposed into
cycles in several different ways, for example (a —c) + (b—-d) = (a—d) + (b -c¢),
and if we adopt an algebraic viewpoint then we do not want to distinguish between
these different decompositions. Thus we broaden the meaning of the term ‘cycle’ to
be simply any linear combination of edges for which at least one decomposition into
cycles in the previous more geometric sense exists.

What is the condition for a chain to be a cycle in this more algebraic sense? A
geometric cycle, thought of as a path traversed in time, is distinguished by the prop-
erty that it enters each vertex the same number of times that it leaves the vertex. For
an arbitrary chain ka + £b + mc + nd, the net number of times this chain enters vy
is k + € + m + n since each of a, b, c, and d enters y once. Similarly, each of the
four edges leaves x once, so the net number of times the chain ka + £b + mc + nd
enters x is —k — € — m — n. Thus the condition for ka + €b + mc + nd to be a cycle
is simply k + € +m +n =0.

To describe this result in a way that would generalize to all graphs, let C; be the
free abelian group with basis the edges a, b, c,d and let C, be the free abelian group
with basis the vertices x, ). Elements of C; are chains of edges, or 1-dimensional
chains, and elements of C, are linear combinations of vertices, or 0-dimensional
chains. Define a homomorphism 0:C; — C, by sending each basis element a, b, c,d
to y — x, the vertex at the head of the edge minus the vertex at the tail. Thus we have
dka+4¥€b+mc+nd) = (k+€+m+n)y— (k+4£+m+mn)x, and the cycles are
precisely the kernel of 0. It is a simple calculation to verify that a—b, b—c,and c—d
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form a basis for this kernel. Thus every cycle in X, is a unique linear combination of
these three most obvious cycles. By means of these three basic cycles we convey the
geometric information that the graph X; has three visible ‘holes,’ the empty spaces
between the four edges.

Let us now enlarge the preceding graph X; by attaching a 2-cell A along the
cycle a — b, producing a 2-dimensional cell complex X,. If y
we think of the 2-cell A as being oriented clockwise, then
we can regard its boundary as the cycle a — b. This cycle is

~ /
A
VAR |
AR
now homotopically trivial since we can contract it to a point = 4 d
by sliding over A. In other words, it no longer encloses a —\
S~

hole in X,. This suggests that we form a quotient of the

group of cycles in the preceding example by factoring out X
the subgroup generated by a — b. In this quotient the cycles a — ¢ and b — ¢, for
example, become equivalent, consistent with the fact that they are homotopic in X5.

Algebraically, we can define now a pair of homomorphisms C, 2, G o, Co
where C, is the infinite cyclic group generated by A and 0,(A) = a — b. The map
0, is the boundary homomorphism in the previous example. The quotient group
we are interested in is Kerd,/Im0,, the 1-dimensional cycles modulo those that are
boundaries, the multiples of a—b. This quotient group is the homology group H,(X5).
The previous example can be fit into this scheme too by taking C, to be zero since
there are no 2-cells in X;, so in this case H,(X;) = Kero,/Imo, = Ker0,, which as
we saw was free abelian on three generators. In the present example, H, (X,) is free
abelian on two generators, b — ¢ and ¢ — d, expressing the geometric fact that by
filling in the 2-cell A we have reduced the number of ‘holes’ in our space from three
to two.

Suppose we enlarge X, to a space X3 by attaching a second 2-cell B along the
same cycle a —b. This gives a 2-dimensional chain group C, y
consisting of linear combinations of A and B, and the bound- e/
ary homomorphism 0, : C, — C; sendsboth A and B to a-b. g

a

The homology group H,(X3;) = Kero,/Imo, is the same as d
for X,, but now 0, has a nontrivial kernel, the infinite cyclic ‘
group generated by A—B. We view A —B as a 2-dimensional ‘

cycle, generating the homology group H,(X3) = Kero, ~ Z. X

Topologically, the cycle A — B is the sphere formed by the cells A and B together
with their common boundary circle. This spherical cycle detects the presence of a
‘hole’ in X5, the missing interior of the sphere. However, since this hole is enclosed
by a sphere rather than a circle, it is of a different sort from the holes detected by
H,(X3) = ZXxZ, which are detected by the cycles b — ¢ and ¢ — d.

Let us continue one more step and construct a complex X, from X; by attaching
a 3-cell C along the 2-sphere formed by A and B. This creates a chain group Cj
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generated by this 3-cell C, and we define a boundary homomorphism 0;:C;—C,
sending C to A — B since the cycle A — B should be viewed as the boundary of C
in the same way that the 1-dimensional cycle a — b is the boundary of A. Now we
have a sequence of three boundary homomorphisms Cs % C, % C, a C, and
the quotient H,(X,) = Kero,/Imo; has become trivial. Also H3(X,;) = Kero; = 0.
The group H,(X,) is the same as H, (X3), namely Zx Z, so this is the only nontrivial

homology group of X,.

It is clear what the general pattern of the examples is. For a cell complex X one
has chain groups C,, (X) which are free abelian groups with basis the n-cells of X,
and there are boundary homomorphisms 0,,: C,(X)—C,,_;(X), in terms of which
one defines the homology group H,(X) = Kero, /Imad,,,;. The major difficulty is
how to define 0,, in general. For n = 1 this is easy: The boundary of an oriented
edge is the vertex at its head minus the vertex at its tail. The next case n = 2 is also
not hard, at least for cells attached along cycles that are simply loops of edges, for
then the boundary of the cell is this cycle of edges, with the appropriate signs taking
orientations into account. But for larger n, matters become more complicated. Even
if one restricts attention to cell complexes formed from polyhedral cells with nice
attaching maps, there is still the matter of orientations to sort out.

The best solution to this problem seems to be to adopt an indirect approach.
Arbitrary polyhedra can always be subdivided into special polyhedra called simplices
(the triangle and the tetrahedron are the 2-dimensional and 3-dimensional instances)
so there is no loss of generality, though initially there is some loss of efficiency, in
restricting attention entirely to simplices. For simplices there is no difficulty in defin-
ing boundary maps or in handling orientations. So one obtains a homology theory,
called simplicial homology, for cell complexes built from simplices. Still, this is a
rather restricted class of spaces, and the theory itself has a certain rigidity that makes
it awkward to work with.

The way around these obstacles is to step back from the geometry of spaces
decomposed into simplices and to consider instead something which at first glance
seems wildly more complicated, the collection of all possible continuous maps of
simplices into a given space X. These maps generate tremendously large chain groups
C,(X), but the quotients H, (X) = Kerd, /Imo,,,,, called singular homology groups,
turn out to be much smaller, at least for reasonably nice spaces X. In particular, for
spaces like those in the four examples above, the singular homology groups coincide
with the homology groups we computed from the cellular chains. And as we shall
see later in this chapter, singular homology allows one to define these nice cellular
homology groups for all cell complexes, and in particular to solve the problem of
defining the boundary maps for cellular chains.
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2.1 Simplicial and Singular Homology

The most important homology theory in algebraic topology, and the one we shall

be studying almost exclusively, is called singular homology. Since the technical appa-
ratus of singular homology is somewhat complicated, we will first introduce a more
primitive version called simplicial homology in order to see how some of the apparatus
works in a simpler setting before beginning the general theory.

The natural domain of definition for simplicial homology is a class of spaces we
call A-complexes, which are a mild generalization of the more classical notion of
a simplicial complex. Historically, the modern definition of singular homology was
first given in [Eilenberg 1944], and A-complexes were introduced soon thereafter in
[Eilenberg-Zilber 1950] where they were called semisimplicial complexes. Within a
few years this term came to be applied to what Eilenberg and Zilber called complete
semisimplicial complexes, and later there was yet another shift in terminology as
the latter objects came to be called simplicial sets. In theory this frees up the term
semisimplicial complex to have its original meaning, but to avoid potential confusion
it seems best to introduce a new name, and the term A-complex has at least the virtue
of brevity.

A-Complexes

The torus, the projective plane, and the Klein bottle can each be obtained from a
square by identifying opposite edges in the way indicated by the arrows in the follow-

ing figures:
T: v P o omen w0 o ko by
U U U
a C a a c a a c a
L L L
v b v v b w v b v

Cutting a square along a diagonal produces two triangles, so each of these surfaces
can also be built from two triangles by identifying their edges in pairs. In similar
fashion a polygon with any number of sides can be cut along

diagonals into triangles, so in fact all closed surfaces can be d < b
constructed from triangles by identifying edges. Thus we have
a single building block, the triangle, from which all surfacescan ¢ a
be constructed. Using only triangles we could also construct a
large class of 2-dimensional spaces that are not surfaces in the d b

a

strict sense, by allowing more than two edges to be identified
together at a time.
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The idea of a A-complex is to generalize constructions like these to any number
of dimensions. The n-dimensional analog of the triangle is the n-simplex. This is the
smallest convex set in a Euclidean space
. S—— e

R™ containing n + 1 points vy, -+, v, v,

Y, v, v,
that do not lie in a hyperplane of dimen- v,

sion less than n, where by a hyperplane

we mean the set of solutions of a system UO@UZ
of linear equations. An equivalent condi- v, 0

tion would be that the difference vectors K
v, =V, -+, VU, — Uy are linearly independent. The points v; are the vertices of the
simplex, and the simplex itself is denoted [v, - - -, v,,]. For exam-
ple, there is the standard n-simplex

A" = {(ty, -+ t,) ER™ | Sit;=1and t; > 0 forall i}

whose vertices are the unit vectors along the coordinate axes.

For purposes of homology it will be important to keep track of the order of the
vertices of a simplex, so ‘n-simplex’ will really mean ‘n-simplex with an ordering
of its vertices.” A by-product of ordering the vertices of a simplex [v,,---,v,] is
that this determines orientations of the edges [v;, v;] according to increasing sub-
scripts, as shown in the two preceding figures. Specifying the ordering of the vertices
also determines a canonical linear homeomorphism from the standard n-simplex
A™ onto any other n-simplex [v,, - -+, v, ], preserving the order of vertices, namely,
(ty, -+, t,)— > t;v;. The coefficients t; are the barycentric coordinates of the point
ity in [vg, -+, v,].

If we delete one of the n + 1 vertices of an n-simplex [vg,---,v,], then the
remaining n vertices span an (n — 1)-simplex, called a face of [vg,---,v,]. We
adopt the following convention:

The vertices of a face, or of any subsimplex spanned by a subset of the vertices,
will always be ordered according to their order in the larger simplex.

The union of all the faces of A" is the boundary of A™, written dA"™. The open
simplex A" is A™ — 9A", the interior of A".

A A-complex structure on a space X is a collection of maps o, :A" — X, with n
depending on the index «, such that:

(i) The restriction o | A" is injective, and each point of X is in the image of exactly
one such restriction o, | A",

(ii) Each restriction of o, to a face of A" is one of the maps 0" A" ' X . Here we
are identifying the face of A™ with A" ! by the canonical linear homeomorphism
between them that preserves the ordering of the vertices.

(iii) A set A C X is open iff (T,;l(A) is open in A" for each Oy-
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Among other things, this last condition rules out trivialities like regarding all the
points of X as individual vertices. The earlier decompositions of the torus, projective
plane, and Klein bottle into two triangles, three edges, and one or two vertices define
A-complex structures with a total of six o, ’s for the torus and Klein bottle and seven
for the projective plane. The orientations on the edges in the pictures are compatible
with a unique ordering of the vertices of each simplex, and these orderings determine
the maps 0.

A consequence of (iii) is that X can be built as a quotient space of a collection
of disjoint simplices A}, one for each o,:A"— X, the quotient space obtained by
identifying each face of a A}; with the Ag’l corresponding to the restriction oy of
o, to the face in question, as in condition (ii). One can think of building the quotient
space inductively, starting with a discrete set of vertices, then attaching edges to
these to produce a graph, then attaching 2-simplices to the graph, and so on. From
this viewpoint we see that the data specifying a A-complex can be described purely
combinatorially as collections of n-simplices A} for each n together with functions
associating to each face of each n-simplex Al; an (n — 1)-simplex Ag’l.

More generally, A-complexes can be built from collections of disjoint simplices by
identifying various subsimplices spanned by subsets of the vertices, where the iden-
tifications are performed using the canonical linear homeomorphisms that preserve
the orderings of the vertices. The earlier A-complex structures on a torus, projective
plane, or Klein bottle can be obtained in this way, by identifying pairs of edges of
two 2-simplices. If one starts with a single 2-simplex and identifies all three edges
to a single edge, preserving the orientations given by the ordering of the vertices,
this produces a A-complex known as the ‘dunce cap.” By contrast, if the three edges
of a 2-simplex are identified preserving a cyclic orientation of the three edges, as in
the first figure at the right, this does not produce a
A-complex structure, although if the 2-simplex is
subdivided into three smaller 2-simplices about a
central vertex, then one does obtain a A-complex

structure on the quotient space.

Thinking of a A-complex X as a quotient space of a collection of disjoint sim-
plices, it is not hard to see that X must be a Hausdorff space. Condition (iii) then
implies that each restriction o, | A™ is a homeomorphism onto its image, which is
thus an open simplex in X. It follows from Proposition A.2 in the Appendix that
these open simplices Ua(ﬁn) are the cells e} of a CW complex structure on X with
the o,’s as characteristic maps. We will not need this fact at present, however.

Simplicial Homology

Our goal now is to define the simplicial homology groups of a A-complex X. Let
A, (X) be the free abelian group with basis the open n-simplices e} of X. Elements
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of A,(X), called n-chains, can be written as finite formal sums > , n ey with co-
efficients n, € Z. Equivalently, we could write >, n,0, where o,:A" —X is the
characteristic map of el;, with image the closure of e} as described above. Such a
sum >, n,0, can be thought of as a finite collection, or ‘chain,” of n-simplices in X
with integer multiplicities, the coefficients n,.

As one can see in the next figure, the boundary of the n-simplex [v,, ---, v, ] con-
sists of the various (n—1)-dimensional simplices [v, - - -, 7;, - - -, V,, ], where the ‘hat’
symbol ~ over v; indicates that this vertex is deleted from the sequence vy, - -, v,,.
In terms of chains, we might then wish to say that the boundary of [v,---,v,] is the
(n — 1)-chain formed by the sum of the faces [v, -+, 7;, -+, v, ]. However, it turns
out to be better to insert certain signs and instead let the boundary of [v, - --,v,] be
S.(=D'[vg, -, D; -+, v,]. Heuristically, the signs are inserted to take orientations
into account, so that all the faces of a simplex are coherently oriented, as indicated in
the following figure:

Yy ———— 1, olvg, v1] =[v] - [vy]
v2
a[vo,vpvz] = [v1, V] = [Vg, V2] + [Vg, V1]
A v,
vy

(%

2 0[vg, V1, Vs, 3] = [V, V), V3] = [V, Uy, V3]
v + [vo, V1, v3] = [V, 1, V]
0

v

1

In the last case, the orientations of the two hidden faces are also counterclockwise
when viewed from outside the 3-simplex.

With this geometry in mind we define for a general A-complex X a boundary
homomorphism 0,,: A, (X)—A,,_; (X) by specifying its values on basis elements:

an(o-g() = Z(_l)lao( | [UO’ et lﬁi’ et lvn]

Note that the right side of this equation does indeed lie in A,,_; (X) since each restric-

tion o,|[vg, -+, V; -+, V,] is the characteristic map of an (n — 1)-simplex of X.
H Lemma 2.1. The composition A, (X) n, A, 1(X) ISR A, _»(X) is zero.
Proof: We have 0,(0) = Zi(—l)iO' | [vg,-+,D;, -+, V,], and hence
O 10, (0) = D (=D (=1 |[vg, -+, V), Dy e, 0y,
Jj<i
+ 2 (=D o g, e, Dy e, Dy e, ]

j>i
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The latter two summations cancel since after switching i and j in the second sum, it
becomes the negative of the first. O

The algebraic situation we have now is a sequence of homomorphisms of abelian
groups

an 01 a0

- —_— —>Cn71.>"'.’cl—>co—>0

On+1
n+l Cn

with 0,,0,,,; = 0 for each n. Such a sequence is called a chain complex. Note that we
have extended the sequence by a 0 at the right end, with ¢, = 0. From 9,,0,,,; = 0
it follows that Imo,,,; € Kerd,,, where Im and Ker denote image and kernel. So we
can define the n'" homology group of the chain complex to be the quotient group
H, =Kero,/Ima,_;. Elements of Kero, are called cycles and elements of Imad,,_;
are boundaries. Elements of H,, are cosets of Imo,,,,, called homology classes. Two
cycles representing the same homology class are said to be homologous. This means
their difference is a boundary.

Returning to the case that C,, = A, (X), the homology group Kerd, /Imo,,; will
be denoted H,Al(X ) and called the nt" simplicial homology group of X.

Example 2.2. X = Sl, with one vertex v and one edge e. Then AO(Sl) e
and A, (S!) are both Z and the boundary map 0, is zero since de = v —v.
The groups A, (S 1) are 0 for n > 2 since there are no simplices in these

dimensions. Hence v
Acly V7 form=0,1
H"(S)N{O forn =2

This is an illustration of the general fact that if the boundary maps in a chain complex
are all zero, then the homology groups of the complex are isomorphic to the chain
groups themselves.

Example 2.3. X = T, the torus with the A-complex structure pictured earlier, having
one vertex, three edges a, b, and c, and two 2-simplices U and L. As in the previous
example, 9; = 0 so Hé‘(T) ~ Z. Since 0,U =a+b —-c =0,L and {a,b,a+b —c} is
a basis for A;(T), it follows that H{(T) ~ Z®Z with basis the homology classes [a]
and [b]. Since there are no 3-simplices, HZA(T) is equal to Ker d,, which is infinite
cyclic generated by U — L since o(pU +qL) = (p+q)(a+b—-c) =0 onlyif p = —q.
Thus

7&7 forn=1
H,%(T) =17 forn=0,2
0 forn > 3

Example 2.4. X = RP?, as pictured earlier, with two vertices v and w, three edges
a, b, and c, and two 2-simplices U and L. Then Imo, is generated by w — v, so
H{(X) ~ 7 with either vertex as a generator. Since d,U = —a+b+c and d,L = a—b+c,
we see that 0, is injective, so HZA(X) = 0. Further, Ker 0, = Z® Z with basis a —b and
¢, and Im 0, is an index-two subgroup of Ker 0, since we can choose ¢ and a—b +¢
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as a basis for Kero, and a—b+c and 2c = (a—-b +c) + (—a+ b + ¢) as a basis for
Imd,. Thus HX(X) ~ Z,.

Example 2.5. We can obtain a A-complex structure on S” by taking two copies of A"
and identifying their boundaries via the identity map. Labeling these two n-simplices
U and L, then it is obvious that Kerd,, is infinite cyclic generated by U — L. Thus
Hﬁ(S") ~ 7 for this A-complex structure on S". Computing the other homology
groups would be more difficult.

Many similar examples could be worked out without much trouble, such as the
other closed orientable and nonorientable surfaces. However, the calculations do tend
to increase in complexity before long, particularly for higher-dimensional complexes.

Some obvious general questions arise: Are the groups Hﬁ(X ) independent of
the choice of A-complex structure on X? In other words, if two A-complexes are
homeomorphic, do they have isomorphic homology groups? More generally, do they
have isomorphic homology groups if they are merely homotopy equivalent? To answer
such questions and to develop a general theory it is best to leave the rather rigid
simplicial realm and introduce the singular homology groups. These have the added
advantage that they are defined for all spaces, not just A-complexes. At the end of
this section, after some theory has been developed, we will show that simplicial and
singular homology groups coincide for A-complexes.

Traditionally, simplicial homology is defined for simplicial complexes, which are
the A-complexes whose simplices are uniquely determined by their vertices. This
amounts to saying that each »n-simplex has n + 1 distinct vertices, and that no other
n-simplex has this same set of vertices. Thus a simplicial complex can be described
combinatorially as a set X, of vertices together with sets X,, of n-simplices, which
are (n+1)-element subsets of X,,. The only requirement is that each (k + 1)-element
subset of the vertices of an n-simplex in X,, is a k-simplex, in X, . From this combi-
natorial data a A-complex X can be constructed, once we choose a partial ordering
of the vertices X,, that restricts to a linear ordering on the vertices of each simplex
in X,,. For example, we could just choose a linear ordering of all the vertices. This
might perhaps involve invoking the Axiom of Choice for large vertex sets.

An exercise at the end of this section is to show that every A-complex can be
subdivided to be a simplicial complex. In particular, every A-complex is then homeo-
morphic to a simplicial complex.

Compared with simplicial complexes, A-complexes have the advantage of simpler
computations since fewer simplices are required. For example, to put a simplicial
complex structure on the torus one needs at least 14 triangles, 21 edges, and 7 vertices,
and for RP® one needs at least 10 triangles, 15 edges, and 6 vertices. This would slow
down calculations considerably!
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Singular Homology

A singular n-simplex in a space X is by definition just a map o:A"— X. The
word ‘singular’ is used here to express the idea that o need not be a nice embedding
but can have ‘singularities’ where its image does not look at all like a simplex. All that
is required is that o be continuous. Let C, (X) be the free abelian group with basis
the set of singular n-simplices in X. Elements of C,(X), called n-chains, or more
precisely singularn-chains, are finite formal sums > ; n;0; for n; € Z and o;: A" — X.
A boundary map 0,,:C,,(X)—C,,_; (X) is defined by the same formula as before:

an(o-) = Z(_l)lo- | [v(], e ’i}\i, Ut ’vn]

~

Implicit in this formula is the canonical identification of [vy,---,V;, -, v, ] with
A”’l, preserving the ordering of vertices, so that o | [vg, -+, V4 -+, Uy ] is regarded
as amap A" ! — X, that s, a singular (n — 1)-simplex.

Often we write the boundary map 0,, from C,,(X) to C,,_;(X) simply as 0 when
this does not lead to serious ambiguities. The proof of Lemma 2.1 applies equally well
to singular simplices, showing that 9,,0,,,; = 0 or more concisely 8> = 0, so we can
define the singular homology group H,(X) = Kero,,/Imo,, ;.

It is evident from the definition that homeomorphic spaces have isomorphic sin-
gular homology groups H,,, in contrast with the situation for Hﬁ. On the other hand,
since the groups C, (X) are so large, the number of singular n-simplices in X usually
being uncountable, it is not at all clear that for a A-complex X with finitely many sim-
plices, H, (X) should be finitely generated for all »n, or that H, (X) should be zero
for n larger than the dimension of X — two properties that are trivial for H,%(X ).

Though singular homology looks so much more general than simplicial homology,
it can actually be regarded as a special case of simplicial homology by means of the
following construction. For an arbitrary space X, define the singular complex S(X)
to be the A-complex with one n-simplex A] for each singular n-simplex o: A" — X,
with Al attached in the obvious way to the (n — 1)-simplices of S(X) that are the
restrictions of ¢ to the various (n — 1)-simplices in dA™. It is clear from the defini-
tions that Hﬁ(S (X)) is identical with H,,(X) for all n, and in this sense the singular
homology group H,(X) is a special case of a simplicial homology group. One can
regard S(X) as a A-complex model for X, although it is usually an extremely large
object compared to X.

Cycles in singular homology are defined algebraically, but they can be given a
somewhat more geometric interpretation in terms of maps from finite A-complexes.
To see this, note first that a singular n-chain & can always be written in the form
2. &0; with €; = £1, allowing repetitions of the singular n-simplices ;. Given such
an n-chain & = >, €;0;, when we compute 0 as a sum of singular (n — 1)-simplices
with signs +1, there may be some canceling pairs consisting of two identical singu-
lar (n — 1)-simplices with opposite signs. Choosing a maximal collection of such
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canceling pairs, construct an n-dimensional A-complex K¢ from a disjoint union of
n-simplices A, one for each o;, by identifying the pairs of (n—1)-dimensional faces
corresponding to the chosen canceling pairs. The ¢;’s then induce a map Kg— X. If
& is a cycle, all the (n — 1)-simplices of Ky come from canceling pairs, hence are
faces of exactly two n-simplices of K. Thus K is a manifold, locally homeomorphic
to R", except at a subcomplex of dimension at most n — 2. All the n-simplices of
Ky can be coherently oriented by taking the signs of the ¢;’s into account, so K is
actually an oriented manifold away from its nonmanifold points. A closer inspection
shows that K is also a manifold near points in the interiors of (n — 2)-simplices, so
the nonmanifold points of K in fact have dimension at most n — 3. However, near
the interiors of (n — 3)-simplices it can very well happen that Ky is not a manifold.

In particular, elements of H; (X) are represented by collections of oriented loops
in X, and elements of H,(X) are represented by maps of closed oriented surfaces
into X. With a bit more work it can be shown that an oriented 1-cycle [[,Ss— X is
zero in H, (X) iff it extends to a map of an oriented surface into X, and there is an
analogous statement for 2-cycles. In the early days of homology theory it may have
been believed, or at least hoped, that this close connection with manifolds continued
in all higher dimensions, but this has turned out not to be the case. There is a sort
of homology theory built from manifolds, called bordism, but it is quite a bit more
complicated than the homology theory we are studying here.

After these preliminary remarks let us begin to see what can be proved about
singular homology.

Proposition 2.6. Corresponding to the decomposition of a space X into its path-

components X, there is an isomorphism of H, (X) with the direct sum @, H,, (X,) -

Proof: Since a singular simplex always has path-connected image, C,,(X) splits as the
direct sum of its subgroups C,, (X,). The boundary maps 9,, preserve this direct sum
decomposition, taking C, (X,) to C,,_;(X,), so Kero,, and Imo,,,; split similarly as
direct sums, hence the homology groups also split, H, (X) ~ @4 H, (X,) - O

Proposition 2.7. If X is nonempty and path-connected, then H,(X) ~ Z. Hence for

any space X, Hy(X) is a direct sum of Z’s, one for each path-component of X .

Proof: By definition, Hy(X) = Cy(X)/Imo, since 9, = 0. Define a homomorphism
£:Cy(X)—2Z by £(3;n;0;) = >;n;. This is obviously surjective if X is nonempty.
The claim is that Kere = Imo, if X is path-connected, and hence ¢ induces an iso-
morphism H,(X) = Z.

To verify the claim, observe first that Im 0, C Ker ¢ since for a singular 1-simplex
o:A'—>X we have 0,(0) = e(o|[v;] - 0|[vg]l) = 1 =1 = 0. For the reverse
inclusion Ker ¢ C Im 9, , suppose £(>;n,;0;) = 0,s0 >;n; = 0. The o;’s are singular
0-simplices, which are simply points of X. Choose a path T;:1— X from a basepoint
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Xo to 0;(vy) and let o be the singular 0-simplex with image x,. We can view T;
as a singular 1-simplex, a map T;:[v,y, v;]— X, and then we have o1; = 0; — 0y.
Hence 0(>;n;T;) = >;n;0;, — >, n;0y = >, n;0; since > ;n; = 0. Thus >;n;0; is a
boundary, which shows that Kere c Imd, . O

H Proposition 2.8. If X is a point, then H,(X) =0 for n > 0 and Hy(X) = Z.

Proof: In this case there is a unique singular n-simplex o,, for each n, and 9(o,,) =
S (=10, ;,asumof n+ 1 terms, which is therefore 0 for n odd and o,,_; for n
even, n = 0. Thus we have the chain complex

727 %727 %70

with boundary maps alternately isomorphisms and trivial maps, except at the last Z.
The homology groups of this complex are trivial except for H, ~ Z. O

It is often very convenient to have a slightly modified version of homology for
which a point has trivial homology groups in all dimensions, including zero. This is
done by defining the reduced homology groups PNIn(X ) to be the homology groups
of the augmented chain complex

c— G (X) =2 (X)) 2 Gy (X) =7 — 0

where £(3;n;0;) = >;n; as in the proof of Proposition 2.7. Here we had better
require X to be nonempty, to avoid having a nontrivial homology group in dimension
—1. Since €0, = 0, ¢ vanishes on Im9d; and hence induces a map H,(X)—Z with
kernel ﬁO(X), so Hy(X) = ﬁO(X) ®Z. Obviously H,(X) = ﬁn(X) for n > 0.
Formally, one can think of the extra Z in the augmented chain complex as gener-
ated by the unique map [@]— X where [@] is the empty simplex, with no vertices.
The augmentation map ¢ is then the usual boundary map since o[v,] = [Vy] = [D].

Readers who know about the fundamental group 7, (X) may wish to make a
detour here to look at §2.A where it is shown that H;(X) is the abelianization of
1T (X) whenever X is path-connected. This result will not be needed elsewhere in the
chapter, however.

Homotopy Invariance

The first substantial result we will prove about singular homology is that ho-
motopy equivalent spaces have isomorphic homology groups. This will be done by
showing thatamap f:X—Y induces a homomorphism f, :H, (X)— H, (Y) for each
n, and that f, is an isomorphism if f is a homotopy equivalence.

For amap f:X—Y, an induced homomorphism fu :C,(X)—C,(Y) is defined
by composing each singular n-simplex o : A" — X with f to get a singular n-simplex
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fi(o) = fo:A"—Y, then extending f, linearly via f,(3;n;0;) = X;n.f,(0;) =
>in fo;. The maps f,:C,(X)—C,(Y) satisfy f,0 = df, since

fﬁa(o-) = fﬁ(Zl(_l)lO-'[v0| 101:! 1vn])
= zl(_l)lfo—“:v(]’ T Ji}\i’ Ut Jvn] = afﬁ(o-)
Thus we have a diagram

T n+1(X)L’ Cn(X)—a> C, (X)—> ---

=, 1

c—— Cu(Y) —— C(Y) —— C, (V) — ---

such that in each square the composition f,0 equals the composition df,. A diagram
of maps with the property that any two compositions of maps starting at one point in
the diagram and ending at another are equal is called a commutative diagram. In the
present case commutativity of the diagram is equivalent to the commutativity relation
f:0 = 0f,, but commutative diagrams can contain commutative triangles, pentagons,
etc., as well as commutative squares.

The fact that the maps f,:C, (X)—C,(Y) satisfy f,0 = 0f, is also expressed
by saying that the f,’s define a chain map from the singular chain complex of X
to that of Y. The relation f,0 = 0f, implies that f, takes cycles to cycles since
oo = 0 implies o(f,00) = f,(0x) = 0. Also, f, takes boundaries to boundaries
since f,(0B) = 9(f,B). Hence f, induces a homomorphism f, : H, (X)—H,(Y). An
algebraic statement of what we have just proved is:

‘ Proposition 2.9. A chain map between chain complexes induces homomorphisms
between the homology groups of the two complexes. O

Two basic properties of induced homomorphisms which are important in spite

of being rather trivial are:

@) (fg)sx = fig4 for a composed mapping X Ly iR Z. This follows from

associativity of compositions A" -Z X L.y L, 7.
(i) 1, =1 where 1 denotes the identity map of a space or a group.

Less trivially, we have:

Theorem 2.10. If two maps f,g:X—Y are homotopic, then they induce the same
homomorphism f, = g, :H,(X)—H,(Y).

In view of the formal properties (fg), = f.g, and 1, = 1, this immediately
implies:
‘ Corollary 2.11. The maps f, :H,(X)—H, (Y) induced by a homotopy equivalence

f:X—Y are isomorphisms for all n. m|

For example, if X is contractible then ﬁn(X ) =0 for all n.
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Proof of 2.10: The essential ingredient is a procedure for

subdividing the product A" xI into (n+1)-simplices. The Wy wy
figure shows the cases n = 1,2. In A" xI, let A"x {0} =
[V, -+, V,) and A" x {1} = [wy, ---,w, ], where v; and

w; have the same image under the projection A" xI—A".

The n-simplex [vg, -, v;, w1, -, Ww,] is the graph of

the linear function @,:A" —1I defined in barycentric co-
ordinates by @, (ty,---,t,) = t;;; + --- + t, since the 2
vertices of this simplex [vg, -+, v;, W; ., "+, W, ] are on
the graph of @; and the simplex projects homeomorphi-
cally onto A™ under the projection A™ xI— A". The graph
of @, lies below the graph of @, ; since @; < @, |, 2

and the region between these two graphs is the simplex v, v,

[vg, -+, V;, Wi, -+, w,], atrue (n + 1)-simplex since w;
isnot on the graph of @; and hence is not in the n-simplex [vg, -+ -, V;, Wi 1, -+, Wy].
From the string of inequalities 0 = @,, < @,,_; < -+ < @y < @_; = 1 we deduce that
A" X is the union of the (n +1)-simplices [v,, - - -, v;, w;, - - -, W, ], each intersecting
the next in an n-simplex face.

Given a homotopy F:XxI—Y from f to g, we can define prism operators
P:C (X)—C,.,(Y) by

P(o—) = Z(_l)lFO(O-Xﬂ)|[v()’ lvi’wil ’wn]

1

for o : A" — X, where F- (o0 x 1) is the composition A" xI—XxI—Y. We will show
that these prism operators satisfy the basic relation

Geometrically, the left side of this equation represents the boundary of the prism, and
the three terms on the right side represent the top A" x {1}, the bottom A" x {0}, and
the sides 0A™ x I of the prism. To prove the relation we calculate

aP(O—) = Z(_l)l(_l)JFO(O—X ﬂ)|[v0,’ﬁjl ,viiwi,"'iwn]

Jj=i
+ D (=D (=1 Fe(ax 1) |[vg, -+, v, Wiy e Wy e, W]
j=i
The terms with i = j in the two sums cancel except for Fo (o x 1) | [V, wp, -+, W, 1,
whichis geo = g,(0),and —F<(ox1)|[vy,---,v,, Ww,], whichis —fe0 = —f,(0).
The terms with i = j are exactly —Pod(o) since
Pa(o_) = Z(_l)l(_l)JFO(O—X]I)'[U()i Ut ,vi’wi’ tr 51’/l7j1 e ,wn]
i<j

+ > (=D N =D Fe(ox1)|[vg, -+, D

i>j

[TRERE
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Now we can finish the proof of the theorem. If x € C,(X) is a cycle, then we
have g, () — f,(x) = 0P() + Po(x) = 0P(x) since 0 = 0. Thus g, (x) — f,(x) is
a boundary, so P (x) and f:t (o) determine the same homology class, which means
that g, equals f, on the homology class of «. O

The relationship 0P +Pd = g, — f, is expressed by saying P is a chain homotopy
between the chain maps f, and g,. We have just shown:

Proposition 2.12. Chain-homotopic chain maps induce the same homomorphism on
homology. O

There are also induced homomorphisms f, :PNIn (X) —»ﬁn(Y) for reduced homol-
ogy groups since f,& = £f,. The properties of induced homomorphisms we proved
above hold equally well in the setting of reduced homology, with the same proofs.

Exact Sequences and Excision

It would be nice if there was always a simple relationship between the homology
groups of a space X, a subspace A, and the quotient space X/A. For then one could
hope to understand the homology groups of spaces such as CW complexes that can be
built inductively from successively more complicated subspaces. Perhaps the simplest
possible relationship would be if H, (X) contained H,(A) as a subgroup and the
quotient group H, (X)/H, (A) was isomorphic to H,(X/A). While this does hold
in some cases, if it held in general then homology theory would collapse totally since
every space X canbe embedded as a subspace of a space with trivial homology groups,
namely the cone CX = (X x1I)/(Xx {0}), which is contractible.

It turns out that this overly simple model does not have to be modified too much
to get a relationship that is valid in fair generality. The novel feature of the actual
relationship is that it involves the groups H,, (X), H, (A), and H, (X/A) for all values
of n simultaneously. In practice this is not as bad as it might sound, and in addition
it has the pleasant side effect of sometimes allowing higher-dimensional homology
groups to be computed in terms of lower-dimensional groups, which may already be
known by induction for example.

In order to formulate the relationship we are looking for, we need an algebraic
definition which is central to algebraic topology. A sequence of homomorphisms

Kn+1

A Ani’An—l_’"'

n+1

is said to be exact if Ker «,, = Im«,,,; for each n. The inclusions Im «,,,; C Ker «,,
are equivalent to «,«,,; = 0, so the sequence is a chain complex, and the opposite
inclusions Ker «,, € Im «,,,; say that the homology groups of this chain complex are
trivial.
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A number of basic algebraic concepts can be expressed in terms of exact se-

quences, for example:

(i) 0 — A5 B is exact iff Ker o = 0, i.e., « is injective.

(i) A== B — 0 is exact iff Im« = B, i.e., « is surjective.

(iii) 0 — A =5 B — 0 is exact iff « is an isomorphism, by (i) and (ii).

iv) 0 > A% B B, C — 0 is exact iff « is injective, B is surjective, and Ker § =
Im «, so B induces an isomorphism C ~ B/Im «. This can be written C ~ B/A if
we think of « as an inclusion of A as a subgroup of B.

An exact sequence 0—A—B— (C—0 as in (iv) is called a short exact sequence.

Exact sequences provide the right tool to relate the homology groups of a space,
a subspace, and the associated quotient space:

Theorem 2.13. If X is a space and A is a nonempty closed subspace that is a defor-
mation retract of some neighborhood in X, then there is an exact sequence

o H(A) s L0 2 H (XA S H, (A s ] (X)) — -
- — Hy(X/A) — 0

where i is the inclusion A — X and j is the quotient map X — X /A.

The map 0 will be constructed in the course of the proof. The idea is that an
element x € PNIn(X/A) can be represented by a chain « in X with dx a cycle in A
whose homology class is dx € I—NIn,1 (A).

Pairs of spaces (X,A) satisfying the hypothesis of the theorem will be called
good pairs. For example, if X is a CW complex and A is a nonempty subcomplex,
then (X, A) is a good pair by Proposition A.5 in the Appendix.

| Corollary 2.14. H,(S™) ~ 7 and H;(S™) =0 for i + n.

Proof: For n > 0 take (X,A) = (D™, S™ ') so X/A = S™. The terms ﬁi(D") in the
long exact sequence for this pair are zero since D" is contractible. Exactness of the
sequence then implies that the maps PNIi(S") 2, PNIi_l(S"’l) are isomorphisms for
i > 0 and that ﬁO(S") = 0. The result now follows by induction on n, starting with
the case of S° where the result holds by Propositions 2.6 and 2.8. a

As an application of this calculation we have the following classical theorem of
Brouwer, the 2-dimensional case of which was proved in §1.1.

’ Corollary 2.15. dD" is not a retract of D™. Hence every map f:D"—D" has a
fixed point.

Proof: If v : D™ —0D™" is aretraction, then i = 1 for i:0D" — D" the inclusion map.
T

The composition H, ,(3D") SLETN H, ,(D") -~ H, ,(dD") is then the identity map
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on H, ,(dD™) ~ Z. But i, and 7, are both 0 since H, ,(D™) = 0, and we have a
contradiction. The statement about fixed points follows as in Theorem 1.9. a

The derivation of the exact sequence of homology groups for a good pair (X, A)
will be rather a long story. We will in fact derive a more general exact sequence which
holds for arbitrary pairs (X, A), but with the homology groups of the quotient space
X /A replaced by relative homology groups, denoted H,, (X, A). These turn out to be
quite useful for many other purposes as well.

Relative Homology Groups

It sometimes happens that by ignoring a certain amount of data or structure one
obtains a simpler, more flexible theory which, almost paradoxically, can give results
not readily obtainable in the original setting. A familiar instance of this is arithmetic
mod n, where one ignores multiples of n. Relative homology is another example. In
this case what one ignores is all singular chains in a subspace of the given space.

Relative homology groups are defined in the following way. Given a space X and
a subspace A C X, let C, (X, A) be the quotient group C,,(X)/C, (A). Thus chains in
A are trivial in C,, (X, A). Since the boundary map 0:C,,(X)—C,,_, (X) takes C,(A)
to C,,_; (A), itinduces a quotient boundary map 0:C,,(X,A)—C,,_;(X,A). Letting n
vary, we have a sequence of boundary maps

C— Cu(X,A) =5 Cy (X, A) — -

The relation 9> = 0 holds for these boundary maps since it holds before passing to
quotient groups. So we have a chain complex, and the homology groups Kerd/Imo
of this chain complex are by definition the relative homology groups H,, (X, A). By
considering the definition of the relative boundary map we see:

= Elements of H, (X,A) are represented by relative cycles: n-chains « € C, (X)
such that 0x € C,,_;(A).
= Arelative cycle « is trivial in H,, (X, A) iff it is a relative boundary: « =08 +y
for some B € C,,.;(X) and y € C,,(A).
These properties make precise the intuitive idea that H, (X, A) is ‘homology of X
modulo A
The quotient C,,(X)/C, (A) could also be viewed as a subgroup of C,(X), the
subgroup with basis the singular n-simplices o :A" — X whose image is not con-
tained in A. However, the boundary map does not take this subgroup of C, (X) to
the corresponding subgroup of C,,_; (X), so it is usually better to regard C, (X, A) as
a quotient rather than a subgroup of C,,(X).
Our goal now is to show that the relative homology groups H,, (X, A) for any pair
(X, A) fit into a long exact sequence

_>Hn(A) —>Hn(X) —>Hn(X,A) — nfl(A) — nfl(X) — ...
- — Hy(X,A) — 0
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This will be entirely a matter of algebra. To start the process, consider the diagram

1

0 —— C,(A) C.(X)—— . (xA)— 0

N T

0 — Cpi(A) == C, (X)) =1 C, ((X,A) — 0

where i isinclusion and j is the quotient map. The diagram is commutative by the def-
inition of the boundary maps. Letting n vary, and drawing these short exact sequences
vertically rather than horizontally, we 0 0 0

have a large commutative diagram of | ; | ; |
the form shown at the right, where the -+ — A, A, An
columns are exact and the rows are li ) ll ) li
chain complexes which we denote A, -+ — By, B, B,
B, and C. Such a diagram is called a lJ’ 5 lJ 5 lj
short exact sequence of chain com- -+ — C,; C, C,.1
plexes. We will show that when we (l) (l) (1)

pass to homology groups, this short
exact sequence of chain complexes stretches out into a long exact sequence of homol-

ogy groups

- — H,(A) = H, (B) > H,(C) <> H, (A) 2> H, ,(B) — -+

where H, (A) denotes the homology group Kero/Imo at A,, in the chain complex A,
and H, (B) and H,(C) are defined similarly.

The commutativity of the squares in the short exact sequence of chain complexes
means that i and j are chain maps. These therefore induce maps i, and j, on
homology. To define the boundary map 0:H, (C)—H,_;(A), let ¢ € C,, be a cycle.

Since j is onto, ¢ = j(b) for some b € B,,. The element 0b € B,,_; a

is in Ker j since j(ob) = 0j(b) = dc = 0. So db = i(a) for some I Ana
a € A,_, since Kerj = Imi. Note that da = 0 since i(da) = —> b 11'
di(a) = 00b = 0 and i is injective. We define 0:H,,(C)—H,,_;(A) B, —a>Bn,1

~

O—F

by sending the homology class of ¢ to the homology class of a, l j
d[c] = [a]. This is well-defined since: C

= The element a is uniquely determined by ob since i is injective.

= A different choice b’ for b would have j(b') = j(b),so b’ — b isin Ker j = Imi.
Thus b’ — b = i(a’) for some a’, hence b’ = b + i(a’). The effect of replacing b
by b +i(a’) is to change a to the homologous element a + da’ since i(a +0da’) =
i(a) +i(0a’) = ob +di(a’) =o(b +i(a’)).

= A different choice of ¢ within its homology class would have the form ¢ + oc’.
Since ¢’ = j(b") for some b’, we then have ¢ + oc’ = c +9j(b’) = c + j(Ob') =
j(b +0b'), so b is replaced by b + db’, which leaves b and therefore also a
unchanged.
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The map 0:H,(C)—H,,_,(A) is a homomorphism since if 0[c;] = [a,] and 0[c,] =
[a,] via elements b, and b, as above, then j(b, + b,) = j(by) + j(b,) = ¢, + ¢, and
i(a, +a,) =ilay) +i(ay,) =0b; + 0b, = 0(b, + b,),s0 0([c;] +[c;]) =[a;] + [a,].

Theorem 2.16. The sequence of homology groups
-+ — H,(A) —*> H,(B) 2> H,(C) > H,_,(A) —“>H,_,(B) — ---
is exact.

Proof: There are six things to verify:

Imi, C Ker j,. This is immediate since ji = O implies j,i, = 0.

Imj, € Kerod. We have 0j, = 0 since in this case 0b = 0 in the definition of 2.
Imo c Keri, . Here i,0 = 0 since i,0 takes [c] to [0b] = 0.

Kerj, ¢ Imi,. A homology class in Ker j, is represented by a cycle b € B, with
Jj(b) aboundary, so j(b) = dc’ for some ¢’ € C,,,,. Since j is surjective, ¢’ = j(b")
for some b’ € B,,;. We have j(b —0b") = j(b) — j(0b") = j(b) — dj(b") = 0 since
9j(b’) = ac’ = j(b). So b —0db" = i(a) for some a € A,. This a is a cycle since
i(0a) = di(a) = d(b—0b") = db = 0 and i is injective. Thus i, [a] = [b—0b’] = [b],
showing that i, maps onto Kerj,.

Kero c Imj, . In the notation used in the definition of 0, if ¢ represents a homology
class in Kerd, then a = da’ for some a’' € A,,. The element b —i(a’) is a cycle
since d(b —i(a’)) = 0b — di(a’) = 0b —i(0a’) = 0b —i(a) = 0. And j(b —i(a’)) =
j(b) —ji(a') = j(b) = c, so j, maps [b—i(a’)] to [c].

Keri, ¢ Imo. Given a cycle a € A,,_; such that i(a) = 0b for some b € B,,, then
Jj(b) is a cycle since 0j(b) = j(0b) = ji(a) = 0, and 0 takes [j(b)] to [a]. O

This theorem represents the beginnings of the subject of homological algebra.
The method of proof is sometimes called diagram chasing.

Returning to topology, the preceding algebraic theorem yields a long exact se-
quence of homology groups:

o H(A) =S H (X)L H (X, A) S H, (A =S H (X)) — -
o — Hy(X,A) — 0

The boundary map 0:H,,(X,A)—H,,_;(A) has a very simple description: If a class
[x] € H,(X,A) is represented by a relative cycle «, then 0[«] is the class of the
cycle 0x in H,,_;(A). This is immediate from the algebraic definition of the boundary
homomorphism in the long exact sequence of homology groups associated to a short
exact sequence of chain complexes.

This long exact sequence makes precise the idea that the groups H, (X, A) mea-
sure the difference between the groups H, (X) and H,(A). In particular, exactness
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implies thatif H, (X, A) = 0 for all n, then the inclusion A~ X induces isomorphisms
H, (A) = H,(X) for all n, by the remark (iii) following the definition of exactness. The
converse is also true according to an exercise at the end of this section.

There is a completely analogous long exact sequence of reduced homology groups
for a pair (X, A) with A = &. This comes from applying the preceding algebraic ma-
chinery to the short exact sequence of chain complexes formed by the short exact se-
quences 0—C,(A)—C,(X)—C,(X,A)—0 in nonnegative dimensions, augmented
by the short exact sequence 0 — 7 L, 7— 0— 0 in dimension —1. In particular
this means that PNIn(X,A) is the same as H,, (X, A) for all n, when A + @.

Example 2.17. In the long exact sequence of reduced homology groups for the pair
(D™, 0D™), the maps H,;(D",oD") 2, ﬁi,l(S"‘l) are isomorphisms for all i > 0
since the remaining terms ﬁi(D") are zero for all i. Thus we obtain the calculation

7 fori=n

n ny
H(D",0D™) ~ {O otherwise

Example 2.18. Applying the long exact sequence of reduced homology groups to a
pair (X, x,) with x, € X yields isomorphisms H, (X, x;) = H, (X) for all n since
H, (x,) = 0 for all n.

There are induced homomorphisms for relative homology just as there are in the
nonrelative, or ‘absolute,’ case. A map f:X—Y with f(A) C B, or more concisely
f:(X,A)—(Y,B), induces homomorphisms f,:C, (X,A)—C,(Y,B) since the chain
map f,:C,(X)—C,(Y) takes C,,(A) to C,,(B), so we get a well-defined map on quo-
tients, f,:C,(X,A)—C,(Y,B). Therelation f,0 = df, holds for relative chains since
it holds for absolute chains. By Proposition 2.9 we then have induced homomorphisms
fo:H,(X,A)—H,(Y,B).

Proposition 2.19. Iftwomaps f,g:(X,A)— (Y, B) are homotopic through maps of
’ pairs (X,A)— (Y,B), then f, =g,:H,(X,A)—H,(Y,B).

Proof: The prism operator P from the proof of Theorem 2.10 takes C,,(A) to C,,,1(B),
hence induces a relative prism operator P:C, (X,A)—C,,;(Y,B). Since we are just
passing to quotient groups, the formula 0P + Pd = g, — f, remains valid. Thus the
maps f, and g, on relative chain groups are chain homotopic, and hence they induce
the same homomorphism on relative homology groups. |

An easy generalization of the long exact sequence of a pair (X,A) is the long
exact sequence of a triple (X, A,B), where BC A C X:
_>Hn(AyB)_>Hn(XyB)_>Hn(X|A)_> n—l(AlB)_>."

This is the long exact sequence of homology groups associated to the short exact
sequence of chain complexes formed by the short exact sequences

0—C,(AB)—C,(X,B)—C,(X,A) —0
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For example, taking B to be a point, the long exact sequence of the triple (X, A, B)
becomes the long exact sequence of reduced homology for the pair (X, A).

Excision

A fundamental property of relative homology groups is given by the following
Excision Theorem, describing when the relative groups H, (X, A) are unaffected by
deleting, or excising, a subset Z C A.

Theorem 2.20. Given subspaces Z C A C X such that the closure of Z is contained
in the interior of A, then the inclusion (X — Z,A — Z) — (X,A) induces isomor-
phisms H,,(X - Z,A—-Z)—H, (X, A) for all n. Equivalently, for subspaces A,B C X
whose interiors cover X, the inclusion (B,A N B) — (X, A) induces isomorphisms
H,(B,AnB)—H,(X,A) forall n.

The translation between the two versions is obtained by
setting B=X—-Z and Z =X -B. Then AnB = A—Z and the
condition cl Z C int A is equivalent to X = int A U intB since x

X-intB=clZ.
The proof of the excision theorem will involve a rather lengthy technical detour

involving a construction known as barycentric subdivision, which allows homology
groups to be computed using small singular simplices. In a metric space ‘smallness’
can be defined in terms of diameters, but for general spaces it will be defined in terms
of covers.

For a space X, let U = {U;} be a collection of subspaces of X whose interiors
form an open cover of X, and let le(X ) be the subgroup of C, (X) consisting of
chains >; n;0; such that each o; has image contained in some set in the cover U. The
boundary map 0:C,,(X)—C,_;(X) takes le(X) to C%_I(X), so the groups le(X)
form a chain complex. We denote the homology groups of this chain complex by
HY(X).

Proposition 2.21. The inclusion L:C%(X ) < C,(X) is a chain homotopy equiva-
lence, that is, there is a chain map p: C, (X) —>C}1‘(X) such that tp and pt are chain
homotopic to the identity. Hence t induces isomorphisms H' (X) ~ H,,(X) for all n.

Proof: The barycentric subdivision process will be performed at four levels, beginning
with the most geometric and becoming increasingly algebraic.

(1) Barycentric Subdivision of Simplices. The points of a simplex [v, ---,v,,] are the
linear combinations > ; t;v; with >;t; = 1 and t; = O for each i. The barycenter or
‘center of gravity’ of the simplex [v,, - - -, v,,] is the point b = > ; t;v; whose barycen-

tric coordinates f; are all equal, namely ¢; = 1/(n + 1) for each i. The barycentric
subdivision of [v,, - -+, v, ] is the decomposition of [v, - - -, v,,] into the n-simplices
[b,wy,---,w,_;] where, inductively, [wq,---,w,_;] is an (n — 1)-simplex in the
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barycentric subdivision of a face [v,---,7;,---,v,]. The induction starts with the
case n = 0 when the barycentric subdivision of [v,] is defined to be just [v,] itself.
The next two cases n = 1,2 and
part of the case n = 3 are shown
in the figure. It follows from the
inductive definition that the ver-
tices of simplices in the barycen-
tric subdivision of [vg,:--,v,]

are exactly the barycenters of all

the k-dimensional faces [v; ,---,v; ] of [vy,---,v,] for 0 < k <n. When k = 0 this
gives the original vertices v; since the barycenter of a 0-simplex is itself. The barycen-
ter of [v;,---,v; ] has barycentric coordinates t; = 1/(k + 1) for i = iy, ---,i; and

t; = 0 otherwise.

The n-simplices of the barycentric subdivision of A™, together with all their faces,
do in fact form a A-complex structure on A", indeed a simplicial complex structure,
though we shall not need to know this in what follows.

A fact we will need is that the diameter of each simplex of the barycentric subdivi-
sionof [vg, -+, v, ] isatmost n/(n+1) times the diameter of [v, - - -, v, ]. Here the
diameter of a simplex is by definition the maximum distance between any two of its
points, and we are using the metric from the ambient Euclidean space R containing
[vg, -+, V,]. The diameter of a simplex equals the maximum distance between any
of its vertices because the distance between two points v and > ; t;v; of [vy, -+, v,]
satisfies the inequality

v —>tivi| = | 2itilv —v)) | < Xtilv —v;| < X;t;max |v — v;| = max |[v — v;]

To obtain the bound n/(n + 1) on the ratio of diameters, we therefore need to verify
that the distance between any two vertices w; and wy of a simplex [wy, -, w,] of
the barycentric subdivision of [v, - -+, v,] isatmost n/(n+1) times the diameter of
[vg, -+, V,]. If neither w; nor w; is the barycenter b of [v,,---,v,], then these two
points lie in a proper face of [v,---,v,] and we are done by induction on n. So we
may suppose w;, say, is the barycenter b, and then by the previous displayed inequal-
ity we may take w to be a vertex v;. Let b; be the barycenter of [vy, -, U, -+, v, ],
with all barycentric coordinates equal to 1/n except

for t; = 0. Then we have b = - v; + -"-b,. The %\bi
sum of the two coefficients is 1, so b lies on the line

1
segment [v,;, b;] from v; to b;, and the distance from

b to v; is n/(n + 1) times the length of [v;, b;]. Hence the distance from b to v; is
bounded by n/(n + 1) times the diameter of [vg,---,v,].

The significance of the factor n/(n+1) is that by repeated barycentric subdivision
we can produce simplices of arbitrarily small diameter since (n/(n+1))" approaches



Simplicial and Singular Homology Section 2.1 121

—

0 as r goes to infinity. It is important that the bound n/(n + 1) does not depend on
the shape of the simplex since repeated barycentric subdivision produces simplices
of many different shapes.

(2) Barycentric Subdivision of Linear Chains. The main part of the proof will be to
construct a subdivision operator S:C, (X)— C,,(X) and show this is chain homotopic
to the identity map. First we will construct S and the chain homotopy in a more
restricted linear setting.

For a convex set Y in some Euclidean space, the linear maps A" —Y generate
a subgroup of C, (Y) that we denote LC, (Y), the linear chains. The boundary map
0:C,(Y)—C,_,(Y) takes LC, (Y) to LC,,_;(Y), so the linear chains form a subcom-
plex of the singular chain complex of Y. We can uniquely designate a linear map
A:A"—Y by [wy, -+, w,] where w; is the image under A of the it" vertex of A".
To avoid having to make exceptions for 0-simplices it will be convenient to augment
the complex LC(Y) by setting LC_;(Y) = Z generated by the empty simplex [D],
with o[w,] = [@] for all O-simplices [w,].

Each point b € Y determines a homomorphism b:LC,(Y)—LC,,,(Y) defined
on basis elements by b([wg,---,w,]) = [b,w, -+, w,]. Geometrically, the homo-
morphism b can be regarded as a cone operator, sending a linear chain to the cone
having the linear chain as the base of the cone and the point b as the tip of the
cone. Applying the usual formula for 0, we obtain the relation ob([wy, ---,w,]) =
[wg, -+, w,]—b(O[wy, -, w,]). By linearity it follows that 0b(x) = & — b(d«x) for
all @« € LC, (Y). This expresses algebraically the geometric fact that the boundary of
a cone consists of its base together with the cone on the boundary of its base. The
relation ob(x) = x—b(0«x) can be rewritten as 0b+bo = 1, so b is a chain homotopy
between the identity map and the zero map on the augmented chain complex LC(Y).

Now we define a subdivision homomorphism S:LC, (Y)—LC, (Y) by induction
on n. Let A:A"—Y be a generator of LC,(Y) and let b, be the image of the
barycenter of A" under A. Then the inductive formula for S is S(A) = b, (S0A)
where b,:LC,_,(Y)—LC,(Y) is the cone operator defined in the preceding para-
graph. The induction starts with S([&]) = [D], so S is the identity on LC_;(Y).
It is also the identity on LCy(Y), since when n = 0 the formula for S becomes
S([wol) = wy(So[wy]) = wo(S([D])) = wo([D]) = [wg]. When A is an embed-
ding, with image a genuine n-simplex [wy,---,w,], then S(A) is the sum of the
n-simplices in the barycentric subdivision of [w,---,w, ], with certain signs that
could be computed explicitly. This is apparent by comparing the inductive definition
of S with the inductive definition of the barycentric subdivision of a simplex.

Let us check that the maps S satisfy 0S = S0, and hence give a chain map from
the chain complex LC(Y) toitself. Since S = 1 on LCy(Y) and LC_,(Y), we certainly
have 0S = S0 on LCy(Y). The result for larger n is given by the following calculation,
in which we omit some parentheses to unclutter the formulas:
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0SA = 0(b,(S0A))
= S0A — b, (0S0A) since 0b, + b,0 = 1
= S0A — b, (500A) by induction on n
= S0A since 00 =0

We next build a chain homotopy T:LC,,(Y)—LC,,,(Y) between S and the iden-
tity, fitting into a diagram

. —— LC,(Y) LC,(Y) LC,(Y) LC,(Y)——0
o
c—— LC,(Y) LC,(Y) LC,(Y) LC,(Y)——0

We define T on LC, (Y) inductively by setting T = 0 for n = —1 and letting TA =
b,(A —ToA) for n = 0. The geometric motivation for this formula is an inductively
defined subdivision of A" xI obtained by
joining all simplices in A" x {0} U 0A" xI
to the barycenter of A™x {1}, as indicated
in the figure in the case n = 2. What T

actually does is take the image of this sub-

division under the projection A" xI— A",
The chain homotopy formula 6T + T90 = 1 — S is trivial on LC_,(Y) where T =0
and S = 1. Verifying the formula on LC, (Y) with n > 0 is done by the calculation

O0TA = 0(by(A—ToA))
=A—TO0A —b,(3(A —ToA)) since ob, =1 — b,0
=A—TOoA—b,(S0A +T0ooA) by induction on n
=A—ToA-SA since 00 = 0 and SA = b, (S0A)
Now we are done with inductive arguments and we can discard the group LC_;(Y)

which was used only as a convenience. The relation 0T+ T0 = 1 —S still holds without
LC_,(Y) since T was zero on LC_;(Y).

(3) Barycentric Subdivision of General Chains. Define S:C,(X)—C,(X) by setting
So = 0,SA" for a singular n-simplex o:A"—X. Since SA" is the sum of the
n-simplices in the barycentric subdivision of A™, with certain signs, So is the corre-
sponding signed sum of the restrictions of o to the n-simplices of the barycentric
subdivision of A™. The operator S is a chain map since
0S0 = 00,SA" = 0,0SA" = 0,50A"

= 0,5(3;(=1)'A")  where A" is the i face of A"

=3i(-1)'o,SA!

= 2i(=1)'S(a|A])

=S(S;(-1)ia|Al) = S(30)
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In similar fashion we define T:C, (X)—C,,,(X) by To = oy, TA", and this gives a
chain homotopy between S and the identity, since the formula 0T + T0 = 1 — S holds
by the calculation

0To =00, TA" = 0,0TA" = 0,(A" - SA" —TOA") = 0 — S0 — 0, TOA"
=0-So-T(0)
where the last equality follows just as in the previous displayed calculation, with S
replaced by T.
(4) Iterated Barycentric Subdivision. A chain homotopy between 1 and the iterate $™

is given by the operator D,, = 3,_;.,, TS’ since

dD,, + D0 = > (dTS'+TS9) = > (aTS'+T3s') =

O<i<m O<i<m
> (@T+To)s'= > (1-5)S'= > (ST-s")=1-5"
O<i<m O<i<m O<i<m

For each singular n-simplex o :A" — X there exists an m such that $™ (o) lies in
le(X ) since the diameter of the simplices of S™(A™) will be less than a Lebesgue
number of the cover of A" by the open sets o ! (intU j) if m is large enough. (Recall
that a Lebesgue number for an open cover of a compact metric space is a number
& > 0 such that every set of diameter less than ¢ lies in some set of the cover; such a
number exists by an elementary compactness argument.) We cannot expect the same
number m to work for all o’s, so let us define m (o) to be the smallest m such that
S"o isin CH(X).

Suppose we define D:C, (X)—C,,,(X) by Do = D, 0. To see whether D is
a chain homotopy, we manipulate the chain homotopy equation

0D ()T + Dypoy00 =0 = S™ g

into an equation whose left side is 0Do + Ddo by moving the second term on the left
side to the other side of the equation and adding Dodo to both sides:

dDo + D30 =0 — [S™7 0 + D,y (30) = D(30)]

If we define p(o) to be the expression in brackets in this last equation, then this
equation has the form

(%) 0Do + Doo =0 — p(0)

We claim that p(0) € C(X). This is obvious for the term $™? ¢ . For the remaining
part D, (00) — D(d0), note first that if 0; denotes the restriction of o to the j"
face of A™, then m(o;) < m(o0), so every term TSl(O'j) in D(0o0) will be a term in
D, ((00). Thus D, ,(00) — D(d0) is a sum of terms TSl(Uj) with i > m(aj),
and these terms lie in CY(X) since T takes Ci_;(X) to CY(X)

We can thus regard the equation (*) as defining p:C,, (X) —>C,§(X). For varying
n these p’s form a chain map since (x) implies dp(o) = 00 — 0Dd(0) = p(d0).
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The equation (%) says that 0D + Do = 1 — tp for L:C:?LL(X) — C,(X) the inclusion.
Furthermore, pt = 1 since D is identically zero on C}f(X), as m(o) =0 if o isin
Cl“f(X ), hence the summation defining Do is empty. Thus we have shown that p is a
chain homotopy inverse for t. O

Proof of the Excision Theorem: We prove the second version, involving a decom-
position X = A U B. For the cover U = {A, B} we introduce the suggestive notation
C, (A + B) for C}f(X), the sums of chains in A and chains in B. At the end of the
preceding proof we had formulas 0D + Do = 1 — tp and pt = 1. All the maps ap-
pearing in these formulas take chains in A to chains in A, so they induce quotient
maps when we factor out chains in A. These quotient maps automatically satisfy the
same two formulas, so the inclusion C,,(A + B)/C,,(A) — C,(X)/C, (A) induces an
isomorphism on homology. The map C,(B)/C,(An B)—C, (A + B)/C, (A) induced
by inclusion is obviously an isomorphism since both quotient groups are free with
basis the singular n-simplices in B that do not lie in A. Hence we obtain the desired
isomorphism H,(B,An B) = H, (X, A) induced by inclusion. O

All that remains in the proof of Theorem 2.13 is to replace relative homology
groups with absolute homology groups. This is achieved by the following result.

Proposition 2.22. For good pairs (X, A), the quotient map q:(X,A)— (X/A,A/A)
induces isomorphisms q,. :H,(X,A)—H,(X/A,A/A) = ﬁn(X/A) for all n.

Proof: Let V be a neighborhood of A in X that deformation retracts onto A. We
have a commutative diagram

H,(X,A) H,(X,V) H,(X-A,V-A)

lq* 14* lq*

H,(X/A,AJA) —— H,(X/A,V/A) —— H,(X/A-A/A V/A-A/A)

The upper left horizontal map is an isomorphism since in the long exact sequence of
the triple (X,V,A) the groups H, (V,A) are zero for all n, because a deformation
retraction of V onto A gives a homotopy equivalence of pairs (V,A) ~ (A4,A), and
H, (A, A) = 0. The deformation retraction of V onto A induces a deformation retrac-
tion of V/A onto A/A, so the same argument shows that the lower left horizontal
map is an isomorphism as well. The other two horizontal maps are isomorphisms
directly from excision. The right-hand vertical map g, is an isomorphism since g
restricts to a homeomorphism on the complement of A. From the commutativity of
the diagram it follows that the left-hand g, is an isomorphism. O

This proposition shows that relative homology can be expressed as reduced abso-
lute homology in the case of good pairs (X, A), but in fact there is a way of doing this
for arbitrary pairs. Consider the space X U CA where CA is the cone (AXI)/(AX{0})
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whose base Ax {1} we identify with A C X. Using terminology p
introduced in Chapter 0, X UCA can also be described as the map- CA ?F
ping cone of the inclusion A — X. The assertion is that H, (X, A)

is isomorphic to H,(X U CA) for all n via the sequence of iso- X A
morphisms

H,(XUCA) ~ H,(XUCA,CA) ~ Hy(X UCA — {p},CA - {p}) ~ H, (X, A)

where p € CA is the tip of the cone. The first isomorphism comes from the exact
sequence of the pair, using the fact that CA is contractible. The second isomorphism
is excision, and the third isomorphism comes from the deformation retraction of
CA - {p} onto A.

Here is an application of the preceding proposition:

Example 2.23. Let us find explicit cycles representing generators of the infinite
cyclic groups H, (D",0D™) and ﬁn(S"). Replacing (D",0D™") by the equivalent pair
(A™,0A™), we will show by induction on n that the identity map i, : A" — A", viewed
as a singular n-simplex, is a cycle generating H,, (A", dA™). That it is a cycle is clear
since we are considering relative homology. When n = 0 it certainly represents a
generator. For the induction step, let A C A™ be the union of all but one of the
(n — 1)-dimensional faces of A". Then we claim there are isomorphisms

H, (A", 0A™) —> H, ,(dA™ A) <— H, (A" ! 2A" )

The first isomorphism is a boundary map in the long exact sequence of the triple
(A™,0A",A), whose third terms H;(A",A) are zero since A" deformation retracts
onto A, hence (A", A) = (A,A). The second isomorphism comes from the preceding
proposition since we are dealing with good pairs and the inclusion A" ! < A" as
the face not contained in A induces a homeomorphism of quotients A" /A" ! ~
0A™/A. The induction step then follows since the cycle i, is sent under the first
isomorphism to the cycle 9i,, which equals +i,,_; in C,_;(0A™,A).

To find a cycle generating H,,(S™) let us regard S" as two n-simplices A" and
A} with their boundaries identified in the obvious way, preserving the ordering of
vertices. The difference Al — A%, viewed as a singular n-chain, is then a cycle, and we
claim it represents a generator of ﬁn(S”), assuming n > 0 so that the latter group is
infinite cyclic. To see this, consider the isomorphisms

H, (8™ —=>H, (8", A}) <= H, (A}, 0AT)

where the first isomorphism comes from the long exact sequence of the pair (S", A%)
and the second isomorphism is justified by passing to quotients as before. Under
these isomorphisms the cycle A" — A} in the first group corresponds to the cycle A}
in the third group, which represents a generator of this group as we have seen, so
A — A? represents a generator of H, (S™).
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The preceding proposition implies that the excision property holds also for sub-
complexes of CW complexes:

Corollary 2.24. If the CW complex X is the union of subcomplexes A and B, then
the inclusion (B, ANB) — (X, A) induces isomorphisms H, (B,AnB)—H,(X,A) for
all n.

Proof: Since CW pairs are good, Proposition 2.22 allows us to pass to the quotient
spaces B/(A n B) and X/A which are homeomorphic, assuming we are not in the
trivial case AN B = J. O

Here is another application of the preceding proposition:

Corollary 2.25. For a wedge sum Vy Xy, the inclusions i, : X, — \/, X, induce an iso-
morphism @iy, : Do H, (Xo) — H, (Vo X,) , provided that the wedge sum is formed
at basepoints x, € X, such that the pairs (X, x,) are good.

Proof: Since reduced homology is the same as homology relative to a basepoint, this
follows from the proposition by taking (X, A) = (11, Xq, L 4{x4})- O

Here is an application of the machinery we have developed, a classical result of
Brouwer from around 1910 known as ‘invariance of dimension,” which says in partic-
ular that R™ is not homeomorphic to R" if m = n.

‘ Theorem 2.26. If nonempty open sets U ¢ R™ and V c R™ are homeomorphic,
then m = n.

Proof: For x € U we have Hy(U,U — {x}) = H,(R™,R™ - {x}) by excision. From
the long exact sequence for the pair (R™,R™ — {x}) we get H,(R™,R™ — {x}) ~
H, ;(R™ - {x}). Since R™ — {x} deformation retracts onto a sphere ™!, we con-
clude that H, (U,U — {x}) is Z for k = m and 0 otherwise. By the same reasoning,
H (V,V —{y}) is Z for k = n and 0 otherwise. Since a homeomorphism h:U—V
induces isomorphisms Hy (U,U — {x})—H,(V,V — {h(x)}) for all k, we must have
m=n. O

Generalizing the idea of this proof, the local homology groups of a space X at
a point x € X are defined to be the groups H, (X,X — {x}). For any open neigh-
borhood U of x, excision gives isomorphisms H, (X,X — {x}) = H,(U,U - {x}),
so these groups depend only on the local topology of X near x. A homeomorphism
f:X—Y must induce isomorphisms H,(X,X — {x}) = H,(Y,Y — {f(x)}) for all x
and n, so these local homology groups can be used to tell when spaces are not locally
homeomorphic at certain points, as in the preceding proof. The exercises give some
further examples of this.
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Naturality

The exact sequences we have been constructing have an extra property that will
become important later at key points in many arguments, though at first glance this
property may seem just an idle technicality, not very interesting. We shall discuss the
property now rather than interrupting later arguments to check it when it is needed,
but the reader may prefer to postpone a careful reading of this discussion.

The property is called naturality. For example, to say that the long exact sequence
of a pair is natural means that for a map f :(X,A)— (Y,B), the diagram

'—>H(A)—>H(X) H(XA)—>Hn1(A)—>---
£ (. | £ | £
. —— H,(B) —2— H,(Y) —Z*~ H,(Y,B) —2— H, ,(B) — -

is commutative. Commutativity of the squares involving i, and j, follows from the
obvious commutativity of the corresponding squares of chain groups, with C,, in place
of H, . For the other square, when we defined induced homomorphisms we saw that
fﬁa =0 f,, at the chain level. Then for a class [«x] € H,,(X, A) represented by a relative
cycle &, we have f, 0[] = f,[0a] = [f,0] = [0f, ] = 0[f,x] = 0.f, [«x].
Alternatively, we could appeal to the general algebraic fact that the long exact
sequence of homology groups associated to a short exact sequence of chain complexes
is natural: For a commutative diagram of short exact sequences of chain complexes

0 0 0

0 0 | 0
0 | ’ 0
1 X n+l X An l X
= 6 ~— 1 0 /
A n+1 An li/ An 1 lif
1 0 |i ’ 0 |i ’
1 B n+l ﬂ Bn l B Bn—l
B, — B,— 12 ,p i L,
'l lJ/ 5 n 1]’ ; n'—l lJ/
_lJ}’/' Chi Jy/Y C) Jy/' c |
Cn-v—l 1 2 Cn i 2 Cn—l l
| 0 | 0 | 0
0 0 0
the induced diagram
-—»H(A)—»H(B) H(C)—»Hn (A) — -

o |2 b

[
D H(A) — s H(B) —L H(C) =2 H, (A) — -

is commutative. Commutativity of the first two squares is obvious since Bi = i'x
implies B,i, =i, «, and yj = j' B implies y, j, = j.B,. For the third square, recall
that the map 0:H,(C)—H,,_,(A) was defined by d[c] = [a] where ¢ = j(b) and
i(a) = 0b. Then d[y(c)] = [x(a)] since y(c) = yj(b) = j(B(b)) and i'(x(a)) =
Bi(a) = Bo(b) = 0B(b). Hence oy, [c] = a,[a] = «,0[c].
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This algebraic fact also implies naturality of the long exact sequence of a triple
and the long exact sequence of reduced homology of a pair.

Finally, there is the naturality of the long exact sequence in Theorem 2.13, that
is, commutativity of the diagram

D HL(A) s B0 T B (x/A) =2 L, (A) —— e
. | £+ 2 | £+
—— H,(B) 2 A(Y) L J,(v/B) = H, (B) —> ---
where i and g denote inclusions and quotient maps, and f:X/A— Y /B is induced
by f. The first two squares commute since fi = if and fq = qf. The third square
expands into

F.(X/A) —L H,(X/A,A/A) —2— H,(X,A4) —2— f, (A)
jﬁ lf lf* lf*

,(Y/B) —Z— H,(Y/B,B/B) —%— H,(Y,B) —— f, (B)

We have already shown commutativity of the first and third squares, and the second
square commutes since fq = q.f.

The Equivalence of Simplicial and Singular Homology

We can use the preceding results to show that the simplicial and singular homol-
ogy groups of A-complexes are always isomorphic. For the proof it will be convenient
to consider the relative case as well, so let X be a A-complex with A C X a sub-
complex. Thus A is the A-complex formed by any union of simplices of X. Relative
groups H4 (X, A) canbe defined in the same way as for singular homology, via relative
chains A, (X,A) = A, (X)/A,,(A), and this yields a long exact sequence of simplicial
homology groups for the pair (X, A) by the same algebraic argument as for singular
homology. There is a canonical homomorphism Hﬁ(X ,A)— H, (X, A) induced by the
chain map A, (X,A)—C, (X,A) sending each n-simplex of X to its characteristic
map o :A"—X. The possibility A = @ is not excluded, in which case the relative
groups reduce to absolute groups.

Theorem 2.27. The homomorphisms Hﬁ(X,A)—»Hn(X,A) are isomorphisms for
all n and all A-complex pairs (X, A).

Proof: First we do the case that X is finite-dimensional and A is empty. For X¥
the k-skeleton of X, consisting of all simplices of dimension k or less, we have a
commutative diagram of exact sequences:

H2 (XK X)) — HAX* ") — HA(XY) — HAXK XM ) — H2 (XM

l | I ! I

H, (X*xX*")—H/(X"") — H,(X") — H,(X*X*") — H, (X*")
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Let us first show that the first and fourth vertical maps are isomorphisms for all 7.
The simplicial chain group An(Xk,X k‘l) is zero for n + k, and is free abelian with
basis the k-simplices of X when n = k. Hence Hﬁ‘l(Xk,Xk’l) has exactly the same
description. The corresponding singular homology groups H,, (X k xk=1) can be com-
puted by considering the map ®: ]_[O((A’&, 6A’§() — (Xk, Xk’l) formed by the character-
istic maps Ak — X for all the k-simplices of X. Since ® induces a homeomorphism
of quotient spaces uaa’g/uaaa’; ~ X k/X k’l, it induces isomorphisms on all singu-
lar homology groups. Thus Hn(Xk,Xk‘l) is zero for n + k, while for n = k this
group is free abelian with basis represented by the relative cycles given by the char-
acteristic maps of all the k-simplices of X, in view of the fact that H,(A¥,3A¥) is
generated by the identity map AF— A¥ | as we showed in Example 2.23. Therefore the
map Hf(Xk,Xk_l)aHk(Xk,Xk_l) is an isomorphism.

By induction on k we may assume the second and fifth vertical maps in the pre-
ceding diagram are isomorphisms as well. The following frequently quoted basic alge-
braic lemma will then imply that the middle vertical map is an isomorphism, finishing
the proof when X is finite-dimensional and A = @.

The Five-Lemma. In a commutative diagram A B C
of abelian groups as at the right, if the two rows lcx lB l y l 6 l £
areexactand «, B, &, and & are isomorphisms, A’ B C ¢

then y is an isomorphism also.

Proof: It suffices to show:
(a) y is surjective if B and 6 are surjective and ¢ is injective.
(b) y isinjective if B and 6 are injective and « is surjective.

The proofs of these two statements are straightforward diagram chasing. There is
really no choice about how the argument can proceed, and it would be a good exercise
for the reader to close the book now and reconstruct the proofs without looking.

To prove (a), start with an element ¢’ € C’. Then k'(¢’) = 6(d) for some d € D
since § is surjective. Since ¢ is injective and f(d) = £'5(d) = £'k'(c’) = 0, we
deduce that £(d) = 0, hence d = k(c) for some ¢ € C by exactness of the upper row.
The difference ¢’ — y(c) maps to 0 under k' since k'(¢) —k'y(c) = k'(¢) — 6k(c) =
k' (c') — 8(d) = 0. Therefore ¢’ — y(c) = j'(b") for some b’ € B’ by exactness. Since
B is surjective, b’ = B(b) for some b € B, and then y(c + j(b)) = y(c) + yj(b) =
y(c) +j Bb) =y(c) +j (b') =c’, showing that y is surjective.

To prove (b), suppose that y(c) = 0. Since § is injective, dk(c) = k'y(c) = 0
implies k(c) = 0, so ¢ = j(b) for some b € B. The element B(b) satisfies j'B(b) =
yj(b) =y(c) =0,s0 B(b) =i (a’) forsome a’ € A’. Since « is surjective, a’ = x(a)
for some a € A. Since B is injective, B(i(a) — b) = Bi(a) — B(b) = i'x(a) — B(b) =
i'(a’)—B(b) = 0 implies i(a)—b = 0. Thus b = i(a), and hence ¢ = j(b) = ji(a) =0
since ji = 0. This shows y has trivial kernel. O
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Returning to the proof of the theorem, we next consider the case that X is infinite-
dimensional, where we will use the following fact: A compact set in X can meet only
finitely many open simplices of X, that is, simplices with their proper faces deleted.
This is a general fact about CW complexes proved in the Appendix, but here is a
direct proof for A-complexes. If a compact set C intersected infinitely many open
simplices, it would contain an infinite sequence of points x; each lying in a different
open simplex. Then the sets U; = X - j+i1x;}, which are open since their preimages
under the characteristic maps of all the simplices are clearly open, form an open cover
of C with no finite subcover.

This can be applied to show the map Hﬁ(X )—H, (X) is surjective. Represent a
given element of H,, (X) by a singular n-cycle z. Thisis alinear combination of finitely
many singular simplices with compact images, meeting only finitely many open sim-
plices of X, hence contained in X* for some k. We have shown that Hﬁ(Xk) —»Hn(Xk)
is an isomorphism, in particular surjective, so z is homologous in X k (hence in X) to
a simplicial cycle. This gives surjectivity. Injectivity is similar: If a simplicial n-cycle
z is the boundary of a singular chain in X, this chain has compact image and hence
must lie in some Xk, so z represents an element of the kernel of Hﬁ(Xk) —»Hn(Xk).
But we know this map is injective, so z is a simplicial boundary in X k and therefore
in X.

It remains to do the case of arbitrary X with A + &, but this follows from the
absolute case by applying the five-lemma to the canonical map from the long exact
sequence of simplicial homology groups for the pair (X, A) to the corresponding long
exact sequence of singular homology groups. |

We can deduce from this theorem that H, (X) is finitely generated whenever X
is a A-complex with finitely many n-simplices, since in this case the simplicial chain
group A, (X) is finitely generated, hence also its subgroup of cycles and therefore
also the latter group’s quotient Hﬁ(X ). If we write H, (X) as the direct sum of cyclic
groups, then the number of Z summands is known traditionally as the n" Betti
number of X, and integers specifying the orders of the finite cyclic summands are
called torsion coefficients.

It is a curious historical fact that homology was not thought of originally as a
sequence of groups, but rather as Betti numbers and torsion coefficients. One can
after all compute Betti numbers and torsion coefficients from the simplicial boundary
maps without actually mentioning homology groups. This computational viewpoint,
with homology being numbers rather than groups, prevailed from when Poincaré first
started serious work on homology around 1900, up until the 1920s when the more
abstract viewpoint of groups entered the picture. During this period ‘homology’ meant
primarily ‘simplicial homology,” and it was another 20 years before the shift to singular
homology was complete, with the final definition of singular homology emerging only



Simplicial and Singular Homology Section 2.1 131

—

in a 1944 paper of Eilenberg, after contributions from quite a few others, particularly
Alexander and Lefschetz. Within the next few years the rest of the basic structure
of homology theory as we have presented it fell into place, and the first definitive
treatment appeared in the classic book [Eilenberg & Steenrod 1952].

Exercises

1. What familiar space is the quotient A-complex of a 2-simplex [v,, v;, V,] obtained
by identifying the edges [v(, v,] and [v,,v,], preserving the ordering of vertices?
2. Show that the A-complex obtained from A® by performing the edge identifications
[vg,v1] ~ [vy,v3] and [vg, Vo] ~ [V,, V3] deformation retracts onto a Klein bottle.
Find other pairs of identifications of edges that produce A-complexes deformation
retracting onto a torus, a 2-sphere, and RP.

3. Construct a A-complex structure on RP" as a quotient of a A-complex structure

on S$" having vertices the two vectors of length 1 along each coordinate axis in R"*!.

4. Compute the simplicial homology groups of the triangular parachute obtained from
A® by identifying its three vertices to a single point.
5. Compute the simplicial homology groups of the Klein bottle using the A-complex
structure described at the beginning of this section.

6. Compute the simplicial homology groups of the A-complex obtained from n + 1
2-simplices A3, - -+, A? by identifying all three edges of A3 to a single edge, and for
i > 0 identifying the edges [v(,v,] and [v,,V,] of Af to a single edge and the edge
[vg, V5] to the edge [v,,v,] of A? .

7. Find a way of identifying pairs of faces of A® to produce a A-complex structure
on §° having a single 3-simplex, and compute the simplicial homology groups of this
A-complex.

8. Construct a 3-dimensional A-complex X from n tetrahe-

dra Ty, ---, T, by the following two steps. First arrange the

tetrahedra in a cyclic pattern as in the figure, so that each T;

shares a common vertical face with its two neighbors T;_;

and T;,,, subscripts being taken mod n. Then identify the

bottom face of T; with the top face of T; ; for each i. Show the simplicial homology
groups of X in dimensions 0, 1, 2, 3 are Z, Z,,, 0, Z, respectively. [The space X is
an example of a lens space; see Example 2.43 for the general case.]

9. Compute the homology groups of the A-complex X obtained from A" by identi-
fying all faces of the same dimension. Thus X has a single k-simplex for each k < n.

10. (a) Show the quotient space of a finite collection of disjoint 2-simplices obtained
by identifying pairs of edges is always a surface, locally homeomorphic to R?.

(b) Show the edges can always be oriented so as to define a A-complex structure on
the quotient surface. [This is more difficult.]
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11. Show that if A is a retract of X then the map H, (A)— H,(X) induced by the
inclusion A C X is injective.

12. Show that chain homotopy of chain maps is an equivalence relation.

13. Verify that f =~ g implies f, = g, for induced homomorphisms of reduced
homology groups.

14. Determine whether there exists a short exact sequence 0—72,—Zg®Z,—7Z,— 0.
More generally, determine which abelian groups A fit into a short exact sequence
0—Z,m—A—Z,»—0 with p prime. What about the case of short exact sequences
0—2—A—17,—07?

15. For an exact sequence A—B— C— D —E show that C = 0 iff the map A—B
is surjective and D —E is injective. Hence for a pair of spaces (X, A), the inclusion
A < X induces isomorphisms on all homology groups iff H,,(X,A) = 0 for all n.

16. (a) Show that H(X, A) = 0 iff A meets each path-component of X.
(b) Show that H, (X, A) = 0 iff H,(A)— H, (X) is surjective and each path-component
of X contains at most one path-component of A.

17. (a) Compute the homology groups H, (X, A) when X is $% or S'xS! and A is a
finite set of points in X.

(b) Compute the groups H,,(X,A) and H,(X,B) for X

a closed orientable surface of genus two with A and B e@
the circles shown. [What are X/A and X/B?]

18. Show that for the subspace Q C R, the relative homology group H, (R, Q) is free
abelian and find a basis.

19. Compute the homology groups of the subspace of IxI consisting of the four
boundary edges plus all points in the interior whose first coordinate is rational.

20. Show that PNIn(X) =~ }NInH(SX) for all n, where SX is the suspension of X. More
generally, thinking of SX as the union of two cones CX with their bases identified,
compute the reduced homology groups of the union of n cones CX with their bases
identified.

21. Making the preceding problem more concrete, construct explicit chain maps
$:C,,(X)—C,,,(SX) inducing isomorphisms PNIn(X) —>PNIn+1 (SX).

22. Prove by induction on dimension the following facts about the homology of a

finite-dimensional CW complex X, using the observation that X" /X" ! is a wedge

sum of n-spheres:

(a) If X has dimension n then H;(X) =0 for i > n and H,,(X) is free.

(b) H,(X) is free with basis in bijective correspondence with the n-cells if there are
no cells of dimension n -1 or n + 1.

(c) If X has k n-cells, then H, (X) is generated by at most k elements.
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23. Show that the second barycentric subdivision of a A-complex is a simplicial
complex. Namely, show that the first barycentric subdivision produces a A-complex
with the property that each simplex has all its vertices distinct, then show that for a
A-complex with this property, barycentric subdivision produces a simplicial complex.

24. Show that each n-simplex in the barycentric subdivision of A™ is defined by n
inequalities t; <t; <--- <t; inits barycentric coordinates, where (iy,---,i,) isa
permutation of (0,---,n).

25. Find an explicit, noninductive formula for the barycentric subdivision operator
$:C,(X)—C,(X).

26. Show that H, (X, A) is not isomorphic to ﬁl (X/A) if X = [0,1] and A is the
sequence 1, Y/, /5, - - - together with its limit 0. [See Example 1.25.]

27. Let f:(X,A)—(Y,B) be a map such that both f:X—Y and the restriction
f:A— B are homotopy equivalences.

(a) Show that f, :H,(X,A)—H, (Y,B) is an isomorphism for all n.

(b) For the case of the inclusion f: (D", S"!) < (D", D" — {0}), show that f is not
a homotopy equivalence of pairs — there is no g: (D", D" — {0})— (D", S"!) such
that fg and gf are homotopic to the identity through maps of pairs. [Observe that
a homotopy equivalence of pairs (X, A)— (Y, B) is also a homotopy equivalence for
the pairs obtained by replacing A and B by their closures.]

28. Let X be the cone on the 1-skeleton of A%, the union of all line segments joining
points in the six edges of A® to the barycenter of A%. Compute the local homology
groups H, (X,X — {x}) for all x € X. Define 0X to be the subspace of points x
such that H,(X,X — {x}) = 0 for all n, and compute the local homology groups
H,(0X,0X —{x}). Use these calculations to determine which subsets A ¢ X have the
property that f(A) c A for all homeomorphisms f:X—X.

29. Show that S'xS' and S! v §! v §2 have isomorphic homology groups in all
dimensions, but their universal covering spaces do not.

30. In each of the following commutative diagrams assume that all maps but one are
isomorphisms. Show that the remaining map must be an isomorphism as well.

A——B A——B A——B
N/ | | | |
C C——D C——D

31. Using the notation of the five-lemma, give an example where the maps «, S, 6,
and ¢ are zero but y is nonzero. This can be done with short exact sequences in
which all the groups are either Z or 0.
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2.2 Computations and Applications

Now that the basic properties of homology have been established, we can begin
to move a little more freely. Our first topic, exploiting the calculation of H, (S™), is
Brouwer’s notion of degree for maps S™ — S™. Historically, Brouwer’s introduction of
this concept in the years 1910-12 preceded the rigorous development of homology,
so his definition was rather different, using the technique of simplicial approximation
which we explain in §2.C. The later definition in terms of homology is certainly more
elegant, though perhaps with some loss of geometric intuition. More in the spirit of
Brouwer’s definition is a third approach using differential topology, presented very
lucidly in [Milnor 1965].

Degree

For a map f:S"—S"™ with n > 0, the induced map f,:H,(S")—H, (S") is a
homomorphism from an infinite cyclic group to itself and so must be of the form
f«(ax) = do for some integer d depending only on f. This integer is called the
degree of f, with the notation deg f. Here are some basic properties of degree:

(@) degll =1,since 1, = 1.

(b) deg f =0 if f is not surjective. For if we choose a point x, € S’ — f(S™) then f
can be factored as a composition " —S" — {x,} — S" and H, (S" — {x,}) =0
since S — {x,} is contractible. Hence f, = 0.

(c) If f = g then deg f = degg since f, = g, . The converse statement, that f ~ g
if deg f = degg, is a fundamental theorem of Hopf from around 1925 which we
prove in Corollary 4.25.

(d) deg fg = deg fdegg, since (fg). = f.d.- As a consequence, deg f = =1 if f
is a homotopy equivalence since fg ~ 1 implies deg f degg = deg1 = 1.

(e) deg f = —1 if f is a reflection of S", fixing the points in a subsphere S"!
and interchanging the two complementary hemispheres. For we can give S" a
A-complex structure with these two hemispheres as its two n-simplices A}' and

%, and the n-chain A" — A} represents a generator of H, (S") as we saw in
Example 2.23, so the reflection interchanging A} and A} sends this generator to
its negative.

(f) The antipodal map —1:5S"—S", x — —x, has degree (—1)""! since it is the
composition of n + 1 reflections, each changing the sign of one coordinate in
R™1,

(g) If f:S™—S™ has no fixed points then deg f = (—=1)""!. Forif f(x) = x then the
line segment from f(x) to —x, definedby t — (1 —t)f(x) —tx for0<t <1,
does not pass through the origin. Hence if f has no fixed points, the formula
filx) =11 -0 f(x)—tx]/I(1 —t)f(x) — tx]| defines a homotopy from f to
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the antipodal map. Note that the antipodal map has no fixed points, so the fact
that maps without fixed points are homotopic to the antipodal map is a sort of
converse statement.

Here is an interesting application of degree:

|| Theorem 2.28. S™ has a continuous field of nonzero tangent vectors iff n is odd.

Proof: Suppose x — v(x) is a tangent vector field on S§™, assigning to a vector
x € S™ the vector v(x) tangent to S™ at x. Regarding v (x) as a vector at the origin
instead of at x, tangency just means that x and v(x) are orthogonal in R""!. If
v(x) # 0 for all x, we may normalize so that |v(x)| =1 for all x by replacing v (x)
by v(x)/|v(x)|. Assuming this has been done, the vectors (cost)x + (sint)v(x) lie
in the unit circle in the plane spanned by x and v(x). Letting t go from 0 to 1T, we
obtain a homotopy f;(x) = (cost)x + (sint)v(x) from the identity map of S" to the
antipodal map —1. This implies that deg(—1) = deg 1, hence (-1)""! = 1 and n
must be odd.

Conversely, if n is odd, say n = 2k — 1, we can define v (xy, X5, -+, Xop_1,Xox) =
(=%5,X71, "y —Xop, Xok—1). Then v(x) is orthogonal to x, so v is a tangent vector
field on S™, and |v(x)| =1 for all x € S". O

For the much more difficult problem of finding the maximum number of tan-
gent vector fields on S™ that are linearly independent at each point, see [VBKT] or
[Husemoller 1966].

Another nice application of degree, giving a partial answer to a question raised in
Example 1.43, is the following result:

Proposition 2.29. 7, is the only nontrivial group that can act freely on S" if n is

even.

Recall that an action of a group G on a space X is a homomorphism from G
to the group Homeo(X) of homeomorphisms X — X, and the action is free if the
homeomorphism corresponding to each nontrivial element of G has no fixed points.
In the case of S™, the antipodal map x — —x generates a free action of Z,.

Proof: Since the degree of a homeomorphism must be +1, an action of a group G
on S™ determines a degree function d:G— {+1}. This is a homomorphism since
deg fg = deg f degg. If the action is free, then d sends every nontrivial element of
G to (-1)"*! by property (g) above. Thus when n is even, d has trivial kernel, so
GC1Z,. O

Next we describe a technique for computing degrees which can be applied to most
maps that arise in practice. Suppose f:S"—S", n > 0, has the property that for
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some point v € S™, the preimage f “1 ) consists of only finitely many points, say
X1y, Xy Let Uy, - -+, U, be disjoint neighborhoods of these points, mapped by f
into a neighborhood V of y. Then f(U; — x;) ¢ V — y for each i, and we have a

commutative diagram £
H,(U;, U; - x;) * H,(V,V-vy)

/ lki lz

H(S™ 8™ x0) <2 H(S S™ £ () =L (57 5™ )

\ Ij S Iz

H,(S")

where all the maps are the obvious ones, in particular k; and p; are induced by inclu-

sions. The two isomorphisms in the upper half of the diagram come from excision,
while the lower two isomorphisms come from exact sequences of pairs. Via these four
isomorphisms, the top two groups in the diagram can be identified with H,,(S") ~ Z,
and the top homomorphism f, becomes multiplication by an integer called the local
degree of f at x;, written deg f|x;.

For example, if f is a homeomorphism, then y can be any point and there is
only one corresponding x;, so all the maps in the diagram are isomorphisms and
deg f'|x; = deg f = 1. More generally, if f maps each U; homeomorphically onto
V, then deg f|x; = =1 for each i. This situation occurs quite often in applications,
and it is usually not hard to determine the correct signs.

Here is the formula that reduces degree calculations to computing local degrees:

H Proposition 2.30. deg f = > deg fx;.

Proof: By excision, the central term H,,(S",S" — f~'(»)) in the preceding diagram
is the direct sum of the groups H, (U;,U; — x;) = Z, with k; the inclusion of the
it" summand. Since the upper triangle commutes, the projections of this direct sum
onto its summands are given by the maps p;. Identifying the outer groups in the
diagram with Z as before, commutativity of the lower triangle says that p;j(1) = 1,
hence j(1) = (1,---,1) = >; k;(1). Commutativity of the upper square says that the
middle f, takes k;(1) to deg f|x;, hence > k;(1) = j(1) is taken to > ;deg f|x;.
Commutativity of the lower square then gives the formula deg f = >;deg f|x;. O

Example 2.31. We can use this result to construct amap S™— S™ of any given degree,
for each n > 1. Let q:S"—\/, S be the quotient map obtained by collapsing the
complement of k disjoint open balls B; in ™ to a point, and let p:\/, S" — S" identify
all the summands to a single sphere. Consider the composition f = pq. For almost all
y € S" we have f 1 ) consisting of one point x; in each B;. The local degree of f
at x; is +1 since f is ahomeomorphism near x;. By precomposing p with reflections
of the summands of \/;, S™ if necessary, we can make each local degree either +1 or
—1, whichever we wish. Thus we can produce a map S"—S" of degree +k.
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Example 2.32. In the case of Sl, the map f(z) = zk, where we view S' as the unit
circle in C, has degree k. This is evident in the case k = 0 since f is then constant.
The case k < 0 reduces to the case k > 0 by composing with z — z~!, which is a
reflection, of degree —1. To compute the degree when k > 0, observe first that for
any y € st f’l(y) consists of k points xy, -- -, x; near each of which f is a local
homeomorphism, stretching a circular arc by a factor of k. This local stretching can
be eliminated by a deformation of f near x; that does not change local degree, so the
local degree at x; is the same as for a rotation of S'. A rotation is a homeomorphism
so its local degree at any point equals its global degree, which is +1 since a rotation

is homotopic to the identity. Hence deg f'|x; = 1 and deg f = k.

Another way of obtaining a map S" —S" of degree k is to take a repeated sus-
pension of the map z — z* in Example 2.32, since suspension preserves degree:

‘ Proposition 2.33. degSf = deg f, where Sf:S™"' — "1 is the suspension of the
map f:S"—S™.

Proof: Let CS™ denote the cone (S"xI)/(S"x1) with base S" = $"x0 c CS",
so CS™/S™ is the suspension of $". The map f induces Cf:(CS",S™)—(CS™,S™)
with quotient S f. The naturality of the boundary maps

~ a ~
H,.(S"™") —— H,(S")
in the long exact sequence of the pair (CS",S") then !

s £
l —a»ﬁnl(S")

~

gives commutativity of the diagram at the right. Hence
if f, is multiplication by d, sois Sf, . O Hy(S"™)

Note that for f:S™—S", the suspension Sf maps only one point to each of the
two ‘poles’ of S™*1. This implies that the local degree of Sf at each pole must equal
the global degree of Sf. Thus the local degree of a map S —S" can be any integer
if n > 2, just as the degree itself can be any integer when n > 1.

Cellular Homology

Cellular homology is a very efficient tool for computing the homology groups of
CW complexes, based on degree calculations. Before giving the definition of cellular
homology, we first establish a few preliminary facts:

Lemma 2.34. If X is a CW complex, then:

() Hk(X”,X”’l) is zero for k + n and is free abelian for k = n, with a basis in
one-to-one correspondence with the n-cells of X .

(b) Hk(X") =0 for k > n. In particular, if X is finite-dimensional then H;(X) =0
for k > dimX.

(c) The inclusion i: X" — X induces an isomorphism Ty :Hk(X")—>Hk(X) ifk <n.

Proof: Statement (a) follows immediately from the observation that (X", X" !) is a
good pair and X”/X”’1 is a wedge sum of n-spheres, one for each n-cell of X. Here
we are using Proposition 2.22 and Corollary 2.25.
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To prove (b), consider the long exact sequence of the pair (X”,X”’l), which
contains the segments

Hpo (X" X" — H (X" — Hy (X™) — H (X", X"

If k is not equal to n or n — 1 then the outer two groups are zero by part (a), so
we have isomorphisms Hk(X”’l) ~ H(X") for k + n, n — 1. Thus if k > n we
have Hy (X") ~ H,(X"!) ~ H (X" ) = --- = Hy(X") = 0, proving (b). Further, if
k <n then Hy(X") ~ H(X"™) ~ .-+ ~ H (X""™) for all m > 0, proving (c) if X is
finite-dimensional.

The proof of (c) when X is infinite-dimensional requires more work, and this can
be done in two different ways. The more direct approach is to descend to the chain
level and use the fact that a singular chain in X has compact image, hence meets only
finitely many cells of X by Proposition A.1 in the Appendix. Thus each chain lies
in a finite skeleton X™. So a k-cycle in X is a cycle in some X", and then by the
finite-dimensional case of (c), the cycle is homologous to a cycle in X" if n > k, so
i, H(X")—H,(X) is surjective. Similarly for injectivity, if a k-cycle in X™ bounds
a chain in X, this chain lies in some X™ with m > n, so by the finite-dimensional
case the cycle bounds a chain in X™ if n > k.

The other approach is more general. From the long exact sequence of the pair
(X, X™) it suffices to show H;(X,X") = 0 for k < n. Since H(X,X") ~ InNIk(X/X"),
this reduces the problem to showing:

() Hp(X) =0 for k < n if the n-skeleton of X is a point.

When X is finite-dimensional, () is immediate from the finite-dimensional case
of (c) which we have already shown. It will suffice therefore to reduce the infinite-
dimensional case to the finite-dimensional case. This reduction will be achieved by
stretching X out to a complex that is at least locally finite-dimensional, using a special
case of the ‘mapping telescope’ construction described in greater generality in §3.F.
Consider X x [0, c) with its product cell structure,
where we give [0, o) the cell structure with the integer —EEEEEP R
points as O-cells. Let T = Ul-Xix[i, o), a subcomplex
of Xx[0,0). The figure shows a schematic picture of T with [0, ) in the hor-
izontal direction and the subcomplexes X ix[i,i+ 1] as rectangles whose size in-
creases with i since X! ¢ X**!. The line labeled R can be ignored for now. We claim
that T = X, hence Hy(X) =~ H(T) for all k. Since X is a deformation retract of
XX [0, ), it suffices to show that X x [0, «) also deformation retracts onto T. Let
Y; = TU(Xx[i,)). Then Y; deformation retracts onto Y,,; since X x[i,i+1] defor-
mation retracts onto X'x [i,i+1]uXx{i+ 1} byProposition 0.16. If we perform the
deformation retraction of Y; onto Y;,; during the t-interval [1 — 1/2%,1 — 1/2'"1],
then this gives a deformation retraction f; of Xx[0,) onto T, with points in
X'x[0, %) stationary under fifort=1-1/ 2i+1 Continuity follows from the fact



Computations and Applications Section 2.2 139

—

that CW complexes have the weak topology with respect to their skeleta, so a map is
continuous if its restriction to each skeleton is continuous.

Recalling that X%isa point, let R C T be the ray XOx [0,0) and let Z C T be the
union of this ray with all the subcomplexes X % {i}. Then Z/R is homeomorphic to
Vi X i a wedge sum of finite-dimensional complexes with #-skeleton a point, so the
finite-dimensional case of (*) together with Corollary 2.25 describing the homology
of wedge sums implies that ﬁk(Z/R) = 0 for k < n. The same is therefore true for Z,
from the long exact sequence of the pair (Z, R), since R is contractible. Similarly, T/Z
is a wedge sum of finite-dimensional complexes with (n + 1)-skeleton a point, since
if we first collapse each subcomplex X Ix{i} of T to a point, we obtain the infinite
sequence of suspensions SX' ‘skewered’ along the ray R, and then if we collapse R to
a point we obtain \/;ZX " where =X is the reduced suspension of X!, obtained from
SX' by collapsing the line segment X°x [i,i+1] toapoint, so =X’ has (n+1)-skeleton
a point. Thus ﬁk(T/Z) =0 for k < n + 1, and then the long exact sequence of the
pair (T, Z) implies that ﬁk(T) = 0 for k < n, and we have proved (x). |

Let X be a CW complex. Using Lemma 2.34, portions of the long exact sequences
for the pairs (X", X™), (X", X" 1), and (X" !, X" ?) fit into a diagram

0
/
0 H,(X™) ~ H,(X)
\ /’
H,(X")
anﬂ/" Jn
n+1 n dn+1 n n-1 dn n-1 n-2
—’HnH(X 1X ) Hn(X 1X ) Hn—l(X )X )—>
m /j;,]
H, (X"
0

where d,,.; and d,, are defined as the compositions j,0,,.; and j,_,0,, which are
just ‘relativizations’ of the boundary maps 9d,,,; and 0,,. The composition d,d,,;
includes two successive maps in one of the exact sequences, hence is zero. Thus the
horizontal row in the diagram is a chain complex, called the cellular chain complex
of X since Hn(X",X”‘l) is free with basis in one-to-one correspondence with the
n-cells of X, so one can think of elements of Hn(X”,X"’l) as linear combinations
of n-cells of X. The homology groups of this cellular chain complex are called the
cellular homology groups of X. Temporarily we denote them Hg Y(X).

| Theorem 2.35. HS" (X) =~ H,, (X).

Proof: From the diagram above, H, (X) can be identified with Hn(X")/Im Optl-
Since j, is injective, it maps Imad,,, isomorphically onto Im(j,0,,,) = Imd,
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and H, (X") isomorphically onto Im j, = Kerd,,. Since j,_, is injective, Kerd, =
Kerd, . Thus j, induces an isomorphism of the quotient H,(X")/Imd, , onto
Kerd, /Imd,, ;. O

Here are a few immediate applications:

(i) H,(X) =0 if X is a CW complex with no n-cells.

(ii) More generally, if X is a CW complex with k n-cells, then H, (X) is generated
by at most k elements. For since H,, (X", X" ') is free abelian on k generators,
the subgroup Kerd,, must be generated by at most k elements, hence also the
quotient Kerd, /Imd,, ;.

(iii) If X is a CW complex having no two of its cells in adjacent dimensions, then
H, (X) is free abelian with basis in one-to-one correspondence with the n-cells
of X. This is because the cellular boundary maps d,, are automatically zero in
this case.

This last observation applies for example to CP", which has a CW structure with one
cell of each even dimension 2k < 2n as we saw in Example 0.6. Thus

Z fori=0,2,4,---,2n
Hi (€P) ~ {0 otherwise
Another simple example is S" xS™ with n > 1, using the product CW structure con-
sisting of a 0-cell, two n-cells, and a 2n-cell.
It is possible to prove the statements (i)-(iii) for finite-dimensional CW complexes
by induction on the dimension, without using cellular homology but only the basic
results from the previous section. However, the viewpoint of cellular homology makes

(i)-(iii) quite transparent.

Next we describe how the cellular boundary maps d,, can be computed. When
n = 1 this is easy since the boundary map d,:H; (Xl,XO)—>HO(X0) is the same as
the simplicial boundary map A;(X)—Aq(X). In case X is connected and has only
one 0-cell, then d; must be 0, otherwise Hy(X) would notbe Z. When n > 1 we will
show that d,, can be computed in terms of degrees:

Cellular Boundary Formula. d, (ey) = S zdygef ' where dg is the degree of the
map S&"l —»X"’1—>S§"1 that is the composition of the attaching map of el with
the quotient map collapsing X"~' — eg ™" to a point.

Here we are identifying the cells ey and eg_l

with generators of the corresponding
summands of the cellular chain groups. The summation in the formula contains only
finitely many terms since the attaching map of e}, has compact image, so this image
meets only finitely many cells elrg"l .

To derive the cellular boundary formula, consider the commutative diagram
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~ AL‘X * ~ n-
H,(D,Dy) H, (8D}) ——— H, ({1

lq)zx* l(p(x* Iqﬁ*

H(X"X" ) — 9 L fF (xm ) — T JF (XX

X [ e |~

Hnil(Xn—I’Xn—Z) L} Hnil(Xn—l/Xn—Z,Xn—Z/Xn—Z)

where:

» &, is the characteristic map of the cell ej; and @, is its attaching map.

« g: X" X""1/X"? s the quotient map.

- aqg (Xl xn? —>S[;l’1 collapses the complement of the cell eg’l to a point, the
resulting quotient sphere being identified with S§~' = D§~'/aD; " via the char-
acteristic map ®g.

= Agpt 8D3—>S[;‘1 is the composition qgq@,, in other words, the attaching map
of e followed by the quotient map X" ! —>S[;"l collapsing the complement of

1

ep ' in X" to a point.

The map ®,, takes a chosen generator [D}] € H,, (D}

,0DZ) to a generator of the 7
summand of H, (X", X" ') corresponding to e!. Letting e" denote this generator,
commutativity of the left half of the diagram then gives d,, (ey) = j,_1Pxs0[Dxl. In
terms of the basis for H, (X" ', X""?) corresponding to the cells ef ', the map qg,
is the projection of H,_; (X" '/X"2) onto its Z summand corresponding to eg‘l.

Commutativity of the diagram then yields the formula for d,, given above.

Example 2.36. Let M, be the closed orientable surface of genus g with its usual CW
structure consisting of one 0-cell, 2g 1-cells, and one 2-cell attached by the product
of commutators [a,b,]--- [ag, bg]. The associated cellular chain complex is

0—z-2,7%9 4,7 .0

As observed above, d; mustbe 0 since there is only one 0-cell. Also, d, is 0 because
each a; or b; appears with its inverse in [a;,b;]---[ay b,], so the maps A,z are
homotopic to constant maps. Since d; and d, are both zero, the homology groups
of M, are the same as the cellular chain groups, namely, Z in dimensions 0 and 2,
and 7%’ in dimension 1.

Example 2.37. The closed nonorientable surface N, of genus g has a cell structure
with one 0-cell, g 1-cells, and one 2-cell attached by the word a%as3 - - - aé. Again
d;, =0,and dZ:Z—>Zg is specified by the equation d,(1) = (2,---,2) since each a;
appears in the attaching word of the 2-cell with total exponent 2, which means that

each Ayg is homotopic to the map z — 22, of degree 2. Since d,(1) = (2,---,2), we
have d, injective and hence H,(N,) = 0. If we change the basis for 79 by replacing
the last standard basis element (0,---,0,1) by (1,---,1), we see that H, (Ng) =

79 'e1z,.
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These two examples illustrate the general fact that the orientability of a closed
connected manifold M of dimension n is detected by H, (M), which is Z if M is
orientable and 0 otherwise. This is shown in Theorem 3.26.

Example 2.38: An Acyclic Space. Let X be obtained from S! v S! by attaching two
2-cells by the words a’b™3 and bg(ab)’z. Then d2:22—>22 has matrix (75 7%)
with the two columns coming from abelianizing a’b~3 and b*(ab)™? to 5a — 3b
and —-2a + b, in additive notation. The matrix has determinant -1, so d, is an
isomorphism and ﬁi(X ) = 0 for all i. Such a space X is called acyclic.

We can see that this acyclic space is not contractible by considering ; (X), which
has the presentation (a,b | a5b73, b3 (ab)’2 ). There is a nontrivial homomorphism
from this group to the group G of rotational symmetries of a regular dodecahedron,
sending a to the rotation p, through angle 277/5 about the axis through the center
of a pentagonal face, and b to the rotation p, through angle 27r/3 about the axis
through a vertex of this face. The composition p,p,, is a rotation through angle
about the axis through the midpoint of an edge abutting this vertex. Thus the relations
a’>=b’= (ab)2 defining 7T, (X) become pZ = pf, = (papb)2 =1 in G, which means
there is a well-defined homomorphism p: 1, (X)— G sending a to p, and b to p,,.
It is not hard to see that G is generated by p, and p;,, so p is surjective. With
more work one can compute that the kernel of p is Z,, generated by the element
a’>=b’= (ab)z, and this Z, is in fact the center of 1, (X). In particular, T, (X) has
order 120 since G has order 60.

After these 2-dimensional examples, let us now move up to three dimensions,
where we have the additional task of computing the cellular boundary map d;.

Example 2.39. A 3-dimensional torus

T3 = $'x$'xS! can be constructed c 4 ¢ S T
from a cube by identifying each pair b a b b a b
of opposite square faces as in the first b a b b a b

of the two figures. The second figure c a c c a c

shows a slightly different pattern of

identifications of opposite faces, with the front and back faces now identified via a
rotation of the cube around a horizontal left-right axis. The space produced by these
identifications is the product KxS' of a Klein bottle and a circle. For both T3 and
KxS' we have a CW structure with one 3-cell, three 2-cells, three 1-cells, and one
0-cell. The cellular chain complexes thus have the form

ds

0—z-4. 73 2,3 %790

In the case of the 3-torus T the cellular boundary map d, is zero by the same
calculation as for the 2-dimensional torus. We claim that d5 is zero as well. This
amounts to saying that the three maps Az :S 2 g2 corresponding to the three 2-cells
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have degree zero. Each A,z maps the interiors of two opposite faces of the cube
homeomorphically onto the complement of a point in the target S 2 and sends the
remaining four faces to this point. Computing local degrees at the center points of
the two opposite faces, we see that the local degree is +1 at one of these points and
—1 at the other, since the restrictions of Ayp 1O these two faces differ by a reflection
of the boundary of the cube across the plane midway between them, and a reflection
has degree —1. Since the cellular boundary maps are all zero, we deduce that Hi(T3)
is 7 for i = 0,3, 73 for i = 1,2, and 0 for i > 3.

For K x S!, when we compute local degrees for the front and back faces we find
that the degrees now have the same rather than opposite signs since the map A,z on
these two faces differs not by a reflection but by a rotation of the boundary of the cube.
The local degrees for the other faces are the same as before. Using the letters A, B, C
to denote the 2-cells given by the faces orthogonal to the edges a, b, c, respectively,
we have the boundary formulas dse® = 2C, d,A = 2b, d,B = 0, and d,C = 0. It
follows that H(KxS') =0, Hy(KxS') = Z®7,,and H;(KxS') = 7®7&17,.

Many more examples of a similar nature, quotients of a cube or other polyhedron
with faces identified in some pattern, could be worked out in similar fashion. But let
us instead turn to some higher-dimensional examples.

Example 2.40: Moore Spaces. Given an abelian group G and an integer n > 1, we
will construct a CW complex X such that H, (X) = G and ﬁi(X) =0fori=mn.Sucha
space is called a Moore space, commonly written M (G, n) to indicate the dependence
on G and n. It is probably best for the definition of a Moore space to include the
condition that M(G,n) be simply-connected if n > 1. The spaces we construct will
have this property.

As an easy special case, when G = Z,, we can take X to be S™ with a cell el

attached by amap S"™ — S™ of degree m. More generally, any finitely generated G can
be realized by taking wedge sums of examples of this type for finite cyclic summands
of G, together with copies of $™ for infinite cyclic summands of G.

In the general nonfinitely generated case let F— G be a homomorphism of a free
abelian group F onto G, sending a basis for F onto some set of generators of G. The
kernel K of this homomorphism is a subgroup of a free abelian group, hence is itself
free abelian. Choose bases {x,} for F and {yB} for K, and write Yp = Zadﬁaxa.
Let X" =\/, Sk, so H,(X") = F via Corollary 2.25. We will construct X from X" by
attaching cells eg‘” via maps fg:S" — X" such that the composition of fz with the
projection onto the summand S} has degree dgy. Then the cellular boundary map

d,,..1 will be the inclusion K — F, hence X will have the desired homology groups.

The construction of f; generalizes the construction in Example 2.31 of a map
S"—S" of given degree. Namely, we can let fB map the complement of |d gyl
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disjoint balls in S™ to the 0-cell of X" while sending |d3¢x| of the balls onto the
summand S, by maps of degree +1 if dg, > 0, or degree —1 if dg, < 0.

Example 2.41. By taking a wedge sum of the Moore spaces constructed in the preced-
ing example for varying n we obtain a connected CW complex with any prescribed
sequence of homology groups in dimensions 1,2,3,---.

Example 2.42: Real Projective Space RP". As we saw in Example 0.4, RP" has a CW
structure with one cell ¥ in each dimension k < n, and the attaching map for e is the
2-sheeted covering projection @ :S k=1 RrP*1. To compute the boundary map d,
we compute the degree of the composition sk=1 2, gpk-1 L, rpk-1/RpF2 = k-1
with g the quotient map. The map q@ is a homeomorphism when restricted to each
component of S k=1 _ gk=2 "and these two homeomorphisms are obtained from each
other by precomposing with the antipodal map of S k=1 which has degree (-1)k.
Hence degqe = degl +deg(—-1) =1+ (-1)¥, and so dy is either 0 or multiplication
by 2 according to whether k is odd or even. Thus the cellular chain complex for RP"
is
0—-72%57%... 57 %7 57%7—0 ifniseven

0—-7%7%5... 57 %7257 % 750 ifnisodd

From this it follows that

Z for k=0 and for k =n odd
H (RP") = {ZZ forkodd,0 <k <mn
0 otherwise
Example 2.43: Lens Spaces. This example is somewhat more complicated. Given an
integer m > 1 and integers ¢, - - -, £,, relatively prime to m, define the lens space L =
L,,({y,---,L,) tobe the orbit space $°"~1/2z,, of the unit sphere $*"~! ¢ C" with the
action of 7, generated by the rotation p(z,---,z,) = (e2mitr/m 27Tl"g"/mzn),

rotating the j* C factor of C" by the angle 27 ;/m. In particular, when m = 2, p
P2n—1

Zl,""e

is the antipodal map, so L = R in this case. In the general case, the projection
§2"=1 [ isa covering space since the action of Z,, on §2"=1 js free: Only the identity
element fixes any point of $>"! since each point of $°" ! has some coordinate z 3
nonzero and then e2™k?i/ Mz;+ z; for 0 < k <m, as aresult of the assumption that
{ ; is relatively prime to m.

We shall construct a CW structure on L with one cell e* for each k < 2n —1 and
show that the resulting cellular chain complex is

OészLZL...LzLZ_O;Z—»O

with boundary maps alternately 0 and multiplication by »1. Hence

Z fork=0,2n-1
Hy (L, ({y,--+,4,)) =12, forkodd,0<k<2n-1
0 otherwise
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To obtain the CW structure, first subdivide the unit circle C in the nt" C factor
of C" by taking the points ¢?™/™ < C as vertices, j = 1,---,m. Joining the jt"
vertex of C to the unit sphere $?"73 c C"! by arcs of great circles in $?"~! yields
a (2n — 2)-dimensional ball BJZ-"‘2 bounded by $2"3. Specifically, BJZ-"‘2 consists of
the points cos 0 (0, -- -, 0, ez"ij/m)+sin0 (z1,++,24-1,0) for 0 < 0 < /2. Similarly,
joining the j edge of C to $?" 3 gives a ball Bf"‘l bounded by BJZ.”‘2 and sz-ffz,
subscripts being taken mod m. The rotation p carries S 2n=3 to itself and rotates C
by the angle 21, /m, hence p permutes the BJZ'H_Z’S and the Bj?"‘l’s. A suitable
power of p, namely p” where ¥, = 1 mod m, takes each BJZ-”’2 and szn’l to the
next one. Since p” has order m, it is also a generator of the rotation group Z,,, and
hence we may obtain L as the quotient of one BJZ."’1 by identifying its two faces BJZ."’2
and B57{® together via p”.

In particular, when n = 2, B;”’l is a lens-shaped
3-ball and L is obtained from this ball by identifying its ¥|>
two curved disk faces via p”, which may be described as /
the composition of the reflection across the plane con- ﬁ
taining the rim of the lens, taking one face of the lens to \' 4
the other, followed by a rotation of this face through the
angle 2t /m where £ = v{, . The figure illustrates the
case (m,¥) = (7,2), with the two dots indicating a typical pair of identified points in
the upper and lower faces of the lens. Since the lens space L is determined by the rota-
tion angle 271¢/m, it is conveniently written Ly, ,, . Clearly only the mod m value of ¢
matters. It is a classical theorem of Reidemeister from the 1930s that Ly, is homeo-
morphic to Ly, iff m" = m and £ = +£*' mod m. For example, when m = 7 there
are only two distinct lens spaces L;,; and L,,;. The ‘if’ part of this theorem is easy:
Reflecting the lens through a mirror shows that Ly, ~ L_y,,,, and by interchanging
the roles of the two C factors of C* one obtains L, ym = Lp-1,. In the converse di-
rection, Ly, = Ly, clearly implies m = m’ since m,(Ly,,,) = Z,,. The rest of the
theorem takes considerably more work, involving either special 3-dimensional tech-
niques or more algebraic methods that generalize to classify the higher-dimensional
lens spaces as well. The latter approach is explained in [Cohen 1973].

Returning to the construction of a CW structure on L,, (¢, --,¥,), observe that
the (2n — 3)-dimensional lens space L,,(¢;,---,¥,_;) sitsin L, ({;,---,¥,) as the
quotient of $?"% and L,,(¢;,---,¥,) is obtained from this subspace by attaching
two cells, of dimensions 2n — 2 and 2n — 1, coming from the interiors of B;”’l and
its two identified faces Bf”‘z and Bf-ff 2. Inductively this gives a CW structure on

L, ({y,---,4,) with one cell e* in each dimension k < 2n —1.
The boundary maps in the associated cellular chain complex are computed as

follows. The first one, d,,_;, is zero since the identification of the two faces of
BJZ"‘1 is via a reflection (degree —1) across Bf"‘l fixing S22, followed by a rota-
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noly = @2M72 _ p2n72 — (. The next boundary map

2n-2

tion (degree +1), so d,,_,(e°
dy,_» takes e?" % to me®"~3 since the attaching map for e is the quotient map
§on-3 —L,,(,,---,¥,_,) and the balls B;"’g in $2"~3 which project down onto "3
are permuted cyclically by the rotation p of degree +1. Inductively, the subsequent
boundary maps d, then alternate between 0 and multiplication by m.

Also of interest are the infinite-dimensional lens spaces L,, (£;,5,--+) = S%/Z,,
defined in the same way as in the finite-dimensional case, starting from a sequence of
integers ¥;,¥,, - - - relatively prime to m. The space L, (£;,¥,,---) is the union of the
increasing sequence of finite-dimensional lens spaces L,, (¢, --,¥,) forn =1,2,---,
each of which is a subcomplex of the next in the cell structure we have just con-
structed, so L,, (¥, ¥, --) is also a CW complex. Its cellular chain complex consists
of a Z in each dimension with boundary maps alternately 0 and m, so its reduced
homology consists of a Z,,, in each odd dimension.

In the terminology of §1.B, the infinite-dimensional lens space L,, ({1, ¥,, ) is
an Eilenberg-MacLane space K(Z,,, 1) since its universal cover S% is contractible, as
we showed there. By Theorem 1B.8 the homotopy type of L,,(¥;,¥,,---) depends
only on m, and not on the £;’s. This is not true in the finite-dimensional case, when
two lens spaces L,,(¢y,---,¥,) and L,,(¥1,---,¥,) have the same homotopy type
iff £, --- 0, = k"] --- £,, mod m for some integer k. A proof of this is outlined in
Exercise 2 in §3.E and Exercise 29 in §4.2. For example, the 3-dimensional lens spaces
L5 and L,,5 are not homotopy equivalent, though they have the same fundamental
group and the same homology groups. On the other hand, L,,; and L,,; are homotopy
equivalent but not homeomorphic.

Euler Characteristic

For a finite CW complex X, the Euler characteristic X (X) is defined to be the
alternating sum >, (—1)"¢, where ¢, is the number of n-cells of X, generalizing
the familiar formula vertices — edges + faces for 2-dimensional complexes. The
following result shows that X (X) can be defined purely in terms of homology, and
hence depends only on the homotopy type of X. In particular, X (X) is independent
of the choice of CW structure on X.

|| Theorem 2.44. x(X) = Sa(=1)"rank H, (X).

Here the rank of a finitely generated abelian group is the number of Z summands
when the group is expressed as a direct sum of cyclic groups. We shall need the
following fact, whose proof we leave as an exercise: If 0—A—B— C—0 is a short
exact sequence of finitely generated abelian groups, then rank B = rank A + rank C.

Proof of 2.44: This is purely algebraic. Let

Oﬁck&Ck_l—»...—»CIi»Co—»O



Computations and Applications Section 2.2 147

—

be a chain complex of finitely generated abelian groups, with cycles Z,, = Kerd,,,
boundaries B, = Imd,,,, and homology H, = Z,/B,. Thus we have short exact
sequences 0— 2, —C,—B,_;—0 and 0—B,, —Z,,—H, —0, hence

rank C,, = rank Z,, + rank B,,_;
rank Z,, = rank B,, + rank H,,

Now substitute the second equation into the first, multiply the resulting equation by
(-1)", and sum over n to get >, (-1)"rankC,, = >, (-1)"rank H,,. Applying this
with C,, = H, (X", X" !) then gives the theorem. |

For example, the surfaces M 4 and N g have Euler characteristics X (M g) =2-2g
and X (N,) = 2 —g. Thus all the orientable surfaces M, are distinguished from each
other by their Euler characteristics, as are the nonorientable surfaces N, and there
are only the relations X (M,) = X (Ny,).

Split Exact Sequences

Suppose one has aretraction ¥ : X— A, so i = 1 where i: A— X is the inclusion.
The induced map i, :H,(A)—H,(X) is then injective since 7,i, = 1. From this it
follows that the boundary maps in the long exact sequence for (X, A) are zero, so the
long exact sequence breaks up into short exact sequences

0— H, (A) -5 H, (X) L5 H, (X,A) — 0

The relation r,i, = 1 actually gives more information than this, by the following
piece of elementary algebra:

Splitting Lemma. For a short exact sequence 0 — A gL C — 0 of abelian
groups the following statements are equivalent:

(@) There is a homomorphism p :B— A such that pi = 1:A—A.

(b) There is a homomorphism s:C — B such that js =1:C—C.

(c) There is an isomorphism B ~ A®C making B j
a commutative diagram as at the right, where () — A lz —0
the maps in the lower row are the obvious ones, ™~ AeC /

aw— (a,0) and (a,c) — c.

If these conditions are satisfied, the exact sequence is said to split. Note that (c)
is symmetric: There is no essential difference between the roles of A and C.

Sketch of Proof: For the implication (a) = (c) one checks that the map B—A®C,
b — (p(b),j(b)), is an isomorphism with the desired properties. For (b) = (c) one
uses instead the map A®C—B, (a,c) — i(a) + s(c). The opposite implications
(c) = (a) and (c) = (b) are fairly obvious. If one wants to show (b) = (a) directly,
one can define p(b) = i (b — sj(b)). Further details are left to the reader. |
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Except for the implications (b) = (a) and (b) = (c), the proof works equally well
for nonabelian groups. In the nonabelian case, (b) is definitely weaker than (a) and (c),
and short exact sequences satisfying (b) only determine B as a semidirect product of
A and C. The difficulty is that s(C) might not be a normal subgroup of B. In the
nonabelian case one defines ‘splitting’ to mean that (b) is satisfied.

In both the abelian and nonabelian contexts, if C is free then every exact sequence
0—A i B 2, C—0 splits, since one can define s:C— B by choosing a basis {c,}
for C and letting s(c,) be any element b, € B such that j(b,) = c,. The converse
is also true: If every short exact sequence ending in C splits, then C is free. This is
because for every C there is a short exact sequence 0—A—B— C—0 with B free
— choose generators for C and let B have a basis in one-to-one correspondence with
these generators, then let B— C send each basis element to the corresponding gen-
erator — so if this sequence 0—A— B— C— 0 splits, C is isomorphic to a subgroup
of a free group, hence is free.

From the Splitting Lemma and the remarks preceding it we deduce that a retrac-
tion ¥ : X — A gives a splitting H,,(X) = H,,(A) @ H, (X, A). This can be used to show
the nonexistence of such a retraction in some cases, for example in the situation of
the Brouwer fixed point theorem, where a retraction D" —S""! would give an im-
possible splitting H, _,(D") ~ H,_;(S"™ ")®H,_,(D",$"!). For a somewhat more
subtle example, consider the mapping cylinder M, of a degree m map f:S"—>s"
with m > 1. If M, retracted onto the sS"cM ¢ corresponding to the domain of f,
we would have a split short exact sequence

0 — H,(S") — H,(M;) — H,(M,S™) — 0
I I I

m

0 z z z, 0

But this sequence does not split since Z is not isomorphic to Z® 7, if m > 1, so the
retraction cannot exist. In the simplest case of the degree 2 map S'—S!, z — z2,

this says that the Mobius band does not retract onto its boundary circle.

Homology of Groups

In §1.B we constructed for each group G a CW complex K(G,1) having a con-
tractible universal cover, and we showed that the homotopy type of such a space
K(G,1) is uniquely determined by G. The homology groups H,, (K(G,1)) therefore
depend only on G, and are usually denoted simply H,,(G). The calculations for lens
spaces in Example 2.43 show that H,(Z,,) is Z,, for odd n and 0 for even n > 0.
Since S! is a K(Z,1) and the torus is a K(ZxZ,1), we also know the homology of
these two groups. More generally, the homology of finitely generated abelian groups
can be computed from these examples using the Kiinneth formula in §3.B and the fact
that a product K(G,1)xK(H,1) isa K(GXH,1).

Here is an application of the calculation of H,(Z,,):
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Proposition 2.45. If a finite-dimensional CW complex X is a K(G, 1), then the group
G = m (X) must be torsionfree.

This applies to quite a few manifolds, for example closed surfaces other than
$? and RP?, and also many 3-dimensional manifolds such as complements of knots
in $3.

Proof: If G had torsion, it would have a finite cyclic subgroup Z,, for some m > 1,
and the covering space of X corresponding to this subgroup of G = 1, (X) would
be a K(Z,,,1). Since X is a finite-dimensional CW complex, the same would be true
of its covering space K(Z,,,1), and hence the homology of the K(Z,,,1) would be
nonzero in only finitely many dimensions. But this contradicts the fact that H,(Z,,)
is nonzero for infinitely many values of n. O

Reflecting the richness of group theory, the homology of groups has been studied
quite extensively. A good starting place for those wishing to learn more is the text-
book [Brown 1982]. At a more advanced level the books [Adem & Milgram 1994] and
[Benson 1992] treat the subject from a mostly topological viewpoint.

Mayer-Vietoris Sequences

In addition to the long exact sequence of homology groups for a pair (X, A), there
is another sort of long exact sequence, known as a Mayer-Vietoris sequence, which
is equally powerful but is sometimes more convenient to use. For a pair of subspaces
A, B C X such that X is the union of the interiors of A and B, this exact sequence
has the form

. —H,(ANB)—2>H,(A) ® H,(B) — H,(X) —>H, (ANB) — - --

In addition to its usefulness for calculations, the Mayer-Vietoris sequence is also ap-
plied frequently in induction arguments, where one might know that a certain state-
ment is true for A, B, and A n B by induction and then deduce that it is true for AUB
by the exact sequence.

The Mayer-Vietoris sequence is easy to derive from the machinery of §2.1. Let
C, (A + B) be the subgroup of C, (X) consisting of chains that are sums of chains in
A and chains in B. The usual boundary map 0:C,,(X)—C,,_; (X) takes C,,(A+ B) to
C,,_1(A+B), sothe C,(A+B)’s form a chain complex. According to Proposition 2.21,
the inclusions C, (A + B) — C,(X) induce isomorphisms on homology groups. The
Mayer-Vietoris sequence is then the long exact sequence of homology groups asso-
ciated to the short exact sequence of chain complexes formed by the short exact
sequences

0— C,(AnB)—2>C,(A) & C,(B) —>C,(A+B) —0
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where @(x) = (x,—x) and @(x,y) = x + y. The exactness of this short exact
sequence can be checked as follows. First, Ker@p = 0 since a chain in A n B that
is zero as a chain in A (or in B) must be the zero chain. Next, Im@ C Kery since
Y@ = 0. Also, Kery C Im @ since for a pair (x,y) € C,(A)®C,(B) the condition
x + y =0 implies x = —y, so x is a chain in both A and B, thatis, x € C,,(An B),
and (x,y) = (x,—x) € Im@. Finally, exactness at C, (A + B) is immediate from the
definition of C, (A + B).

The boundary map 0:H,,(X)—H,,_; (A n B) can easily be made explicit. A class
x € H,(X) is represented by a cycle z, and by barycentric subdivision or some other
method we can choose z to be a sum x + 7y of chainsin A and B, respectively. It need
not be true that x and y are cycles individually, but 0x = -0y since d(x + y) =0,
and the element 0x € H,,_; (A n B) is represented by the cycle 0x = -0y, as is clear
from the definition of the boundary map in the long exact sequence of homology
groups associated to a short exact sequence of chain complexes.

There is also a formally identical Mayer-Vietoris sequence for reduced homology
groups, obtained by augmenting the previous short exact sequence of chain complexes
in the obvious way:

0 — Cy(ANB) =2 Cy(A) @ Cy(B) —2— Cy(A + B) — 0

lf lf@f lf
0 7 ki 707 i 7 0

Mayer-Vietoris sequences can be viewed as analogs of the van Kampen theorem
since if AnB is path-connected, the H, terms of the reduced Mayer-Vietoris sequence
yield an isomorphism H; (X) ~ (H,(A) ® H,(B))/Im®. This is exactly the abelianized
statement of the van Kampen theorem, and H, is the abelianization of r; for path-
connected spaces, as we show in §2.A.

There are also Mayer-Vietoris sequences for decompositions X = AU B such that
A and B are deformation retracts of neighborhoods U and V with UnV deformation
retracting onto AN B. Under these assumptions the five-lemma implies that the maps
C,(A+ B)—C,(U + V) induce isomorphisms on homology, and hence so do the
maps C, (A + B)—(C,(X), which was all that we needed to obtain a Mayer-Vietoris
sequence. For example, if X is a CW complex and A and B are subcomplexes, then
we can choose for U and V neighborhoods of the form N,(A) and N, (B) constructed
in the Appendix, which have the property that N,(A) N N.(B) = N,(A N B).

Example 2.46. Take X = S" with A and B the northern and southern hemispheres,
so that An B = S"™!. Then in the reduced Mayer-Vietoris sequence the terms
ﬁi(A) GBILNIi(B) are zero, so we obtain isomorphisms ﬁi(S”) ~ ﬁi,l (S”’l). This gives
another way of calculating the homology groups of S" by induction.

Example 2.47. We can decompose the Klein bottle K as the union of two Mdbius
bands A and B glued together by a homeomorphism between their boundary circles.
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Then A, B, and A n B are homotopy equivalent to circles, so the interesting part of
the reduced Mayer-Vietoris sequence for the decomposition K = AUB is the segment

0— H,(K) — H,(ANnB) - H,(A)®H,(B) — H, (K) — 0

Themap ®is Z—7® 7, 1— (2,-2), since the boundary circle of a Mobius band wraps
twice around the core circle. Since & is injective we obtain H,(K) = 0. Furthermore,
we have H,(K) = Z& Z, since we can choose (1,0) and (1,-1) asabasisfor Z& Z. All
the higher homology groups of K are zero from the earlier part of the Mayer-Vietoris
sequence.

Example 2.48. Let us describe an exact sequence which is somewhat similar to the
Mayer-Vietoris sequence and which in some cases generalizes it. If we are given two
maps f,g:X—Y then we can form a quotient space Z of the disjoint union of X x1I
and Y via the identifications (x,0) ~ f(x) and (x,1) ~ g(x), thus attaching one
end of XxI to Y by f and the other end by g. For example, if f and g are each the
identity map X — X then Z = XxS'. If only one of f and g, say f, is the identity
map, then Z is homeomorphic to what is called the mapping torus of g, the quotient
space of X xI under the identifications (x,0) ~ (g(x),1). The Klein bottle is an
example, with g a reflection §'—S*.
The exact sequence we want has the form

(%) - —H, (X) Sx—9x Hn(Y)i’Hn(Z)_’Hn_l(X) Sfx—gx H, (Y)—>---

where i is the evident inclusion Y — Z. To derive this exact sequence, consider
the map q: (XxI,Xx0I)— (Z,Y) that is the restriction to X x I of the quotient map
XxXIUIY—Z. The map g induces a map of long exact sequences:

e Hy (XXX XI) 2 Hy(X X 3I) —25 Hy (X XT) —2 ..

Ja. oo e

e H,(Z)Y) — % H(Y) —2 s H,(Z)

In the upper row the middle term is the direct sum of two copies of H, (X), and the
map i, is surjective since X xI deformation retracts onto X x {0} and Xx {1}. Sur-
jectivity of the maps i, in the upper row implies that the next maps are 0, which
in turn implies that the maps 0 are injective. Thus the map ¢ in the upper row
gives an isomorphism of H,, ;(XxI,Xx0dI) onto the kernel of i, , which consists of
the pairs (&, —«) for « € H,,(X). This kernel is a copy of H,(X), and the middle
vertical map q, takes (&,—«) to f,(x) — g,(). The left-hand g, is an isomor-
phism since these are good pairs and g induces a homeomorphism of quotient spaces
(XxI)/(Xx0I)— Z/Y. Hence if we replace H,, ;(Z,Y) in the lower exact sequence
by the isomorphic group H,,(X) = Ker i, we obtain the long exact sequence we want.

In the case of the mapping torus of a reflection g:S'—S!, with Z a Klein bottle,
the interesting portion of the exact sequence (%) is



152 | Chapter 2 Homology

—_—T

0— Hy(Z) — H,(S") 229% H,(S") — H,(Z) —> H,(S") 29%, H,(S")
1] 1] I 1]
7 2 Vi 7 0 7

Thus H,(Z) = 0 and we have a short exact sequence 0—Z,—H,(Z)—Z—0. This
splits since Z is free, so H,(Z) =~ Z, ® Z. Other examples are given in the Exercises.

If Y is the disjoint union of spaces Y; and Y,, with f:X—Y; and g:X—Y,,
then Z consists of the mapping cylinders of these two maps with their domain ends
identified. For example, suppose we have a CW complex decomposed as the union of
two subcomplexes A and B and we take f and g to be the inclusions AnB — A and
AN B — B. Then the double mapping cylinder Z is homotopy equivalent to A U B
since we can view Z as (A n B)xI with A and B attached at the two ends, and then
slide the attaching of A down to the B end to produce AU B with (AN B) X1 attached
at one of its ends. By Proposition 0.18 the sliding operation preserves homotopy type,
so we obtain a homotopy equivalence Z ~ A U B. The exact sequence (x) in this case
is the Mayer-Vietoris sequence.

A relative form of the Mayer-Vietoris sequence is sometimes useful. If one has
a pair of spaces (X,Y) = (AUB,CuUD) with C C A and D C B, such that X is the
union of the interiors of A and B, and Y is the union of the interiors of C and D,
then there is a relative Mayer-Vietoris sequence

. — H,(ANB,CND)—2>H,(A,C)®H,(B,D) — H, (X,Y) — -

To derive this, consider the commutative diagram

0 0 0

0 C.(CnD) c(C)eC, (D) —Y . c.(C+D) — 0
|

0 C,(ANB) C.(A)®C,(B) —Y . C(A+B) —— 0

0 — C,(ANB,CAD) -2 C,(A,C)® C,(B,D) —— C,(A+B,C+D) —> 0

l | !
0 0 0

where C, (A + B,C + D) is the quotient of the subgroup C,,(A + B) c C,(X) by its
subgroup C,(C + D) C C,(Y). Thus the three columns of the diagram are exact.
We have seen that the first two rows are exact, and we claim that the third row is
exact also, with the maps @ and ¢ induced from the @ and  in the second row.
Since @@ = 0 in the second row, this holds also in the third row, so the third row
is at least a chain complex. Viewing the three rows as chain complexes, the diagram
then represents a short exact sequence of chain complexes. The associated long exact
sequence of homology groups has two out of every three terms zero since the first
two rows of the diagram are exact. Hence the remaining homology groups are zero
and the third row is exact.
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The third column maps to 0—C,,(Y) —C,(X) —C,(X,Y)— 0, inducing maps of
homology groups that are isomorphisms for the X and Y terms as we have seen above.
So by the five-lemma the maps C,(A+B,C+D)—C, (X, Y) also induce isomorphisms
on homology. The relative Mayer-Vietoris sequence is then the long exact sequence
of homology groups associated to the short exact sequence of chain complexes given
by the third row of the diagram.

Homology with Coefficients

There is an easy generalization of the homology theory we have considered so
far that behaves in a very similar fashion and sometimes offers technical advan-
tages. The generalization consists of using chains of the form »; n;0; where each
0; is a singular n-simplex in X as before, but now the coefficients n; are taken to
lie in a fixed abelian group G rather than Z. Such n-chains form an abelian group
C, (X;G), and there is the expected relative version C,, (X, A;G) = C,,(X;G)/C,(A;G).
The old formula for the boundary maps ¢ can still be used for arbitrary G, namely
o2, no;) = Zi,j(—l)jni(ri [[vg, -+, Dy, vy,]. Just as before, a calculation shows
that 3> = 0, so the groups C,(X;G) and C,,(X,A;G) form chain complexes. The
resulting homology groups H, (X;G) and H, (X, A;G) are called homology groups
with coefficients in G. Reduced groups ﬁn (X; G) are defined via the augmented chain
complex --- — Cy(X;G) - G — 0 with ¢ again defined by summing coefficients.

The case G = Z, is particularly simple since one is just considering sums of sin-
gular simplices with coefficients 0 or 1, so by discarding terms with coefficient 0
one can think of chains as just finite ‘unions’ of singular simplices. The boundary
formulas also simplify since one no longer has to worry about signs. Since signs are
an algebraic representation of orientation considerations, one can also ignore orien-
tations. This means that homology with Z, coefficients is often the most natural tool
in the absence of orientability.

All the theory we developed in §2.1 for Z coefficients carries over directly to
general coefficient groups G with no change in the proofs. The same is true for Mayer-
Vietoris sequences. Differences between H,,(X;G) and H,(X) begin to appear only
when one starts making calculations. When X is a point, the method used to compute
H, (X) shows that H,,(X;G) is G for n = 0 and 0 for n > 0. From this it follows
just as for G = Z that ﬁn(Sk;G) is G for n = k and 0 otherwise.

Cellular homology also generalizes to homology with coefficients, with the cellu-
lar chain group Hn(X”,X"’l) replaced by Hn(X",X"’l; G), which is a direct sum of
G’s, one for each n-cell. The proof that the cellular homology groups H,f W (X) agree
with singular homology H, (X) extends immediately to give H,(iW(X ;G) = H,(X;G).
The cellular boundary maps are given by the same formula as for 7Z coefficients,
dp(Zangen) = Zap daﬁnaeg"l. The old proof applies, but the following result is
needed to know that the coefficients d gz are the same as before:
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‘ Lemma 2.49. Iff:Sk—>Sk has degree m, then f*:Hk(Sk;G)—>Hk(Sk;G) is multi-
plication by m.

Proof: As a preliminary observation, note that a homomorphism @ : G; — G, induces
maps @, :C,(X,A;G)—C,(X,A;G,) commuting with boundary maps, so there are
induced homomorphisms @, :H, (X, A;G;) — H, (X, A; G,). These have various nat-
urality properties. For example, they give a commutative diagram mapping the long
exact sequence of homology for the pair (X, A) with G, coefficients to the correspond-
ing sequence with G, coefficients. Also, the maps @, commute with homomorphisms
f« induced by maps f:(X,A)—(Y,B).

Now let f:Sk—>Sk have degree m and let @ :Z— G take 1 to a given element

g € G. Then we have a commutative S Flk (s&7) ~ 7

lcp* l(p

G

. , Z ~ H(S%2)
diagram as at the right, where commu- l‘p lq’
tativity of the outer two squares comes *

G~ H.(556) —L s F.(s56)

U

from the inductive calculation of these

homology groups, reducing to the case k = 0 when the commutativity is obvious.
Since the diagram commutes, the assumption that the map across the top takes

1 to m implies that the map across the bottom takes g to mg. O

Example 2.50. It is instructive to see what happens to the homology of RP" when
the coefficient group G is chosen to be a field F. The cellular chain complex is

L r AL r S r A %P
Hence if F has characteristic 2, for example if F = Z,, then H,(RP";F) ~ F for
0 < k < n, a more uniform answer than with Z coefficients. On the other hand, if
F has characteristic different from 2 then the boundary maps F 2, F are isomor-
phisms, hence Hk([RP”;F) is F for k = 0 and for k = n odd, and is zero otherwise.

In §3.A we will see that there is a general algebraic formula expressing homology
with arbitrary coefficients in terms of homology with Z coefficients. Some easy special
cases that give much of the flavor of the general result are included in the Exercises.

In spite of the fact that homology with Z coefficients determines homology with
other coefficient groups, there are many situations where homology with a suitably
chosen coefficient group can provide more information than homology with Z coef-
ficients. A good example of this is the proof of the Borsuk-Ulam theorem using Z,
coefficients in §2.B.

As another illustration, we will now give an example of a map f:X—Y with the
property that the induced maps f, are trivial for homology with Z coefficients but
not for homology with Z,, coefficients for suitably chosen m. Thus homology with
Z,, coefficients tells us that f is not homotopic to a constant map, which we would
not know using only Z coefficients.
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Example 2.51. Let X be a Moore space M(Z,,,n) obtained from S" by attaching a
cell ™! by a map of degree m. The quotient map f:X—X/S" = $™"! induces
trivial homomorphisms on reduced homology with Z coefficients since the nonzero
reduced homology groups of X and S™*! occur in different dimensions. But with Z,y,
coefficients the story is different, as we can see by considering the long exact sequence

of the pair (X,S"), which contains the segment
0= ﬁnﬂ (§"2y) — I_NIn+1 (X5 Zp,) L I_NInJrl (X/S™Zy)

Exactness says that f, is injective, hence nonzero since PNIn axz,) is 7,,, the cel-
lular boundary map H, . ,(X"*!, x";z,)—H,(X",Xx"1,z,,) being 7,, > 7, .

Exercises

1. Prove the Brouwer fixed point theorem for maps f:D"— D" by applying degree
theory to the map S"— S" that sends both the northern and southern hemispheres
of §™ to the southern hemisphere via f. [This was Brouwer’s original proof.]

2. Given a map f:5°"—S%", show that there is some point x € S with either
f(x) = x or f(x) = —x. Deduce that every map RP*"— RP>" has a fixed point.
Construct maps RP?" ! —RP?"! without fixed points from linear transformations
R*" — R?" without eigenvectors.

3. Let f:S"—S" be a map of degree zero. Show that there exist points x,y € §"
with f(x) = x and f(y) = —y. Use this to show that if F is a continuous vector
field defined on the unit ball D™ in R"™ such that F(x) # O for all x, then there exists
a point on dD™ where F points radially outward and another point on 0D" where F
points radially inward.

4. Construct a surjective map S" — S™ of degree zero, for each n > 1.

5. Show that any two reflections of S™ across different n-dimensional hyperplanes
are homotopic, in fact homotopic through reflections. [The linear algebra formula for
a reflection in terms of inner products may be helpful.]

6. Show that every map S —S" can be homotoped to have a fixed point if n > 0.

7. For an invertible linear transformation f:R"—R" show that the induced map
on H,(R™",R" — {0}) ~ ﬁn_l(R" —{0}) = Z is 1 or —1 according to whether the
determinant of f is positive or negative. [Use Gaussian elimination to show that the
matrix of f can be joined by a path of invertible matrices to a diagonal matrix with
+1’s on the diagonal.]

8. A polynomial f(z) with complex coefficients, viewed as a map C— C, can always
be extended to a continuous map of one-point compactifications f:S2 —S2. Show
that the degree of f equals the degree of f as a polynomial. Show also that the local
degree of f at aroot of f is the multiplicity of the root.
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9. Compute the homology groups of the following 2-complexes:

(@) The quotient of S? obtained by identifying north and south poles to a point.

(b) S'x(s'vSh.

(c) The space obtained from D? by first deleting the interiors of two disjoint subdisks
in the interior of D? and then identifying all three resulting boundary circles
together via homeomorphisms preserving clockwise orientations of these circles.

(d) The quotient space of S x S! obtained by identifying points in the circle S! x {x0}
that differ by 27r/m rotation and identifying points in the circle {x;} xS ! that
differ by 21 /n rotation.

10. Let X be the quotient space of S under the identifications x ~ —x for x in the
equator S'. Compute the homology groups H;(X). Do the same for § 3 with antipodal
points of the equatorial S c S° identified.

11. In an exercise for §1.2 we described a 3-dimensional CW complex obtained from
the cube I’ by identifying opposite faces via a one-quarter twist. Compute the ho-
mology groups of this complex.

12. Show that the quotient map S'xS'—§? collapsing the subspace S 'vs'toa
point is not nullhomotopic by showing that it induces an isomorphism on H,. On the
other hand, show via covering spaces that any map S 25 5% S! is nullhomotopic.

13. Let X be the 2-complex obtained from S' with its usual cell structure by attaching

two 2-cells by maps of degrees 2 and 3, respectively.

(a) Compute the homology groups of all the subcomplexes A ¢ X and the corre-
sponding quotient complexes X/A.

(b) Show that X =~ S? and that the only subcomplex A ¢ X for which the quotient
map X — X/A is a homotopy equivalence is the trivial subcomplex, the 0-cell.

14. Amap f:S"—S" satisfying f(x) = f(—x) for all x is called an even map. Show
that an even map S" — S™ must have even degree, and that the degree must in fact be
zero when n is even. When 7 is odd, show there exist even maps of any given even
degree. [Hints: If f is even, it factors as a composition S" — RP" —S™. Using the
calculation of H,(RP") in the text, show that the induced map H,(S")— H,,(RP")
sends a generator to twice a generator when n is odd. It may be helpful to show that
the quotient map RP" — RP"/RP""! induces an isomorphism on H,, when n is odd.]

15. Show that if X is a CW complex then H, (X") is free by identifying it with the
kernel of the cellular boundary map H,, (X", X" ')—H, , (X", X2y,

16. Let A" = [vg, -+, V,] have its natural A-complex structure with k-simplices
[Vigs -5V, ] for iy < --- <. Compute the ranks of the simplicial (or cellular) chain
groups Ai(An) and the subgroups of cycles and boundaries. [Hint: Pascal’s triangle.]
Apply this to show that the k-skeleton of A" has homology groups H;((A™)*) equal
to O for i < k, and free of rank (kfl) for i = k.
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17. Show the isomorphism between cellular and singular homology is natural in
the following sense: A map f:X—Y that is cellular — satisfying f(X") c Y" for
all n — induces a chain map f, between the cellular chain complexes of X and
Y, and the map f, :HS" (X)—HS" (Y) induced by this chain map corresponds to
f«:H,(X)—H, (Y) under the isomorphism HS" ~ H,,.

18. For a CW pair (X,A) show there is a relative cellular chain complex formed by
the groups Hi(Xi, Xy Ai), having homology groups isomorphic to H, (X, A).

19. Compute H;(RP"/RP™) for m < n by cellular homology, using the standard CW
structure on RP"™ with RP™ as its m-skeleton.

20. For finite CW complexes X and Y, show that X (XXY) = X (X)X (Y).

21. If a finite CW complex X is the union of subcomplexes A and B, show that
X(X)=X(A)+ X(B) - X(AnB).

22. For X a finite CW complex and p : X — X an n-sheeted covering space, show that
X(X) =nxX).

23. Show that if the closed orientable surface M, of genus g is a covering space
of M;,, then g = n(h — 1) + 1 for some n, namely, n is the number of sheets in
the covering. [Conversely, if g = n(h — 1) + 1 then there is an n-sheeted covering
My, — M, , as we saw in Example 1.41.]

24. Suppose we build S? from a finite collection of polygons by identifying edges
in pairs. Show that in the resulting CW structure on

$? the 1-skeleton cannot be either of the two graphs

shown, with five and six vertices. [This is one step in a

proof that neither of these graphs embeds in R?.]

25. Show that for each n € Z there is a unique function @ assigning an integer to
each finite CW complex, such that (a) @ (X) = @(Y) if X and Y are homeomorphic,
(b) p(X) = @A) + p(X/A) if A is a subcomplex of X, and (c) (p(SO) = n. For such
a function @, show that @(X) = (YY) if X =Y.

26. For a pair (X, A), let X U CA be X with a cone on A attached.

(a) Show that X is aretract of X UCA iff A is contractible in X: There is a homotopy

fi :A— X with f; the inclusion A — X and f; a constant map.
(b) Show that if A is contractible in X then H, (X, A) = PNIn(X) @ﬁn,l (A), using the
fact that (X U CA)/X is the suspension SA of A.

27. The short exact sequences 0— C,,(A)—C,(X)—C, (X,A)—0 always split, but
why does this not always yield splittings H, (X) ~ H,(A)®H, (X,A)?

28. (a) Use the Mayer-Vietoris sequence to compute the homology groups of the space
obtained from a torus S'x §! by attaching a M6bius band via a homeomorphism from
the boundary circle of the Mobius band to the circle S x {x,} in the torus.

(b) Do the same for the space obtained by attaching a Moébius band to RP? via a
homeomorphism of its boundary circle to the standard RP! c RP.
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29. The surface M, of genus g, embedded in R3 in the standard way, bounds a
compactregion R. Two copies of R, glued together by the identity map between their
boundary surfaces M, form a closed 3-manifold X. Compute the homology groups
of X via the Mayer-Vietoris sequence for this decomposition of X into two copies of
R. Also compute the relative groups H;(R,M,).
30. For the mapping torus Ty of a map f:X—X, we constructed in Example 2.48 a
long exact sequence --- — H, (X) LS., H,(X) — H,(Ty) — H,_;(X) — ---. Use
this to compute the homology of the mapping tori of the following maps:
(@) A reflection §*>— 2.
(b) A map §2—58? of degree 2.
(c) The map S'xS'—S'xS! that is the identity on one factor and a reflection on
the other.
(d) The map S'xS!—S'xS! that is a reflection on each factor.
(e) Themap S Twsl - slx st that interchanges the two factors and then reflects one
of the factors.

31. Use the Mayer-Vietoris sequence to show there are isomorphisms ﬁn(X VY) =
H,(X)®H, (Y) if the basepoints of X and Y that are identified in X v Y are defor-
mation retracts of neighborhoods U ¢ X and V C Y.

32. For SX the suspension of X, show by a Mayer-Vietoris sequence that there are
isomorphisms ﬁn(SX) = PNIn,l(X) for all n.

33. Suppose the space X is the union of open sets Ay, -+, A, such that each inter-
section A; N --- NA; is either empty or has trivial reduced homology groups. Show
that ﬁi(X ) =0 for i > n — 1, and give an example showing this inequality is best
possible, for each n.

34. Derive the long exact sequence of a pair (X, A) from the Mayer-Vietoris sequence
applied to X U CA, where CA is the cone on A. [We showed after the proof of

~

Proposition 2.22 that H,,(X,A) = H,(X U CA) for all n.]

35. Use the Mayer-Vietoris sequence to show that a nonorientable closed surface,
or more generally a finite simplicial complex X for which H,(X) contains torsion,
cannot be embedded as a subspace of R® in such a way as to have a neighborhood
homeomorphic to the mapping cylinder of some map from a closed orientable surface
to X. [This assumption on a neighborhood is in fact not needed if one deduces the
result from Alexander duality in §3.3.]

36. Show that H;(XxS") ~ H;(X)®H,_,(X) for all i and n, where H; = 0 for
i < 0 by definition. Namely, show H;(XxS") ~ H;(X) & H;(XxS",Xx{x,}) and
H;(XxS", Xx{xy}) ~ H;_; (XxS™ 1 Xx {x(}). [For the latter isomorphism the rela-
tive Mayer-Vietoris sequence yields an easy proof.]

37. Give an elementary derivation for the Mayer-Vietoris sequence in simplicial ho-
mology for a A-complex X decomposed as the union of subcomplexes A and B.
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38. Show that a commutative diagram

: —>Cn+1 Bn—>Cn Bn—l_>
! >An/l V>

. \‘D . F _— \‘D .
n+1 n n n-1

with the two sequences across the top and bottom exact, gives rise to an exact se-

quence --- — E, , — B, — C,9D,, — E, — B,_; — --- where the maps
are obtained from those in the previous diagram in the obvious way, except that

B, — C,,®D,, has a minus sign in one coordinate.

39. Use the preceding exercise to derive relative Mayer-Vietoris sequences for CW
pairs (X,Y)=(AuB,CuD) withA=Bor C=D.

40. From the long exact sequence of homology groups associated to the short ex-
act sequence of chain complexes 0 — C;(X) — C;(X) — C;(X;Z,) — 0 deduce
immediately that there are short exact sequences

0— H;(X)/nH;(X) — H;(X;Z,) — n-Torsion(H;,_, (X)) — 0

where n-Torsion(G) is the kernel of the map G = G, g — ng. Use this to show that
ﬁi(X; Zp) =0 for all i and all primes p iff PNIl-(X) is a vector space over Q for all i.

41. For X a finite CW complex and F a field, show that the Euler characteristic X (X)
can also be computed by the formula X (X) = >, (-1)" dim H,, (X; F), the alternating
sum of the dimensions of the vector spaces H,,(X;F).

42. Let X be a finite connected graph having no vertex that is the endpoint of just
one edge, and suppose that H,(X;Z) is free abelian of rank n > 1, so the group of
automorphisms of H,(X;Z) is GL,,(Z), the group of invertible nxn matrices with
integer entries whose inverse matrix also has integer entries. Show that if G is a finite
group of homeomorphisms of X, then the homomorphism G— GL, (Z) assigning to
g:X— X the induced homomorphism g, : H, (X;Z) — H, (X;Z) is injective. Show the
same result holds if the coefficient group Z is replaced by Z,, with m > 2. What goes
wrong when m = 27?

43. (a) Show that a chain complex of free abelian groups C,, splits as a direct sum of
subcomplexes 0— L, ., —K,,—0 with at most two nonzero terms. [Show the short
exact sequence 0— Kerd— C,, — Imd— 0 splits and take K,, = Kerd.]
(b) In case the groups C,, are finitely generated, show there is a further splitting into
summands 0—Z7Z—0 and 0 — Z % Z — 0. [Reduce the matrix of the boundary
map L, ,; —K,, to echelon form by elementary row and column operations.]
(c) Deduce that if X is a CW complex with finitely many cells in each dimension, then
H,, (X;G) is the direct sum of the following groups:

= acopy of G for each Z summand of H,, (X)

= acopy of G/mG for each 7Z,, summand of H,, (X)

« a copy of the kernel of G —> G for each Z,, summand of H,_;(X)
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2.3 The Formal Viewpoint

Sometimes it is good to step back from the forest of details and look for gen-

eral patterns. In this rather brief section we will first describe the general pattern
of homology by axioms, then we will look at some common formal features shared
by many of the constructions we have made, using the language of categories and
functors which has become common in much of modern mathematics.

Axioms for Homology

For simplicity let us restrict attention to CW complexes and focus on reduced ho-
mology to avoid mentioning relative homology. A (reduced) homology theory assigns
to each nonempty CW complex X a sequence of abelian groups PNLn (X) and to each map
f:X—Y between CW complexes a sequence of homomorphisms f, : an (X)— ﬁn(Y)
such that (fg), = f.g, and 1, = 1, and so that the following three axioms are
satisfied.

(1) If f~g:X—Y,then f, =g, :%H(X)ﬁfln(Y).
(2) There are boundary homomorphisms 0: h,, (X/A)—h,,_;(A) defined for each CW
pair (X, A), fitting into an exact sequence

--—a>lfNLn(A)Lfln(X)LI’NLn(X/A)—a’%n,l(A)l>---

where i is the inclusion and g is the quotient map. Furthermore the boundary
maps are natural: For f: (X, A)— (Y, B) inducing a quotient map 7:X/A—> Y /B,
there are commutative diagrams

h(X/A) —2 B (A)

lﬂ lf*
R.(Y/B) —2— H,.(B)

(3) For a wedge sum X = \/, X, with inclusions i,:X, — X, the direct sum map
o Lo - D fln(Xa) —JNLn(X) is an isomorphism for each 7.

Negative values for the subscripts n are permitted. Ordinary singular homology is
zero in negative dimensions by definition, but interesting homology theories with
nontrivial groups in negative dimensions do exist.

The third axiom may seem less substantial than the first two, and indeed for finite
wedge sums it can be deduced from the first two axioms, though not in general for
infinite wedge sums, as an example in the Exercises shows.

It is also possible, and not much more difficult, to give axioms for unreduced
homology theories. One supposes one has relative groups h, (X, A) defined, special-
izing to absolute groups by setting h,(X) = h, (X, ). Axiom (1) is replaced by its
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obvious relative form, and axiom (2) is broken into two parts, the first hypothesizing
a long exact sequence involving these relative groups, with natural boundary maps,
the second stating some version of excision, for example h, (X,A) = h,(X/A,A/A)
if one is dealing with CW pairs. In axiom (3) the wedge sum is replaced by disjoint
union.

These axioms for unreduced homology are essentially the same as those origi-
nally laid out in the highly influential book [Eilenberg & Steenrod 1952], except that
axiom (3) was omitted since the focus there was on finite complexes, and there was
another axiom specifying that the groups h,, (point) are zero for n # 0, as is true
for singular homology. This axiom was called the ‘dimension axiom,’ presumably be-
cause it specifies that a point has nontrivial homology only in dimension zero. It can
be regarded as a normalization axiom, since one can trivially define a homology the-
ory where it fails by setting h, (X, A) = H,,; (X, A) for a fixed nonzero integer k. At
the time there were no interesting homology theories known for which the dimension
axiom did not hold, but soon thereafter topologists began studying a homology theory
called ‘bordism’ having the property that the bordism groups of a point are nonzero in
infinitely many dimensions. Axiom (3) seems to have appeared first in [Milnor 1962].

Reduced and unreduced homology theories are essentially equivalent. From an
unreduced theory h one gets a reduced theory h by setting }Nln(X ) equal to the
kernel of the canonical map h, (X)—h,(point). In the other direction, one sets
h,(X) = PNln(X+) where X, is the disjoint union of X with a point. We leave it
as an exercise to show that these two transformations between reduced and unre-
duced homology are inverses of each other. Just as with ordinary homology, one has
h,(X) = ﬁn(X) ®h,, (x,) for any point x, € X, since the long exact sequence of the
pair (X, x,) splits via the retraction of X onto x,. Note that PNln(xo) = (0 for all n,
as can be seen by looking at the long exact sequence of reduced homology groups of
the pair (xg,xq) -

The groups h, (x,) = fln(SO) are called the coefficients of the homology theo-
ries h and h, by analogy with the case of singular homology with coefficients. One
can trivially realize any sequence of abelian groups G; as the coefficient groups of a
homology theory by setting h,, (X, A) = @;H,,_; (X, A;G;).

In general, homology theories are not uniquely determined by their coefficient
groups, but this is true for singular homology: If h is a homology theory defined
for CW pairs, whose coefficient groups h, (x,) are zero for n # 0, then there are
natural isomorphisms h,(X,A) = H,(X,A;G) for all CW pairs (X,A) and all n,
where G = h((x,). This will be proved in Theorem 4.59.

We have seen how Mayer-Vietoris sequences can be quite useful for singular ho-
mology, and in fact every homology theory has Mayer-Vietoris sequences, at least
for CW complexes. These can be obtained directly from the axioms in the follow-
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ing way. For a CW complex X = A u B with A and B subcomplexes, the inclusion
(B,AnB) < (X,A) induces a commutative diagram of exact sequences

- — h,.((B,ANB) — h,(ANB) — h,(B) — h ,(B,ANB) — ---

|~ | l |=

- —— Nya(X,A) h,(A) — h(X) — h,(X,A) —> ---

The vertical maps between relative groups are isomorphisms since B/(ANB) = X/A.
Then it is a purely algebraic fact, whose proof is Exercise 38 at the end of the previous
section, that a diagram such as this with every third vertical map an isomorphism
gives rise to a long exact sequence involving the remaining nonisomorphic terms. In
the present case this takes the form of a Mayer-Vietoris sequence

c—nh,(AnB) L h,(A) eh,B) L h, (X)) h, (ANB) — -

Categories and Functors

Formally, singular homology can be regarded as a sequence of functions H,, that
assign to each space X an abelian group H,,(X) and to each map f:X—Y a homo-
morphism H,(f) = f, :H,(X)—H,(Y), and similarly for relative homology groups.
This sort of situation arises quite often, and not just in algebraic topology, so it is
useful to introduce some general terminology for it. Roughly speaking, ‘functions’
like H,, are called ‘functors,’ and the domains and ranges of these functors are called
‘categories.” Thus for H,, the domain category consists of topological spaces and con-
tinuous maps, or in the relative case, pairs of spaces and continuous maps of pairs,
and the range category consists of abelian groups and homomorphisms. A key point
is that one is interested not only in the objects in the category, for example spaces or
groups, but also in the maps, or ‘morphisms,’ between these objects.

Now for the precise definitions. A category C consists of three things:

(1) A collection Ob(C) of objects.

(2) Sets Mor(X,Y) of morphisms for each pair X,Y € Ob(C), including a distin-
guished ‘identity’ morphism 1 = 1 5 € Mor(X, X) for each X.

(3) A ‘composition of morphisms’ function - :Mor (X, Y)xMor(Y, Z) —Mor(X, Z) for
each triple X,Y,Z € Ob(@), satisfying f-1 = f, 1-f = f, and (f-g)-h =
fe(ge-h).

There are plenty of obvious examples, such as:

= The category of topological spaces, with continuous maps as the morphisms. Or
we could restrict to special classes of spaces such as CW complexes, keeping
continuous maps as the morphisms. We could also restrict the morphisms, for
example to homeomorphisms.

= The category of groups, with homomorphisms as morphisms. Or the subcategory
of abelian groups, again with homomorphisms as the morphisms. Generalizing
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this is the category of modules over a fixed ring, with morphisms the module
homomorphisms.

= The category of sets, with arbitrary functions as the morphisms. Or the mor-
phisms could be restricted to injections, surjections, or bijections.

There are also many categories where the morphisms are not simply functions, for
example:

= Any group G can be viewed as a category with only one object and with G as the
morphisms of this object, so that condition (3) reduces to two of the three axioms
for a group. If we require only these two axioms, associativity and a left and right
identity, we have a ‘group without inverses,’ usually called a monoid since it is
the same thing as a category with one object.

= A partially ordered set (X, <) can be considered a category where the objects are
the elements of X and there is a unique morphism from x to y whenever x < y.
The relation x < x gives the morphism 1 and transitivity gives the composition
Mor(x, y)xMor(y,z) —Mor(x, z). The condition that x < y and y < x implies
x = 7y says that there is at most one morphism between any two objects.

= There is a ‘homotopy category’ whose objects are topological spaces and whose
morphisms are homotopy classes of maps, rather than actual maps. This uses
the fact that composition is well-defined on homotopy classes: fyg, = f1g; if
Jo=/f1 and gy = g;.

= Chain complexes are the objects of a category, with chain maps as morphisms.
This category has various interesting subcategories, obtained by restricting the
objects. For example, we could take chain complexes whose groups are zero
in negative dimensions, or zero outside a finite range. Or we could restrict to
exact sequences, or short exact sequences. In each case we take morphisms to
be chain maps, which are commutative diagrams. Going a step further, there
is a category whose objects are short exact sequences of chain complexes and
whose morphisms are commutative diagrams of maps between such short exact
sequences.

A functor F from a category C to a category D assigns to each object X in € an
object F(X) in D and to each morphism f € Mor(X,Y) in € a morphism F(f) €
Mor(F(X),F(Y)) in D, such that F(1) = 1 and F(f-g) = F(f)-F(g). In the case of
the singular homology functor H,,, the latter two conditions are the familiar properties
1, =1 and (fg)y = fyg, of induced maps. Strictly speaking, what we have just
defined is a covariant functor. A contravariant functor would differ from this by
assigning to f € Mor(X,Y) a ‘backwards’ morphism F(f) € Mor(F(Y),F(X)) with
F(1) =1 and F(f-g) = F(g)-F(f). A classical example of this is the dual vector
space functor, which assigns to a vector space V over a fixed scalar field K the dual
vector space F(V) = V* of linear maps V—K, and to each linear transformation
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f:V—W the dual map F(f) = f*:W*—V*, going in the reverse direction. In the
next chapter we will study the contravariant version of homology, called cohomology.

A number of the constructions we have studied in this chapter are functors:

The singular chain complex functor assigns to a space X the chain complex of
singular chains in X and to a map f:X—Y the induced chain map. This is
a functor from the category of spaces and continuous maps to the category of
chain complexes and chain maps.

The algebraic homology functor assigns to a chain complex its sequence of ho-
mology groups and to a chain map the induced homomorphisms on homology.
This is a functor from the category of chain complexes and chain maps to the
category whose objects are sequences of abelian groups and whose morphisms
are sequences of homomorphisms.

The composition of the two preceding functors is the functor assigning to a space
its singular homology groups.

The first example above, the singular chain complex functor, can itself be re-
garded as the composition of two functors. The first functor assigns to a space
X its singular complex S(X), a A-complex, and the second functor assigns to
a A-complex its simplicial chain complex. This is what the two functors do on
objects, and what they do on morphisms can be described in the following way. A
map of spaces f:X—Y induces amap f, :5(X)—S(Y) by composing singular
simplices A" — X with f. The map f, is a map between A-complexes taking the
distinguished characteristic maps in the domain A-complex to the distinguished
characteristic maps in the target A-complex. Call such maps A-maps and let
them be the morphisms in the category of A-complexes. Note that a A-map in-
duces a chain map between simplicial chain complexes, taking basis elements to
basis elements, so we have a simplicial chain complex functor taking the category
of A-complexes and A-maps to the category of chain complexes and chain maps.
There is a functor assigning to a pair of spaces (X, A) the associated long exact
sequence of homology groups. Morphisms in the domain category are maps of
pairs, and in the target category morphisms are maps between exact sequences
forming commutative diagrams. This functor is the composition of two functors,
the first assigning to (X, A) a short exact sequence of chain complexes, the sec-
ond assigning to such a short exact sequence the associated long exact sequence
of homology groups. Morphisms in the intermediate category are the evident
commutative diagrams.

Another sort of process we have encountered is the transformation of one functor

into another, for example:

Boundary maps H, (X,A)— H, _;(A) in singular homology, or indeed in any ho-
mology theory.
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= Change-of-coefficient homomorphisms H, (X;G,) — H, (X;G,) induced by a ho-
momorphism G, — G,, as in the proof of Lemma 2.49.

In general, if one has two functors F, G : C— D then a natural transformation T from

F to G assigns amorphism Ty : F(X)— G(X) to each object F(X) F(f) F(Y)
X € G, in such a way that for each morphism f:X—Y in

C the square at the right commutes. The case that F and G ITX 6 lTY
are contravariant rather than covariant is similar. G(X) —— G(Y)

We have been describing the passage from topology to the abstract world of cat-
egories and functors, but there is also a nice path in the opposite direction:

= To each category C there is associated a A-complex BC called the classifying
space of €, whose n-simplices are the strings X,— X, — - -+ — X,, of morphisms
in €. The faces of this simplex are obtained by deleting an X;, and then compos-
ing the two adjacent morphisms if i + 0,n. Thus when n = 2 the three faces of
Xo— X, — X, are Xy;—X;, X;—X,, and the composed morphism X,—X,. In
case C has a single object and the morphisms of € form a group G, then BC is
the same as the A-complex BG constructed in Example 1B.7, a K(G, 1). In gen-
eral, the space BC need not be a K(G, 1), however. For example, if we start with a
A-complex X and regard its set of simplices as a partially ordered set C(X) under
the relation of inclusion of faces, then BC(X) is the barycentric subdivision of X.

= A functor F:C— D induces a map BC— BD. This is the A-map that sends an
n-simplex X,— X; — --- —X,, to the n-simplex F(Xy) = F(X;)— --- = F(X,).

= A natural transformation from a functor F to a functor G induces a homotopy
between the induced maps of classifying spaces. We leave this for the reader to
make explicit, using the subdivision of A" xI into (n + 1)-simplices described
earlier in the chapter.

Exercises

1. If T,,(X,A) denotes the torsion subgroup of H, (X, A;Z), show that the functors
(X,A) — T,(X,A), with the obvious induced homomorphisms T, (X,A)—T,(Y,B)
and boundary maps T, (X,A)—T,_;(A), do not define a homology theory. Do the
same for the ‘mod torsion’ functor MT,(X,A) = H,,(X,A;Z) /T, (X, A).

2. Define a candidate for a reduced homology theory on CW complexes by ﬁn(X ) =
[1,H,(X) /@®,H,;(X). Thus h,(X) is independent of n and is zero if X is finite-
dimensional, but is not identically zero, for example for X = \/;S !, Show that the
axioms for a homology theory are satisfied except that the wedge axiom fails.

3. Show that if & is a reduced homology theory, then fzn(poim) = 0 for all n. Deduce
that there are suspension isomorphisms ﬁn(X ) ~ PNL,L +1(8X) for all n.

4. Show that the wedge axiom for homology theories follows from the other axioms
in the case of finite wedge sums.
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Additional Topics
2.A Homology and Fundamental Group

There is a close connection between H; (X) and 1, (X), arising from the fact that
amap f:I— X can be viewed as either a path or a singular 1-simplex. If f is a loop,
with f(0) = f(1), this singular 1-simplex is a cycle since o f = f(1) — f(0).

Theorem 2A.1. By regarding loops as singular 1-cycles, we obtain a homomorphism
h:m (X, xy) —H,(X). If X is path-connected, then h is surjective and has kernel
the commutator subgroup of 1, (X), so h induces an isomorphism from the abelian-
ization of 1, (X) onto H,(X).

Proof: Recall the notation f =~ g for the relation of homotopy, fixing endpoints,
between paths f and g. Regarding f and g as chains, the notation f ~ g will mean
that f is homologous to g, thatis, f — g is the boundary of some 2-chain. Here are
some facts about this relation.

(i) If f is a constant path, then f ~ 0. Namely, f is a cycle since it is a loop, and
since H,; (point) = 0, f must then be a boundary. Explicitly, f is the boundary of the
constant singular 2-simplex o having the same image as f since

oo =o|[v, ] —ollvg, vl +o|lvg,v]l=f-f+f=f

(i) If f =~ g then f ~ g. To see this, consider a homotopy F:IxI—X from f to
g. This yields a pair of singular 2-simplices o; and o, in X

by subdividing the square IxI into two triangles [v,, v, V3] v f Ys
and [vg,V,,v3] as shown in the figure. When one computes i

0(0, — 0y), the two restrictions of F to the diagonal of the ! o \
square cancel, leaving f — g together with two constant sin- v > v
gular 1-simplices from the left and right edges of the square. 0 S !
By (i) these are boundaries, so f — g is also a boundary. v,

(iii) f-g ~ f + g, where f.g denotes the product of the paths g

f and g. For if 0:A*— X is the composition of orthogonal g
projection of A% = [v,, v;, U,] onto the edge [v,, v,] followed Y

by f-g:[vy,v,]—X,thendo =g - f-g+ f. Y f Y

(iv) f ~ —f, where f is the inverse path of f. This follows from the preceding three
observations, which give f + f ~ f-f ~ 0.

Applying (ii) and (iii) to loops, it follows that we have a well-defined homomor-
phism h: 1, (X, xy) — H; (X) sending the homotopy class of aloop f to the homology
class of the 1-cycle f.
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To show h is surjective when X is path-connected, let > ; n;0; be a 1-cycle rep-
resenting a given element of H,(X). After relabeling the o;’s we may assume each
n; is 1. By (iv) we may in fact take each n; to be +1, so our 1-cycle is > ; o;. If
some 0; is not a loop, then the fact that (> ; 0;) = 0 means there must be another
0; such that the composed path o0;-0; is defined. By (iii) we may then combine the
terms 0; and o7 into a single term o5 - 0;. Iterating this, we reduce to the case that
each o; is a loop. Since X is path-connected, we may choose a path y; from x, to
the basepoint of 0;. We have y;.0;-y; ~ o; by (iil) and (iv), so we may assume all
0;’s are loops at x,. Then we can combine all the o;’s into a single ¢ by (iii). This
says the given element of H,(X) is in the image of h.

The commutator subgroup of 1, (X) is contained in the kernel of h since H; (X)
is abelian. To obtain the reverse inclusion we will show that every class [f] in the
kernel of h is trivial in the abelianization 1, (X)), of 1 (X).

If an element [ f] € 1T, (X) is in the kernel of h, then f, as a 1-cycle, is the bound-
ary of a 2-chain > ; n;0;. Again we may assume each n; is +1. As in the discussion
preceding Proposition 2.6, we can associate to the chain >;n;0; a 2-dimensional

A-complex K by taking a 2-simplex Af for each o; and identi- v
2

fying certain pairs of edges of these 2-simplices. Namely, if we
apply the usual boundary formula to write 00; = T;5—T;; + Tj»
ij» then the formula

v
f = a(zl niO'i) = Zi niao'i = Zi,j(—l)"niTij

implies that we can group all but one of the 7;;’s into pairs for which the two co-

for singular 1-simplices T

efficients (—1)7 n; in each pair are +1 and —1. The one remaining T;; is equal to
f. We then identify edges of the A? s corresponding to the paired T;;’s, preserving
orientations of these edges so that we obtain a A-complex K.

The maps o; fit together to give a map o :K—X. We can deform o, staying
fixed on the edge corresponding to f, so that each vertex maps to the basepoint x,,
in the following way. Paths from the images of these vertices to x, define such a
homotopy on the union of the 0-skeleton of K with the edge corresponding to f,
and then we can appeal to the homotopy extension property in Proposition 0.16 to
extend this homotopy to all of K. Alternatively, it is not hard to construct such an
extension by hand. Restricting the new o to the simplices Af , we obtain a new chain
2.in;0; with boundary equal to f and with all 7;;’s loops at x;.

Using additive notation in the abelian group , (X),,, we have the formula [ f] =
Zi,j(—l)jni[Tij] because of the canceling pairs of Tl-j’S. We can rewrite the summa-
tion Zi'j(—l)jni['rij] as >,;n;[00;] where [00;] = [T;0] — [T51] + [T;2]. Since o;
gives a nullhomotopy of the composed loop T;y — T;; + T;», we conclude that [ f] =0
in ™ (X),p- |
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The end of this proof can be illuminated by looking more closely at the geometry.
The complex K is in fact a compact surface with boundary consisting of a single circle
formed by the edge corresponding to f. This is because any pattern of identifications
of pairs of edges of a finite collection of disjoint 2-simplices produces a compact sur-
face with boundary. We leave it as an exercise for the reader to check that the algebraic
formula f = 8(>;n;0;) with each n; = +1 implies that K
is an orientable surface. The component of K containing
the boundary circle is a standard closed orientable surface
of some genus g with an open disk removed, by the basic
structure theorem for compact orientable surfaces. Giving
this surface the cell structure indicated in the figure, it then

becomes obvious that f is homotopic to a product of g com-
mutators in 17 (X).

The map h:m(X,x,)—H,;(X) can also be defined by h([f]) = f.(x) where
f:S'— X represents a given element of 11, (X, x,), f, is the induced map on H,, and
« is the generator of H, (S 1y ~ 7 represented by the standard map o :I—S*, o (s) =
¢®™S | This is because both [f] e m(X,xy) and f, () € H,(X) are represented by
the loop fo:I—X. A consequence of this definition is that h([f]) = h([g]) if f
and g are homotopic maps S'— X, since f« = g4 by Theorem 2.10.

Example 2A.2. For the closed orientable surface M of genus g, the abelianization
of (M) is 7?9, the product of 2g copies of Z, and a basis for H, (M) consists of
the 1-cycles represented by the 1-cells of M in its standard CW structure. We can
also represent a basis by the loops «; and §; shown in the figure below since these

loops are homotopic to the loops represented by the 1-cells, as one can see in the
picture of the cell structure in Chapter 0. The loops y;, on the other hand, are trivial
in homology since the portion of M on one side of y; is a compact surface bounded
by y;, so y; is homotopic to a loop that is a product of commutators, as we saw a
couple paragraphs earlier. The loop «; represents the same y
homology class as «; since the region between y; and o; U &

provides a homotopy between y; and a product of two loops
homotopic to «; and the inverse of «;, so &; — &; ~ y; ~ 0,

hence «; ~ .
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2.B Classical Applications

In this section we use homology theory to prove several interesting results in
topology and algebra whose statements give no hint that algebraic topology might be
involved.

To begin, we calculate the homology of complements of embedded spheres and
disks in a sphere. Recall that an embedding is a map that is a homeomorphism onto
its image.

Proposition 2B.1. (@) For an embedding h:D*—S™, ﬁi(S" — h(Dk)) =0 forall i.
(b) For an embedding h:S*—S™ with k < n, PNIl-(S” - h(Sk)) isZfori=n-k-1
and 0 otherwise.

As a special case of (b) we have the Jordan curve theorem: A subspace of s?
homeomorphic to S' separates S into two complementary components, or equiv-
alently, path-components since open subsets of S" are locally path-connected. One
could just as well use R? in place of S? here since deleting a point from an open set
in $? does not affect its connectedness. More generally, (b) says that a subspace of
S$™ homeomorphic to S™~! separates it into two components, and these components
have the same homology groups as a point. Somewhat surprisingly, there are embed-
dings where these complementary components are not simply-connected as they are
for the standard embedding. An example is the Alexander horned sphere in S 3 which
we describe in detail following the proof of the proposition. These complications in-
volving embedded S "=lrgin §™ are all local in nature since it is known that any locally
nicely embedded $"! in S" is equivalent to the standard "' c §", equivalent in
the sense that there is a homeomorphism of $" taking the given embedded S™ ! onto
the standard S !. In particular, both complementary regions are homeomorphic to
open balls. See [Brown 1960] for a precise statement and proof. When n = 2 itis a
classical theorem of Schoenflies that all embeddings S' — S$? are equivalent.

By contrast, when we come to embeddings of $"2in S", even locally nice embed-
dings need not be equivalent to the standard one. This is the subject of knot theory,
including the classical case of knotted embeddings of S' in $° or R?. For embeddings
of $" 2 in S" the complement always has the same homology as S L according to the
theorem, but the fundamental group can be quite different. In spite of the fact that
the homology of a knot complement does not detect knottedness, it is still possible to
use homology to distinguish different knots by looking at the homology of covering
spaces of their complements.

Proof: We prove (a) by induction on k. When k = 0, S™ — h(D°) is homeomorphic
to R", so this case is trivial. For the induction step it will be convenient to replace
the domain disk D* of h by the cube I¥. Let A = S" — h(I*"'x[0,/,]) and let
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B=S"—h(*'x[Y,,1]),50 AnB=S"—h(I*) and AUB = " — h(I*" 1 x {1/,}). By
induction ﬁi(A UB) = 0 for all i, so the Mayer-Vietoris sequence gives isomorphisms
<I>:PNIi(S” - h(lk)) —»ﬁi(A) @ﬁi(B) for all i. Modulo signs, the two components of &
are induced by the inclusions S™ — h(I¥) — A and S™ — h(I¥) — B, so if there exists
an i-dimensional cycle « in S" — h(Ik) that is not a boundary in S" — h(Ik), then
« is also not a boundary in at least one of A and B. (When i = 0 the word ‘cycle’
here is to be interpreted in the sense of augmented chain complexes since we are
dealing with reduced homology.) By iteration we can then produce a nested sequence
of closed intervals I, > I, D --- in the last coordinate of IX shrinking down to a
point p € I, such that « is not a boundary in S" — h(Ik‘lxIm) for any m. On
the other hand, by induction on k we know that « is the boundary of a chain £ in
S™ — h(I¥'x {p}). This B is a finite linear combination of singular simplices with
compact image in S™ — h(Ik’1 X {p}). The union of these images is covered by the
nested sequence of open sets S" — h(I k=1 xI,,), so by compactness  must actually
be a chain in S — h(I k=1 % I,,,) for some m. This contradiction shows that « must
be a boundary in $™ — h(I¥), finishing the induction step.

Part (b) is also proved by induction on k, starting with the trivial case k = 0 when
N h(SO) is homeomorphic to S" 1% R. For the induction step, write S k as the
union of hemispheres Dﬁ and D* intersecting in S k=1 The Mayer-Vietoris sequence
for A=S"- h(D’j) and B = S™— h(D¥), both of which have trivial reduced homology
by part (a), then gives isomorphisms ﬁi(S” - h(D%)) ~ ﬁiH(S” —h(s¥ ). O

If we apply the last part of this proof to an embedding h:S" —S", the Mayer-
Vietoris sequence ends with the terms PNIO(A) @ﬁO(B) —>PNIO(S7‘ - h(S"’l)) —0. Both
Hy(A) and Hy(B) are zero, so exactness would imply that H,(S" — h(S"1)) = 0
which appears to contradict the fact that S™ — h(S"!) has two path-components.
The only way out of this dilemma is for h to be surjective, so that A N B is empty and
the 0 at the end of the Mayer-Vietoris sequence is ﬁ_l (@) which is Z rather than 0.

In particular, this shows that S" cannot be embedded in R" since this would
yield a nonsurjective embedding in S™. A consequence is that there is no embedding
R™ — R™ for m > n since this would restrict to an embedding of S" c R™ into R".
More generally there is no continuous injection R™—R" for m > n since this too
would give an embedding S" — R".

Example 2B.2: The Alexander Horned Sphere. This is a subspace S ¢ R® homeo-
morphic to $* such that the unbounded component of R —§ is not simply-connected
as it is for the standard S° c R*. We will construct S by defining a sequence of com-
pact subspaces X, D> X; D -+ of R® whose intersection is homeomorphic to a ball,
and then S will be the boundary sphere of this ball.

We begin with X, a solid torus S'xD? obtained from a ball B, by attaching
a handle IxD? along dIxD?. In the figure this handle is shown as the union of
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two ‘horns’ attached to the ball, together with
a shorter handle drawn as dashed lines. To
form the space X; c X, we delete part of the
short handle, so that what remains is a pair of
linked handles attached to the ball B; that is
the union of B, with the two horns. To form

X, the process is repeated: Decompose each of

the second stage handles as a pair of horns and

a short handle, then delete a part of the short

handle. In the same way X, is constructed in-

ductively from X,,_;. Thus X,, is aball B,, with

2" handles attached, and B,, is obtained from

B,,_; by attaching 2" horns. There are homeo-

morphisms h,, :B,,_; — B,, that are the identity

outside a small neighborhood of B, — B,,_;. As n goes to infinity, the composition
h, ---h, approaches amap f:B,— R® which is continuous since the convergence is
uniform. The set of points in B, where f is not equal to h,, --- h; for large n is a
Cantor set, whose image under f is the intersection of all the handles. It is not hard
to see that f is one-to-one. By compactness it follows that f is a homeomorphism
onto its image, a ball B ¢ R® whose boundary sphere f (0By) is S, the Alexander
horned sphere.

Now we compute 11, (R® —B). Note that B is the intersection of the X,,’s, so R*—B
is the union of the complements Y,, of the X,,’s, which form an increasing sequence
Y, c Y, C ---. We will show that the groups 1, (Y,,) also form an increasing sequence
of successively larger groups, whose union is 71, ([R{3 —B). Tobegin we have 1, (Y,) = Z
since X, is a solid torus embedded in R® in a standard way. To compute 17, (Y;), let
Y, be the closure of Y; in Y;, so Y, — Y, is an open annulus A and T, (Y,) is also Z.
We obtain Y; from Y, by attaching the space Z = Y, — Y,, along A. The group T, (Z)
is the free group F, on two generators «; and «, represented by loops linking the
two handles, since Z — A is homeomorphic to an open ball with two straight tubes
deleted. A loop « generating 1T, (A) represents the commutator [, &,], as one
can see by noting that the closure of Z is obtained from Z by adjoining two disjoint
surfaces, each homeomorphic to a torus with an open disk removed; the boundary
of this disk is homotopic to « and is also homotopic to the commutator of meridian
and longitude circles in the torus, which correspond to «; and «,. Van Kampen’s
theorem now implies that the inclusion Y, — Y; induces an injection of ;(Y;) into
1, (Y;) as the infinite cyclic subgroup generated by [«&;, &5 ].

In a similar way we can regard Y,,,; as being obtained from Y,, by adjoining 2"
copies of Z. Assuming inductively that m, (Y,,) is the free group F,.» with generators
represented by loops linking the 2" smallest handles of X,,, then each copy of Z ad-
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joined to Y,, changes m, (Y,,) by making one of the generators into the commutator of
two new generators. Note that adjoining a copy of Z induces an injection on 17, since
the induced homomorphism is the free product of the injection T, (A) — 11, (Z) with
the identity map on the complementary free factor. Thus the map 1, (Y,)) = 1, (Y,,11)
is an injection F»n — Foni1. The group Trl([R{3 — B) is isomorphic to the union of this
increasing sequence of groups by a compactness argument: Each loop in R® — B has
compact image and hence must lie in some Y,,, and similarly for homotopies of loops.

In particular we see explicitly why 1, (R — B) has trivial abelianization, because
each of its generators is exactly equal to the commutator of two other generators.
This inductive construction in which each generator of a free group is decreed to
be the commutator of two new generators is perhaps the simplest way of building a
nontrivial group with trivial abelianization, and for the construction to have such a
nice geometric interpretation is something to marvel at. From a naive viewpoint it may
seem a little odd that a highly nonfree group can be built as a union of an increasing
sequence of free groups, but this can also easily happen for abelian groups, as Q for
example is the union of an increasing sequence of infinite cyclic subgroups.

The next theorem says that for subspaces of R", the property of being open is
a topological invariant. This result is known classically as Invariance of Domain, the
word ‘domain’ being an older designation for an open set in R".

Theorem 2B.3. If U is an open set in R"™ then for any embedding h:U—R" the
image h(U) must be an open set in R".

Proof: Regarding S™ as the one-point compactification of R", an equivalent statement
is that h(U) is open in S", and this is what we will prove. Each x € U is the center
point of a disk D™ c U. It will suffice to prove that h(D"™ — dD") is open in S™.
By the previous proposition S — h(d0D™) has two path-components. These path-
components are h(D"™ —9D") and S" — h(D") since these two subspaces are disjoint
and the first is path-connected since it is homeomorphic to D" —9D" while the second
is path-connected by the proposition. Since S$" — h(dD") is open in S", its path-
components are the same as its components. The components of a space with finitely
many components are open, so h(D" — 9D") is openin S™ — h(0D") and hence also
in S™. O

Here is an application involving the notion of an n-manifold, which is a Hausdorff
space locally homeomorphic to R":

Corollary 2B.4. If M is a compact n-manifold and N is a connected n-manifold,

then an embedding h: M — N must be surjective, hence a homeomorphism.

Proof: h(M) is closed in N since it is compact and N is Hausdorff. Since N is
connected it suffices to show h(M) is also open in N, and this is immediate from the
theorem. O
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The Invariance of Domain and the n-dimensional generalization of the Jordan
curve theorem were first proved by Brouwer around 1910, at a very early stage in the
development of algebraic topology.

Division Algebras

Here is an algebraic application of homology theory due to H. Hopf:

‘ Theorem 2B.5. R and C are the only finite-dimensional division algebras over R
which are commutative and have an identity.

By definition, an algebra structure on R" is simply a bilinear multiplication map
R"xR"—R", (a,b) — ab. Thus the product satisfies left and right distributivity,
a(b+c) =ab+ac and (a+Db)c = ac +bc, and scalar associativity, «(ab) = (xa)b =
a(axb) for x € R. Commutativity, full associativity, and an identity element are not
assumed. An algebra is a division algebra if the equations ax = b and xa = b are
always solvable whenever a + 0. In other words, the linear transformations x — ax
and x+— xa are surjective when a # 0. These are linear maps R" — R", so surjectivity
is equivalent to having trivial kernel, which means there are no zero-divisors.

The four classical examples are R, C, the quaternions H, and the octonions O.
Frobenius proved in 1877 that R, C, and H are the only finite-dimensional associative
division algebras over R, and in 1898 Hurwitz proved that these three together with
O are the only finite-dimensional division algebras over R with a product satisfying
lab| = |al|b|. See [Ebbinghaus 1991]. We will show in Theorem 3.20 that a finite-
dimensional division algebra over R must have dimension a power of 2. In fact the
only possible dimensions are 1, 2, 4, and 8, as in the classical examples. The first
proofs of this appeared in [Bott & Milnor 1958] and [Kervaire 1958]. A very nice proof
using K-theory is in [Adams & Atiyah 1966], and an exposition of this can be found
in [VBKT]. See §4.B for further comments. It still appears that the only known proofs
of this seemingly algebraic result are topological.

Proof: Suppose first that R" has a commutative division algebra structure. Define
amap f:S" ' —=S"! by f(x) = x°/|x?|. This is well-defined since x # 0 implies
x? # 0 in a division algebra. The map f is continuous since the multiplication map
R"x R"™—R" is bilinear, hence continuous. Since f(-x) = f(x) for all x, f induces
a quotient map f:RP" ! —§" ! The following argument shows that f is injective.
An equality f(x) = f(y) implies x*> = a®y? for & = (|x?|/1y?])"/? > 0. Thus we
have x?% — (x2y2 = 0, which factors as (x + ay)(x — xy) = 0 using commutativity
and the fact that « is areal scalar. Since there are no divisors of zero, we deduce that
X = +xy. Since x and y are unit vectors and « is real, this yields x = +y, so x
and y determine the same point of RP""!, which means that f is injective.

Since f is an injective map of compact Hausdorff spaces, it must be a homeo-
morphism onto its image. By Corollary 2B.4, f must in fact be surjective if we are
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not in the trivial case n = 1. Thus we have a homeomorphism RP" ! ~ "', This
implies n = 2 since if n > 2 the spaces RP""! and S"! have different homology
groups (or different fundamental groups).

It remains to show that a 2-dimensional commutative division algebra A with
identity is isomorphic to C. This is elementary algebra: If j € A is not a real scalar
multiple of the identity element 1 € A and we write j> = a + bj for a,b € R, then
(j- b/2)2 =a+ b2/4 so by rechoosing j we may assume that j2 =aeR.Ifa=0,
say a = c?, then j* = ¢? implies (j +¢)(j —¢) =0, so j = =c, but this contradicts
the choice of j. So j? = —c? and by rescaling j we may assume j> = —1, hence A is
isomorphic to C. O

Leaving out the last paragraph, the proof shows that a finite-dimensional com-
mutative division algebra, not necessarily with an identity, must have dimension at
most 2. Oddly enough, there do exist 2-dimensional commutative division algebras
without identity elements, for example C with the modified multiplication z-w = zZw,
the bar denoting complex conjugation.

The Borsuk-Ulam Theorem

In Theorem 1.10 we proved the 2-dimensional case of the Borsuk-Ulam theorem,
and now we will give a proof for all dimensions, using the following theorem of Borsuk:

‘ Proposition 2B.6. An odd map f:S"—S", satisfying f(-x) = —f(x) for all x,
must have odd degree.

The corresponding result that even maps have even degree is easier, and was an
exercise for §2.2.

The proof will show that using homology with a coefficient group other than Z
can sometimes be a distinct advantage. The main ingredient will be a certain exact
sequence associated to a two-sheeted covering space p X—X,

. — H,(X;Z,) = H,(X;Z,) 25 H, (X;Z,) — H,_, (X;Z,) — - -

This is the long exact sequence of homology groups associated to a short exact se-
quence of chain complexes consisting of short exact sequences of chain groups

0— C,(X;2,) = C,(X;2,) 25 € (X;2,) — 0

The map p, is surjective since singular simplices o : A" — X always lift to X, as A"
is simply-connected. Each o has in fact precisely two lifts ¢; and &,. Because we
are using 7, coefficients, the kernel of p, is generated by the sums &, + &,. So if we
define T to send each o : A" — X to the sum of its two lifts to K”, then the image of
T is the kernel of p,. Obviously T is injective, so we have the short exact sequence
indicated. Since T and p, commute with boundary maps, we have a short exact
sequence of chain complexes, yielding the long exact sequence of homology groups.
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The map T, is a special case of more general transfer homomorphisms considered
in §3.G, so we will refer to the long exact sequence involving the maps T, as the
transfer sequence. This sequence can also be viewed as a special case of the Gysin
sequences discussed in §4.D. There is a generalization of the transfer sequence to
homology with other coefficients, but this uses a more elaborate form of homology
called homology with local coefficients, as we show in §3.H.

Proof of 2B.6: The proof will involve the transfer sequence for the covering space
p:S™—RP". This has the following form, where to simplify notation we abbreviate
RP" to P™ and we let the coefficient group Z, be implicit:

Tx

0 — H,(P") = Hy(S") 5 Hy(P") —= Hy 1(P") — 0 — -+

- — 0 — Hy(P") = Hy(P") = H,(§") = H,(P") — 0

The initial 0 is H,,,, (P";Z,), which vanishes since P" is an n-dimensional CW com-
plex. The other terms that are zero are Hi(S") for 0 < i < mn. We assume n > 1,
leaving the minor modifications needed for the case n = 1 to the reader. All the terms
that are not zero are Z,, by cellular homology. Alternatively, this exact sequence can
be used to compute the homology groups H;(RP™;Z,) if one does not already know
them. Since all the nonzero groups in the sequence are Z,, exactness forces the maps
to be isomorphisms or zero as indicated.

An odd map f:S"—S" induces a quotient map f: RP" — RP". These two maps
induce a map from the transfer sequence to itself, and we will need to know that
the squares in the resulting diagram commute. This follows from the naturality of
the long exact sequence of homology associated to a short exact sequence of chain
complexes, once we verify commutativity of the diagram

0 — C(P") —— C(S") —2 Ci(P") — 0
|7 17
0 — CGi(P") —— Ci(S") —= Ci(P") — 0

Here the right-hand square commutes since pf = fp. The left-hand square com-
mutes since for a singular i-simplex o : A'— P" with lifts &, and &,, the two lifts of
fo are £, and f0, since f takes antipodal points to antipodal points.

Now we can see that all the maps f, and f, in the commutative diagram of
transfer sequences are isomorphisms by induction on dimension, using the evident
fact that if three maps in a commutative square are isomorphisms, so is the fourth.
The induction starts with the trivial fact that f, and T* are isomorphisms in dimen-
sion zero.
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In particular we deduce that the map f, :Hn(S"; Z,) —>Hn(S"; Z5) is an isomor-
phism. By Lemma 2.49 this map is multiplication by the degree of f mod 2, so the
degree of f must be odd. O

The fact that odd maps have odd degree easily implies the Borsuk-Ulam theorem:

’ Corollary 2B.7. For every map g:S™ — R" there exists a point x € S™ with g(x) =
g(=x).

Proof: Let f(x) = g(x) — g(=x), so f is odd. We need to show that f(x) = 0 for
some x. If this is not the case, we can replace f(x) by f(x)/|f(x)| to get a new
map f:5"—S""! which is still odd. The restriction of this f to the equator S !
then has odd degree by the proposition. But this restriction is nullhomotopic via the
restriction of f to one of the hemispheres bounded by §" L. O

Exercises

1. Compute H;(S™ — X) when X is a subspace of $" homeomorphic to skvst orto
sk st.

2. Show that ﬁi(S” -X) = ﬁn_i_l (X) when X is homeomorphic to a finite connected
graph. [First do the case that the graph is a tree.]

3. Let (D,S) C (D",S"’l) be a pair of subspaces homeomorphic to (Dk,Sk’l), with
D nS™! = §. Show the inclusion $" ! — § — D" — D induces an isomorphism
on homology. [Glue two copies of (D",D) together along (S"’I,S ) and examine
the Mayer-Vietoris sequence for the complement of the resulting k-sphere in S",
decomposed into two copies of D" — D]

4. In the unit sphere SP*4°! c RP*4 let SP~! and S9! be the subspheres consisting
of points whose last g and first p coordinates are zero, respectively.

(a) Show that SP*4~! — §P~1 deformation retracts onto S?°!, and is in fact homeo-
morphic to S ' x R”.

(b) Show that S”~! and S9! are not the boundaries of any pair of disjointly embedded
disks D? and D? in D?*4. [The preceding exercise may be useful.]

5. Let S be an embedded k-sphere in S™ for which there exists a disk D" c S"
intersecting S in the disk D¥ ¢ D" defined by the first k coordinates of D". Let
D" c D" be the disk defined by the last n — k coordinates, with boundary sphere
$™" k=1 Show that the inclusion $" %! < $" — § induces an isomorphism on homol-
0gy groups.

6. Modify the construction of the Alexander horned sphere to produce an embedding
$2 < R® for which neither component of R? — $? is simply-connected.
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7. Analyze what happens when the number of handles in the basic =~ _......__
building block for the Alexander horned sphere is doubled, as in -

the figure at the right. \g
8. Show that R*"! is not a division algebra over R if n > 0 |
by showing that if it were, then for nonzero a € R***! the map -T?E‘T
§°" 82" x +— ax/|ax| would be homotopic to x — —ax/|ax]|, %
but these maps have different degrees. 2O

9. Make the transfer sequence explicit in the case of a trivial covering X— X, where
X =XxxS°.
10. Use the transfer sequence for the covering S — RP* to compute H,, (RP%;Z,).

11. Use the transfer sequence for the covering X x $* — X x RP” to produce isomor-
phisms H, (XX RP%;Z,) ~ ,_,, H;(X;Z,) for all n.

2.C Simplicial Approximation

Many spaces of interest in algebraic topology can be given the structure of sim-
plicial complexes, and early in the history of the subject this structure was exploited
as one of the main technical tools. Later, CW complexes largely superseded simplicial
complexes in this role, but there are still some occasions when the extra structure of
simplicial complexes can be quite useful. This will be illustrated nicely by the proof
of the classical Lefschetz fixed point theorem in this section.

One of the good features of simplicial complexes is that arbitrary continuous
maps between them can always be deformed to maps that are linear on the simplices
of some subdivision of the domain complex. This is the idea of ‘simplicial approxi-
mation,” developed by Brouwer and Alexander before 1920. Here is the relevant def-
inition: If K and L are simplicial complexes, then a map f:K— L is simplicial if it
sends each simplex of K to a simplex of L by a linear map taking vertices to ver-
tices. In barycentric coordinates, a linear map of a simplex [v, ---,v,,] has the form
2itiv; — >t f(v;). Since a linear map from a simplex to a simplex is uniquely
determined by its values on vertices, this means that a simplicial map is uniquely
determined by its values on vertices. It is easy to see that a map from the vertices
of K to the vertices of L extends to a simplicial map iff it sends the vertices of each
simplex of K to the vertices of some simplex of L.

Here is the most basic form of the Simplicial Approximation Theorem:

Theorem 2C.1. If K is a finite simplicial complex and L is an arbitrary simplicial
complex, then any map f :K — L is homotopic to a map that is simplicial with respect
to some iterated barycentric subdivision of K .
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To see that subdivision of K is essential, consider the case of maps S — S". With
fixed simplicial structures on the domain and range spheres there are only finitely
many simplicial maps since there are only finitely many ways to map vertices to ver-
tices. Hence only finitely many degrees are realized by maps that are simplicial with
respect to fixed simplicial structures in both the domain and range spheres. This re-
mains true even if the simplicial structure on the range sphere is allowed to vary, since
if the range sphere has more vertices than the domain sphere then the map cannot be
surjective, hence must have degree zero.

Before proving the simplicial approximation theorem we need some terminology
and a lemma. The star St o of a simplex o in a simplicial complex X is defined to be
the subcomplex consisting of all the simplices of X that contain o. Closely related to
this is the open star st o, which is the union of the interiors of all simplices containing
o0, where the interior of a simplex T is by definition T — 0T. Thus st o is an open set
in X whose closure is Sto.

Lemma 2C.2. For vertices vy, -, U, Of a simplicial complex X, the intersection
stv, n--- N stv, is empty unless vy, ---,v, are the vertices of a simplex o of X,
in which case stv, N --- Nstv, =sto.

Proof: The intersection stv, N --- N stv,, consists of the interiors of all simplices T
whose vertex set contains {v,---,v,}. If stv; n--- nstv, is nonempty, sucha T
exists and contains the simplex o = [vy,---,v,,] C X. The simplices T containing
{vy,---,v,} are just the simplices containing o, so stv; Nn--- Nstv, =sto. |

Proof of 2C.1: Choose a metric on K that restricts to the standard Euclidean metric
on each simplex of K. For example, K can be viewed as a subcomplex of a sim-
plex AN whose vertices are all the vertices of K, and we can restrict a standard met-
ric on AV to give a metric on K. Let ¢ be a Lebesgue number for the open cover
{fY(stw) | wis avertex of L} of K. After iterated barycentric subdivision of K we
may assume that each simplex has diameter less than &/2. The closed star of each
vertex v of K then has diameter less than &, hence this closed star maps by f to
the open star of some vertex g(v) of L. The resulting map g:K°—L° thus satisfies
f(Stv) c stg(v) for all vertices v of K.

To see that g extends to a simplicial map g:K— L, consider the problem of
extending g over a simplex [v,,---,v,] of K. An interior point x of this simplex
lies in stv; for each i, so f(x) liesin stg(v;) for each i, since f(stv;) C stg(v;) by
the definition of g(v;). Thus stg(v,)n---nstg(v,) = J,s0 [g(v,),---,g(v,)]isa
simplex of L by the lemma, and we can extend g linearly over [v,,---,v,,]. Both f(x)
and g(x) lie in a single simplex of L since g(x) liesin [g(v,),---,g(v,)] and f(x)
lies in the star of this simplex. So taking the linear path (1-t)f(x)+tg(x),0<t <1,
in the simplex containing f(x) and g(x) defines a homotopy from f to g. To check
continuity of this homotopy it suffices to restrict to the simplex [vy,---, v, ], where
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continuity is clear since f(x) varies continuously in the star of [g(v,),---,9(V,)]
and g(x) varies continuously in [g(v,),---,g(v,)]. O

Notice that if f already sends some vertices of K to vertices of L then we may
choose g to equal to f on these vertices, and hence the homotopy from f to g will
be stationary on these vertices. This is convenient if one is in a situation where one
wants maps and homotopies to preserve basepoints.

The proof makes it clear that the simplicial approximation g can be chosen not
just homotopic to f but also close to f if we allow subdivisions of L as well as K.

The Lefschetz Fixed Point Theorem

This very classical application of homology is a considerable generalization of the
Brouwer fixed point theorem. It is also related to the Euler characteristic formula.

For a homomorphism ¢ :7"—7" with matrix [aij], the trace tr@ is defined
to be >;a;;, the sum of the diagonal elements of [a;;]. Since tr([a;;][b;;]) =
tr([bij][al-j]), conjugate matrices have the same trace, and it follows that tr @ is in-
dependent of the choice of basis for Z". For a homomorphism @ : A— A of a finitely
generated abelian group A we can then define tr@ to be the trace of the induced
homomorphism @ : A/ Torsion— A/ Torsion.

For amap f:X— X of a finite CW complex X, or more generally any space whose
homology groups are finitely generated and vanish in high dimensions, the Lefschetz
number 7(f) is defined to be X, (-1)"tr(f,:H,(X)—H, (X)). In particular, if f
is the identity, or is homotopic to the identity, then T(f) is the Euler characteristic
X (X) since the trace of the nxn identity matrix is n.

Here is the Lefschetz fixed point theorem:

Theorem 2C.3. If X is a finite simplicial complex, or more generally a retract of a
finite simplicial complex, and f :X — X is a map with T(f) = 0, then f has a fixed
point.

As we show in Theorem A.7 in the Appendix, every compact, locally contractible
space that can be embedded in R" for some n is a retract of a finite simplicial com-
plex. This includes compact manifolds and finite CW complexes, for example. The
compactness hypothesis is essential, since a translation of R has T = 1 but no fixed
points. For an example showing that local properties are also
significant, let X be the compact subspace of R? consisting of
two concentric circles together with a copy of R between them
whose two ends spiral in to the two circles, wrapping around
them infinitely often, and let f:X— X be a homeomorphism
translating the copy of R along itself and rotating the circles,
with no fixed points. Since f is homotopic to the identity, we have 7(f) = X (X),
which equals 1 since the three path components of X are two circles and a line.
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If X has the same homology groups as a point, at least modulo torsion, then
the theorem says that every map X— X has a fixed point. This holds for exam-
ple for RP" if n is even. The case of projective spaces is interesting because of
its connection with linear algebra. An invertible linear transformation f:R"—R"
takes lines through 0 to lines through 0, hence induces a map f:RP" ' —RP" !,
Fixed points of f are equivalent to eigenvectors of f. The characteristic polyno-
mial of f has odd degree if n is odd, hence has a real root, so an eigenvector ex-
ists in this case. This is in agreement with the observation above that every map
RP** — RP** has a fixed point. On the other hand the rotation of R%* defined by
F Oy, x01) = (X, =X, X4, — X3, + , X0k, —X2;1) has no eigenvectors and its pro-
jectivization f: RP?k~! — RP?*~! has no fixed points.

Similarly, in the complex case an invertible linear transformation f:C"—C" in-
duces f:CP" ! —CP"!, and this always has a fixed point since the characteristic
polynomial always has a complex root. Nevertheless, as in the real case there is a
map CP**1 — cP**! without fixed points. Namely, consider f :C?K — %% defined
by f(zy,--+,2z5) = (Z,,-2Z,Z4,—Z3, """+ Zok, —Z2k_1) - This map is only ‘conjugate-
linear’ over C, but this is still good enough to imply that f induces a well-defined
map f on CP?*"! and it is easy to check that f has no fixed points. The similarity
between the real and complex cases persists in the fact that every map CcP*k — cp3k
has a fixed point, though to deduce this from the Lefschetz fixed point theorem re-
quires more structure than homology has, so this will be left as an exercise for §3.2,
using cup products in cohomology.

One could go further and consider the quaternionic case. The antipodal map of
$§* = HP! has no fixed points, but every map HP" — HP" with n > 1 does have a
fixed point. This is shown in Example 4L.4 using considerably heavier machinery.

Proof of 2C.3: The general case easily reduces to the case of finite simplicial com-
plexes, for suppose v :K— X is a retraction of the finite simplicial complex K onto
X. For amap f:X— X, the composition fr:K— X C K then has exactly the same
fixed points as f. Since v, :H, (K)— H, (X) is projection onto a direct summand, we
clearly have tr(f,r,) = tr f,, so T(f,7r,) = T(f,).

For X a finite simplicial complex, suppose that f:X — X has no fixed points. We
claim there is a subdivision L of X, a further subdivision K of L, and a simplicial map
g:K— L homotopic to f suchthat g(og)no = & for each simplex ¢ of K. To see this,
first choose a metric d on X as in the proof of the simplicial approximation theorem.
Since f has no fixed points, d(x, f(x)) > 0 for all x € X, so by the compactness
of X there is an € > 0 such that d(x, f(x)) > € for all x. Choose a subdivision
L of X so that the stars of all simplices have diameter less than /2. Applying the
simplicial approximation theorem, there is a subdivision K of L and a simplicial map
g:K— L homotopic to f. By construction, g has the property that for each simplex
o of K, f(o) is contained in the star of the simplex g(o). Then g(o) no = @
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for each simplex ¢ of K since for any choice of x € o we have d(x, f(x)) > &,
while g(o) lies within distance £/2 of f(x) and o lies within distance £/2 of x, as
a consequence of the fact that o is contained in a simplex of L, K being a subdivision
of L.

The Lefschetz numbers 7(f) and T(g) are equal since f and g are homotopic.
Since g is simplicial, it takes the n-skeleton K" of K to the n-skeleton L™ of L, for
each n. Since K is a subdivision of L, L™ is contained in K", and hence g(K™) c K"
for all n. Thus g induces a chain map of the cellular chain complex {H, (K nK "’1)}
to itself. This can be used to compute 7(g) according to the formula

T(9) = Y(=1)"tr(g, : Hy (K", K" 1) = H,, (K", K1)

This is the analog of Theorem 2.44 for trace instead of rank, and is proved in precisely
the same way, based on the elementary algebraic fact that trace is additive for endo-
morphisms of short exact sequences: Given a com-
mutative diagram as at the right with exact rows,
then trf8 = trx + try. This algebraic fact can be la lB ly

0—A—B —C—0

0—A—B—C—0

proved by reducing to the easy case that A, B, and

C are free by first factoring out the torsion in B, hence also the torsion in A, then

eliminating any remaining torsion in C by replacing A by a larger subgroup A’ C B,

with A having finite index in A’. The details of this argument are left to the reader.
Finally, note that g, : H,, (K", K™ —>Hn(K”,K”’1) has trace 0 since the matrix

for g, has zeros down the diagonal, in view of the fact that g(o) Nn o = @ for each

n-simplex o. So T7(f) = 1(g) = 0. m]

Example 2C.4. Let us verify the theorem in an example. Let X be the closed ori-
entable surface of genus 3 as shown in the figure below, with f:X— X the 180

degree rotation about a vertical axis o
2

passing through the central hole of
X. Since f has no fixed points, we @ M'
should have T(f) = 0. The induced

map f, :Hy(X)— Hy(X) is the iden-
tity, as always for a path-connected space, so this contributes 1 to 7(f). For H; (X)

X X5 X3

we saw in Example 2A.2 that the six loops «; and B; represent a basis. The map
[, interchanges the homology classes of «; and «3, and likewise for §; and B3,
while B, is sent to itself and «, is sent to «, which is homologous to «, as we
saw in Example 2A.2. So f,:H,(X)—H,(X) contributes —2 to 7(f). It remains
to check that f,:H,(X)— H,(X) is the iden-

tity, which we dz byzthe Comlimtative diagram Hz(i() L Hz(i()

|~ I~

Ho(X,X - {x}) -2 H (X, X~ {y})

at the right, where x is a point of X in the cen-
tral torus and y = f(x). We can see that the
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left-hand vertical map is an isomorphism by considering the long exact sequence of
the triple (X,X — {x},X") where X' is the 1-skeleton of X in its usual CW struc-
ture and x is chosenin X — X 1, so that X — {x} deformation retracts onto X I and
H,(X - {x},X 1y = 0 for all n. The same reasoning shows the right-hand vertical
map is an isomorphism. There is a similar commutative diagram with f replaced by
a homeomorphism g that is homotopic to the identity and equals f in a neighbor-
hood of x, with g the identity outside a disk in X containing x and y. Since g is
homotopic to the identity, it induces the identity across the top row of the diagram,
and since g equals f near x, it induces the same map as f in the bottom row of the
diagram, by excision. It follows that the map f, in the upper row is the identity.

This example generalizes to surfaces of any odd genus by adding symmetric pairs
of tori at the left and right. Examples for even genus are described in one of the
exercises.

Fixed point theory is a well-developed side branch of algebraic topology, but we
touch upon it only occasionally in this book. For a nice introduction see [Brown 1971].

Simplicial Approximations to CW Complexes

The simplicial approximation theorem allows arbitrary continuous maps to be
replaced by homotopic simplicial maps in many situations, and one might wonder
about the analogous question for spaces: Which spaces are homotopy equivalent to
simplicial complexes? We will show this is true for the most common class of spaces
in algebraic topology, CW complexes. In the Appendix the question is answered for a
few other classes of spaces as well.

Theorem 2C.5. Every CW complex X is homotopy equivalent to a simplicial complex,
which can be chosen to be of the same dimension as X, finite if X is finite, and
countable if X is countable.

We will build a simplicial complex Y =~ X inductively as an increasing union of
subcomplexes Y,, homotopy equivalent to the skeleta X". For the inductive step,
assuming we have already constructed Y, = X", let e be an (n + 1)-cell of X
attached by a map @:S"—X". The map S"—Y,, corresponding to ¢ under the
homotopy equivalence Y,, ~ X" is homotopic to a simplicial map f:S"*—Y,, by the
simplicial approximation theorem, and it is not hard to see that the spaces X" Up el
and Y, Uy e""! are homotopy equivalent, where the subscripts denote attaching e™*!
via @ and f, respectively; see Proposition 0.18 for a proof. We can view Y,, Uy et
as the mapping cone Cy, obtained from the mapping cylinder of f by collapsing the
domain end to a point. If we knew that the mapping cone of a simplicial map was a
simplicial complex, then by performing the same construction for all the (n + 1)-cells
of X we would have completed the induction step. Unfortunately, and somewhat
surprisingly, mapping cones and mapping cylinders are rather awkward objects in the
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simplicial category. To avoid this awkwardness we will instead construct simplicial
analogs of mapping cones and cylinders that have all the essential features of actual
mapping cones and cylinders.

Let us first construct the simplicial analog of a mapping cylinder. For a simpli-
cial map f:K— L this will be a simplicial complex M (f) containing both L and the
barycentric subdivision K’ of K as subcomplexes, and such that there is a deformation
retraction 7, of M(f) onto L with »; |[K" = f. The
figure shows the case that f is a simplicial surjection

A?>—A'. The construction proceeds one simplex of <N
K at a time, by induction on dimension. To begin, the
ordinary mapping cylinder of f :K?— L suffices for
M(f|K®). Assume inductively that we have already
constructed M(flK”’l). Let o be an n-simplex of
K and let T = f(0), a simplex of L of dimension n or less. By the inductive hy-
pothesis we have already constructed M (f:00 — T) with the desired properties, and
we let M(f:0—T) be the cone on M(f:00 — T), as shown in the figure. The space
M(f:00 —T) is contractible since by induction it deformation retracts onto T which
is contractible. The cone M(f:0—T) is of course contractible, so the inclusion
of M(f:00—T) into M(f:0—T) is a homotopy equivalence. This implies that
M(f:0— 1) deformation retracts onto M(f:00 — 1) by Corollary 0.20, or one can
give a direct argument using the fact that M (f:00 — T) is contractible. By attaching
M(f:0—T) to M(f|K" 1) along M(f:00—T) c M(f|K" 1) for all n-simplices
o of K we obtain M(f|K") with a deformation retraction onto M(f|K"™'). Tak-
ing the union over all n yields M(f) with a deformation retraction 7; onto L, the
infinite concatenation of the previous deformation retractions, with the deformation
retraction of M (f|K™) onto M(f|K"!) performed in the t-interval [1/2""! 1/2"].
The map 7, |K may not equal f, but it is homotopic to f via the linear homotopy
tf+(1—t)r,, whichis defined since v, (o) C f (o) for all simplices o of K. By apply-
ing the homotopy extension property to the homotopy of ¥, that equals tf + (1—t)r;
on K and the identity map on L, we can improve our deformation retraction of M (f)
onto L so that its restriction to K at time 1 is f.

From the simplicial analog M (f) of a mapping cylinder we construct the simpli-
cial ‘mapping cone’ C(f) by attaching the ordinary cone on K’ to the subcomplex
K cM(f).

Proof of 2C.5: We will construct for each n a CW complex Z, containing X" as a
deformation retract and also containing as a deformation retract a subcomplex Y,,
that is a simplicial complex. Beginning with Y, = Z, = X", suppose inductively that
we have already constructed Y,, and Z,. Let the cells e:*! of X be attached by maps
@q:S"— X". Using the simplicial approximation theorem, there is a homotopy from

@, to a simplicial map f,:S"—Y,,. The CW complex W,, = Z, U, M (f,) contains a
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simplicial subcomplex S} homeomorphic to ™ at one end of M(f,), and the homeo-
morphism $" ~ Sy is homotopic in W,, to the map f,, hence also to @. Let Z,,,; be
obtained from Z,, by attaching Dﬁ“ x I’s via these homotopies between the @, ’s and
the inclusions S" < W,,. Thus Z, ., contains X"*! at one end, and at the other end we
have a simplicial complex Y, ., =Y, Uy C(fy), where C(f,) is obtained from M (f,)
by attaching a cone on the subcomplex Sk . Since D™ x T deformation retracts onto
D" 1T uD"*x {1}, we see that Z,,,, deformation retracts onto Z, UY,,,, which
in turn deformation retracts onto Y, uY, ., = Y, ., by induction. Likewise, Z,
deformation retracts onto X"*! UW, which deformation retracts onto X"*' U Z, and
hence onto X" U X™ = X"*! by induction.

Let Y = U,Y, and Z = U, Z,,. The deformation retractions of Z, onto X"
give deformation retractions of X u Z, onto X, and the infinite concatenation of the
latter deformation retractions is a deformation retraction of Z onto X. Similarly, Z
deformation retracts onto Y. |

Exercises

1. What is the minimum number of edges in simplicial complex structures K and L
on S! such that there is a simplicial map K — L of degree n?

2. Use the Lefschetz fixed point theorem to show that a map S"—S" has a fixed
point unless its degree is equal to the degree of the antipodal map x — —x.

3. Verify that the formula f(z,---,2z5) = (Z5,-Z,,24, 23, "+, Zog» —Z2k_1) defines
amap f: Ck— 2k inducing a quotient map CcP*k~1 - cp?*~! without fixed points.
4. If X is a finite simplicial complex and f:X— X is a simplicial homeomorphism,
show that the Lefschetz number T(f) equals the Euler characteristic of the set of fixed
points of f. In particular, T(f) is the number of fixed points if the fixed points are
isolated. [Hint: Barycentrically subdivide X to make the fixed point set a subcomplex.]
5. Let M be a closed orientable surface embedded in R® in such a way that reflection
across a plane P defines a homeomorphism »:M— M fixing M N P, a collection of
circles. Is it possible to homotope » to have no fixed points?

6. Do an even-genus analog of Example 2C.4 by replacing the central torus by a sphere
letting f be a homeomorphism that restricts to the antipodal map on this sphere.

7. Verify that the Lefschetz fixed point theorem holds also when 7 (f) is defined using
homology with coefficients in a field F.

8. Let X be homotopy equivalent to a finite simplicial complex and let Y be homotopy
equivalent to a finite or countably infinite simplicial complex. Using the simplicial ap-
proximation theorem, show that there are at most countably many homotopy classes
of maps X—Y.

9. Show that there are only countably many homotopy types of finite CW complexes.
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Cohomology

Cohomology is an algebraic variant of homology, the result of a simple dualiza-
tion in the definition. Not surprisingly, the cohomology groups H '(X) satisfy axioms
much like the axioms for homology, except that induced homomorphisms go in the
opposite direction as a result of the dualization. The basic distinction between homol-
ogy and cohomology is thus that cohomology groups are contravariant functors while
homology groups are covariant. In terms of intrinsic information, however, there is
not a big difference between homology groups and cohomology groups. The homol-
ogy groups of a space determine its cohomology groups, and the converse holds at
least when the homology groups are finitely generated.

What is a little surprising is that contravariance leads to extra structure in co-
homology. This first appears in a natural product, called cup product, which makes
the cohomology groups of a space into a ring. This is an extremely useful piece of
additional structure, and much of this chapter is devoted to studying cup products,
which are considerably more subtle than the additive structure of cohomology.

How does contravariance lead to a product in cohomology that is not present in
homology? Actually there is a natural product in homology, but it takes the somewhat
different form of amap H;(X)x H;(Y) — H;, ;(XXY) called the cross product. 1f both
X and Y are CW complexes, this cross product in homology is induced from a map
of cellular chains sending a pair (e’,e’) consisting of a cell of X and a cell of Y to
the product cell e!x e’ in Xx Y. The details of the construction are described in §3.B.
Taking X = Y, we thus have the first half of a hypothetical product

The difficulty is in defining the second map. The natural thing would be for this to be
induced by a map X x X — X. The multiplication map in a topological group, or more
generally an H-space, is such a map, and the resulting Pontryagin product can be quite
useful when studying these spaces, as we show in §3.C. But for general X, the only
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natural maps X x X — X are the projections onto one of the factors, and since these
projections collapse the other factor to a point, the resulting product in homology is
rather trivial.

With cohomology, however, the situation is better. One still has a cross product
Hi(X) x HY (Y) — Ht (XxY) constructed in much the same way as in homology, so
one can again take X = Y and get the first half of a product

H'(X)x H' (X) — H™ (Xx X) — H™ (X)

But now by contravariance the second map would be induced by a map X— XX X,
and there is an obvious candidate for this map, the diagonal map A(x) = (x, x). This
turns out to work very nicely, giving a well-behaved product in cohomology, the cup
product.

Another sort of extra structure in cohomology whose existence is traceable to
contravariance is provided by cohomology operations. These make the cohomology
groups of a space into a module over a certain rather complicated ring. Cohomology
operations lie at a depth somewhat greater than the cup product structure, so we
defer their study to §4.L.

The extra layer of algebra in cohomology arising from the dualization in its def-
inition may seem at first to be separating it further from topology, but there are
many topological situations where cohomology arises quite naturally. One of these is
Poincaré duality, the topic of the third section of this chapter. Another is obstruction
theory, covered in §4.3. Characteristic classes in vector bundle theory (see [Milnor &
Stasheff 1974] or [VBKT]) provide a further instance.

From the viewpoint of homotopy theory, cohomology is in some ways more basic
than homology. As we shall see in §4.3, cohomology has a description in terms of
homotopy classes of maps that is very similar to, and in a certain sense dual to, the
definition of homotopy groups. There is an analog of this for homology, described in
§4.F, but the construction is more complicated.

The Idea of Cohomology

Let us look at a few low-dimensional examples to get an idea of how one might be
led naturally to consider cohomology groups, and to see what properties of a space
they might be measuring. For the sake of simplicity we consider simplicial cohomology
of A-complexes, rather than singular cohomology of more general spaces.

Taking the simplest case first, let X be a 1-dimensional A-complex, or in other
words an oriented graph. For a fixed abelian group G, the set of all functions from ver-
tices of X to G also forms an abelian group, which we denote by AO(X ; G). Similarly
the set of all functions assigning an element of G to each edge of X forms an abelian
group Al (X;G). We will be interested in the homomorphism 6: AO(X; G) —Al (X;G)
sending @ € A’°(X;G) to the function 5@ € A'(X;G) whose value on an oriented
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edge [vy,v,] is the difference @ (v,) — @(v,). For example, X might be the graph
formed by a system of trails on a mountain, with vertices at the junctions between
trails. The function @ could then assign to each junction its elevation above sea level,
in which case @ would measure the net change in elevation along the trail from one
junction to the next. Or X might represent a simple electrical circuit with @ mea-
suring voltages at the connection points, the vertices, and 6@ measuring changes in
voltage across the components of the circuit, represented by edges.

Regarding themap & : AO(X; G)— Al (X; G) as achain complexwith 0’s before and
after these two terms, the homology groups of this chain complex are by definition
the simplicial cohomology groups of X, namely HO(X;G) = Keré C AO(X ;G) and
HY (X ;G) = AN (X ;G)/Im . For simplicity we are using here the same notation as will
be used for singular cohomology later in the chapter, in anticipation of the theorem
that the two theories coincide for A-complexes, as we show in §3.1.

The group H 9(X;G) is easy to describe explicitly. A function @ € A%(X;G) has
0@ = 0 iff @ takes the same value at both ends of each edge of X. This is equivalent
to saying that @ is constant on each component of X. So H 9(X;G) is the group of all
functions from the set of components of X to G. This is a direct product of copies
of G, one for each component of X.

The cohomology group H Lx ;G) = Al (X;G)/Im 6 will be trivial iff the equation
5@ = y has a solution @ € A’(X;G) for each ¢ € A'(X;G). Solving this equation
means deciding whether specifying the change in @ across each edge of X determines
an actual function @ € A (X; G). This is rather like the calculus problem of finding a
function having a specified derivative, with the difference operator 6 playing the role
of differentiation. As in calculus, if a solution of 6@ = Y exists, it will be unique up
to adding an element of the kernel of §, that is, a function that is constant on each
component of X.

The equation 6 = y is always solvable if X is a tree since if we choose arbitrarily
a value for @ at a basepoint vertex v, then if the change in @ across each edge of
X is specified, this uniquely determines the value of @ at every other vertex v by
induction along the unique path from v, to v in the tree. When X is not a tree, we
first choose a maximal tree in each component of X. Then, since every vertex lies
in one of these maximal trees, the values of ¢ on the edges of the maximal trees
determine ¢ uniquely up to a constant on each component of X. But in order for
the equation 6@ = g to hold, the value of ¢ on each edge not in any of the maximal
trees must equal the difference in the already-determined values of @ at the two ends
of the edge. This condition need not be satisfied since y can have arbitrary values on
these edges. Thus we see that the cohomology group H Y(X:G) is a direct product of
copies of the group G, one copy for each edge of X notin one of the chosen maximal
trees. This can be compared with the homology group H, (X;G) which consists of a
direct sum of copies of G, one for each edge of X not in one of the maximal trees.
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Note that the relation between H 1(X;G) and H,(X;G) is the same as the relation
between HO(X;G) and H,(X;G), with HO(X; G) being a direct product of copies of
G and H,(X;G) a direct sum, with one copy for each component of X in either case.

Now let us move up a dimension, taking X to be a 2-dimensional A-complex.
Define A(X;G) and A'(X;G) as before, as functions from vertices and edges of X
to the abelian group G, and define A? (X; G) to be the functions from 2-simplices of
X to G. A homomorphism §:A'(X;G) —A%(X;G) is defined by Sy ([vy, vy, v,]) =
Y([vg, 1) + (v, v,]) —@(lvy, v,o]), a signed sum of the values of ¢ on the three
edges in the boundary of [v,, v, V,], just as o@([vy, v,]) for @ € AY(X:G) was a
signed sum of the values of @ on the boundary of [v,, v,]. The two homomorphisms
AO(X; G) -2, Al (X;G) 2, Az(X; G) form a chain complex since for @ € AO(X; G) we
have §6@ = (@ (V) -@ () + (@) —@(v))) = (@(vy) —P(vy)) = 0. Extending this
chain complex by 0’s on each end, the resulting homology groups are by definition
the cohomology groups Hi(X; G).

The formula for the map &: Al (X;G) —A? (X;G) can be looked at from several
different viewpoints. Perhaps the simplest is the observation that 6y = 0 iff @
satisfies the additivity property @ ([vy,v,]1) = @w([vy, v,]) + @([vy,v,]), where we
think of the edge [vy,v,] as the sum of the edges [vy,v;] and [v,,v,]. Thus Sy
measures the deviation of ¢ from being additive.

From another point of view, ¢ can be regarded as an obstruction to finding
@ € A°%X;G) with ¢ = 5@, forif ¢ = 5@ then Sy = 0 since 5@ = 0 as we saw
above. We can think of §¢ as alocal obstruction to solving ¢ = 6@ since it depends
only on the values of ¢ within individual 2-simplices of X. If this local obstruction
vanishes, then ¢ defines an element of H'(X;G) which is zero iff ¢ = S¢ has
an actual solution. This class in H'(X ; G) is thus the global obstruction to solving
@ = Od@. This situation is similar to the calculus problem of determining whether a
given vector field is the gradient vector field of some function. The local obstruction
here is the vanishing of the curl of the vector field, and the global obstruction is the
vanishing of all line integrals around closed loops in the domain of the vector field.

The condition 6y = 0 has an interpretation of a more geometric nature when X
is a surface and the group G is Z or Z,. Consider first the simpler case G = Z,. The
condition 6y = 0 means that the number of times that ¢ takes the value 1 on the
edges of each 2-simplex is even, either 0 or 2. This means we can associate to ¢ a
collection C, of disjoint curves in X crossing the
1-skeleton transversely, such that the number of
intersections of C,, with each edge is equal to the
value of ¢ on that edge. If ¢ = 6@ for some @,
then the curves of C,, divide X into two regions
X, and X; where the subscript indicates the value
of @ on all vertices in the region.
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When G = Z we can refine this construction by building C,, from a number of
arcs in each 2-simplex, each arc having a transverse orientation, the orientation which
agrees or disagrees with the orientation
of each edge according to the sign of the
value of ¢ on the edge, as in the figure
at the right. The resulting collection C,
of disjoint curves in X can be thought
of as something like level curves for a
function @ with 6@ = y, if such a func-
tion exists. The value of @ changes by

1 each time a curve of C, is crossed.
For example, if X is a disk then we will
show that Hl(X;Z) =0, s0 6y =0 im-
plies ¢ = 6@ for some @, hence every
transverse curve system C,, forms the level curves of a function . On the other

1 hand, if X is an annulus then this need no longer be true, as
. illustrated in the example shown in the figure at the left, where

the equation ¢ = 5@ obviously has no solution even though
,' oy = 0. By identifying the inner and outer boundary circles

) ‘& o of this annulus we obtain a similar example on the torus. Even
' with G = Z, the equation ¢ — 6@ has no solution since the
curve C, does not separate X into two regions X, and X, .

The key to relating cohomology groups to homology groups is the observation
that a function from i-simplices of X to G is equivalent to a homomorphism from the
simplicial chain group A;(X) to G. This is because A, (X) is free abelian with basis the
i-simplices of X, and a homomorphism with domain a free abelian group is uniquely
determined by its values on basis elements, which can be assigned arbitrarily. Thus we
have an identification of Ai(X ; G) with the group Hom(A; (X), G) of homomorphisms
A;(X)— G, whichis called the dual group of A;(X). There is also a simple relationship
of duality between the homomorphism 6 :Ai(X ; G)—»A”l(X ;G) and the boundary
homomorphism 0:A;,;(X)—A;(X). The general formula for § is

Sp([vy, -, Vi) = 2(—1)%9([1}0, T sﬁjs""viu])
J

and the latter sumis just @ (0[vg, -+, V;;11). Thus we have 6@ = @0. In other words,
0 sends each @ € Hom(A,;(X), G) to the composition A, ; (X) N A (X) -, G, which
in the language of linear algebra means that ¢ is the dual map of 0.

Thus we have the algebraic problem of understanding the relationship between
the homology groups of a chain complex and the homology groups of the dual complex
obtained by applying the functor C+— Hom(C, G). This is the first topic of the chapter.
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3.1 Cohomology Groups

Homology groups H, (X) are the result of a two-stage process: First one forms a
chain complex --- — C, 2, C,_1 — --- of singular, simplicial, or cellular chains,
then one takes the homology groups of this chain complex, Kero/Imod. To obtain
the cohomology groups H™(X;G) we interpolate an intermediate step, replacing the
chain groups C,, by the dual groups Hom(C,,, G) and the boundary maps 0 by their
dual maps &, before forming the cohomology groups Ker §/Imé. The plan for this
section is first to sort out the algebra of this dualization process and show that the
cohomology groups are determined algebraically by the homology groups, though
in a somewhat subtle way. Then after this algebraic excursion we will define the
cohomology groups of spaces and show that these satisfy basic properties very much
like those for homology. The payoff for all this formal work will begin to be apparent

in subsequent sections.

The Universal Coefficient Theorem

Let us begin with a simple example. Consider the chain complex

0—sz7-2.7-2.7-%.7___.p

where Z = 7 is the map x — 2x. If we dualize by taking Hom(—, G) with G = Z,
we obtain the cochain complex

In the original chain complex the homology groups are 7Z’s in dimensions 0 and 3,
together with a Z, in dimension 1. The homology groups of the dual cochain com-
plex, which are called cohomology groups to emphasize the dualization, are again Z’s
in dimensions 0 and 3, but the Z, in the 1-dimensional homology of the original
complex has shifted up a dimension to become a Z, in 2-dimensional cohomology.
More generally, consider any chain complex of finitely generated free abelian
groups. Such a chain complex always splits as the direct sum of elementary com-
plexes of the forms 0—Z—0 and 0—»Z7 = 7—0, according to Exercise 43 in §2.2.
Applying Hom(—, Z) to this direct sum of elementary complexes, we obtain the direct
sum of the corresponding dual complexes 0« Z <« 0 and 0« Z <2 Z < 0. Thus the
cohomology groups are the same as the homology groups except that torsion is shifted
up one dimension. We will see later in this section that the same relation between ho-
mology and cohomology holds whenever the homology groups are finitely generated,
even when the chain groups are not finitely generated. It would also be quite easy to
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see in this example what happens if Hom(—, Z) is replaced by Hom(—, G), since the
dual elementary cochain complexes would then be 0« G «—0 and 0« G <= G — 0.

Consider now a completely general chain complex C of free abelian groups

To dualize this complex we replace each chain group C,, by its dual cochain group
C,i = Hom(C,,, G), the group of homomorphisms C,, — G, and we replace each bound-
ary map 9:C,— C,_, by its dual coboundary map § = 0*:C,'_; —C,;. The reason
why 6 goes in the opposite direction from 0, increasing rather than decreasing di-
mension, is purely formal: For a homomorphism «:A— B, the dual homomorphism
«* :Hom(B, G) —Hom(A, G) is defined by o* (@) = @, so «* sends B—> G to the
composition A - B % G. Dual homomorphisms obviously satisfy («8)* = B* «*,
1* = 1, and 0* = 0. In particular, since 00 = 0 it follows that 66 = 0, and the
cohomology group H"(C;G) can be defined as the ‘homology group’ Ker§/Imé at
C,: in the cochain complex

2

s
—Cy iy

) n-1

Our goal is to show that the cohomology groups H" (C;G) are determined solely
by G and the homology groups H,,(C) = Kerd/Imo. A first guess might be that
H"(C;G) is isomorphic to Hom(H,,(C), G), but this is overly optimistic, as shown by
the example above where H, was zero while H* was nonzero. Nevertheless, there is
a natural map h:H"(C;G) —Hom(H,(C),G), defined as follows. Denote the cycles
and boundaries by Z, = Kerd ¢ C, and B, = Imd C C,,. A class in H"(C;G) is
represented by a homomorphism ¢ :C,, — G such that 6@ = 0, thatis, 0o =0, orin
other words, @ vanishes on B,,. The restriction ¢, = @ | Z,, then induces a quotient
homomorphism @ :Z, /B, — G, an element of Hom(H,(C),G). If @ isin Imd, say
® =0y = Yo, then @ is zeroon Z,, so ¢, = 0 and hence also @, = 0. Thus there is
a well-defined quotient map h:H"(C;G)—Hom(H,,(C),G) sending the cohomology
class of @ to @,. Obviously h is a homomorphism.

It is not hard to see that h is surjective. The short exact sequence

0—2,—C,—B, ,—0

splits since B,,_; is free, being a subgroup of the free abelian group C,,_;. Thus
there is a projection homomorphism p:C,, — Z,, that restricts to the identity on Z,,.
Composing with p gives a way of extending homomorphisms @ :Z,, — G to homo-
morphisms ¢ = @up:C,— G. In particular, this extends homomorphisms Z, —G
that vanish on B, to homomorphisms C,,— G that still vanish on B,, or in other
words, it extends homomorphisms H,,(C) — G to elements of Keré. Thus we have
a homomorphism Hom(H, (C),G)— Keré. Composing this with the quotient map
Ker § — H"(C;G) gives a homomorphism from Hom(H,(C),G) to H"(C;G). If we



192 Chapter 3 Cohomology

—_—T

follow this map by h we get the identity map on Hom(H,,(C), G) since the effect of
composing with h is simply to undo the effect of extending homomorphisms via p.
This shows that h is surjective. In fact it shows that we have a split short exact
sequence

0 — Kerh — H"(C;G) = Hom(H,,(C),G) — 0

The remaining task is to analyze Ker h. A convenient way to start the process is
to consider not just the chain complex C, but also its subcomplexes consisting of the
cycles and the boundaries. Thus we consider the commutative diagram of short exact

sequences

0 Zn+1 Cn+1 9 Bn O
(i) lo |o ; lo

0 Zn Cn Bn—l O

where the vertical boundary maps on Z,,,, and B,, are the restrictions of the boundary
map in the complex C, hence are zero. Dualizing (i) gives a commutative diagram

0 ZVTH C‘VT+1 B:; O
(i) To 1s To
0 Zn Cn n-1 0

The rows here are exact since, as we have already remarked, the rows of (i) split, and
the dual of a split short exact sequence is a split short exact sequence because of the
natural isomorphism Hom(A @ B, G) ~ Hom(A, G) ® Hom(B,G).

We may view (ii), like (i), as part of a short exact sequence of chain complexes.
Since the coboundary maps in the Z,; and B,; complexes are zero, the associated long
exact sequence of homology groups has the form

(iii) i e— Bf— Z¥ «— H™(C;G)«— B} | «— ZF [ — -

The ‘boundary maps’ Z,, — B,: in this long exact sequence are in fact the dual maps
i) of the inclusions i, :B, — Z,, as one sees by recalling how these boundary maps
are defined: In (ii) one takes an element of Z,;, pulls this back to C, , applies § to
get an element of C;,,, then pulls this back to B;;. The first of these steps extends
a homomorphism @,:Z,—G to ¢:C,,— G, the second step composes this ¢ with
0, and the third step undoes this composition and restricts ¢ to B,,. The net effect
is just to restrict @, from Z, to B,,.

A long exact sequence can always be broken up into short exact sequences, and

doing this for the sequence (iii) yields short exact sequences
(iv) 0«— Keri} «— H"(C;G) «— Cokeri;_,«— 0

The group Keri; can be identified naturally with Hom(H,,(C),G) since elements of
Ker i) are homomorphisms Z, — G that vanish on the subgroup B,,, and such homo-
morphisms are the same as homomorphisms Z, /B, — G. Under this identification of
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Ker i with Hom(H,, (C),G), the map H"(C;G)— Ker i} in (iv) becomes the map h
considered earlier. Thus we can rewrite (iv) as a split short exact sequence

(v) 0 — Cokeri* | — H"(C;G) = Hom(H,,(C),G) — 0

Our objective now is to show that the more mysterious term Cokeri)_, de-
pends only on H,_;(C) and G, in a natural, functorial way. First let us observe that
Cokeri);_, would be zero if it were always true that the dual of a short exact sequence
was exact, since the dual of the short exact sequence

(vi) 0—B,  —~>Z2, ,—H, ;(C)—0

is the sequence

%
n-1

(vii) O«— B} |« 27} |«—H, ;(O)*—0

*
n-1»

and if this were exact at B then i);_, would be surjective, hence Cokeri}_; would
be zero. This argument does apply if H,,_; (C) happens to be free, since (vi) splits
in this case, which implies that (vii) is also split exact. So in this case the map h
in (v) is an isomorphism. However, in the general case it is easy to find short exact
sequences whose duals are not exact. For example, if we dualize 0 —7 —» 7 — Z,—0
by applying Hom(—,Z) we get 0« Z <2 Z «— 0«0 which fails to be exact at the
left-hand Z, precisely the place we are interested in for Cokeri:_;.

We might mention in passing that the loss of exactness at the left end of a short

exact sequence after dualization is in fact all that goes wrong, in view of the following:

Exercise. If A—B— C—0 is exact, then dualizing by applying Hom(—, G) yields an
exact sequence A* «— B* — C* 0.

However, we will not need this fact in what follows.

The exact sequence (vi) has the special feature that both B,,_; and Z,,_; are free,
so (vi) can be regarded as a free resolution of H,,_,(C), where a free resolution of an
abelian group H is an exact sequence
f2

fi fo

'__’FZ F] FO H—0

with each F,, free. If we dualize this free resolution by applying Hom(—, G), we
may lose exactness, but at least we get a chain complex — or perhaps we should
say ‘cochain complex,” but algebraically there is no difference. This dual complex has

the form
fz* Fl* f]* F(;k fo* H*‘—O

--<—F2*

Let us use the temporary notation H" (F; G) for the homology group Ker f,,,/Im f,/
of this dual complex. Note that the group Cokeri_; that we are interested in is
H'(F;G) where F is the free resolution in (vi). Part (b) of the following lemma there-
fore shows that Cokeri,:_; depends only on H,,_;(C) and G.
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Lemma 3.1. (@) Given free resolutions F and F' of abelian groups H and H', then
every homomorphism «:H—H' can be extended to a chain map from F to F':

l(xz l(xl l(xo ltx

1:2/ f2 F/

: fl FO’ fO H’ O
Furthermore, any two such chain maps extending « are chain homotopic.

(b) For any two free resolutions F and F' of H, there are canonical isomorphisms
H™(F;G) = H"(F';G) forall n.

Proof: The «;’s will be constructed inductively. Since the F,’s are free, it suffices to
define each «; on a basis for F;. To define «,, observe that surjectivity of fj; implies
that for each basis element x of F, there exists x’ € F; such that fi(x") = «f;,(x),
so we define &, (x) = x’. We would like to define «; in the same way, sending a basis
element x € F; to an element x' € F; such that f](x') = &y f;(x). Such an x" will
exist if o f;(x) lies in Im f| = Ker f{;, which it does since fj,f; = &fyf; = 0. The
same procedure defines all the subsequent «;’s.

If we have another chain map extending « given by maps «;:F;—F;, then the
differences B; = «; — «; define a chain map extending the zero map B:H—H'. It
will suffice to construct maps A;:F;—F;,, defining a chain homotopy from S; to 0,
thatis, with B; = f{,1A; +A,_,.fi- The A;’s are constructed inductively by a procedure
much like the construction of the «;’s. When i = 0 we let A_;:H—F| be zero,
and then the desired relation becomes B, = fjA,. We can achieve this by letting
A, send a basis element x to an element x’ € F; such that f](x') = By(x). Such
an x' exists since Im f] = Ker fj and f;B,(x) = Bfy(x) = 0. For the inductive
step we wish to define A; to take a basis element x € F; to an element x" € F/,,
such that f,;(x") = B;(x) — A;_,fi(x). This will be possible if B;(x) — A;_1fi(x)
lies in Im f;,; = Ker f;, which will hold if f;(B; — A,_;f;) = 0. Using the relation
fiB; = Bi_1f; and the relation B,_; = f/A,_; + A;_»f;_; which holds by induction, we
have

Ji(Bi =i f)) = fiBi = fidia fi
=Bi1fi— fidisafi= Bioy = [idis)fi = Ao fia fi =0
as desired. This finishes the proof of (a).

The maps «,, constructed in (a) dualize to maps «;, :F,* —F," forming a chain
map between the dual complexes F'* and F*. Therefore we have induced homomor-
phisms on cohomology «™ : H"(F'; G) — H"(F; G). These do not depend on the choice
of «,,’s since any other choices «;, are chain homotopic, say via chain homotopies
A,, and then «; and «," are chain homotopic via the dual maps A} since the dual
of the relation &; — o = fi 1 A; + A;_ 1 fi is of — o™ = Af fi5 + fFAL.

The induced homomorphisms «*:H"(F';G) —H"(F;G) satisfy (Bo)* = «™B*
for a composition H —=> H’ £, H" with a free resolution F”" of H” also given, since
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one can choose the compositions B, &, of extensions «, of « and S, of B as an
extension of Sx. In particular, if we take & to be an isomorphism and S to be its
inverse, with F' = F, then «*B* = (Bx)* = 1, the latter equality coming from the
obvious extension of 1 :H — H by the identity map of F. The same reasoning shows
B*a* = 1, so «* is an isomorphism. Finally, if we specialize further, taking « to
be the identity but with two different free resolutions F and F’, we get a canonical
isomorphism 1*: H"(F';G)—H"(F;G). O

Every abelian group H has a free resolution of the form 0 — F; — F,— H — 0, with
F, = 0 for i > 1, obtainable in the following way. Choose a set of generators for H
and let F,, be a free abelian group with basis in one-to-one correspondence with these
generators. Then we have a surjective homomorphism f,:F,— H sending the basis
elements to the chosen generators. The kernel of f is free, being a subgroup of a free
abelian group, so we can let F; be this kernel with f; : F; — F, the inclusion, and we can
then take F; = 0 for i > 1. For this free resolution we obviously have H "(F;G) =0 for
n > 1, so this must also be true for all free resolutions. Thus the only interesting group
H"™(F;G) is H! (F; G). As we have seen, this group depends only on H and G, and the
standard notation for it is Ext(H, G). This notation arises from the fact that Ext(H, G)
has an interpretation as the set of isomorphism classes of extensions of G by H, that
is, short exact sequences 0 — G — J— H — 0, with a natural definition of isomorphism
between such exact sequences. This is explained in books on homological algebra, for
example [Brown 1982], [Hilton & Stammbach 1970], or [MacLane 1963]. However, this
interpretation of Ext(H, G) is rarely needed in algebraic topology.

Summarizing, we have established the following algebraic result:

Theorem 3.2. If a chain complex C of free abelian groups has homology groups
H, (C), then the cohomology groups H™(C;G) of the cochain complex Hom(C,,, G)
are determined by split exact sequences

0 — Ext(H, ,(C),G) — H"(C;G) - Hom(H,,(C),G) — 0 -

This is known as the universal coefficient theorem for cohomology because
it is formally analogous to the universal coefficient theorem for homology in §3.A
which expresses homology with arbitrary coefficients in terms of homology with Z
coefficients.
Computing Ext(H, G) for finitely generated H is not difficult using the following
three properties:
» Ext(H®H',G) ~ Ext(H,G) ®Ext(H',G).
= Ext(H,G) =0 if H is free.
- Ext(Z,,G) = G/nG.
The first of these can be obtained by using the direct sum of free resolutions of H and
H' as a free resolution for H®H'. If H is free, the free resolution 0—H—H—0
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yields the second property, while the third comes from dualizing the free resolution
0—72-%7— Z,, — 0 to produce an exact sequence

0 «— Ext(Z,,G) «— Hom(Z,G) —— Hom(Z,G) «— Hom(Z,,G) <— 0
I I I

G/nG G n G

In particular, these three properties imply that Ext(H, Z) is isomorphic to the torsion
subgroup of H if H is finitely generated. Since Hom(H, Z) is isomorphic to the free
part of H if H is finitely generated, we have:

Corollary 3.3. If the homology groups H, and H,_; of a chain complex C of
free abelian groups are finitely generated, with torsion subgroups T,, C H, and
T,_, C H,_;, then H"(C;Z) ~ (H,/T,)®T,_;. O

It is useful in many situations to know that the short exact sequences in the
universal coefficient theorem are natural, meaning that a chain map « between chain
complexes C and C’ of free abelian groups induces a commutative diagram

0 — Ext(H, 1(C),G) — H™(C;G) — Hom(H,(C),G) — 0

I(tx*)* Ia* I(a*)*

0 — Ext(H, 1(C"),G) — H"(C’;G) —"~ Hom (H,(C'),G) — 0

This is apparent if one just thinks about the construction; one obviously obtains a map
between the short exact sequences (iv) containing Ker i;‘l and Coker i,ﬁ,l, the identi-
fication Ker i;'; = Hom(H, (C),G) is certainly natural, and the proof of Lemma 3.1
shows that Ext(H, G) depends naturally on H.

However, the splitting in the universal coefficient theorem is not natural since
it depends on the choice of the projections p:C, — Z,,. An exercise at the end of
the section gives a topological example showing that the splitting in fact cannot be
natural.

The naturality property together with the five-lemma proves:

Corollary 3.4. If a chain map between chain complexes of free abelian groups in-
duces an isomorphism on homology groups, then it induces an isomorphism on co-
homology groups with any coefficient group G. m]

One could attempt to generalize the algebraic machinery of the universal coeffi-
cient theorem by replacing abelian groups by modules over a chosen ring R and Hom
by Homyg, the R-module homomorphisms. The key fact about abelian groups that
was needed was that subgroups of free abelian groups are free. Submodules of free
R-modules are free if R is a principal ideal domain, so in this case the generalization
is automatic. One obtains natural split short exact sequences

0 — Extg(H,,_,(C),G) — H"(C;G) = Homy (H,,(C),G) — 0
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where C is a chain complex of free R-modules with boundary maps R-module ho-
momorphisms, and the coefficient group G is also an R-module. If R is a field, for
example, then R-modules are always free and so the Extp term is always zero since
we may choose free resolutions of the form 0— Fy,—H—0.

It is interesting to note that the proof of Lemma 3.1 on the uniqueness of free res-
olutions is valid for modules over an arbitrary ring R. Moreover, every R-module H
has a free resolution, which can be constructed in the following way. Choose a set of
generators for H as an R-module, and let F;, be a free R-module with basis in one-to-
one correspondence with these generators. Thus we have a surjective homomorphism
Jo:Fy— H sending the basis elements to the chosen generators. Now repeat the pro-
cess with Ker f, in place of H, constructing a homomorphism f; : F; —F, sending a
basis for a free R-module F; onto generators for Ker f;,. And inductively, construct
fn:F,—F,_; with image equal to Ker f,,_; by the same procedure.

By Lemma 3.1 the groups H™(F;G) depend only on H and G, not on the free
resolution F. The standard notation for H"(F;G) is Extg(H,G). For sufficiently
complicated rings R the groups Eth(H ,G) can be nonzero for n > 1. In certain
more advanced topics in algebraic topology these Ext} groups play an essential role.

A final remark about the definition of Extﬁ(H ,G): By the Exercise stated earlier,
exactness of F} —F,— H—0 implies exactness of F;" « Fj < H* «<— 0. This means
that HO(F ;G) as defined above is zero. Rather than having Ext?Z (H,G) be automati-
cally zero, it is better to define H" (F;G) as the n'" homology group of the complex

- «— F" — F§ < 0 with the term H* omitted. This can be viewed as defining the
groups H"(F;G) to be unreduced cohomology groups. With this slightly modified
definition we have EXt% (H,G) = HO(F;G) = H* = Homg (H, G) by the exactness of
F — Ff < H* < 0. The real reason why unreduced Ext groups are better than re-
duced groups is perhaps to be found in certain exact sequences involving Ext and
Hom derived in §3.F, which would not work with the Hom terms replaced by zeros.

Cohomology of Spaces

Now we return to topology. Given a space X and an abelian group G, we define
the group C"(X; G) of singular n-cochains with coefficients in G to be the dual group
Hom(C,,(X), G) of the singular chain group C,,(X). Thus an n-cochain ¢ € C*(X;G)
assigns to each singular n-simplex o :A" — X avalue @ (o) € G. Since the singular
n-simplices form a basis for C, (X), these values can be chosen arbitrarily, hence
n-cochains are exactly equivalent to functions from singular n-simplices to G.

The coboundary map 6:C"(X;G) —»C”“(X; G) is the dual 0*, so for a cochain
@ € C"(X;G), its coboundary §@ is the composition C,, . ; (X) =2, C,(X) -2, G. This
means that for a singular (n + 1)-simplex o : A" X we have

S@(0) =X (-D)'@(0 [ [vg, -+, Dy -+, Vpir )
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It is automatic that §° = 0 since 6° is the dual of 3° = 0. Therefore we can define the
cohomology group H"(X; G) with coefficients in G to be the quotient Ker §/Im § at
C™(X;G) in the cochain complex

c— O (X 6) < CM(X:G) < CN(XG) — - — COUX;G) — O

Elements of Ker § are cocycles, and elements of Im § are coboundaries. For a cochain
@ to be a cocycle means that 6 = @od = 0, or in other words, @ vanishes on
boundaries.

Since the chain groups C,,(X) are free, the algebraic universal coefficient theorem
takes on the topological guise of split short exact sequences

0 — Ext(H,_,(X),G) — H"(X;G) — Hom(H,,(X),G) — 0

which describe how cohomology groups with arbitrary coefficients are determined
purely algebraically by homology groups with Z coefficients. For example, if the ho-
mology groups of X are finitely generated then Corollary 3.3 tells how to compute
the cohomology groups H"(X;Z) from the homology groups.

When n = 0 there is no Ext term, and the universal coefficient theorem re-
duces to an isomorphism HO(X; G) = Hom(H,(X), G). This can also be seen directly
from the definitions. Since singular O-simplices are just points of X, a cochain in
C%(X;G) is an arbitrary function @ : X — G, not necessarily continuous. For this to be
a cocycle means that for each singular 1-simplex o :[v, v;]— X we have é@(0) =
@(00) = o(vy) —o(vy) = 0. This is equivalent to saying that ¢ is constant on path-
components of X. Thus H 9(X;G) is all the functions from path-components of X to
G. This is the same as Hom(H(X), G).

Likewise in the case of H!(X;G) the universal coefficient theorem gives an iso-
morphism Hl(X;G) ~ Hom(H, (X),G) since Ext(H,(X),G) = 0, the group H;(X)
being free. If X is path-connected, H, (X) is the abelianization of 1T, (X) and we can
identify Hom(H, (X), G) with Hom(, (X), G) since G is abelian.

The universal coefficient theorem has a simpler form if we take coefficients in
a field F for both homology and cohomology. In §2.2 we defined the homology
groups H, (X;F) as the homology groups of the chain complex of free F-modules
C,(X;F), where C,(X;F) has basis the singular n-simplices in X. The dual com-
plex Homg(C,, (X; F), F) of F-module homomorphisms is the same as Hom(C,,(X), F)
since both can be identified with the functions from singular n-simplices to F. Hence
the homology groups of the dual complex Homy(C, (X;F),F) are the cohomology
groups H"(X;F). In the generalization of the universal coefficient theorem to the
case of modules over a principal ideal domain, the Ext; terms vanish since F is a
field, so we obtain isomorphisms

H™(X;F) ~ Homg(H,,(X;F),F)
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Thus, with field coefficients, cohomology is the exact dual of homology. Note that
when F = Z, or Q we have Homy(H, G) = Hom(H, G), the group homomorphisms,
for arbitrary F-modules G and H.

For the remainder of this section we will go through the main features of singular
homology and check that they extend without much difficulty to cohomology.

Reduced Groups. Reduced cohomology groups H™(X;G) canbe defined by dualizing
the augmented chain complex - - — Cy(X) —£5 7—0, then taking Ker /Im. As with
homology, this gives H"(X;G) = H"(X;G) for n > 0, and the universal coefficient
theorem identifies PNIO(X; G) with Hom(ﬁO(X), G). We can describe the difference be-
tween H%(X; G) and H°(X; G) more explicitly by using the interpretation of H°(X;G)
as functions X — G that are constant on path-components. Recall that the augmen-
tation map ¢:C,(X)—Z sends each singular 0-simplex ¢ to 1, so the dual map &*
sends a homomorphism @:Z— G to the composition Cy(X) - 7 % G, which is
the function o — @(1). This is a constant function X — G, and since @ (1) can be
any element of G, the image of £* consists of precisely the constant functions. Thus
H°(X;G) is all functions X — G that are constant on path-components modulo the
functions that are constant on all of X.

Relative Groups and the Long Exact Sequence of a Pair. To define relative groups
H"(X,A;G) for apair (X,A) we first dualize the short exact sequence

0— C,(A) -5 C, (X)L C,(X,A) — 0
by applying Hom(—, G) to get
0— C™(A:G) <= C"(X:G) <X C™(X,A:G) — 0

where by definition C" (X, A;G) = Hom(C,, (X, A),G). This sequence is exact by the
following direct argument. The map i* restricts a cochain on X to a cochain on A.
Thus for a function from singular n-simplices in X to G, the image of this function
under i* is obtained by restricting the domain of the function to singular n-simplices
in A. Every function from singular #n-simplices in A to G can be extended to be
defined on all singular n-simplices in X, for example by assigning the value 0 to
all singular n-simplices notin A, so i* is surjective. The kernel of i* consists of
cochains taking the value 0 on singular n-simplices in A. Such cochains are the
same as homomorphisms C,(X,A) = C,(X)/C, (A)— G, so the kernel of i* is exactly
C"(X,A;G) = Hom(C,(X,A),G), giving the desired exactness. Notice that we can
view C"(X, A;G) as the functions from singular n-simplices in X to G that vanish
on simplices in A, since the basis for C, (X) consisting of singular n-simplices in X
is the disjoint union of the simplices with image contained in A and the simplices
with image not contained in A.

Relative coboundary maps §:C"(X, A; G) — cntl (X, A; G) are obtained as restric-
tions of the absolute §’s, so relative cohomology groups H" (X, A; G) are defined. The
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fact that the relative cochain group is a subgroup of the absolute cochains, namely the
cochains vanishing on chains in A, means that relative cohomology is conceptually a
little simpler than relative homology.

The maps i* and j* commute with § since i and j commute with 9, so the
preceding displayed short exact sequence of cochain groups is part of a short exact
sequence of cochain complexes, giving rise to an associated long exact sequence of
cohomology groups

S HM(X,A:G) -5 HY (X G) 25 H™(A: G) =5 H™ (X, A:G) —> - - -

By similar reasoning one obtains a long exact sequence of reduced cohomology groups
for a pair (X, A) with A nonempty, where ﬁ”(X,A; G) = H"(X, A;G) for all n, as in
homology. Taking A to be a point x, this exact sequence gives an identification of
H™(X;G) with H"(X, x,;G).

More generally there is a long exact sequence for a triple (X, A, B) coming from
the short exact sequences

0«— C"(A,B;G)ﬁ C"(X,B;G)ﬁ C"(X,A;G)— 0

The long exact sequence of reduced cohomology can be regarded as the special case
that B is a point.

As one would expect, there is a duality relationship between the connecting ho-
momorphisms &:H"(A;G)—H" (X, A;G) and 0:H,.,(X,A)—H,(A). This takes
the form of the: Commutatl-ve diagram H"(A:G) 5 H" (X, A:G)
shown at the right. To verify commu- lh lh
tativity, recall how the two connecting

a*
Hom(H,(A),G) — Hom (H,,, (X, A),G
homomorphisms are defined, via the om (H,(A),G) om (H,.,(X,4),6)

diagrams . .

—
- —|
— -

— «—

C(A:G)— C"(X:G) Ca(A:G) — Co(X:G)

—
—

The connecting homomorphisms are represented by the dashed arrows, which are
well-defined only when the chain and cochain groups are replaced by homology and
cohomology groups. To show that hd = 0*h, start with an element « € H"(A;G)
represented by a cocycle @ € C"(A;G). To compute 6(x) we first extend @ to a
cochain @ € C"(X;G), say by letting it take the value 0 on singular simplices not in
A. Then we compose @ with 0:C,,,,(X)—C,,(X) to get a cochain @0 € c (X 6),
which actually lies in €™ (X, A;G) since the original ¢ was a cocycle in A. This
cochain o € C”“(X,A;G) represents 6(x) in H”“(X,A;G). Now we apply the
map h, which simply restricts the domain of @0 to relative cyclesin C,,,; (X, A), that
is, (n + 1)-chains in X whose boundary lies in A. On such chains we have o = @0
since the extension of @ to @ is irrelevant. The net result of all this is that hé(x)
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is represented by @d. Let us compare this with d*h(x). Applying h to @ restricts
its domain to cycles in A. Then applying 0* composes with the map which sends a
relative (n + 1)-cycle in X to its boundary in A. Thus 0*h(«) is represented by 2o
just as hd(x) was, and so the square commutes.

Induced Homomorphisms. Dual to the chain maps f,:C, (X)—C,(Y) induced by
f:X—Y are the cochain maps f?:C"(Y;G)—C"(X;G). The relation fi0 = of,
dualizes to §f% = f*5, so f* induces homomorphisms f*:H"(Y;G)—H"(X;G).
In the relative case a map f:(X,A)— (Y,B) induces f*:H"(Y,B;G)—H"(X, A;G)
by the same reasoning, and in fact f induces a map between short exact sequences of
cochain complexes, hence a map between long exact sequences of cohomology groups,
with commuting squares. The properties (fg)? = g* f# and 17 = 1 imply (fg)* =
g f* and 1* = 1, s0 X — H"(X;G) and (X,A) — H"(X,A;G) are contravariant
functors, the ‘contra’ indicating that induced maps go in the reverse direction.

The algebraic universal coefficient theorem applies also to relative cohomology
since the relative chain groups C, (X, A) are free, and there is a naturality statement:
Amap f:(X,A)— (Y,B) induces a commutative diagram

0 — Ext(H, 1(X,A),G) — H"(X,A:G) —— Hom(H,(X,A),G) — 0
2 & [csr
0 — Ext(H, ,(Y,B),G) — H"(Y,B:G) —*— Hom(H,(Y,B),G) — 0
This follows from the naturality of the algebraic universal coefficient sequences since
the vertical maps are induced by the chain maps f,:C, (X,A)—C,(Y,B). When the
subspaces A and B are empty we obtain the absolute forms of these results.

Homotopy Invariance. The statement is that if f =~ g:(X,A)— (Y,B), then f* =
g* H"(Y,B)—H"(X,A). This is proved by direct dualization of the proof for ho-
mology. From the proof of Theorem 2.10 we have a chain homotopy P satisfying
g, — f, = 0P + Pd. This relation dualizes to g* — f* = P*§ + 6P*, so P* is a chain
homotopy between the maps f#,g%:C"(Y;G)— C"™(X;G). This restricts also to a
chain homotopy between f* and g* on relative cochains, the cochains vanishing on
singular simplices in the subspaces B and A. Since f* and g* are chain homotopic,
they induce the same homomorphism f* = g* on cohomology.

Excision. For cohomology this says that for subspaces Z ¢ A Cc X with the closure
of Z contained in the interior of A, the inclusion i: (X - Z,A - Z) — (X, A) induces
isomorphisms i*:H"(X,A;G)—H"(X — Z,A — Z;G) for all n. This follows from
the corresponding result for homology by the naturality of the universal coefficient
theorem and the five-lemma. Alternatively, if one wishes to avoid appealing to the
universal coefficient theorem, the proof of excision for homology dualizes easily to
cohomology by the following argument. In the proof for homology there were chain
maps t:C,(A+B)—C,(X) and p:C,(X)—C,(A+B) suchthat pt =1 and 1 —tp =
0D + Do for a chain homotopy D. Dualizing by taking Hom(—, G), we have maps
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p* and (* between C"(A + B;G) and C"(X;G), and these induce isomorphisms on
cohomology since (*p* = 1 and 1 — p™1* = D*§ + 5D™. By the five-lemma, the maps
C"(X,A;G)— C"™(A + B, A; G) also induce isomorphisms on cohomology. There is an
obvious identification of C"(A+B, A; G) with C" (B, AnB;G), so we get isomorphisms
H™(X,A) ~ H"(B, A n B;G) induced by the inclusion (B, AN B) — (X, A).

Axioms for Cohomology. These are exactly dual to the axioms for homology. Restrict-
ing attention to CW complexes again, a (reduced) cohomology theory is a sequence of
contravariant functors h" from CW complexes to abelian groups, together with nat-
ural coboundary homomorphisms 6§ : IZ"(A) — ! (X/A) for CW pairs (X, A), satis-
fying the following axioms:

(1) If f~g:X—Y,then f* = g*: A" (Y)—h"(X).
(2) For each CW pair (X, A) there is a long exact sequence

3

LR A) S i) 2 ) il (x/A) L, ...

where i is the inclusion and g is the quotient map.
(3) For a wedge sum X = \/, X, with inclusions i,:X, — X, the product map
wik:h™(X) =TI h™(X,) is an isomorphism for each n.

We have already seen that the first axiom holds for singular cohomology. The sec-
ond axiom follows from excision in the same way as for homology, via isomorphisms
jas "(X/A;G) = H"(X, A; G). Note that the third axiom involves direct product, rather
than the direct sum appearing in the homology version. This is because of the nat-
ural isomorphism Hom(,A,, G) ~ [[,Hom(A,, G), which implies that the cochain
complex of a disjoint union [[, X, is the direct product of the cochain complexes
of the individual X,’s, and this direct product splitting passes through to cohomol-
ogy groups. The same argument applies in the relative case, so we get isomorphisms
H"(Iy Xy, Ly Ay; G) = T, H" (X4, Ay; G) . The third axiom is obtained by taking the
A,’s to be basepoints x, and passing to the quotient [ [, X, /[1yXy = VaXu-

The relation between reduced and unreduced cohomology theories is the same as
for homology, as described in §2.3.

Simplicial Cohomology. If X is a A-complex and A C X is a subcomplex, then the
simplicial chain groups A,, (X, A) dualize to simplicial cochain groups A (X, A;G) =
Hom(A, (X, A),G), and the resulting cohomology groups are by definition the sim-
plicial cohomology groups HX(X, A;G). Since the inclusions A, (X,A) C C,(X,A)
induce isomorphisms H,%(X ,A) = H, (X, A), Corollary 3.4 implies that the dual maps
C"(X,A;G)— A" (X, A; G) also induce isomorphisms H" (X, A;G) ~ HY (X, A; G).

Cellular Cohomology. For a CW complex X this is defined via the cellular cochain
complex formed by the horizontal sequence in the following diagram, where coeffi-
cients in a given group G are understood, and the cellular coboundary maps d,, are
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the compositions §,,j,, , making the triangles commute. Note that d,,d,,_; = 0 since
Jnbn-1 =0. 0

. anl(anl)
Jny 4 \6‘7171
.. Hn—l(Xn—l’Xn—Z) n-1 Hn(Xn’Xn—l) dn Hn+1(Xn+l’Xn)

(X"
7 ~.

Hn(X) an(Xn+l) O

0

Theorem 3.5. H"(X;G) =~ Ker d,/Imd,_,. Furthermore, the cellular cochain com-

plex {H"(X",X"';G),d,} is isomorphic to the dual of the cellular chain complex,

obtained by applying Hom(—, G).
Proof: The universal coefficient theorem implies that H*(X", X"~ ';G) = 0 for k + n.
The long exact sequence of the pair (X", X" ') then gives isomorphisms H K(X™G) ~
H*(X" ', G) for k # n, n — 1. Hence by induction on n we obtain H*(X™;G) = 0 if
k > n. Thus the diagonal sequences in the preceding diagram are exact. The universal
coefficient theorem also gives H*(X,X"";G) = 0 for k < n + 1, so H*(X;G) ~
H™(X"*1;G). The diagram then yields isomorphisms

H™(X;G) ~ H"(X"";G) ~Ker§,, ~ Kerd,,/Im§5,_; ~Kerd,/Imd,,_,
For the second statement in the theorem we have the diagram
Hk(Xk’Xk—l;G) Hk(Xk;G) 0 Hk+1(Xk+1’Xk;G)
[ [ [
Hom (H,(X* X*™"),G) — Hom (H,(X"),G) -2 Hom (H,,(X*"' X*),G)

The cellular coboundary map is the composition across the top, and we want to see
that this is the same as the composition across the bottom. The first and third vertical
maps are isomorphisms by the universal coefficient theorem, so it suffices to show
the diagram commutes. The first square commutes by naturality of h, and commu-
tativity of the second square was shown in the discussion of the long exact sequence
of cohomology groups of a pair (X, A). O

Mayer-Vietoris Sequences. In the absolute case these take the form
.« — H"(X;G) — H"(A;G) ® H"(B;G) —> H" (AN B;G) — H"" ' (X;G) — - -~

where X is the union of the interiors of A and B. This is the long exact sequence
associated to the short exact sequence of cochain complexes

0— C"(A+B,G)-L C"(A:G) ® C"(B;G) B C"(ANB;G) — 0
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Here C"(A + B;G) is the dual of the subgroup C, (A + B) C C,(X) consisting of
sums of singular n-simplices lying in A or in B. The inclusion C,,(A + B) C C,(X)
is a chain homotopy equivalence by Proposition 2.21, so the dual restriction map
C"(X;G)—C"™(A + B;G) is also a chain homotopy equivalence, hence induces an
isomorphism on cohomology as shown in the discussion of excision a couple pages
back. The map g has coordinates the two restrictions to A and B, and ¢ takes the
difference of the restrictions to A n B, so it is obvious that ¢ is onto with kernel the
image of .
There is a relative Mayer-Vietoris sequence

-+ — H"(X,Y;G) — H"(A,C;G) ® H*(B,D;G) - H"(AnB,CNnD;G) — -+

for apair (X,Y) = (AuUB,CuD) with C ¢ A and D C B such that X is the union of
the interiors of A and B while Y is the union of the interiors of C and D. To derive
this, consider first the map of short exact sequences of cochain complexes

0—— C"(X,Y;G) C"(X;G) c"(Y;G)—0

l
0— C"(A+B,C+D;G) — C"(A+B;G) — C"(C+D;G) — 0

Here C"(A+ B, C + D;G) is defined as the kernel of C"(A+B;G) — C"*(C +D;G), the
restriction map, so the second sequence is exact. The vertical maps are restrictions.
The second and third of these induce isomorphisms on cohomology, as we have seen,
so by the five-lemma the first vertical map also induces isomorphisms on cohomology.
The relative Mayer-Vietoris sequence is then the long exact sequence associated to the
short exact sequence of cochain complexes

0— C"(A+B,C+D;G) % C"(A,C;G) ® C"(B,D;G) % C"(AnB,CND;G) —0

This is exact since it is the dual of the short exact sequence
0—C,(AnB,CnD)—C,(AC)®C,(B,D)—C,(A+B,C+D)—0

constructed in §2.2, which splits since C,, (A + B, C + D) is free with basis the singular

n-simplices in A or in B that do not liein C orin D.

Exercises

1. Show that Ext(H, G) is a contravariant functor of H for fixed G, and a covariant
functor of G for fixed H.

2. Show that the maps G — G and H — H multiplying each element by the integer
n induce multiplication by n in Ext(H, G).

3. Regarding Z, as a module over the ring Z,, construct a resolution of Z, by free
modules over Z, and use this to show that Exty, (Z,,Z,) is nonzero for all n.
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4. What happens if one defines homology groups h,,(X;G) as the homology groups
of the chain complex --- —Hom(G, C, (X)) —Hom(G,C,,_; (X)) — ---? More specif-
ically, what are the groups h,(X;G) when G =7, Z,,, and Q?

5. Regarding a cochain @ € C!(X;G) as a function from paths in X to G, show that
if @ is a cocycle, then

@ @f-9) =)+,

(b) @ takes the value 0 on constant paths,

© o(f)=@@if f =g,

(d) @ is a coboundary iff @ (f) depends only on the endpoints of f, for all f.

[In particular, (a) and (c) give a map H! (X; G)—Hom(m, (X), G), which the universal
coefficient theorem says is an isomorphism if X is path-connected.]
6. (a) Directly from the definitions, compute the simplicial cohomology groups of
S'x §! with Z and Z, coefficients, using the A-complex structure given in §2.1.
(b) Do the same for RP? and the Klein bottle.

7. Show that the functors h"™(X) = Hom(H,, (X),Z) do not define a cohomology theory
on the category of CW complexes.

8. Many basic homology arguments work just as well for cohomology even though
maps go in the opposite direction. Verify this in the following cases:

(a) Compute H i(S ".G) by induction on 7 in two ways: using the long exact sequence
of a pair, and using the Mayer-Vietoris sequence.

(b) Show that if A is a closed subspace of X that is a deformation retract of some
neighborhood, then the quotient map X — X/A induces isomorphisms H" (X, A;G) =
H™(X/A:;G) for all n.

(c) Show that if A is a retract of X then H"(X;G) =~ H*(A;G) @ H" (X, A;G).

9. Show thatif f:5"—S" has degree d then f*:H"(S"™;G)—H"(S";G) is multipli-
cation by 4.

10. For the lens space L,, (£, ---,¥,) defined in Example 2.43, compute the cohomol-
ogy groups using the cellular cochain complex and taking coefficients in Z, Q, Z,,,
and 7, for p prime. Verify that the answers agree with those given by the universal
coefficient theorem.

11. Let X be a Moore space M(Z,,,n) obtained from S™ by attaching a cell e py
a map of degree m.

(a) Show that the quotient map X—X/S" =S "+1induces the trivial map on ﬁi(—; 7)
for all i, but not on H""!(—;Z). Deduce that the splitting in the universal coefficient
theorem for cohomology cannot be natural.

(b) Show that the inclusion S"™ < X induces the trivial map on H i(—; Z) for all i, but
noton H, (—;Z).

12. Show Hk(X, X" G) = 0if X is a CW complex and k < n, by using the cohomology
version of the second proof of the corresponding result for homology in Lemma 2.34.
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13. Let (X,Y) denote the set of basepoint-preserving homotopy classes of basepoint-
preserving maps X — Y. Using Proposition 1B.9, show that if X is a connected CW
complex and G is an abelian group, then the map (X,K(G,1)) —H! (X;G) sending a
map f:X—K(G,1) to the induced homomorphism f, :H,(X)—H,(K(G,1)) = G is
a bijection, where we identify H ! (X;G) with Hom(H, (X), G) via the universal coeffi-
cient theorem.

3.2 Cup Product

In the introduction to this chapter we sketched a definition of cup product in
terms of another product called cross product. However, to define the cross product
from scratch takes some work, so we will proceed in the opposite order, first giving
an elementary definition of cup product by an explicit formula with simplices, then
afterwards defining cross product in terms of cup product. The other approach of
defining cup product via cross product is explained at the end of §3.B.

To define the cup product we consider cohomology with coefficients in a ring
R, the most common choices being Z, Z,, and Q. For cochains ¢ < C*(X;R) and
Y e C{’](X;R), the cup product ¢ —« ¢ € Ck”)(X;R) is the cochain whose value on a

Ak+€

singular simplex o : — X is given by the formula

(@ w)(o)=@(o|lvy -, v )P(o|[[vg, -, Vgl

where the right-hand side is the productin R. To see that this cup product of cochains
induces a cup product of cohomology classes we need a formula relating it to the
coboundary map:

H Lemma 3.6. o(pwy) = 5(pv(,u+(—1)kcpv5q/ for p € C*(X;R) and Y € Cy(X;R).

Proof: For o : AK"¥*1 5 X we have

k+1
(5(PV'~/J)(O-) Z( 1) P O-|[UO’ ) vk+1] O-|[vk+1""’vk+€+1])
i=0
k+€+1
—D¥@eop)o) = > (—Die(a|lvy, -, vi)@(a|[ve, -+, 0gy+, Viegan])
i=k

When we add these two expressions, the last term of the first sum cancels the first term
of the second sum, and the remaining terms are exactly 6(p - @) (o) = (p — ) (00)
since 90 = SN (<)o | [wg, -+, Dy, vy Vpsper - m
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From the formula 6(p « @) = 6@ « Y £ @ « Oy it is apparent that the cup
product of two cocycles is again a cocycle. Also, the cup product of a cocycle and a
coboundary, in either order, is a coboundary since @ —« Sy = +6(p —~ ) if S =0,
and 6@ « @ = 6(@p — ) if Sy = 0. It follows that there is an induced cup product

H*(X;R) x H'(X;R) —— H*"!(X;R)
This is associative and distributive since at the level of cochains the cup product
obviously has these properties. If R has an identity element, then there is an identity
element for cup product, the class 1 € H 9(X;R) defined by the 0-cocycle taking the
value 1 on each singular 0-simplex.

A cup product for simplicial cohomology can be defined by the same formula as
for singular cohomology, so the canonical isomorphism between simplicial and singu-
lar cohomology respects cup products. Here are three examples of direct calculations
of cup products using simplicial cohomology.

Example 3.7. Let M be the closed orientable surface
of genus g > 1 with the A-complex structure shown
in the figure for the case g = 2. The cup product of
interest is H (M) x H (M) — H*(M). Taking Z coef-
ficients, a basis for H; (M) is formed by the edges a;
and b;, as we showed in Example 2.36 when we com-
puted the homology of M using cellular homology.
We have HI(M) ~ Hom(H, (M), Z) by cellular coho-
mology or the universal coefficient theorem. A basis
for H, (M) determines a dual basis for Hom(H, (M), Z), so dual to a; is the coho-
mology class «; assigning the value 1 to a; and O to the other basis elements, and
similarly we have cohomology classes ; dual to b;.

To represent «; by a simplicial cocycle @; we need to choose values for @; on
the edges radiating out from the central vertex in such a way that 6¢@; = 0. This is the
‘cocycle condition’ discussed in the introduction to this chapter, where we saw that it
has a geometric interpretation in terms of curves transverse to the edges of M. With
this interpretation in mind, consider the arc labeled «; in the figure, which represents
aloop in M meeting a; in one point and disjoint from all the other basis elements a;
and b;. We define @; to have the value 1 on edges meeting the arc «; and the value
0 on all other edges. Thus @; counts the number of intersections of each edge with
the arc «;. In similar fashion we obtain a cocycle ; counting intersections with the
arc B;, and y; represents the cohomology class ; dual to b;.

Now we can compute cup products by applying the definition. Keeping in mind
that the ordering of the vertices of each 2-simplex is compatible with the indicated
orientations of its edges, we see for example that @, « ¢, takes the value 0 on all
2-simplices except the one with outer edge b; in the lower right part of the figure,
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where it takes the value 1. Thus @, —, takes the value 1 on the 2-chain ¢ formed by
the sum of all the 2-simplices with the signs indicated in the center of the figure. It is
an easy calculation that dc = 0. Since there are no 3-simplices, ¢ is not a boundary, so
it represents a nonzero element of H,(M). The fact that (@, « ;) (c) is a generator
of Z implies both that ¢ represents a generator of H,(M) = Z and that @, —« ¢,
represents the dual generator y of H>(M) ~ Hom(H,(M),Z) =~ Z. Thus o¢;~ B, =Y.
In similar fashion one computes:

Y, i=]J
O‘iVBJ':‘[O, iij]’:_(ﬁiv“j)’ a~xj=0,  Bi~B;=0
These relations determine the cup product H 1 (M)xH YoM )—H (M ) completely since
cup product is distributive. Notice that cup product is not commutative in this exam-
ple since «; -« B; = —(B; — «;). We will show in Theorem 3.14 below that this is the
worst that can happen: Cup product is commutative up to a sign depending only on
dimension.

One can see in this example that nonzero cup products of distinct classes «; or
Bj occur precisely when the corresponding loops «; or f; intersect. This is also true
for the cup product of «; or p; with itself if we allow ourselves to take two copies of

the corresponding loop and deform one of them to be disjoint from the other.

Example 3.8. The closed nonorientable surface N
of genus g can be treated in similar fashion if we
use Z, coefficients. Using the A-complex structure
shown, the edges a; give a basis for H,(N;Z,), and
the dual basis elements «; € H' (N;Z,) can be repre-
sented by cocycles with values given by counting inter-
sections with the arcs labeled «; in the figure. Then
one computes that «; — «; is the nonzero element of

H?*(N;Z,) ~ Z, and «; - «; =0 for i # j. In particu-
lar, when g = 1 we have N = RP?, and the cup product of a generator of H L(RP?; Z,)
with itself is a generator of H?(RP?; Z,).

The remarks in the paragraph preceding this example apply here also, but with
the following difference: When one tries to deform a second copy of the loop «; in
the present example to be disjoint from the original copy, the best one can do is make
it intersect the original in one point. This reflects the fact that «; - «; is now nonzero.

Example 3.9. Let X be the 2-dimensional CW complex obtained by attaching a 2-cell
to S' by the degree m map S' —S!, z — z™. Using cellular cohomology, or cellular
homology and the universal coefficient theorem, we see that H"(X;Z) consists of a
Z for n =0 and a Z,, for n = 2, so the cup product structure with Z coefficients is
uninteresting. However, with Z,, coefficients we have H HX; Z,) =12, fori=0,1,2,
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so there is the possibility that the cup product of two 1-dimensional classes can be
nontrivial.
To obtain a A-complex structure on X, take a regular

m-gon subdivided into m triangles T; around a central bt : w
vertex v, as shown in the figure for the case m = 4, then o T, &
identify all the outer edges by rotations of the m-gon. 0 T
This gives X a A-complex structure with 2 vertices, m+1 € To vz ge
edges, and m 2-simplices. A generator « of Hl(X;Zm) e, T, &

is represented by a cocycle @ assigning the value 1 to the " - w

edge e, which generates H, (X). The condition that ¢ be
a cocycle means that @(e;) + @(e) = @(e;,;) for all i, subscripts being taken mod
m. So we may take @(e;) =i € Z,,. Hence (¢ « @)(T;) = @(e;)p(e) = i. The map
h:H? (X;2,,)—Hom(H,(X;Z,,),Z,,) is an isomorphism since >); T; is a generator
of H,(X;Z,,) and there are 2-cocycles taking the value 1 on }; T;, for example the
cocycle taking the value 1 on one T; and O on all the others. The cocycle ¢ — @ takes
thevalue 0+1+---+ (m—1) on >; T;, hence represents 0+ 1+ --- + (m — 1) times
a generator B of HZ(X;Zm). InZ, thesum O+ 1+ ---+ (m—1) is 0 if m is odd
and k if m = 2k since the terms 1 and m — 1 cancel, 2 and m — 2 cancel, and so on.
Thus, writing o for o~ o, we have «® = 0 if m is odd and o«® = kB if m = 2k.

In particular, if m = 2, X is RP? and o = B in HZ([R{PZ;ZZ), as we showed
already in Example 3.8.

The cup product formula (@ « @) () = (T | [Vg, - -+, VD@ (T | [Vgy - -+ Vi)
also gives relative cup products

H*(X;R) x HY (X, A;R) —=— H*"!(X, A;R)
H*(X,A;R) x HY (X;R) —= H**!(X, A;R)
H*(X,A;R) x H' (X, A;R) —= H*'!(X, A;R)

since if @ or g vanishes on chains in A then so does @ — . There is a more general
relative cup product

H*(X,A:R) x H'(X,B;R) —— H**'(X,AUB;R)

when A and B are open subsets of X or subcomplexes of the CW complex X. This
is obtained in the following way. The absolute cup product restricts to a cup product
Ck(X,A;R)x C' (X, B;R)— C**!(X, A + B;R) where C"(X,A + B;R) is the subgroup
of C™(X;R) consisting of cochains vanishing on sums of chains in A and chains in
B. If A and B are open in X, the inclusions C"(X,A U B;R) — C"(X,A + B;R)
induce isomorphisms on cohomology, via the five-lemma and the fact that the restric-
tion maps C"(A U B;R) —C"(A + B;R) induce isomorphisms on cohomology as we
saw in the discussion of excision in the previous section. Therefore the cup product
C(X, A;R) x Cg(X, B;R)— Ck+€(X, A+ B; R) induces the desired relative cup product
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H*X, A;R)xH'(X,B;R)—>H*"!(X, A U B;R). This holds also if X is a CW complex
with A and B subcomplexes since here again the maps C"(A U B;R)—C"(A + B;R)
induce isomorphisms on cohomology, as we saw for homology in §2.2.

Proposition 3.10. Foramap f:X—Y, the induced maps f*:H"(Y;R)—H"(X;R)
satisfy f* (o~ B) = f*(x) « f*(B), and similarly in the relative case.

Proof: This comes from the cochain formula f* () « f* (@) = f* (@ < @):

(Ffo— ffu) o) = ffo(ollvg, -, v ) fFAfw (o] v, -+ V)
=@ (follvy, -, v )w(follve -, Vil
= (@) (fo) = fH@-y) (o) O

We now define the cross product or external cup product. The absolute and
general relative forms are the maps

H*X;R) x H'(V;R) —=— H**!{(XxY;R)
H¥(X,A;R) x HY (Y, B;R) —=— H*"'(XxY,AXY U XxB;R)
given by axb = pj(a) -« p5 (b) where p,; and p, are the projections of XxY onto

X and Y.

Example 3.11: The n-Torus. For the n-dimensional torus T", the product of n
circles, let us show that all cohomology classes are cup products of 1-dimensional
classes. More precisely, we show that H k(T";R) is a free R-module with basis the
cup products o, ~ -+~ «;, for iy <--- <i;, where «; € HY(T™;R) is p} (&) for «
a generator H'(S';R) and p; the projection of T" onto its i* factor.

As a preliminary step we show that for « a generator of H'(I,3I;R), the map

H™(Y;R)—>H""'(IxY,0IxXY;R), B axp
is an isomorphism for all spaces Y. This uses commutativity of the following square:

HYA:R) x HY(Y:R) —2XL , 1*Y(x A:R) x HY(Y:R)

X X

H*YAXY:R) 0 H*(XXY,AXY:R)

To check this, start with an element of the upper left product, represented by cocycles
(NS Ck(A;R) and y € C{}(Y;R). Extend @ to a cochain @ € Ck(X;R). Then the pair
(@, ) maps rightward to (6@, ) and then downward to pf(é@) — pz” (y). Going
the other way around the square, (@, ) maps downward to pf (@)~ p§ () and then
rightward to 6(pf(¢) - pg(q/)) since pf(@) o pg(w) extends pf(cp) o pg(qj) over
XxY. Finally, §(pf (@) < pi(@)) = p{ (5®) - p5(y) since Sy = 0.

Returning to the product I XY, the long exact sequence for the pair (IXY,0IXY)
breaks up into split short exact sequences

0— H"(IXY,R) — H™(0IxXY;R) —6>H"+1(IXY,81><Y;R) —0
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The map 6 is an isomorphism when restricted to the copy of H"(Y;R) corresponding
to {0}xY. This copy of H"(Y;R) consists of elements of the form 1,x S where
1, € HO(BI;R) is represented by the cocycle thatis 1 on 0 € I and 0 on 1 € 0I.
By the commutative square above, 8(1yxf) = 6(1y)xB. The element 6(1,) is a
generator of H'(I,3I;R), by the case that Y is a point. Any other generator « is
a scalar multiple of 6(1,) by a unit of R, so this shows the map f — «axf is an
isomorphism.

An equivalent statement is that the map H"(Y;R)—H""' (S'xY, {55} xY;R),
B — axpf, is an isomorphism, with « now a generator of H IS 1,SO;R). Via the
long exact sequence of the pair (S L Y, {59} xY), this implies that the map

H™ N Y;R)xH"(Y;R)—H" " (S'xY;R), (By,By) — 1x By + axfy

is an isomorphism, with « a generator of H 1 (S 1;R). Specializing to the case of the
n-torus, we conclude by induction on n that H K(T™ R) has the structure described
at the beginning of the example.

We can use this calculation to deduce a fact that will be used shortly in the calcula-
tion of cup products in projective spaces. Writing n = i+ j, the cube I" is the product
I'x I/, and the assertion is that the cross product of generators of H'(I',9I*;R) and
H/(I/,8I’;R) is a generator of H™(I",d8I"™;R), where we are using the first of the
following three cross products:

H'(I',dI%;R) x H(I/,01'; R) —— H"(I",3I"; R)

HY(T', T%R) x H/(T?,T/;R) —— H"(T", T™;R)

HY(T%;R) x H/(T/;R) —— H™(T";R)

In the second cross product, the dots denote deletion of the top-dimensional cell. All
three cross products are equivalent. This is evident for the first two, thinking of the
torus as a quotient of a cube. For the second two, note that all cellular boundary maps
for T"™ with Z coefficients must be trivial, otherwise the cohomology groups would
be smaller than computed above. Hence all cellular coboundary maps with arbitrary
coefficients are zero, and the map H™(T",T™;R)—H"(T™;R) is an isomorphism.
The corresponding results for T' and T’ are of course true as well.

Since cross product is associative, the earlier calculation shows that for the last
of the three cross products above, the cross product of generators is a generator, so
this is also true for the first cross product.

The Cohomology Ring

Since cup product is associative and distributive, it is natural to try to make it
the multiplication in a ring structure on the cohomology groups of a space X. This is
easy to do if we simply define H*(X;R) to be the direct sum of the groups H" (X;R).
Elements of H*(X;R) are finite sums >, «; with «; € H'(X;R), and the product of
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two such sums is defined to be (3; o;)(X;8;) = >;; «;B;. It is routine to check
that this makes H*(X;R) into a ring, with identity if R has an identity. Similarly,
H*(X,A;R) is a ring via the relative cup product. Taking scalar multiplication by
elements of R into account, these rings can also be regarded as R-algebras.

For example, the calculations in Example 3.8 or 3.9 above show that H* ([RPZ; Z,)
consists of the polynomials a,+a, «+a,«* with coefficients a, € Z,, so H* (RP*; Z,)
is the quotient Z,[ ]/ (o<3) of the polynomial ring Z,[ «] by the ideal generated by o,

This example illustrates how H*(X;R) often has a more compact description
than the sequence of individual groups H"(X;R), so there is a certain economy in the
change of scale that comes from regarding all the groups H™(X;R) as part of a single
object H*(X;R).

Adding cohomology classes of different dimensions to form H*(X;R) is a conve-
nient formal device, but it has little topological significance. One always regards the
cohomology ring as a graded ring: a ring A with a decomposition as a sum @,..,A4;
of additive subgroups A; such that the multiplication takes A, <A, to A, y. To in-
dicate that an element a € A lies in A, we write |a| = k. This applies in particular
to elements of H k(X ;R). Some authors call |a| the ‘degree’ of a, but we will use the
term ‘dimension’ which is more geometric and avoids potential confusion with the
degree of a polynomial.

Among the simplest graded rings are polynomial rings R[«] and their truncated
versions R[«]/(x™), consisting of polynomials of degree less than n. The example
we have seen is H* ([RPZ; Z5) = ZZ[O(]/(O(S). Generalizing this, we have:

Theorem 3.12. H*(RP";Z,) ~ Z,[a]/ (™)) and H* (RP®;Z,) ~ Z,[at], where
|| = 1. In the complex case, H* (CP™:;7) ~ Z[x]/(«™') and H* (CP*;7) ~ Z[«x]
where |x| = 2.

This turns out to be a quite important result, and it can be proved in a number
of different ways. The proof we give here consists of a direct reduction to the relative
cup product calculation in Example 3.11 above. Another proof using Poincaré duality
will be given in Example 3.40. A third proof is contained in §4.D as an application of
the Gysin sequence.

Proof: Let us do the case of RP" first. To simplify notation we abbreviate RP" to P"
and we let the coefficient group Z, be implicit. Since the inclusion P" 1< p™ induces
an isomorphism on H' for i < n — 1, it suffices by induction on # to show that the
cup product of a generator of H" ' (P") with a generator of H'(P") is a generator
of H"(P™). It will be no more work to show more generally that the cup product of
a generator of H'(P") with a generator of H" !(P") is a generator of H"(P"). As a
further notational aid, welet j =n—1i,s0 i+ j = n.

The proof uses some of the geometric structure of P". Recall that P™ consists of
nonzero vectors (xy,---,X,) € R"*! modulo multiplication by nonzero scalars. In-
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side P" is a copy of P! represented by vectors whose last j coordinates x;,,---,X,
are zero. We also have a copy of P/ represented by points whose first i coordi-
nates x, -+, x;_; are zero. The intersection PinPlisa single point p, represented
by vectors whose only nonzero coordinate is x;. Let
U be the subspace of P" represented by vectors with ‘h
nonzero coordinate x;. Each point in U may be rep- pi- pic
resented by a unique vector with x; = 1 and the other
n coordinates arbitrary, so U is homeomorphic to R", n1
with p corresponding to O under this homeomorphism.
We can write this R" as R'x R/, with R! as the coordinates x,,---,x;_; and R’ as
the coordinates x;,, - - -, X, . In the figure P" is represented as a disk with antipodal
points of its boundary sphere identified to form a P""! ¢ P" with U = P" — P""! the
interior of the disk.
Consider the diagram
H'(P") >T<HJ(P") = H"(P")
H'(P"P"-P’) x H(P",P"-P') —=— H"(P",P"-{p})
l |

HY(R"R"-R’) x H(R"R"-R") —=— H"(R",R"-{0})

which commutes by naturality of cup product. The lower cup product map takes
generator cross generator to generator, as we showed in Example 3.11 above in the
equivalent situation of a product of cubes. The same will be true for the top row if
the four vertical maps are isomorphisms, so this is what remains to be proved.

The lower map in the right column is an isomorphism by excision. For the upper
map in this column, the fact that P" — {p} deformation retracts to a P""! gives an
isomorphism H"(P",P"—{0}) ~ H"(P",P"!) via the five-lemma applied to the long
exact sequences for these pairs. And H"(P",P"!) ~ H"(P™) by cellular cohomology.

To see that the vertical maps in the left column are isomorphisms we use the
following commutative diagram:

H'(P")«— H'(P"P'")«— H'(P"P"-P') — H'(R",R"-R’)

l } l |

Hl’(Pi) - Hi(Pi,Pi_l)‘_ Hi(Pi,Pi—{p}) —’Hi([Ri, [Rl_{o})

If we can show all these maps are isomorphisms, then the same argument will apply
with i and j interchanged, and the proof for RP" will be finished.

The left-hand square consists of isomorphisms by cellular cohomology. The right-
hand vertical map is obviously an isomorphism. The lower right horizontal map is
an isomorphism by excision, and the map to the left of this is an isomorphism since
Pl — {p} deformation retracts onto P!, The remaining maps will be isomorphisms
if the middle map in the upper row is an isomorphism. And this map is in fact
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an isomorphism because P" — P/ deformation retracts onto P'~! by the following
argument. The subspace P" — P/ c P" consists of points represented by vectors
v = (xg,---,X,) with at least one of the coordinates x,---,x;_; nonzero. The
formula f;(v) = (xq,--,%x;_1,tx;, -+, tx,) for t decreasing from 1 to 0O gives a
well-defined deformation retraction of P" — P/ onto P! since fi(Av) = Af;(v) for
scalars A € R.

The case of RP” follows from the finite-dimensional case since the inclusion
RP" — RP® induces isomorphisms on H i(—; Z,) for i < n by cellular cohomology.

Complex projective spaces are handled in precisely the same way, using 7 coef-
ficients and replacing each H* by H?* and R by C. o

There are also quaternionic projective spaces HP" and HP*, defined exactly as

Suetuedu--.. Associa-

in the complex case, with CW structures of the form e
tivity of quaternion multiplication is needed for the identification v ~ Av to be an
equivalence relation, so the definition does not extend to octonionic projective spaces,
though there is an octonionic projective plane OP? that will be defined in §4.3. The
cup product structure in quaternionic projective spaces is just like that in complex

projective spaces, except that the generator is 4-dimensional:
H*(HP®;Z) ~ Z[o] and H*(HP™;Z) = Z[a]/(«™"'), with |x| =4

The same proof as in the real and complex cases works as well in this case.

The cup product structure for RP® with Z coefficients can easily be deduced
from the cup product structure with Z, coefficients, as follows. In general, a ring
homomorphism R— S induces a ring homomorphism H*(X,A;R)—>H*(X,A;S). In
the case of the projection Z— 7, we get for RP” an induced chain map of cellular
cochain complexes with Z and Z, coefficients:

72772727 0
| | | | |
7,7, 7,27,27,—0

From this we see that the ring homomorphism H*(RP%;Z) — H™(RP*; Z,) is injec-
tive in positive dimensions, with image the even-dimensional part of H*(RP%; Z,).
Alternatively, this could be deduced from the universal coefficient theorem. Hence
we have H*(RP®;7) =~ Z[«x]/(2x) with |x| = 2.

The cup product structure in H*(RP";Z) can be computed in a similar fashion,
though the description is a little cumbersome:

H*(RP?%;7) = Z[ o]/ 2ex, o&FT1), || = 2
H*(RP**1:7) ~ Z[ o, B1/ (2ex, &1, B2, xB), x| =2, |Bl =2k +1

Here B is a generator of HZk“([RPZkH;Z) ~ Z. From this calculation we see that
the rings H* (RP***1;7) and H*(RP** v $**1;7) are isomorphic, though with Z,
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coefficients this is no longer true, as the generator « € H 1 ([RPZk”; Z5) has o2kl 0,
while «***! = 0 for the generator « € H' (RP?* v SZk“;ZZ).

Induced homomorphisms are ring homomorphisms by Proposition 3.10. Here is
an example illustrating this fact.

Example 3.13. The isomorphism H* (Lx X R) = l_[(XH* (X4 R) whose coordinates
are induced by the inclusions i,: X, < [, X, is a ring isomorphism with respect to
the usual coordinatewise multiplication in a product ring, because each coordinate
function i} is a ring homomorphism. Similarly for a wedge sum the isomorphism
H* (Vou X R) ~ l_[(xﬁ* (X, R) is aring isomorphism. Here we take reduced cohomol-
ogy to be cohomology relative to a basepoint, and we use relative cup products. We
should assume the basepoints x, € X, are deformation retracts of neighborhoods,
to be sure that the claimed isomorphism does indeed hold.

This product ring structure for wedge sums can sometimes be used to rule out
splittings of a space as a wedge sum up to homotopy equivalence. For example, con-
sider CP?, which is S? with a cell e* attached by a certain map f:S°—S$?. Using
homology or just the additive structure of cohomology it is impossible to conclude
that CP? is not homotopy equivalent to S* v $*, and hence that f is not homotopic
to a constant map. However, with cup products we can distinguish these two spaces
since the square of each element of H2(S? v §%;Z) is zero in view of the ring iso-
morphism H*(S% v §%,7) ~ H*(5%,7) ® H*(§*;2), but the square of a generator of
HZ((CPZ; Z) is nonzero by Theorem 3.12.

More generally, cup products can be used to distinguish infinitely many different
homotopy classes of maps $*" 1 —$%" for all n > 1. This is systematized in the
notion of the Hopf invariant, which is studied in §4.B.

The natural question of whether the cohomology ring is commutative is answered
by the following:

’ Theorem 3.14. The identity x~ 8 = (fl)k#B ~ « holds for all x € Hk(X,A;R) and
B e Hﬂ(X,A;R) , Wwhen R is commutative.

Taking & = B, this implies in particular that if « is an element of H K(X,A;R)
with k odd, then 20 =0 in H2k(X, A:R). Hence if HZk(X,A;R) has no elements of
order two, then «® = 0. For example, if X is the 2-complex obtained by attaching a
disk to S' by a map of degree m as in Example 3.9 above, then we can deduce that
the square of a generator of H Lx iZ,,) is zero if m is odd, and is either zero or the
unique element of H 2(X; Z,,) = Z,, of order two if m is even. As we showed, the
square is in fact nonzero when m is even.

A graded ring satisfying the commutativity property of the theorem is usually
called simply commutative in the context of algebraic topology, in spite of the po-
tential for misunderstanding. In the older literature one finds less ambiguous terms
such as graded commutative, anticommutative, or skew commutative.
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Proof: Consider first the case A = @. For cochains @ € CX(X;R) and ¢ € c'(x,R)
one can see from the definition that the cup products @ « ¢ and y -~ @ differ only by
a permutation of the vertices of A**?_ The idea of the proof is to study a particularly
nice permutation of vertices, namely the one that totally reverses their order, replacing
[vg, -+,v,] by [v,,--,v,]. This has the convenient feature of also reversing the
ordering of vertices in any face.

For a singular n-simplex o :[vg, --,v,]—X, let ¢ be the singular n-simplex
obtained by preceding o by the linear homeomorphism of [v,---,v,] reversing
the order of the vertices. Thus o (v;) = o(v,_;). This reversal of vertices is the
productof n+ (n—-1) +---+1 = n(n + 1)/2 transpositions of adjacent vertices,
each of which reverses orientation of the n-simplex since it is a reflection across an
(n — 1)-dimensional hyperplane. So to take orientations into account we would expect
thatasign ¢, = (- 1)nn+h/2 ought to be inserted. Hence we define a homomorphism
p:C (X)—>C,(X) by p(o) =¢,0.

We will show that p is a chain map, chain homotopic to the identity, so it induces
the identity on cohomology. From this the theorem quickly follows. Namely, the
formulas

(P*@—p ) (0) = @(ea|lvy, -+, vo]) W (o [[Viyp, -+ i)
P (Y @)0) = &P (O [Visp, -, VD@ (T | [Vg, - -+, vp])
show that g, (p*@ — p* @) = &,,4p™ (Y — @), since we assume R is commutative.
A trivial calculation gives &, = (—1)¥ g, &), hence p*@ < p*y = (-1)¥p*(y < @).
Since p is chain homotopic to the identity, the p*’s disappear when we pass to coho-
mology classes, and so we obtain the desired formula «x - 8 = (—I)H)B - K.

The chain map property dp = pd can be verified by calculating, for a singular

n-simplex o,

ap(o-) = Sn Z(_l)la-|[vnl Ut lﬁn—il U 1v0]

pa(0) = p(D(-Dic|lvg, -+ Dy, v,])

Snfl Z(_l)nilo-“:vn! "t !’i}\n—il et 1v0]
i

which reduces us to the easily checked identity €, = (-1)"¢,_;.

To define a chain homotopy between p and the identity we are motivated by
the construction of the prism operator P in the proof that homotopic maps induce
the same homomorphism on homology, in Theorem 2.10. The main ingredient in
the construction of P was a subdivision of A"xI into (n + 1)-simplices with ver-
tices v; in A"x{0} and w; in A"x {1}, the vertex w; lying directly above v;. Using
the same subdivision, and letting 77: A" xI— A" be the projection, we now define
P:C,(X)—Cp,1(X) by

P(O—) = z(_l)i‘sn_i(o—n) | [UO’ et lvi’wn’ e lwi]
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Thus the w-vertices are written in reverse order, and there is a compensating sign
€,_i- One can view this formula as arising from the A-complex structure on A" X[
in which the vertices are ordered vy, - -+, v,,, W, - - -, W, rather than the more natural
ordering vy, -+, Vy, Wo, **+, Wy, -

To show 0P + Po = p — 1 we first calculate 0P, leaving out o’s and o’s for
notational simplicity:

OP = > ()" (-1e, [, -+, 0, Uiy Wy, -+, ;]
Jj=<i
+ Z(_l)i(_l)HH"*J'En_i[vo’ UL Wy, e, Wy, W]

J!
Jj=i

The j =i terms in these two sums give

En[wn,""w(]] + zEn—i[‘UO""’vi—liwn’"'lwi]
i>0
i+1
+ Z(_l)n+l+ en—i[v()""7vi’wn|"',wi+1] - [v()l""vn]

i<n
In this expression the two summation terms cancel since replacing i by i — 1 in the
second sum produces a new sign (—1)""'¢
£

n—i+1 = —&n_i- The remaining two terms
nlwy,, -, wyl and —[vg,---,v,] represent p(o) — 0. So in order to show that
0P + P0 = p — 1, it remains to check that in the formula for 0P above, the terms with
j # 1 give —P0. Calculating Po from the definitions, we have

Pa = Z(_l)i(_l)jgn_i_l[vOl e ’vilwn, ttt ’L/DJ‘! e 7wi]
i<j
+ z(_l)l_l(_l)JEnfl[UO! Ut 1’(/)]1 Ut !vi1 wns Ut ’wl]
i>j
Since €, ; = (-1)""'¢,_, ;, this finishes the verification that 0P + P9 = p — 1, and
so the theorem is proved when A = &. The proof also applies when A + & since the
maps p and P take chains in A to chains in A, so the dual homomorphisms p* and

P* act on relative cochains. m]

Example 3.15: Exterior Algebras. In general, the exterior algebra Ag[o, o6, -]
over a commutative ring R with identity is the free R-module with basis the finite

products o, -+ &, i) <+ <1, with multiplication defined by the rules «;«; =

J
-0 and o = 0, the latter relation being a special case of the former if 2 # 0

[

in R. The empty product of «;’s is allowed, and provides an identity element 1 in
Aglay, &, -+ -]1. The calculation of cup products in the n-torus T"™ in Example 3.11
shows that H*(T™;R) is the exterior algebra Ag[&y, -, ®,]. The same is true for
any product of odd-dimensional spheres, as could be proved by a continuation of the
calculation for the torus or by simply quoting Theorem 3.16 below.
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A Kiinneth Formula

One might guess that there should be some connection between cup product and
product spaces, and indeed this is the case, as we will show in this subsection.

To begin, we define the cross product, or external cup product as it is sometimes
called. This is the map

H*(X;R) x H*(Y;R) —=— H*(XXY;R)

givenby ax b = p{ (a) —p; (b) where p, and p, are the projections of XxY onto X
and Y. Since cup product is distributive, the cross product is bilinear, that is, linear
in each variable separately. We might hope that the cross product map would be
an isomorphism in many cases, thereby giving a nice description of the cohomology
rings of these product spaces. However, a bilinear map is rarely a homomorphism,
so it could hardly be an isomorphism. Fortunately there is a nice algebraic solution
to this problem, and that is to replace the direct product H* (X;R)x H*(Y;R) by the
tensor product H*(X;R) ® H*(Y;R).

Let us review the definition and basic properties of tensor product. For abelian
groups A and B the tensor product A®B is defined to be the abelian group with
generators ae®b for a € A, b € B, and relations (a+a’)eb = aeb +a'eb and
ae(b+b')=asb+asb’. Sothe zero element of A®Bis 000=00b =a®0, and
—(a®b) =—aeb =ae (—b). Some readily verified elementary properties are:

(1) A®B=~B®A.

(2) (P;A;))®B ~P;(A;®B).

(3) (A®B)®C =~ A®(B®C(C).

4) ZoA = A.

(5) Z,®A =~ A/nA.

(6) A pair of homomorphisms f:A—A" and g:B— B’ induces a homomorphism
feg:A®B—A'®B via (feg)(aeb) = f(a)eg(b).

(7) A bilinear map @ : AxB— C induces a homomorphism A® B— C sending a®b
to @(a,b).

In (1)-(5) the isomorphisms are the obvious ones, for example a®b — bea in (1)
and nea — na in (4). Properties (1), (2), (4), and (5) allow the calculation of tensor
products of finitely generated abelian groups.

The generalization to tensor product of modules over a commutative ring R is
easy. One defines A®,B for R-modules A and B to be the quotient of A® B obtained
by imposing the further relations raeb = aevb for ¥ € R, a € A, and b € B. This
relation guarantees that A®g B is again an R-module. In case R is not commutative,
one assumes A is a right R-module and B is a left R-module, and the relation is
written instead areb = aerb, but now A®;B is only an abelian group, not an
R-module necessarily. It is an easy algebra exercise to see that A®; B = A®B when R
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is Z,, or Q. Butin general A ®;B isnot the same as A® B. For example, if R = Q(V2),
a 2-dimensional vector space over Q, then R®;R = R but R®R is a 4-dimensional
vector space over Q.
The statements (1)-(3), (6), and (7) remain valid for tensor products of R-modules.
The generalization of (4) is the canonical isomorphism R®; A ~ A, ¥ ®a — ra.
Property (7) of tensor products guarantees that the cross product as defined above
gives rise to a homomorphism

X

H*(X;R)®xH*(Y;R) H*(XxXY;R), aebw axb

which we shall also call cross product. This map becomes a ring homomorphism if
we define the multiplication in a tensor product of graded rings by (a® b)(c ® d) =
(—1)”’ elac ® bd where |x| denotes the dimension of x. Namely, the cross product
map sends (a® b)(ced) = (-1)""“ac @ bd to

(-1)Plelgexbd = (-1)PlpFacc) - pi(b-d)
= (-D)""p¥(a) < pi ()« p3 (b) — pi(d)
=pi(a) - p;(b) - pi(c)—p5(d)
= (axb)(cxd)

which is the product of the images of aeb and ced.

Theorem 3.16. The cross product H* (X;R) &g H*(Y;R)—>H"(XXY;R) is an iso-
morphism of rings if X and Y are CW complexes and H K(Y;R) isa finitely generated
free R-module for all k.

Results of this type, computing homology or cohomology of a product space, are
known as Kiinneth formulas. The hypothesis that X and Y are CW complexes will be
shown to be unnecessary in §4.1 when we consider CW approximations to arbitrary
spaces. On the other hand, the freeness hypothesis cannot always be dispensed with,
as we shall see in §3.B when we obtain a completely general Kiinneth formula for the
homology of a product space.

When the conclusion of the theorem holds, the ring structure in H* (X xY;R) is
determined by the ring structures in H*(X;R) and H*(Y;R). Example 3E.6 shows
that some hypotheses are necessary in order for this to be true.

Before proving the theorem, let us look at some examples.

Example 3.17. The theorem says that H* (RP* x RP%;Z,) is isomorphic as a ring to
H*(RP%;Z,) ® H* (RP*;Z,). By Theorem 3.12 this is Z,[«x]®Z,[B], which is just the
polynomial ring Z,[«, B]. More generally we see by induction that for a product of
n copies of RP”, the Z,-cohomology is a polynomial ring in n variables. Similar
remarks apply to CP* and HP* with coefficients in an arbitrary commutative ring.
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Example 3.18. The exterior algebra Agrlay, &5, -++] is the graded tensor product
over R of the one-variable exterior algebras Agz[«;] where the «;’s have odd di-
mension. The Kiinneth formula then gives an isomorphism H* (S ki .o xS k"; 7) =
Azley, -+, &, ] if the dimensions k; are all odd. With some k;’s even, one would
have the tensor product of an exterior algebra for the odd-dimensional spheres and
truncated polynomial rings Z[«]/(«?) for the even-dimensional spheres. Of course,
Az[x] and Z[(X]/((Xz) are isomorphic as rings, but when one takes tensor products
in the graded sense it becomes important to distinguish them as graded rings, with «
odd-dimensional in A;[«] and even-dimensional in Z[«]/ (0(2). These remarks apply
more generally with any coefficient ring R in place of Z, though when R = Z, there
is no need to distinguish between the odd-dimensional and even-dimensional cases
since signs become irrelevant.

The idea of the proof of the theorem will be to consider, for a fixed CW complex
Y, the functors A '
h'(X,A) = @D; (H'(X,A;R)® H" '(Y;R))
k"(X,A) = H"(XXY,AXY;R)

The cross product, or a relative version of it, defines a map u:h"(X,A) —k" (X, A)
which we want to show is an isomorphism when X is a CW complex and A = &. We
will show:

(1) h* and k* are cohomology theories on the category of CW pairs.
(2) p is a natural transformation: It commutes with induced homomorphisms and
with coboundary homomorphisms in long exact sequences of pairs.

It is obvious that p:h"™(X)—k™(X) is an isomorphism when X is a point since it is
just the scalar multiplication map R®zH"(Y;R)—H"(Y;R). The following general
fact will then imply the theorem.

Proposition 3.19. If a natural transformation between unreduced cohomology the-
ories on the category of CW pairs is an isomorphism when the CW pair is (point, @),
then it is an isomorphism for all CW pairs.

Proof: Let u:h*(X,A)—k*(X,A) be the natural transformation. By the five-lemma
it will suffice to show that u is an isomorphism when A = &.

First we do the case of finite-dimensional X by induction on dimension. The
induction starts with the case that X is 0-dimensional, where the result holds by
hypothesis and by the axiom for disjoint unions. For the induction step, u gives
a map between the two long exact sequences for the pair (X", X" !), with com-
muting squares since u is a natural transformation. The five-lemma reduces the
inductive step to showing that p is an isomorphism for (X,A) = (X", X" 1). Let
®:[[, (D}, 0D%) — (X", X"1) be a collection of characteristic maps for all the n-cells
of X. By excision, ®* is an isomorphism for h* and k*, so by naturality it suffices
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to show that p is an isomorphism for (X,A) = [[,(Dg,0D}%). The axiom for dis-
joint unions gives a further reduction to the case of the pair (D", 0D™"). Finally,
this case follows by applying the five-lemma to the long exact sequences of this pair,
since D" is contractible and hence is covered by the 0-dimensional case, and dD" is
(n — 1)-dimensional.

The case that X is infinite-dimensional reduces to the finite-dimensional case by a
telescope argument as in the proof of Lemma 2.34. We leave this for the reader since
the finite-dimensional case suffices for the special h* and k* we are considering,
as hi(X, X™) and ki(X,X”) are both zero when n > i, by cellular cohomology for
example. O

Proof of 3.16: It remains to check that h* and k* are cohomology theories, and
that u is a natural transformation. Since we are dealing with unreduced cohomology
theories there are four axioms to verify.

(1) Homotopy invariance: f =~ g implies f* = g*. This is obvious for both h* and
k*.

(2) Excision: h*(X,A) = h*(B,AnB) for A and B subcomplexes of the CW complex
X = A U B. This is obvious, and so is the corresponding statement for k™ since
(AXY)U(BXY)=(AUB)XY and (AXY)Nn (BXY)=(ANnB)XY.

(3) The long exact sequence of a pair. This is a triviality for k*, but a few words of
explanation are needed for h*, where the desired exact sequence is obtained in
two steps. For the first step, tensor the long exact sequence of ordinary coho-
mology groups for a pair (X, A) with the free R-module H"(Y;R), for a fixed n.
This yields another exact sequence because H"(Y;R) is a direct sum of copies
of R, so the result of tensoring an exact sequence with this direct sum is simply
to produce a direct sum of copies of the exact sequence, which is again an exact
sequence. The second step is to let n vary, taking a direct sum of the previously
constructed exact sequences for each n, with the nt" exact sequence shifted up
by n dimensions.

(4) Disjoint unions. Again this axiom obviously holds for k*, but some justification
is required for h*. What is needed is the algebraic fact that there is a canoni-
cal isomorphism ([[ M) ® N = [[,(My® N) for R-modules M, and a finitely
generated free R-module N. Since N is a direct product of finitely many copies
Rg of R, M, ® N is a direct product of corresponding copies M,z = M, ® Ry of
M, and the desired relation becomes [[g[ 1Mz ~ [1,11gMyg, which is obviously
true.

Finally there is naturality of u to consider. Naturality with respect to maps between
spaces is immediate from the naturality of cup products. Naturality with respect to
coboundary maps in long exact sequences is commutativity of the square displayed
in Example 3.11. m|
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The following theorem of Hopf is a nice algebraic application of the cup product
structure in H* (RP" x RP"; Z,) described by the Kiinneth formula.

Theorem 3.20. If R™ has the structure of a division algebra over the scalar field R,

then n must be a power of 2.

Proof: Given a division algebra structure on R", define amap g:S" 'x§" 1 —-gn!
by g(x,y) = xy/|xy|. This is well-defined since there are no zero divisors, and con-
tinuous by the bilinearity of the multiplication. From the relations (—x)y = —(xy) =
x(—y) it follows that g(-x,y) = —g(x,y) = g(x,—y). This implies that g induces
a quotient map h:RP" !xRP" ! —Rp" 1,

We claim that h*:H'(RP" };7,) > H'(RP" ' x RP""!;Z,) is the map h*(y) =
« + B where y generates H 1([RP"’l;ZZ) and « and f are the pullbacks of y under
the projections of RP" 1 x RP™ ! onto its two factors. This can be proved as follows.
We may assume n > 2,0 T, (RP" ) ~ Z,. Let A:T—S""! be apath joining a point x
to the antipodal point —x. Then for fixed 1y, the path s — g(A(s),y) joins g(x,y)
to g(—x,y) = —g(x,y). Hence, identifying antipodal points, h takes a nontrivial
loop in the first RP" ! factor of RP" ! x RP"! to a nontrivial loop in RP""!. The
same argument works for the second factor, so the restriction of h to the 1-skeleton
stvS?! is homotopic to the map that includes each S' summand of S'vS$! into RP" !
as the 1-skeleton. Since restriction to the 1-skeleton is an isomorphism on H 1 (= 2Z,)
for both RP"* ! and RP" !xRP" !, it follows that h*(y) = & + B.

Since y" = 0 we have 0 = h*(y") = («+ B)" = >y (2)0("[3""‘. This is an equa-
tion in the ring H*(RP" ' xRP" 1;Z,) ~ Z,[x, B1/(x™, B"), so the coefficient (2‘)
must be zero in Z, for all k in the range 0 < k < n. It is a rather easy number theory
fact that this happens only when 7 is a power of 2. Namely, an obviously equivalent
statement is that in the polynomial ring Z,[x], the equality (1 + x)" =1 + x" holds
only when n is a power of 2. To prove the latter statement, write n as a sum of powers
of 2, n=ny+---+n, withn; <--- <n,. Then (1 +x)" = (1 +x)™ --- (1 +x)™ =
(1 +x™)---(1+x"™) since squaring is an additive homomorphism with Z, coeffi-
cients. If one multiplies the product (1 + x™') --- (1 + x™) out, no terms combine
or cancel since n; > 2n;_, for each i, and so the resulting polynomial has 2* terms.
Thus if this polynomial equals 1 + x™ we must have k = 1, which means that » is a
power of 2. O

It is sometimes important to have a relative version of the Kiinneth formula in
Theorem 3.16. The relative cross product is

H*(X,A;R) ® g H*(Y,B;R) —— H*(XxY,AXY U XxB;R)

for CW pairs (X,A) and (Y,B), defined just as in the absolute case by axb =
pi(a) « p3 (b) where py(a) € H*(XXY,AxY;R) and p; (b) € H*(XXY,XXB;R).
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Theorem 3.21. For cw pairs (X,A) and (Y,B) the cross product homomorphism
H*(X,A;R)®H"(Y,B;R)—>H*(XXY,AXY U XXB;R) is an isomorphism of rings
if HX(Y,B;R) is a finitely generated free R-module for each k.

Proof: The case B = & was covered in the course of the proof of the absolute case,
so it suffices to deduce the case B + @ from the case B = J.

The following commutative diagram shows that collapsing B to a point reduces
the proof to the case that B is a point:

HY(X,A) ®, H(Y,B) H*(X,A) ®, H*(Y/B,B/B)

I I

HYXXY,AXY U XXB) —— H*(Xx(Y/B),Ax(Y/B) U X x(B/B))

The lower map is an isomorphism since the quotient spaces (XXY)/(AXY U XX B)
and (Xx(Y/B))/(Ax(Y/B) U Xx(B/B)) are the same.
In the case that B is a point y, € Y, consider the commutative diagram

H'(X,A) e, H'(Y,y,)

H*(X,A) ®, H*(Y)

H(X,A) &, H(y,)
|
x X HY (XX y,,AXY,)

1=

HY(XXY, XX Y,UAXY)— H(XXY,AXY)— H(XXy,UAXY,AXY)

Since y, is aretract of Y, the upper row of this diagram is a split short exact sequence.
The lower row is the long exact sequence of a triple, and it too is a split short exact
sequence since (XX y,, AXy,) is a retract of (XXY,AxY). The middle and right
cross product maps are isomorphisms by the case B = & since H kK(Y:R) is a finitely
generated free R-module if H k(Y, ¥o;R) is. The five-lemma then implies that the
left-hand cross product map is an isomorphism as well. O

The relative cross product for pairs (X,x,) and (Y,y,) gives a reduced cross
product

H*(X;R)®xH* (Y;R) —=— H* (X A Y;R)

where X AY is the smash product Xx Y /(XX {yy}U{xy}xY). The preceding theorem
implies that this reduced cross product is an isomorphism if m* (X;R) or FNI*(Y;R)
is free and finitely generated in each dimension. For example, we have isomorphisms
PNIn(X;R) = PNI"”‘(X A Sk;R) via cross product with a generator of Hk(Sk;R) ~ R. The
space X A Sk is the k-fold reduced suspension skX of X, so we see that the suspen-
sion isomorphisms H" (X;R) = H™Hk (ZkX ;R) derivable by elementary exact sequence
arguments can also be obtained via cross product with a generator of H*(S%R).
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Spaces with Polynomial Cohomology

We saw in Theorem 3.12 that RP”, CP*, and HP” have cohomology rings that
are polynomial algebras. We will describe now a construction for enlarging S" to
a space J(S°™) whose cohomology ring H*(J(5°™");Z) is almost the polynomial ring
Z[x] on a generator x of dimension 2n. And if we change from 7 to Q coefficients,
then H* (J($°™); Q) is exactly the polynomial ring Q[x]. This construction, known
as the James reduced product, is also of interest because of its connections with
loopspaces described in §4.].

For a space X, let X k be the product of k copies of X. From the disjoint union
]—[kzlxk’ let us form a quotient space J(X) by identifying (x;,---,x;,--+,x;) with
(x1,-+,X;,--+,x) if x; = e, a chosen basepoint of X. Points of J(X) can thus
be thought of as k-tuples (xi,---,x;), k = 0, with no x; = e. Inside J(X) is the
subspace J,,(X) consisting of the points (xq,---,x;) with k < m. This can be
viewed as a quotient space of X™ under the identifications (x;,--,x;, €, **,X,,) ~
(x1,--+,e,x4,++,X,,). For example, J;(X) = X and J»(X) = XxX/(x,e) ~ (e,x).
If X is a CW complex with e a 0-cell, the quotient map X™ — J,,, (X) glues together
the m subcomplexes of the product complex X" where one coordinate is e. These
glueings are by homeomorphisms taking cells onto cells, so J,,(X) inherits a CW
structure from X™. There are natural inclusions I (X) C J,ni1(X) as subcomplexes,
and J(X) is the union of these subcomplexes, hence is also a CW complex.

Proposition 3.22. For n > 0, H*(J(S™);Z) consists of a Z in each dimension a
multiple of n. If n is even, the i'"* power of a generator of H"(J(S™);Z) is i! times
a generator of H"™(J(S™);Z), for each i > 1.

Thus for n even, H*(J(§™);Z) can be identified with the subring of the polyno-
mial ring Q[x] additively generated by the monomials x'/i!. This subring is called
a divided polynomial algebra and is denoted I;[x]. An exercise at the end of the
section is to show that when n is odd, H*(J(S™);Z) is isomorphic as a graded ring
to H*(S™;7)®H* (J(SZ"); Z), the tensor product of an exterior algebra and a divided
polynomial algebra.

Proof: Giving S" its usual CW structure, the resulting CW structure on J(S™) con-
sists of exactly one cell in each dimension a multiple of n. Thus if n > 1 we deduce
immediately from cellular cohomology that H*(J(S™);Z) consists exactly of Z’s in
dimensions a multiple of n. An alternative argument that works also when n = 1
is the following. Consider the quotient map gq:(S™)"™—J,,(S™). This carries each
cell of (§™)™ homeomorphically onto a cell of J,,,(S™). In particular g is a cellular
map, taking k-skeleton to k-skeleton for each k, so g induces a chain map of cellular
chain complexes. This chain map is surjective since each cell of J,,, (S ") is the homeo-
morphic image of a cell of (§™)™. Hence all the cellular boundary maps for J,,(S™)
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will be trivial if the same is true for ($™)™, which it must be in order for H* ((S™)™; Z)
to have the structure given by Theorem 3.16.

Since g maps each of the m n-cells of (§™)™ homeomorphically onto the n-cell
of J,,(S™), we see from cellular cohomology that a generator « € H"(J,,(S™);Z) pulls
back by g* to the sum «; +- - - + x,,, of the generators of H" ((S™)™;Z) corresponding
to the n-cells of (S™)™. If n is even, the cup product structure in H*(J(S");Z) is
strictly commutative and H*((S™)"™;Z) ~ Z[«xy, -+, (xm]/((xf, . -,afn). The power
™™ then pulls back to (o) + - -+ + ¢,,)™ = ml; - - - «,,,, where the product & - - - &,
generates H™" ((S™)™;Z) = Z. The map q is a homeomorphism from the mn-cell of
(§™)™ to the mn-cell of J,,(S™),so q* is anisomorphism on H™". This implies that
«™ is m! times a generator of H™"(J,,(S™);Z). Since the cells of J(§")—-J,,(S™) have
dimension at least (m + 1)n, the inclusion J,,(S") c J(S™) induces isomorphisms
on H' for i < mn. Thus if we let x; denote a generator of Hi”(J(Sn);Z), we have
x1* = +mlx,, for all m. The sign can be made + by rechoosing x,, if need be. 0O

In I;[x] Cc Q[x], if welet x; = x! /1! then the multiplicative structure is given by
XX = (”l.j )x”j . More generally, for a commutative ring R we could define Ij[x]
to be the free R-module with basis x, = 1,x;,x,, --- and multiplication defined by
XiXj = (”ij)x”j. The preceding proposition implies that H* (J(S*");R) ~ T[x].

When R = Q it is clear that FQ[x] is just Q[x]. However, for R = Zp with p prime
something quite different happens: There is an isomorphism

er[x] ~ Zp[xlaxplxpzl “']/(Xfl-x;;’xp ") = ®Zp[xpl]/(x51)

pZ! :
i=0
as we show in §3.C, where we will also see that divided polynomial algebras are in a
certain sense dual to polynomial algebras.

The examples of projective spaces lead naturally to the following question: Given
a coefficient ring R and an integer d > 0, is there a space X having H*(X;R) =~ R[«]
with |x| = d? Historically, it took major advances in the theory to answer this simple-

looking question. Here is a table giving R d
all the possible values of d for some of 7 2 4
the most obvious and important choices Q any even number

of R, namely Z, Q, Z,, and Z, with p an Z, 1,2,4
z any even divisor of 2(p — 1)

odd prime. As we have seen, projective p

spaces give the examples for Z and Z,. Examples for Q are the spaces J (8%, and

examples for Z,, are constructed in §3.G. Showing that no other d’s are possible takes
considerably more work. The fact that d must be even when R + Z, is a consequence
of the commutativity property of cup product. In Theorem 4L.9 and Corollary 4L.10
we will settle the case R = Z and show that d must be a power of 2 for R = 7, and
a power of p times an even divisor of 2(p — 1) for R = Z,,, p odd. Ruling out the
remaining cases is best done using K-theory, as in [VBKT] or the classical reference
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[Adams & Atiyah 1966]. However there is one slightly anomalous case, R = Z,, d = 8,
which must be treated by special arguments; see [Toda 1963].

It is an interesting fact that for each even d there exists a CW complex X, which
is simultaneously an example for all the admissible choices of coefficients R in the
table. Moreover, X, can be chosen to have the simplest CW structure consistent with
its cohomology, namely a single cell in each dimension a multiple of d. For example,
we may take X, = CP® and X, = HP®. The next space X; would have H*(X4;Z,) ~
Zp[(x] for p = 7,13,19,31, - - -, primes of the form 3s + 1, the condition 6|2(p — 1)
being equivalent to p = 3s + 1. (By a famous theorem of Dirichlet there are infinitely
many primes in any such arithmetic progression.) Note that, in terms of Z coefficients,
X,; must have the property that for a generator « of H 4(x 4 Z), each power o' is an
integer a; times a generator of H%'(X,;Z), with a; # 0 if H* (X;;Q) ~ Q[«] and a;
relatively prime to p if H* (X Zp) =~ Zp[(x]. A construction of X; is given in [SSAT],
or in the original source [Hoffman & Porter 1973].

One might also ask about realizing the truncated polynomial ring R[«]/ (0(””),
in view of the examples provided by RP", CP", and HP", leaving aside the trivial case
n = 1 where spheres provide examples. The analysis for polynomial rings also settles
which truncated polynomial rings are realizable; there are just a few more than for
the full polynomial rings.

There is also the question of realizing polynomial rings R[ &y, - - -, &, ] with gen-
erators «; in specified dimensions d;. Since R[ &y, -, &, 1 ®R[B;, -, B,] is equal
to R[&y,++, &y Byy -+ 5 By, the product of two spaces with polynomial cohomology

is again a space with polynomial cohomology, assuming the number of polynomial
generators is finite in each dimension. For example, the n-fold product (CP®)" has
H*((CP*)";7) ~ 7]y, -+, &, ] with each «; 2-dimensional. Similarly, products of
the spaces J (Sdi) realize all choices of even d;’s with Q coefficients.

However, with Z and Z,, coefficients, products of one-variable examples do not
exhaust all the possibilities. As we show in §4.D, there are three other basic examples
with Z coefficients:

1. Generalizing the space CP® of complex lines through the origin in C®, there is
the Grassmann manifold G, (C*) of n-dimensional vector subspaces of C*, and
this has H*(Gn((Cm);Z) ~Z[xy, -, &, ] with |;| = 2i. This space is also known
as BU(n), the ‘classifying space’ of the unitary group U(n). It is central to the
study of vector bundles and K-theory.

2. Replacing C by H, there is the quaternionic Grassmann manifold G, (H*), also
known as BSp(n), the classifying space for the symplectic group Sp(n), with
H*(G,,(H*);Z) = Z[ &y, - -+, &, ] with |e;| = 4i.

3. There is a classifying space BSU (n) for the special unitary group SU(n), whose
cohomology is the same as for BU(n) but with the first generator «; omitted, so
H*(BSUN);Z) ~ Z[ oy, - -+, &, ] with ;] = 2i.
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These examples and their products account for all the realizable polynomial cup prod-
uct rings with Z coefficients, according to a theorem in [Adams & Wilkerson 1980].
The situation for Z, coefficients is more complicated and will be discussed in §3.G.

Here is the evident general question along these lines:

The Realization Problem. Which graded commutative R-algebras occur as cup prod-
uct algebras H*(X;R) of spaces X?

This is a difficult problem, with the degree of difficulty depending strongly on the
coefficient ring R. The most accessible case is R = Q, where essentially every graded
commutative Q-algebra is realizable, as shown in [Quillen 1969]. Next in order of
difficulty is R = Z,, with p prime. This is much harder than the case of Q, and
only partial results, obtained with much labor, are known, mainly about realizing
polynomial rings. Finally there is R = Z, about which very little is known beyond
what is implied by the Z,, cases.

Polynomial algebras are examples of free graded commutative algebras, where
‘free’ means loosely ‘having no unnecessary relations.’” In general, a free graded com-
mutative algebra is a tensor product of single-generator free graded commutative
algebras. The latter are either polynomial algebras R[] on even-dimension gener-
ators « or quotients R[o<]/(20<2) with « odd-dimensional. Note that if R is a field
then R[«]/(2c%) is either the exterior algebra Ap[«] if the characteristic of R is not
2, or the polynomial algebra R[«] otherwise. Every graded commutative algebra is a
quotient of a free one, clearly.

Example 3.23: Subcomplexes of the n-Torus. To give just a small hint of the endless
variety of nonfree cup product algebras that can be realized, consider subcomplexes of
the n-torus T", the product of n copies of S'. Here we give S! its standard minimal
cell structure and T" the resulting product cell structure. We know that H*(T";2)

is the exterior algebra Ay[c, -, &, ], with the monomial «; --- «; corresponding

iy
via cellular cohomology to the k-cell elll X o+ xe}k. So if we pass to a subcomplex
X C T" by omitting certain cells, then H*(X;Z) is the quotient of A,[c, -+, &, ]
obtained by setting the monomials corresponding to the omitted cells equal to zero.
Since we are dealing with rings, we are factoring out by an ideal in Ay[xy, -+, &,]1,
the ideal generated by the monomials corresponding to the ‘minimal’ omitted cells,
those whose boundary is entirely contained in X. For example, if we take X to be
the subcomplex of T2 obtained by deleting the cells e} xe}xel and elxel, then
H*(X;7) = Ajlety, 0, 0651/ (0003)

How many different subcomplexes of T" are there? To each subcomplex X c T"
we can associate a finite simplicial complex Cy by the following procedure. View T"
as the quotient of the n-cube I" = [0,1]" ¢ R™ obtained by identifying opposite
faces. If we intersect I"" with the hyperplane x; + --- + x,, = ¢ for small € > 0,
we get a simplex A""!. Then for q:I"—T" the quotient map, we take Cy to be
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A" 1 ng 1 (X). This is a subcomplex of A""! whose k-simplices correspond exactly
to the (k + 1)-cells of X. Clearly X is uniquely determined by Cyx, and it is easy
to see that every subcomplex of A" ™! occurs as C v for some subcomplex X of T™".
Since every simplicial complex with n vertices is a subcomplex of A" ! we see that
T™ has quite a large number of subcomplexes, if # is not too small. Of course, it
may be that some of the resulting cohomology rings H*(X;Z) are isomorphic for
different subcomplexes X c T". For example, one could just permute the factors of
T" to change X without affecting its cohomology ring. Whether there are less trivial
examples is a harder algebraic problem.

Somewhat more elaborate examples could be produced by looking at subcom-
plexes of the product of n copies of CP”. In this case the cohomology rings are
isomorphic to polynomial rings modulo ideals generated by monomials. One could
also take subcomplexes of a product of S'’s and CP*’s. However, this is still a whole
lot less complicated than the general case, where one takes free algebras modulo ide-
als generated by arbitrary polynomials having all their terms of the same dimension.

Let us conclude this section with an example of a cohomology ring that is not too
far removed from a polynomial ring.

Example 3.24: Cohen-Macaulay Rings. Let X be the quotient space CP®/CP" !,
The quotient map CP® — X induces an injection H*(X;Z) —H™(CP*;Z) embedding
H*(X;Z) in Z[«] as the subring generated by 1, «™, 0("“, ---. If we view this sub-
ring as a module over Z[«™], it is free with basis {1, ™!, &2, .-+, &*" '}. Thus
H*(X;Z) is an example of a Cohen-Macaulay ring: aring containing a polynomial sub-
ring over which it is a finitely generated free module. While polynomial cup product
rings are rather rare, Cohen-Macaulay cup product rings occur much more frequently.

Exercises

1. Assuming as known the cup product structure on the torus S 1% s, compute the
cup product structure in H* (M, 4) for M, the closed orientable surface of genus g by
using the quotient map from M, to a wedge sum of g tori, shown below.

2. Using the cup product H*(X, A;R)x H(X,B;R)—H**'(X, A U B;R), show that
if X is the union of contractible open subsets A and B, then all cup products of
positive-dimensional classes in H* (X;R) are zero. This applies in particular if X is
a suspension. Generalize to the situation that X is the union of n contractible open
subsets, to show that all n-fold cup products of positive-dimensional classes are zero.
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3. (a) Using the cup product structure, show there is no map RP"— RP™ inducing
a nontrivial map H 1([R%P"‘;ZZ)—>H 1([R{P”;ZZ) if m > m. What is the corresponding
result for maps CP"*— CP™?

(b) Prove the Borsuk-Ulam theorem by the following argument. Suppose on the con-
trary that f:S™— R" satisfies f(x) # f(—x) for all x. Then define g:S"—S$""! by
gx) = (f(x)—f(=x))/1f(x) = f(-x)|, so g(—x) = —g(x) and g induces a map
RP" — RP"!. Show that part (a) applies to this map.

4. Apply the Lefschetz fixed point theorem to show that every map f: CP" — CP™ has
a fixed point if n is even, using the fact that f*:H*(CP";Z) — H™*(CP";Z) is a ring
homomorphism. When 7 is odd show there is a fixed point unless f*(x) = —«, for
« a generator of H*(CP™;Z). [See Exercise 3 in §2.C for an example of a map without
fixed points in this exceptional case.]

5. Show the ring H*(IRP‘”;sz) is isomorphic to Z, [, B1/ (2, 2P, o’ — kB) where
|| =1 and |B| = 2. [Use the coefficient map Z,;, — Z, and the proof of Theorem 3.12.]
6. Use cup products to compute the map H*(CP";Z)— H™(CP";Z) induced by the
map CP"— CP" that is a quotient of the map C""! — C""! raising each coordinate to
the dt" power, (zg, "y 2y) — (zg, . ,zﬁ), for a fixed integer d > 0. [First do the
case n = 1.]

7. Use cup products to show that RP® is not homotopy equivalent to RP? v S3.

8. Let X be CP? with a cell ¢ attached by a map $?2—CP' c CP? of degree p, and
let Y = M(Zp, 2)V S$*. Thus X and Y have the same 3-skeleton but differ in the way
their 4-cells are attached. Show that X and Y have isomorphic cohomology rings
with Z coefficients but not with Z,, coefficients.

9. Show that if H, (X;Z) is free for each n, then H*(X; Z,) and H*(X;2) ®7, are
isomorphic as rings, so in particular the ring structure with Z coefficients determines
the ring structure with Z,, coefficients.

10. Show that the cross product map H*(X;Z)® H*(Y;Z)—>H*(XxY;Z) is not an
isomorphism if X and Y are infinite discrete sets. [This shows the necessity of the
hypothesis of finite generation in Theorem 3.16.]

11. Using cup products, show that every map skl sk s induces the trivial ho-
momorphism HkM(SkM)—»HkM(Ska"}), assuming k > 0 and £ > 0.

12. Show that the spaces (S'xCP®)/(S'x {xg}) and $3 % CP*® have isomorphic coho-
mology rings with Z or any other coefficients. [An exercise for §4.L is to show these
two spaces are not homotopy equivalent.]

13. Describe H* (CP®/CP';Z) as a ring with finitely many multiplicative generators.
How does this ring compare with H* (S6 X HP*:Z)?

14. Let q: RP* — CP® be the natural quotient map obtained by regarding both spaces
as quotients of S, modulo multiplication by real scalars in one case and complex
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scalars in the other. Show that the induced map ¢* : H* (CP*;Z) — H*(RP%; Z) is sur-
jective in even dimensions by showing first by a geometric argument that the restric-
tion q : RP? — CP! induces a surjection on H? and then appealing to cup product struc-
tures. Next, form a quotient space X of RP®LICP" by identifying each point x € RP*"
with g(x) € CP"™. Show there are ring isomorphisms H*(X;Z) = Z[(X]/(Z(x"”) and
H*(X;Z,) ~ Z,[ e, B1/(B* — &™), where || = 2 and |B| = 2n + 1. Make a similar
construction and analysis for the quotient map q:CP* — HP*.

15. For a fixed coefficient field F, define the Poincaré series of a space X to be
the formal power series p(t) = >, a;t" where a; is the dimension of H'(X;F) as a
vector space over F, assuming this dimension is finite for all i. Show that p(XxY) =
p(X)p(Y). Compute the Poincaré series for S™, RP", RP*, CP", CP*, and the spaces
in the preceding three exercises.

16. Show that if X and Y are finite CW complexes such that H*(X;Z) and H*(Y;Z)
contain no elements of order a power of a given prime p, then the same is true for
XXxY. [Apply Theorem 3.16 with coefficients in various fields.]

17. Show that H*(J(S™);Z) for n odd is isomorphic to H*(S™;Z)® H* (J(S°™);Z)
as a graded ring. [Consider the natural quotient map S™xS" X Jo,_; (S™) = Jops1 (S™)
and use induction on k.]

18. For the closed orientable surface M of genus g > 1, show that for each nonzero
X € Hl(M; 7) there exists B € Hl(M; Z) with B + 0. Deduce that M is not homotopy
equivalent to a wedge sum X vY of CW complexes with nontrivial reduced homology.
Do the same for closed nonorientable surfaces using cohomology with Z, coefficients.

3.3 Poincaré Duality

Algebraic topology is most often concerned with properties of spaces that depend
only on homotopy type, so local topological properties do not play much of a role.
Digressing somewhat from this viewpoint, we study in this section a class of spaces
whose most prominent feature is their local topology, namely manifolds, which are
locally homeomorphic to R". It is somewhat miraculous that just this local homo-
geneity property, together with global compactness, is enough to impose a strong
symmetry on the homology and cohomology groups of such spaces, as well as strong
nontriviality of cup products. This is the Poincaré duality theorem, one of the earliest
theorems in the subject. In fact, Poincaré’s original work on the duality property came
before homology and cohomology had even been properly defined, and it took many
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years for the concepts of homology and cohomology to be refined sufficiently to put
Poincaré duality on a firm footing.

Letus begin with some definitions. A manifold of dimension 7, or more concisely
an n-manifold, is a Hausdorff space M in which each point has an open neighborhood
homeomorphic to R". The dimension of M is intrinsically characterized by the fact
that for x € M, the local homology group H;(M,M —{x};Z) isnonzero only for i = n:

H;(M,M - {x};7) ~ H;(R",R" — {0};2) by excision
~ ﬁi_l([R” - {0} 2) since R" is contractible

~ ﬁi,l(S"’l;Z) since R™ — {0} ~ ™!

A compact manifold is called closed, to distinguish it from the more general notion
of a compact manifold with boundary, considered later in this section. For example
S" is a closed manifold, as are RP" and lens spaces since they have S" as a covering
space. Another closed manifold is CP". This is compact since it is a quotient space of
$2"*1 "and the manifold property is satisfied since there is an open cover by subsets
homeomorphic to R®", the sets U = {lzg,-",2,] € CP" | z; = 1}. The same
reasoning applies also for quaternionic projective spaces. Further examples of closed
manifolds can be generated from these using the obvious fact that the product of
closed manifolds of dimensions m and 7 is a closed manifold of dimension m + n.

Poincaré duality in its most primitive form asserts that for a closed orientable
manifold M of dimension n, there are isomorphisms Hy(M;Z) = H" %(M:7) for
all k. Implicit here is the convention that homology and cohomology groups of neg-
ative dimension are zero, so the duality statement includes the fact that all the non-
trivial homology and cohomology of M lies in the dimension range from 0 to n.
The definition of ‘orientable’ will be given below. Without the orientability hypothesis
there is a weaker statement that H, (M;Z,) ~ H" *(M;Z,) for all k. As we show in
Corollaries A.8 and A.9 in the Appendix, the homology groups of a closed manifold
are all finitely generated. So via the universal coefficient theorem, Poincaré duality for
a closed orientable n-manifold M can be stated just in terms of homology: Modulo
their torsion subgroups, H;(M;Z) and H,,_,(M;Z) are isomorphic, and the torsion
subgroups of H,(M;Z) and H,_;_,(M;Z) are isomorphic. However, the statement in
terms of cohomology is really more natural.

Poincaré duality thus expresses a certain symmetry in the homology of closed
orientable manifolds. For example, consider the n-dimensional torus T", the product
of n circles. By induction on n it follows from the Kiinneth formula, or from the easy
special case Hi(XxSI; 7) =~ H;(X;Z) ® H;,_,(X;Z) which was an exercise in §2.2, that
H,(T";Z) is isomorphic to the direct sum of (Z) copies of Z. So Poincaré duality
is reflected in the relation (Z‘) = (nfk). The reader might also check that Poincaré
duality is consistent with our calculations of the homology of projective spaces and
lens spaces, which are all orientable except for RP" with n even.
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For many manifolds there is a very nice geometric proof of Poincaré duality using
the notion of dual cell structures. The germ of this idea can be traced back to the
five regular Platonic solids: the tetrahedron, cube, octahedron, dodecahedron, and
icosahedron. Each of these polyhedra has a dual polyhedron whose vertices are the
center points of the faces of the given polyhedron. Thus the dual of the cube is the
octahedron, and vice versa. Similarly the dodecahedron and icosahedron are dual to
each other, and the tetrahedron is its own dual. One can regard each of these poly-
hedra as defining a cell structure C on S with a dual cell structure C* determined
by the dual polyhedron. Each vertex of C lies in a dual 2-cell of C*, each edge of
C crosses a dual edge of C*, and each 2-cell of C contains a dual vertex of C*.
The first figure at the right shows
the case of the cube and octahe-
dron. There is no need to restrict

to regular polyhedra here, and we
can generalize further by replac-
ing S 2 by any surface. A portion
of a more-or-less random pair of SIS,
dual cell structures is shown in the o% a¥ %
second figure. On the torus, if we

lift a dual pair of cell structures to

the universal cover R®, we get a
dual pair of periodic tilings of the
plane, as in the next three figures.

The last two figures show that the
standard CW structure on the sur-
face of genus g, obtained from a 4g-gon by identifying edges via the product of
commutators [a,,b,]---[ag, by], is homeomorphic to its own dual.

Given a pair of dual cell structures C and C* on a closed surface M, the pair-
ing of cells with dual cells gives identifications of cellular chain groups Cj = C,,
Cy = C;,and C; = C,. If we use Z coefficients these identifications are not quite
canonical since there is an ambiguity of sign for each cell, the choice of a generator
for the corresponding Z summand of the cellular chain complex. We can avoid this
ambiguity by considering the simpler situation of Z, coefficients, where the identifi-
cations C; = C;_; are completely canonical. The key observation now is that under
these identifications, the cellular boundary map 0:C;— C;_; becomes the cellular
coboundary map &:C5_;—C5_;,, since 0 assigns to a cell the sum of the cells which
are faces of it, while J assigns to a cell the sum of the cells of which it is a face. Thus
H;(C;Z,) ~ Hz’i(C*;ZZ), and hence H;(M;Z,) ~ Hz’i(M;Zz) since C and C* are
cell structures on the same surface M.
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To refine this argument to Z coefficients the problem of signs must be addressed.
After analyzing the situation more closely, one sees that if M is orientable, it is pos-
sible to make consistent choices of orientations of all the cells of C and C* so that
the boundary maps in C agree with the coboundary maps in C*, and therefore one
gets H;(C;Z) ~ H*"'(C*;Z), hence H;(M;Z) ~ H* "(M;Z).

For manifolds of higher dimension the situation is entirely analogous. One would
consider dual cell structures C and C* on a closed n-manifold M, each i-cell of C
being dual to a unique (n —1i)-cell of C* which it intersects in one point ‘transversely.’
For example on the 3-dimensional torus S'xS'xS! one could take the standard
cell structure lifting to the decomposition of the universal cover R® into cubes with
vertices at the integer lattice points Z°, and then the dual cell structure is obtained
by translating this by the vector (Y/,,1/,,1/,). Each edge in either cell structure then
has a dual 2-cell which it pierces orthogonally, and each vertex lies in a dual 3-cell.

All the manifolds one commonly meets, for example all differentiable manifolds,
have dually paired cell structures with the properties needed to carry out the proof
of Poincaré duality we have just sketched. However, to construct these cell structures
requires a certain amount of manifold theory. To avoid this, and to get a theorem that
applies to all manifolds, we will take a completely different approach, using algebraic
topology to replace the geometry of dual cell structures.

Orientations and Homology

Let us consider the question of how one might define orientability for manifolds.
First there is the local question: What is an orientation of R"? Whatever an orientation
of R" is, it should have the property that it is preserved under rotations and reversed
by reflections. For example, in R? the notions of ‘clockwise’ and ‘counterclockwise’
certainly have this property, as do ‘right-handed’ and ‘left-handed’ in R3. We shall
take the viewpoint that this property is what characterizes orientations, so anything
satisfying the property can be regarded as an orientation.

With this in mind, we propose the following as an algebraic-topological definition:
An orientation of R" at a point x is a choice of generator of the infinite cyclic group
H, (R",R"™ — {x}), where the absence of a coefficient group from the notation means
that we take coefficients in Z. To verify that the characteristic property of orienta-
tions is satisfied we use the isomorphisms H, (R",R" — {x}) ~ H,_;(R" — {x}) =
Hn,l(S”’l) where $"7! is a sphere centered at x. Since these isomorphisms are
natural, and rotations of S"! have degree 1, being homotopic to the identity, while
reflections have degree —1, we see that a rotation p of R" fixing x takes a generator
« of H,(R",R" — {x}) toitself, p, () = «, while a reflection takes « to —«.

Note that with this definition, an orientation of R" at a point x determines an
orientation at every other point y via the canonical isomorphisms Hn([R”, R"—{x}) =
H,(R",R" — B) ~ H, (R",R" — {v}) where B is any ball containing both x and y.
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An advantage of this definition of local orientation is that it can be applied to
any n-dimensional manifold M: A local orientation of M at a point x is a choice of
generator p, of the infinite cyclic group H,,(M,M — {x}).

Notational Convention. In what follows we will very often be looking at homology
groups of the form H,(X,X — A). To simplify notation we will write H,(X,X — A)
as Hn(X|A), or more generally Hn(X|A;G) if a coefficient group G needs to be
specified. By excision, H, (X | A) depends only on a neighborhood of the closure of A
in X, so it makes sense to view H,, (X | A) as local homology of X at A.

Having settled what local orientations at points of a manifold are, a global orien-
tation ought to be ‘a consistent choice of local orientations at all points.” We make this
precise by the following definition. An orientation of an n-dimensional manifold M
is a function x — p, assigning to each x € M alocal orientation u, € H, (M |x), sat-
isfying the ‘local consistency’ condition that each x € M has a neighborhood R" ¢ M
containing an open ball B of finite radius about x such that all the local orientations
u, at points y € B are the images of one generator py of H,(M|B) ~ H,(R"|B)
under the natural maps H, (M |B)—H,, (M |y). If an orientation exists for M, then
M is called orientable.

Every manifold M has an orientable two-sheeted covering space M. For example,
RP? is covered by $°, and the Klein bottle has the torus as a two-sheeted covering
space. The general construction goes as follows. As a set, let

M = {u, | x € M and u, is alocal orientation of M at x }

The map u, — x defines a two-to-one surjection M— M, and we wish to topologize
M to make this a covering space projection. Given an open ball B ¢ R" ¢ M of finite
radius and a generator uz € H, (M |B), let U(ug) be the set of all u, € M such that
x € B and p, is the image of up under the natural map Hn(M|B)—>Hn(M|x). It is
easy to check that these sets U(ug) form a basis for a topology on M, and that the
projection M—Misa covering space. The manifold M is orientable since each point
[TNS M has a canonical local orientation given by the element [i, € Hn(ﬁ |uy) cor-
responding to p, under the isomorphisms Hn(I\N/IHlx) ~ H, (U(ug) |uy) ~ H,(B|x),
and by construction these local orientations satisfy the local consistency condition
necessary to define a global orientation.

Proposition 3.25. If M is connected, then M is orientable iff M has two components.
In particular, M is orientable if it is simply-connected, or more generally if 1t;(M)
has no subgroup of index two.

The first statement is a formulation of the intuitive notion of nonorientability as
being able to go around some closed loop and come back with the opposite orientation,
since in terms of the covering space M—M this corresponds to aloop in M that lifts
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to apathin M connecting two distinct points with the same image in M. The existence
of such paths is equivalent to M being connected.

Proof: If M is connected, M has either one or two components since it is a two-sheeted
covering space of M. If it has two components, they are each mapped homeomorphi-
cally to M by the covering projection, so M is orientable, being homeomorphic to
a component of the orientable manifold M. Conversely, if M is orientable, it has
exactly two orientations since it is connected, and each of these orientations defines
a component of M. The last statement of the proposition follows since connected
two-sheeted covering spaces of M correspond to index-two subgroups of 7, (M), by
the classification of covering spaces. O

The covering space M —M can be embedded in a larger covering space M;—M
where M, consists of all elements «, € H, (M |x) as x ranges over M. As before,
we topologize M; via the basis of sets U(xg) consisting of «,’s with x € B and «,
the image of an element «; € H,(M|B) under the map H,,(M|B)—H,(M|x). The
covering space M;— M is infinite-sheeted since for fixed x € M, the «, ’s range over
the infinite cyclic group H,,(M | x). Restricting «, to be zero, we get a copy M,, of M
in M;. Therest of M, consists of an infinite sequence of copies M; of ]\7, k=1,2,---,
where M, consists of the «,’s that are k times either generator of H, (M |x).

A continuous map M — M; of the form x — «, € H,(M|x) is called a section
of the covering space. An orientation of M is the same thing as a section x — p,
such that p, is a generator of H, (M |x) for each x.

One can generalize the definition of orientation by replacing the coefficient group
Z by any commutative ring R with identity. Then an R-orientation of M assigns to
each x € M a generator of H,(M|x;R) ~ R, subject to the corresponding local
consistency condition, where a ‘generator’ of R is an element u such that Ru = R.
Since we assume R has an identity element, this is equivalent to saying that u is a
unit, an invertible element of R. The definition of the covering space M; generalizes
immediately to a covering space My — M, and an R-orientation is a section of this
covering space whose value at each x € M is a generator of H, (M |x;R).

The structure of My is easy to describe. In view of the canonical isomorphism
Hn(M|x;R) = Hn(M|x) ®R, each ¥ € R determines a subcovering space M, of My
consisting of the points +u, ev € H,,(M|x;R) for u, a generator of H,(M|x). If
v has order 2 in R then v = —v so M, is just a copy of M, and otherwise M, is
isomorphic to the two-sheeted cover M. The covering space My is the union of these
M, ’s, which are disjoint except for the equality M, = M_, .

In particular we see that an orientable manifold is R-orientable for all R, while
a nonorientable manifold is R-orientable iff R contains a unit of order 2, which is
equivalent to having 2 = 0 in R. Thus every manifold is Z,-orientable. In practice
this means that the two most important cases are R = Z and R = Z,. In what follows



236 Chapter 3 Cohomology

—_—T

the reader should keep these two cases foremost in mind, but we will usually state
results for a general R.

The orientability of a closed manifold is reflected in the structure of its homology,
according to the following result.

Theorem 3.26. Let M be a closed connected n- manifold. Then:

(a) If M is R-orientable, the map Hn(M;R)—>Hn(M|x;R) ~ R is an isomorphism
forall x e M.

(b) If M is not R-orientable, the map H,,(M;R)—H,, (M | X;R) = R is injective with
image {v e R|2r =0} forall x € M.

(c) H;(M;R) =0 fori>n.

In particular, H,(M;Z) is Z or 0 depending on whether M is orientable or not,
and in either case H,(M;Z,) = Z,.

An element of H,(M;R) whose image in H,,(M |x;R) is a generator for all x is
called a fundamental class for M with coefficients in R. By the theorem, a fundamen-
tal class exists if M is closed and R-orientable. To show that the converse is also true,
let uy € H,,(M;R) be a fundamental class and let p, denote its image in H,, (M |x;R).
The function x ~— p, is then an R-orientation since the map H,,(M;R) —H, (M| x;R)
factors through H, (M | B;R) for B any open ballin M containing x. Furthermore, M
must be compact since p, can only be nonzero for x in the image of a cycle repre-
senting u, and this image is compact. In view of these remarks a fundamental class
could also be called an orientation class for M.

The theorem will follow fairly easily from a more technical statement:

Lemma 3.27. Let M be a manifold of dimension n and let A C M be a compact

subset. Then:

(@) If x — &, is a section of the covering space M — M , then there is a unique class
«, € H,(M|A;R) whose image in H,,(M | x;R) is &, forall x € A.

(b) H{(M|A;R) =0 fori>n.

To deduce the theorem from this, choose A = M, a compact set by assumption.
Part (c) of the theorem is immediate from (b) of the lemma. To obtain (a) and (b) of the
theorem, let I'; (M) be the set of sections of My — M. The sum of two sections is a
section, and a scalar multiple of a section is a section, so I'; (M) is an R-module. There
is a homomorphism H, (M;R)—I;(M) sending a class « to the section x — «,,
where «, is the image of « under the map H,(M;R)—H, (M | x;R). Part (a) of the
lemma asserts that this homomorphism is an isomorphism. If M is connected, each
section is uniquely determined by its value at one point, so statements (a) and (b) of
the theorem are apparent from the earlier discussion of the structure of Mj. ]

Proof of 3.27: The coefficient ring R will play no special role in the argument so we
shall omit it from the notation. We break the proof up into four steps.
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(1) First we observe that if the lemma is true for compact sets A, B, and A N B, then
it is true for A U B. To see this, consider the Mayer-Vietoris sequence

0—H,(M|AUB) -2 H,(M|A) ® H,(M|B) = H,(M|A N B)

Here the zero on the left comes from the assumption that H,,,(M|A N B) = 0. The
map ¢ is ¢(x) = (x,—x) and ¥ is ¥Y(«x,B) = x + B, where we omit notation for
maps on homology induced by inclusion. The terms H;(M | A U B) farther to the left
in this sequence are sandwiched between groups that are zero by assumption, so
H;(M|AUB) =0 for i > n. This gives (b). For the existence half of (a), if x — «, is
a section, the hypothesis gives unique classes «, € Hn(M|A), op € Hn(MlB), and
Xang € H, (M| AN B) having image «, forall x in A, B, or A n B respectively. The
images of «, and oy in H, (M| A n B) satisfy the defining property of «,.z, hence
must equal o, 5. Exactness of the sequence then implies that (x4, —xg) = ®(cxy5)
for some o, € H,,(M|AUB). This means that &, ; maps to &, and g, SO X4 p
has image «, forall x € AUB since &, and «p have this property. To see that &, p
is unique, observe thatif a class « € H, (M | AUB) has image zeroin H,, (M | x) for all
X € AUB, then its images in H,,(M | A) and H,, (M | B) have the same property, hence
are zero by hypothesis, so « itself must be zero since ® is injective. Uniqueness of
4, follows by applying this observation to the difference between two choices for
XauB-

(2) Next we reduce to the case M = R". A compact set A C M can be written as the
union of finitely many compact sets A,, ---,A,, each contained in an open R" c M.
We apply the resultin (1) to A; U --- UA,,_; and A,,. The intersection of these two
setsis (A;NA,)u---U(A,,_1NA,,),aunion of m—1 compact sets each contained
in an open R™ c M. By induction on m this gives a reduction to the case m = 1.
When m = 1, excision allows us to replace M by the neighborhood R" c M.

(3) When M = R" and A is a union of convex compact sets A, ---,A,,, an inductive
argument as in (2) reduces to the case that A itself is convex. When A is convex
the result is evident since the map H;(R" |A)— H;(R"|x) is an isomorphism for any
x € A,asboth R" — A and R" — {x} deformation retract onto a sphere centered at x.

(4) For an arbitrary compact set A C R" let « € H;(R" | A) be represented by arelative
cycle z, and let C C R" — A be the union of the images of the singular simplices in
0z. Since C is compact, it has a positive distance § from A. We can cover A by
finitely many closed balls of radius less than & centered at points of A. Let K be the
union of these balls, so K is disjoint from C. The relative cycle z defines an element
g € H;(R"|K) mapping to the given « € H,;(R"|A). If i > n then by (3) we have
H,;(R"|K) = 0, so &g = 0, which implies & = 0 and hence H;(R"|A) = 0. If i =n
and «, is zero in H, (R"|x) for all x € A, then in fact this holds for all x € K,
where «, in this case means the image of «y. This is because K is a union of balls
B meeting A and H,(R"|B)—H, (R"|x) is an isomorphism for all x € B. Since
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«, = 0 for all x € K, (3) then says that «y is zero, hence also «. This finishes the
uniqueness statement in (a). The existence statement is easy since we can let «, be
the image of the element «; associated to any ball B > A. =]

For a closed n-manifold having the structure of a A-complex there is a more
explicit construction for a fundamental class. Consider the case of Z coefficients. In
simplicial homology a fundamental class must be represented by some linear com-
bination > ; k;0; of the n-simplices o; of M. The condition that the fundamental
class maps to a generator of H, (M |x;Z) for points x in the interiors of the o;’s
means that each coefficient k; must be +1. The k;’s must also be such that > ; k;0;
is a cycle. This implies that if o; and o share a common (n — 1)-dimensional face,
then k; determines k; and vice versa. Analyzing the situation more closely, one can
show that a choice of signs for the k;’s making >; k;0; a cycle is possible iff M is
orientable, and if such a choice is possible, then the cycle > ; k;0; defines a funda-
mental class. With Z, coefficients there is no issue of signs, and > ; o; always defines
a fundamental class.

Some information about H,_;(M) can also be squeezed out of the preceding
theorem:

Corollary 3.28. If M is a closed connected n-manifold, the torsion subgroup of
H, _,(M;2) is trivial if M is orientable and Z, if M is nonorientable.

Proof: This is an application of the universal coefficient theorem for homology, using
the fact that the homology groups of M are finitely generated, from Corollaries A.8
and A.9 in the Appendix. In the orientable case, if H,,_,(M;Z) contained torsion, then
for some prime p, Hn(M;Zp) would be larger than the Z,, coming from H,(M;Z).
In the nonorientable case, H,(M;Z,,) is either Z, or 0 depending on whether m is
even or odd. This forces the torsion subgroup of H,,_,(M;Z) to be Z,. O

The reader who is familiar with Bockstein homomorphisms, which are discussed
in §3.E, will recognize that the Z, in H,_,(M;Z) in the nonorientable case is the im-
age of the Bockstein homomorphism H,,(M;Z,)—H,,_,(M;Z) coming from the short
exact sequence of coefficient groups 0—2Z—7Z—7Z,—0.

The structure of H,,(M;G) and H,,_,(M;G) for a closed connected n-manifold
M can be explained very nicely in terms of cellular homology when M has a CW
structure with a single n-cell, which is the case for a large number of manifolds.
Note that there can be no cells of higher dimension since a cell of maximal dimension
produces nontrivial local homology in that dimension. Consider the cellular boundary
map d:C,(M)—C,_,(M) with Z coefficients. Since M has a single n-cell we have
C,(M) = Z. If M is orientable, d must be zero since H,,(M;Z) = Z. Then since d
is zero, H,_;(M;Z) must be free. On the other hand, if M is nonorientable then d
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must take a generator of C, (M) to twice a generator « of a Z summand of C,_, (M),
in order for Hn(M;Zp) to be zero for odd primes p and Z, for p = 2. The cellular
chain & must be a cycle since 2« is a boundary and hence a cycle. It follows that the
torsion subgroup of H,_;(M;Z) must be a Z, generated by «.

Concerning the homology of noncompact manifolds there is the following general
statement.

‘ Proposition 3.29. If M is a connected noncompact n-manifold, then H;(M;R) =0
fori=n.

Proof: Represent an element of H;(M;R) by a cycle z. This has compact image in M,
so there is an open set U C M containing the image of z and having compact closure
U cCM. Let V=M-TU. Part of the long exact sequence of the triple (M,U U V,V)
fits into a commutative diagram

H;,,(M,UUV;R) — H;(UUV,V;R) — H;(M,V;R)

H;(U;R) H;(M;R)

When i > n, the two groups on either side of H;(UuUV,V;R) are zero by Lemma 3.27
since U UV and V are the complements of compact sets in M. Hence H;(U;R) = 0,
so z is aboundary in U and therefore in M, and we conclude that H;(M;R) = 0.
When i = n, the class [z] € H,,(M;R) defines a section x +— [z], of My. Since M
is connected, this section is determined by its value at a single point, so [z], will be
zero for all x if itis zero for some x, which it must be since z has compact image and
M is noncompact. By Lemma 3.27, z then represents zero in H,, (M, V;R), hence also
in H, (U;R) since the first term in the upper row of the diagram above is zero when
i = n, by Lemma 3.27 again. So [z] = 0 in H,,(M;R), and therefore H,(M;R) =0
since [z] was an arbitrary element of this group. O

The Duality Theorem

The form of Poincaré duality we will prove asserts that for an R-orientable closed
n-manifold, a certain naturally defined map H k(M ;R)—H,_(M;R) is an isomor-
phism. The definition of this map will be in terms of a more general construction
called cap product, which has close connections with cup product.

For an arbitrary space X and coefficient ring R, define an R-bilinear cap product
A:Ck(X;R)XC[(X;R)—>Ck_g(X;R) for k = £ by setting

o~ =@(0]|lvy, -, v]) o |lvg, -, V]

for o:A¥— X and Qe C‘)(X; R). To see that this induces a cap product in homology
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and cohomology we use the formula
o ~@)=(-1)' @0 ~p - 0~5p)

which is checked by a calculation:

¢
00 ~@ = Z D'e(allve, - U v Do Vg, - U]

i=0

k M
+ > (=D'@(a|lvg, -, vel)o|lvg, -, Dy o+, 1]
i=f+1

£+1 ]
0~Q =2 (=D'@(0llvg, -, 0, v DO [V, -+, 0]

i=0

k
3o ~@)=> (D p(a|lvg, -, vel)o|[vg, -+, gy ooy Vg ]
i="0

From the relation (o ~@) = +(00 ~@ — 0 ~0@) it follows that the cap product of
a cycle o and a cocycle @ is a cycle. Further, if 00 = 0 then 0(0 ~@) = =(0 ~0P),
so the cap product of a cycle and a coboundary is a boundary. And if ¢ = 0 then
(0 ~@) = +(00 ~@), so the cap product of a boundary and a cocycle is a boundary.
These facts imply that there is an induced cap product

Hy(X;R)xH'(X;R) —=— H,_,(X;R)

which is R-linear in each variable.
Using the same formulas, one checks that cap product has the relative forms

H (X, A;R)x HY (X;R) —=— H,_,(X, A;R)
H (X, A;R)xHY (X, A;R) —=— H,_,(X;R)

For example, in the second case the cap product Ck(X;R)><C€(X;R)—>Ck4(X;R)
restricts to zero on the submodule C; (A;R) X Ce(X, A;R), so there is an induced cap
product Ci (X, A;R) % Cg(X,A;R) — Cy_p(X;R). The formula for 0(o ~ @) still holds,
so we can pass to homology and cohomology groups. There is also a more general
relative cap product

H (X,AUB;R)xH'(X, A;R) —=— H,_,(X,B;R),

defined when A and B are open sets in X, using the fact that H; (X, A U B;R) can be
computed using the chain groups C,(X,A + B;R) = C,,(X;R)/C,,(A + B;R), as in the
derivation of relative Mayer-Vietoris sequences in §2.2.

Cap product satisfies a naturality property that is a little more awkward to state
than the corresponding result for cup product since both covariant and contravariant
functors are involved. Given amap f:X—Y, the relevant induced maps on homology
and cohomology fit into the diagram shown below. It does not quite make sense
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to say this diagram commutes, but the spirit of 1, (X) x HY(X) " H,_ (X)
commutativity is contained in the formula l F I F* l £.

fol@) ~@ = fo(an f* (@) H(Y) x H'(Y) == H,_,(Y)

which is obtained by substituting fo for o in the definition of cap product: fo~@ =
@(fol [vg, -, vpl) fO | [Vp, -+, Vi ]. There are evident relative versions as well.

Now we can state Poincaré duality for closed manifolds:

Theorem 3.30 (Poincaré Duality). If M is a closed R-orientable n-manifold with
fundamental class [M] € H,(M;R), then the map D:Hk(M;R) — H,,_(M;R) de-
fined by D(x) = [M] ~ « is an isomorphism for all k.

Recall that a fundamental class for M is an element of H, (M;R) whose image in
H,(M | x;R) is a generator for each x € M. The existence of such a class was shown
in Theorem 3.26.

Example 3.31: Surfaces. Let M be the closed orientable surface of genus g, ob-
tained as usual from a 4g-gon by identifying pairs of edges according to the word
abya;'bit---agbsa,'b,' . A A-complex structure on M is obtained by coning off
the 4g-gon to its center, as indicated in the figure
for the case g = 2. We can compute cap products
using simplicial homology and cohomology since cap
products are defined for simplicial homology and co-
homology by exactly the same formula as for singular
homology and cohomology, so the isomorphism be-
tween the simplicial and singular theories respects
cap products. A fundamental class [M] generating
H, (M) is represented by the 2-cycle formed by the

sum of all 4g 2-simplices with the signs indicated. The edges a; and b; form a basis
for H,(M). Under the isomorphism H' (M) =~ Hom(H, (M), Z), the cohomology class
«; corresponding to a; assigns the value 1 to a; and 0 to the other basis elements.
This class «; is represented by the cocycle @; assigning the value 1 to the 1-simplices
meeting the arc labeled «; in the figure and 0 to the other 1-simplices. Similarly we
have a class 8; corresponding to b;, represented by the cocycle y; assigning the value
1 to the 1-simplices meeting the arc f; and 0 to the other 1-simplices. Applying the
definition of cap product, we have [M] ~ @; = b; and [M] ~ ¢; = —a; since in both
cases there is just one 2-simplex [v(, vy, V,] where @; or y; is nonzero on the edge
[vg,V1]. Thus b, is the Poincaré dual of «; and —a; is the Poincaré dual of B;. If
we interpret Poincaré duality entirely in terms of homology, identifying «; with its
Hom-dual a; and B; with b;, then the classes a; and b; are Poincaré duals of each
other, up to sign at least. Geometrically, Poincaré duality is reflected in the fact that
the loops «; and b; are homotopic, as are the loops B; and a;.
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The closed nonorientable surface N of genus g
can be treated in the same way if we use Z, coef-
ficients. We view N as obtained from a 2g-gon by
identifying consecutive pairs of edges according to the
word a% ---afq. We have classes «; € Hl(N; Z,) rep-
resented by cocycles @; assigning the value 1 to the
edges meeting the arc «;. Then [N] ~@; = a;, so a;
is the Poincaré dual of «;. In terms of homology, a;

is the Hom-dual of «;, so a; is its own Poincaré dual.
Geometrically, the loops a; on N are homotopic to their Poincaré dual loops «;.

Our proof of Poincaré duality, like the construction of fundamental classes, will
be by an inductive argument using Mayer-Vietoris sequences. The induction step
requires a version of Poincaré duality for open subsets of M, which are noncompact
and can satisfy Poincaré duality only when a different kind of cohomology called
cohomology with compact supports is used.

Cohomology with Compact Supports

Before giving the general definition, let us look at the conceptually simpler notion
of simplicial cohomology with compact supports. Here one starts with a A-complex
X which is locally compact. This is equivalent to saying that every point has a neigh-
borhood that meets only finitely many simplices. Consider the subgroup Ai (X;G)
of the simplicial cochain group A!(X;G) consisting of cochains that are compactly
supported in the sense that they take nonzero values on only finitely many sim-
plices. The coboundary of such a cochain @ can have a nonzero value only on those
(i+1)-simplices having a face on which @ is nonzero, and there are only finitely many
such simplices by the local compactness assumption, so d@ lies in Af;’l (X;G). Thus
we have a subcomplex of the simplicial cochain complex. The cohomology groups for
this subcomplex will be denoted temporarily by H é(X ;G).

Example 3.32. Let us compute these cohomology groups when X = R with the
A-complex structure having vertices at the integer points. For a simplicial 0-cochain
to be a cocycle it must take the same value on all vertices, but then if the cochain
lies in A?(X) it must be identically zero. Thus H?([R;G) = 0. However, Hcl([R; G) is
nonzero. Namely, consider the map >.: Aé (R; G) — G sending each cochain to the sum
of its values on all the 1-simplices. Note that X is not defined on all of A!(X), just
on Ai (X). The map X vanishes on coboundaries, so it induces a map HC1 (R;G)—G.
This is surjective since every element of Ai (X) is a cocycle. It is an easy exercise to
verify that it is also injective, so HCI([R; G)=G.

Compactly supported cellular cohomology for a locally compact CW complex
could be defined in a similar fashion, using cellular cochains that are nonzero on
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only finitely many cells. However, what we really need is singular cohomology with
compact supports for spaces without any simplicial or cellular structure. The quickest
definition of this is the following. Let C(f (X; G) be the subgroup of C UX:6) consisting
of cochains @ : C;(X) — G for which there exists a compact set K = K, C X such that
@ is zero on all chains in X — K. Note that @ is then also zero on chains in X — K,
so 0@ lies in Cci“(X; G) and the Cé'(X; G)’s for varying i form a subcomplex of the
singular cochain complex of X. The cohomology groups Hé (X; G) of this subcomplex
are the cohomology groups with compact supports.

Cochains in CCi(X;G) have compact support in only a rather weak sense. A
stronger and perhaps more natural condition would have been to require cochains
to be nonzero only on singular simplices contained in some compact set, depending
on the cochain. However, cochains satisfying this condition do not in general form
a subcomplex of the singular cochain complex. For example, if X = R and @ is a
0-cochain assigning a nonzero value to one point of R and zero to all other points,
then 6@ assigns a nonzero value to arbitrarily large 1-simplices.

It will be quite useful to have an alternative definition of H, é (X; G) in terms of alge-
braic limits, which enter the picture in the following way. The cochain group C, é (X;G)
is the union of its subgroups Ci(X,X — K;G) as K ranges over compact subsets of
X. Each inclusion K — L induces inclusions Ci(X,X -K;G) — Ci(X,X - L;G) for
all i, so there are induced maps HY(X,X - K;G)—H'(X,X — L;G). These need not
be injective, but one might still hope that Hé (X; G) is somehow describable in terms
of the system of groups H YX,X - K;G) for varying K. This is indeed the case, and
it is algebraic limits that provide the description.

Suppose one has abelian groups G, indexed by some partially ordered index set
I having the property that for each pair «, 8 € I there exists y € I with « < y and
B < y. Such an I is called a directed set. Suppose also that for each pair « <  one
has a homomorphism f,z:Gy— Gg, such that f,, = 1 foreach &, andif x < <y
then f,, is the composition of fz and fj, . Given this data, which is called a directed
system of groups, there are two equivalent ways of defining the direct limit group
lim G ,. The shorter definition is that im G, is the quotient of the direct sum @, G,
by the subgroup generated by all elements of the form a — fz(a) for a € G, where
we are viewing each G, as a subgroup of @, G,. The other definition, which is often
more convenient to work with, runs as follows. Define an equivalence relation on the
set [[,G, by a ~ b if f(xy(a) = fﬂy(b) for some y, where a € G, and b € Gg.-
This is clearly reflexive and symmetric, and transitivity follows from the directed set
property. It could also be described as the equivalence relation generated by setting
a ~ faB(a). Any two equivalence classes [a] and [b] have representatives a’ and
b’ lying in the same G,, so define [a] + [b] = [a’ + b']. One checks this is well-
defined and gives an abelian group structure to the set of equivalence classes. It is
easy to check further that the map sending an equivalence class [a] to the coset of a
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in lim G, is a homomorphism, with an inverse induced by the map >; a; — >.;[a;]
for a; € G,,. Thus we can identify lim G, with the group of equivalence classes [a].

A useful consequence of this is that if we have a subset J C I with the property
that for each « € I there exists a f € J with « < 8, then limG,, is the same whether
we compute it with « varying over I or just over J. In particular, if I has a maximal
element y, we can take J = {y} and then imG, = G, .

Suppose now that we have a space X expressed as the union of a collection of
subspaces X, forming a directed set with respect to the inclusion relation. Then
the groups H,;(X,;G) for fixed i and G form a directed system, using the homo-
morphisms induced by inclusions. The natural maps H;(X,; G) — H;(X;G) induce a
homomorphism lim H;(X; G) — H;(X; G).

Proposition 3.33. If a space X is the union of a directed set of subspaces X, with
the property that each compact set in X is contained in some X, then the natural
map im H;(X,; G) = H;(X; G) is an isomorphism for all i and G.

Proof: For surjectivity, represent a cycle in X by a finite sum of singular simplices.
The union of the images of these singular simplices is compact in X, hence lies in
some X,, so the map @Hi(Xa; G)— H;(X;G) is surjective. Injectivity is similar: If
a cycle in some X, is a boundary in X, compactness implies it is a boundary in some
Xp D Xy, hence represents zero in li_n_lHl-(Xo(; G). O

Now we can give the alternative definition of cohomology with compact supports
in terms of direct limits. For a space X, the compact subsets K ¢ X form a directed
set under inclusion since the union of two compact sets is compact. To each compact
K c X we associate the group HY(X,X —K;G), with a fixed i and coefficient group G,
and to each inclusion K C L of compact sets we associate the natural homomorphism
Hi(X, X-K;G) —»Hi(X, X—L;G). The resulting limit group lii{lHi(X, X—-K;G) is then
equal to Hi (X; G) since each element of this limit group is represented by a cocycle in
Ci(X,XfK; G) for some compact K, and such a cocycle is zero in li_I,nHi(X,XfK; G)
iff it is the coboundary of a cochain in C*"'(X, X — L; G) for some compact L D K.

Note that if X is compact, then Hci (X;G) = Hi(X; G) since there is a unique
maximal compact set K C X, namely X itself. This is also immediate from the original
definition since Cci(X; G) = Ci(X; G) if X is compact.

Example 3.34: H}(R";G). To compute limH'(R",R" — K;G) it suffices to let K
range over balls B, of integer radius k centered at the origin since every compact set
is contained in such a ball. Since H'(R", R™ — B;; G) is nonzero only for i = n, when
itis G, and the maps H"(R",R" — By; G) = H"(R",R" — By, ;; G) are isomorphisms,
we deduce that H:(R";G) = 0 for i # n and H"(R";G) ~ G.

This example shows that cohomology with compact supports is not an invariant
of homotopy type. This can be traced to difficulties with induced maps. For example,
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the constant map from R" to a point does not induce a map on cohomology with
compact supports. The maps which do induce maps on H} are the proper maps,
those for which the inverse image of each compact set is compact. In the proof of
Poincaré duality, however, we will need induced maps of a different sort going in the
opposite direction from what is usual for cohomology, maps Hé(U;G)—»HCi(V;G)
associated to inclusions U — V of open sets in the fixed manifold M.

The group H'(X,X - K;G) for K compact depends only on a neighborhood of
K in X, by excision. As convenient shorthand notation we will write this group as
Hi(X |K;G), in analogy with the similar notation we used earlier for local homology.
One can think of cohomology with compact supports as the limit of these ‘local coho-
mology groups at compact subsets.’

Duality for Noncompact Manifolds

For M an R-orientable n-manifold, possibly noncompact, we can define a dual-
ity map Dy, :Hff(M;R) —H, _(M;R) by a limiting process in the following way. For
compact sets K ¢ L ¢ M we have a diagram

H,(M|L;R) x HYMI|L;R) _ A
i e =
H,(M|K;R) x HYMI|K;R) ~

where H, (M|A;R) = H,(M,M — A;R) and H*(M|A;R) = H*(M,M — A;R). By
Lemma 3.27 there are unique elements g € Hn(M|K;R) and y; € Hn(M|L;R)

Hn,k(M;R)

restricting to a given orientation of M at each point of K and L, respectively. From
the uniqueness we have i, (y;) = pg. The naturality of cap product implies that
i, (u)~x = ~i*(x) forall x € H*(M|K;R), s0 g ~x = p; ~i* (x). Therefore, let-
ting K vary over compact sets in M, the homomorphisms Hk(M | K;R)—H,_(M;R),
X — U ~X, induce in the limit a duality homomorphism D,, : H*(M; R) — H,,_,(M;R).

Since H;“ (M;R) = H*(M;R) if M is compact, the following theorem generalizes
Poincaré duality for closed manifolds:

next lemma, concerning the commutativity of a certain diagram. Commutativity state-

‘Theorem 3.35. The duality map D, :HX(M;R)—H,,_(M;R) is an isomorphism
for all k whenever M is an R-oriented n-manifold.

The proof will not be difficult once we establish a technical result stated in the

ments of this sort are usually routine to prove, but this one seems to be an exception.
The reader who consults other books for alternative expositions will find somewhat
uneven treatments of this technical point, and the proof we give is also not as simple
as one would like.

The coefficient ring R will be fixed throughout the proof, and for simplicity we
will omit it from the notation for homology and cohomology.
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Lemma 3.36. If M is the union of two open sets U and V , then there is a diagram
of Mayer-Vietoris sequences, commutative up to sign:

- —HYUNV)— HY(U)®HYV) — H*(M) — H*"'(UnV) — ---
lDUﬁV lDU®_Dv lDM lDUﬁV

S n—k(Umv) _>Hn—k(U) GaHn—k(V)_)Hn—k(M) _>Hn—k—1(Umv) —

Proof: Compact sets K ¢ U and L C V give rise to the Mayer-Vietoris sequence in
the upper row of the following diagram, whose lower row is also a Mayer-Vietoris
sequence.

.« — HYM|KNL) — H"(M|K)® H"(M|L) — H"(M|KUL) — ---
HY(UNV|KNL) HY(U|K)® H*(V|L)
l”KmL“ 1“1<” ©-Hp ~

. — H, (UNV) H, (U)®H, (V)

Hgor ™

ank(M) —_ e

The two maps labeled isomorphisms come from excision. Assuming this diagram
commutes, consider passing to the limit over compact sets K ¢ U and L C V. Since
each compact setin UNYV is contained in an intersection K N L of compact sets K C U
and L C V, and similarly for U u V, the diagram induces a limit diagram having the
form stated in the lemma. The first row of this limit diagram is exact since a direct
limit of exact sequences is exact; this is an exercise at the end of the section, and
follows easily from the definition of direct limits.

It remains to consider the commutativity of the preceding diagram involving K
and L. In the two squares shown, not involving boundary or coboundary maps, it is a
triviality to check commutativity at the level of cycles and cocycles. Less trivial is the
third square, which we rewrite in the following way:

HY(M|KUL) =2 H*'(M|KNL) —— H* (UnV|KNL)

() luKuL/\ l”KmL/\

H, (M) H, , (UNV)

Letting A = M—K and B = M —L, the map 6 is the coboundary map in the Mayer-
Vietoris sequence obtained from the short exact sequence of cochain complexes

0—C*(M,A+B)—C*(M,A) & C*(M,B) —C*"(M,AnB) —0

where C*(M, A + B) consists of cochains on M vanishing on chains in A and chains
in B. To evaluate the Mayer-Vietoris coboundary map é on a cohomology class rep-
resented by a cocycle @ € C*(M, A n B), the first step is to write ¢ = @, — @y
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for p, € C*(M,A) and @y € C*(M,B). Then 5[] is represented by the cocy-
cle S, = 6@y € C*(M,A + B), where the equality 6@, = §@; comes from the
fact that @ is a cocycle, so 6@ = 6@, — 6@y = 0. Similarly, the boundary map 0
in the homology Mayer-Vietoris sequence is obtained by representing an element of
H;(M) by a cycle z that is a sum of chains z;; € C;(U) and zy € C;(V), and then
o[z] =[ozy].

Via barycentric subdivision, the class pg; can be represented by a chain « that
is a sum oy_; + Xy + &y_g Of
chainsin U-L, UnV,and V-K,
respectively, since these three open
sets cover M. The chain &,y rep-
resents Ug.; since the other two

chains ap_; and oy _g lie in the
complement of K n L, hence van-
ishin H,(M|KNnL)~H,(UnV|KnL). Similarly, &;_; + &, represents pi.

In the square (x) let @ be a cocycle representing an element of HY(M |[KuUlL).
Under ¢ this maps to the cohomology class of 6@ 4. Continuingonto H,_;_;(UNnV)
we obtain &,y ~ 6@ 4, which is in the same homology class as oy, ~ @4 since

o(ayny ~®y) = (—l)k(ao‘Umv APy = Ayay ~OPy)
and &y ~@,4 isachainin UnV.
Going around the square (%) the other way, ¢ maps first to &~ @. To apply the
Mayer-Vietoris boundary map 0 to this, we first write &« ~ @ as a sum of a chainin U
and a chainin V:

X~ @ = (g ~@) + (Xyay ~Q + Ay_g ~P)

Then we take the boundary of the first of these two chains, obtaining the homology
class [0(ay_; ~@)] € H,__1(UnV). To compare this with [0&;,, ~ @41, we have

ooy ~@) = (—l)katxU_Lr\cp since 6 =0
= (-D*ay_; ~@, since dxy_; ~ Py =0, @ being
zero on chainsin B=M - L
= (_1)k+laO‘Umv ~Pa
where this last equality comes from the fact that o(xy_; + &yny) ~ @4 = 0 since
o(ay_p + Xyny) 1s @ chain in U — K by the earlier observation that «y_; + oyny
represents Uy, and @, vanishes on chainsin A =M - K.
Thus the square (%) commutes up to a sign depending only on k. ]

Proof of Poincaré Duality: There are two inductive steps, finite and infinite:

(A) If M is the union of open sets U and V and if D, Dy, and Dy, are isomor-
phisms, then so is D,,;. Via the five-lemma, this is immediate from the preceding
lemma.
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(B) If M is the union of a sequence of open sets U; C U, C --- and each duality map
Dy, :Hf(Ui)—>Hn_k(Ui) is an isomorphism, then so is D;,;. To show this we notice
first that by excision, Hf (U;) canberegarded as the limit of the groups H* (M|K) as K
ranges over compact subsets of U,. Then there are natural maps H*(U,) —H*(U, . )
since the second of these groups is a limit over a larger collection of K’s. Thus we can
form l_iILlH(’f(Ui) which is obviously isomorphic to H¥(M) since the compact sets in M
are just the compact sets in all the U;’s. By Proposition 3.33, H,,_, (M) ~ limH, _, (U;).
The map D, is thus the limit of the isomorphisms Dy, hence is an isomorphism.
Now after all these preliminaries we can prove the theorem in three easy steps:

(1) The case M = R" can be proved by regarding R" as the interior of A™, and
then the map D,, can be identified with the map H*(A",dA"™)—H, _,(A") given
by cap product with a unit times the generator [A"] € H, (A",0A") defined by the
identity map of A™, which is a relative cycle. The only nontrivial value of k is k = n,
when the cap product map is an isomorphism since a generator of H" (A", 0A™) =
Hom(H,, (A",0A™),R) is represented by a cocycle @ taking the value 1 on A", so by
the definition of cap product, A" ~@ is the last vertex of A", representing a generator
of Hy(A™).

(2) More generally, D,, is an isomorphism for M an arbitrary open set in R". To see
this, first write M as a countable union of convex open sets U;, for example open
balls, and let V; = U;.; U;. We apply (A) to U; and V;. Both V; and U; n'V; are unions
of i — 1 convex open sets, so by induction on the number of convex open sets in a

Jj<i

cover, Dy, and Dy, are isomorphisms. By (1), Dy, is an isomorphism since U; is
homeomorphic to R". So Dy, y, is an isomorphism. Since M is the increasing union
of the V;’s and each Dy, is an isomorphism, so is D), by (B).

(3) If M is a finite or countably infinite union of open sets U; homeomorphic to R",
the theorem now follows by the argument in (2), with each appearance of the words
‘convex open set’ replaced by ‘open set in R"™.” Thus the proof is finished for closed
manifolds, as well as for all the noncompact manifolds one ever encounters in actual
practice.

To handle a completely general noncompact manifold M we use a Zorn’s Lemma
argument. Consider the collection of open sets U ¢ M for which the duality maps
Dy; are isomorphisms. This collection is partially ordered by inclusion, and the union
of every totally ordered subcollection is again in the collection by the argument in (B),
which did not really use the hypothesis that the collection {U;} was indexed by the
positive integers. Zorn’s Lemma then implies that there exists a maximal open set
U for which the theorem holds. If U # M, choose a point x € M — U and an open
neighborhood V of x homeomorphic to R". The theorem holds for V and U NV by
(1) and (2), and it holds for U by assumption, so by (A) it holds for UuUV, contradicting
the maximality of U. O
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H Corollary 3.37. A closed manifold of odd dimension has Euler characteristic zero.

Proof: Let M be a closed n-manifold. If M is orientable, we have rank H;(M;Z) =
rank H ”’i(M ;Z), which equals rank H,,_;(M;Z) by the universal coefficient theorem.
Thus if n is odd, all the terms of Zi(—l)irank H;(M;Z) cancel in pairs.

If M is not orientable we apply the same argument using Z, coefficients, with
rank H;(M;Z) replaced by dim H;(M;Z,), the dimension as a vector space over Z,,
to conclude that Zi(fl)" dim H;(M;Z,) = 0. It remains to check that this alternating
sum equals the Euler characteristic Zi(—l)irankHi(M ;Z). We can do this by using
the isomorphisms H;(M;Z,) ~ H i (M;Z,) and applying the universal coefficient theo-
rem for cohomology. Each Z summand of H;(M;Z) gives a Z, summand of Hi(M; Z,).
Each 7Z,, summand of H;(M;Z) with m even gives Z, summands of H i(M ;Z,) and
H”l(M,ZZ), whose contributions to Zi(—l)idimHi(M;Zz) cancel. And Z,, sum-
mands of H;(M;Z) with m odd contribute nothing to H *(M; Z,). |

Connection with Cup Product

Cup and cap product are related by the formula
(%) Ylax~@) =(p-y)(x)

for xe C.p(X;R), @ € Ck(X;R), and g € C”)(X;R). This holds since for a singular
(k + £)-simplex o : AK*! — X we have

Yo ~@)=y(@(o|lvy, -, v ])o|[ve, -, Viiel)
= @(o|lvg, -, v DY (o vy, -, vpip]) = (@ — @) (o)
The formula (*) says that the map (pv:CQX;R)—»Ck”(X;R) is equal to the map

Homg (Cy(X;R),R) —Homg (Cy,p(X;R),R) dual to ~@. Passing to homology and co-

homology, we obtain the commutative di- HE(X; R) h HomR(Hg (X:R).R)

@ v ~ *
isomorphisms, for example when R is a . l " l( ?)
field or when R = 7Z and the homology H (X;R) — HomR(Hk+€(X;R),R)
groups of X are free, then the map ¢ - is the dual of ~ ¢@. Thus in these cases

agram at the right. When the maps h are

cup and cap product determine each other, at least if one assumes finite generation
so that cohomology determines homology as well as vice versa. However, there are
examples where cap and cup products are not equivalent when R = 7Z and there is
torsion in homology.

By means of the formula (%), Poincaré duality has nontrivial implications for
the cup product structure of manifolds. For a closed R-orientable n-manifold M,
consider the cup product pairing

HY(M;R) x H" *(M;R) — R, (@, ) — (@ — ¢)[M]
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Such a bilinear pairing Ax B— R is said to be nonsingular if the maps A— Hom(B, R)
and B—Hom(A, R), obtained by viewing the pairing as a function of each variable
separately, are both isomorphisms.

’ Proposition 3.38. The cup product pairing is nonsingular for closed R-orientable
manifolds when R is a field, or when R = Z and torsion in H* (M;Z) is factored out.

Proof: Consider the composition
H" % (M;R) 2 Homg (H,_ (M;R),R) 25> Homy (H*(M;R), R)

where h is the map appearing in the universal coefficient theorem, induced by eval-
uation of cochains on chains, and D* is the Hom-dual of the Poincaré duality map
D:H¥— n_k- The composition D*h sends g € H" 8 (M;R) to the homomorphism
@ — Y([M]~@) = (p-y)[M]. For field coefficients or for integer coefficients with
torsion factored out, h is an isomorphism. Nonsingularity of the pairing in one of its
variables is then equivalent to D being an isomorphism. Nonsingularity in the other
variable follows by commutativity of cup product. O

Corollary 3.39. If M is a closed connected orientable n- manifold, then for each
element « € H¥(M;Z) of infinite order that is not a proper multiple of another
element, there exists an element B € H" 8 (M;7) such that « - B is a generator of
H™(M;Z7) = Z. With coefficients in a field the same conclusion holds for any « + 0.

Proof: The hypotheses on « mean that it generates a Z summand of H K(M;Z). There
is then a homomorphism cp:Hk(M ;Z)— 7 with p(x) = 1. By the nonsingularity
of the cup product pairing, ¢ is realized by taking cup product with an element
B e H"’k(M;Z) and evaluating on [M], so & — B generates H""(M;Z). The case of
field coefficients is similar. O

Example 3.40: Projective Spaces. The cup product structure of H*(CP";Z) as a
truncated polynomial ring Z[ «]/(a™ ') with || = 2 can easily be deduced from this
as follows. The inclusion CP" ! — CP" induces an isomorphism on H' for i < 2n-2,
so by inductionon n, H 2H(CP™ 2) is generated by o' fori<mn. By the corollary, there
is an integer m such that the product & -« ma"™! = ma" generates H>"(CP"; 7).
This can only happen if m = +1, and therefore H* (CP";Z) ~ Z[«]/(«"™™!). The same
argument shows H* (HP™;Z) ~ Z[«x]/(«™™!) with |x| = 4. For RP" one can use the
same argument with Z, coefficients to deduce that H* (RP";Z,) ~ Z,[ o]/ (o™ 1) with
|| = 1. The cup product structure in infinite-dimensional projective spaces follows
from the finite-dimensional case, as we saw in the proof of Theorem 3.12.

Could there be a closed manifold whose cohomology is additively isomorphic to
that of CP" but with a different cup product structure? For n = 2 the answer is
no since duality implies that the square of a generator of H 2 must be a generator of
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H*. For n = 3, duality says that the product of generators of H> and H* must be a
generator of H®, but nothing is said about the square of a generator of H2. Indeed, for
$%x §*, whose cohomology has the same additive structure as CP?, the square of the
generator of H?(S?x S*;Z) is zero since it is the pullback of a generator of H?(S%;7)
under the projection s? ><S4—>52, andin H* (SZ; Z) the square of the generator of H?
is zero. More generally, an exercise for §4.D describes closed 6-manifolds having the
same cohomology groups as CP® but where the square of the generator of H? is an
arbitrary multiple of a generator of H 4

Example 3.41: Lens Spaces. Cup products in lens spaces can be computed in the same
way as in projective spaces. For a lens space r2ntl
mental group Z,,, we computed Hi(L2”+1; Z) in Example 2.43 to be Z for i = 0 and

of dimension 2n + 1 with funda-

2n+1, Z,, forodd i < 2n+1, and 0 otherwise. In particular, this implies that L2+t
is orientable, which can also be deduced from the fact that L"*! is the orbit space of
an actionof Z,, on § ntl py orientation-preserving homeomorphisms, using an exer-
cise at the end of this section. By the universal coefficient theorem, H'(L*"*1;Z,,) is
Z,, foreachi<2n+1.Llet x € H (L2 Z,,) and B € H? (LZ””;Zm) be generators.
The statement we wish to prove is:
HY(L*"*;7,,) is generated by {ilﬂi gg;j i Z ‘1

By induction on n we may assume this holds for j < 2n—1 since we have a lens space

121 ¢ 12"+ with this inclusion inducing an isomorphism on H’ for j<2n-1,as

one sees by comparing the cellular chain complexes for L?" 1 and L?"*!. The pre-
ceding corollary does not apply directly for Z,, coefficients with arbitrary m, but its
proof does since the maps h:Hi(L2"+1;Zm)—>Hom(Hi(L2”+1; Z,),Z,,) are isomor-
phisms. We conclude that - kxp" ! generates H>"*!(L?"*1;7,,) for some integer
k. We must have k relatively prime to m, otherwise the product - kxB" ! = kaB"
would have order less than m and so could not generate H*"**(L*"*1;7,.). Then
since k is relatively prime to m, «B" is also a generator of H*"*}(L?"*1;Z, ). From
this it follows that ™ must generate H>"(L*""!; Z,,), otherwise it would have order
less than m and so therefore would «B™".

The rest of the cup product structure on H* (LZ"“; Z,,) is determined once o
is expressed as a multiple of . When m is odd, the commutativity formula for cup
product implies «®* = 0. When m is even, commutativity implies only that o« is
either zero or the unique element of H 2 (LZ"“; Z,,) = Z,, of order two. In fact it is
the latter possibility which holds, since the 2-skeleton L? is the circle L' with a 2-cell
attached by a map of degree m, and we computed the cup product structure in this
2-complex in Example 3.9. It does not seem to be possible to deduce the nontriviality
of o from Poincaré duality alone, except when m = 2.

The cup product structure for an infinite-dimensional lens space L* follows from
the finite-dimensional case since the restriction map H”(L™;Z,,) —H’(L*""1;7,,) is
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an isomorphism for j < 2n + 1. As with RP", the ring structure in H*(LZ"”;Z)
is determined by the ring structure in H *(L2"+1;Zm), and likewise for L®, where
one has the slightly simpler structure H*(L*;Z) ~ Z[«]/(m«x) with || = 2. The
case of L?"*! is obtained from this by setting «™"! = 0 and adjoining the extra
7 ~ H2n+1 (L2n+l; Z) .

A different derivation of the cup product structure in lens spaces is given in
Example 3E.2.

Using the ad hoc notation H’)Eree(M ) for Hk(M ) modulo its torsion subgroup,
the preceding proposition implies that for a closed orientable manifold M of dimen-
sion 2n, the middle-dimensional cup product pairing H},,,(M)xH,,,(M)—Z is a
nonsingular bilinear form on H,,,(M). This form is symmetric or skew-symmetric
according to whether n is even or odd. The algebra in the skew-symmetric case is
rather simple: With a suitable choice of basis, the matrix of a skew-symmetric nonsin-
gular bilinear form over Z can be put into the standard form consisting of 2 x 2 blocks
((1) _é) along the diagonal and zeros elsewhere, according to an algebra exercise at the
end of the section. In particular, the rank of H" (M 2”) must be even when n is odd.
We are already familiar with these facts in the case n = 1 by the explicit computations
of cup products for surfaces in §3.2.

The symmetric case is much more interesting algebraically. There are only finitely
many isomorphism classes of symmetric nonsingular bilinear forms over Z of a fixed
rank, but this ‘finitely many’ grows rather rapidly, for example it is more than 80
million for rank 32; see [Serre 1973] for an exposition of this beautiful chapter of
number theory. It is known that for each even n > 2, every symmetric nonsingular
form actually occurs as the cup product pairing in some closed manifold M 2" One
can even take M>" to be simply-connected and have the bare minimum of homol-
ogy: Z’s in dimensions 0 and 2n and a Z* in dimension n. For n = 2 there are
at most two nonhomeomorphic simply-connected closed 4-manifolds with the same
bilinear form. Namely, there are two manifolds with the same form if the square
&~ « of some & € H? (M4) is an odd multiple of a generator of H4(M4), for ex-
ample for CP?, and otherwise the M* is unique, for example for S* or $?xS?; see
[Freedman & Quinn 1990]. In §4.C we take the first step in this direction by proving
a classical result of J. H. C. Whitehead that the homotopy type of a simply-connected
closed 4-manifold is uniquely determined by its cup product structure.

Other Forms of Duality

Generalizing the definition of a manifold, an n-manifold with boundary is a
Hausdorff space M in which each point has an open neighborhood homeomorphic
either to R" or to the half-space R} = {(x;,---,x,) € R" | x,, = 0}. If a point
x € M corresponds under such a homeomorphism to a point (x,---,x,,) € [Rf with
x, = 0, then by excision we have H,(M,M - {x};Z) ~ H,(R},R" — {0};Z2) = 0,
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whereas if x corresponds to a point (x,---,x,) € R" with x, > 0 or to a point
of R", then H,(M,M — {x};Z) ~ H,(R",R" — {0};Z) ~ Z. Thus the points x with
H,(M,M - {x};Z) = 0 form a well-defined subspace, called the boundary of M and
denoted 0M. For example, dR"” = R""! and oD" = §" !, It is evident that dM is an
(n — 1)-dimensional manifold with empty boundary.

If M is a manifold with boundary, then a collar neighborhood of 0M in M is an
open neighborhood homeomorphic to dM x[0,1) by a homeomorphism taking oM
to OM x {0}.

Proposition 3.42. If M is a compact manifold with boundary, then oM has a collar

neighborhood.

Proof: Let M’ be M with an external collar attached, the quotient of the disjoint
union of M and oM x [0, 1] in which x € oM is identified with (x,0) € oM x[0,1]. It
will suffice to construct a homeomorphism h:M— M’ since 0M’ clearly has a collar
neighborhood.

Since M is compact, so is the closed subspace M. This implies that we can
choose a finite number of continuous functions @;:0M—[0,1] such that the sets
V; = @;(0,1] form an open cover of M and each V; has closure contained in an
open set U; ¢ M homeomorphic to the half-space R”. After dividing each ¢; by
2.j @, we may assume >,; @; = 1.

Let @y = @, + -+ + @, and let M, C M’ be the union of M with the points
(x,t) € oMx[0,1] with t < g, (x). By definition ¢, = 0 and M, = M. We con-
struct a homeomorphism h; : M;_, — M, as follows. The homeomorphism U; ~ R
gives a collar neighborhood oU;x[-1,0] of oU; in U;, with x € 0U; corresponding
to (x,0) € 0U;x[—1,0]. Via the external collar 0M x [0, 1] we then have an embed-
ding oU;x[-1,1] C M'. We define h, to be the identity outside this oU;x[-1,1],
and for x € oU, we let h; stretch the segment {x}Xx[—-1,;_;(x)] linearly onto
{x}x[-1,yi(x)]. The composition of all the h;’s then gives a homeomorphism
M =~ M’, finishing the proof. |

More generally, collars can be constructed for the boundaries of paracompact
manifolds in the same way.

A compact manifold M with boundary is defined to be R-orientable if M — oM is
R-orientable as a manifold without boundary. If oM x [0, 1) is a collar neighborhood
of OM in M then H;(M,0M;R) is naturally isomorphic to H;(M —0M,0M x (0, ¢);R),
so when M is R-orientable, Lemma 3.27 gives a relative fundamental class [M] in
H, (M,0M;R) restricting to a given orientation at each point of M — oM.

It will not be difficult to deduce the following generalization of Poincaré duality
to manifolds with boundary from the version we have already proved for noncompact
manifolds:
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Theorem 3.43. Suppose M is a compact R-orientable n-manifold whose boundary
0M is decomposed as the union of two compact (n—1)-dimensional manifolds A and
B with a common boundary 0A = 0B = AN B. Then cap product with a fundamental
class [M] € H,,(M,0M;R) gives isomorphisms DM:Hk(M,A;R)—>Hn_k(M,B;R) for
all k.

The possibility that A, B, or A n B is empty is not excluded. The cases A = &
and B = & are sometimes called Lefschetz duality.

Proof: The cap product map DM:Hk(M,A;R)—>Hn,k(M,B;R) is defined since the
existence of collar neighborhoods of An B in A and B and dM in M implies that
A and B are deformation retracts of open neighborhoods U and V in M such that
U UV deformation retracts onto AU B = 0M and U nV deformation retracts onto
ANB.

The case B = @ is proved by applying Theorem 3.35 to M —0M . Via a collar neigh-
borhood of dM we see that H*(M,dM:R) ~ Hf(M — OM:;R), and there are obvious
isomorphisms H,,_,(M;R) = H,,_;(M — 0M;R).

The general case reduces to the case B = & by applying the five-lemma to the
following diagram, where coefficients in R are implicit:

- — H"(M,0M) — H*(M,A) — H"(oM,A) — H*"'(M,0M ) —> ---
[M]~ [M]~ H*(B,9B) [M]~
l[B]f\
+— H, (M) — H, (M,B) — H, 4 (B) —— H, (M) — ---
For commutativity of the middle square one needs to check that the boundary map
H,(M,0M)—H,_,(0M) sends a fundamental class for M to a fundamental class for
O0M. We leave this as an exercise at the end of the section. O

Next we turn to Alexander duality:

Theorem 3.44. If K is a compact, locally contractible, nonempty, proper subspace
of S™, then ﬁi(S” ~-K;7) ~ HV"Y(K;Z) forall i.

The special case that K is a sphere or disk was treated by more elementary means
in Proposition 2B.1. As remarked there, it is interesting that the homology of S™ — K
does not depend on the way that K is embedded in S™. There can be local pathologies
as in the case of the Alexander horned sphere, or global complications as with knotted
circles in S3, but these have no effect on the homology of the complement. The only
requirement is that K is not too bad a space itself. An example where the theorem
fails without the local contractibility assumption is the ‘quasi-circle,” defined in an
exercise for §1.3. This compact subspace K C R? can be regarded as a subspace of
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$? by adding a point at infinity. Then we have ﬁO(S 2_K;Z) ~ Z since S? —K has two
path-components, but it (K;Z) = 0 since K is simply-connected.

Proof: We will obtain the desired isomorphism when i + 0 as the composition of five
isomorphisms '
H;(S" - K) ~ H}'(S" - K)
~lim " 1($" - K,U - K)
~ lim H"~1($", U)
~lm A" (U) if i+0
~ I_NIn—i—l (K)

where coefficients in Z will be implicit throughout the proof, and the direct limits are
taken with respect to open neighborhoods U of K. The first isomorphism is Poincaré
duality. The second is the definition of cohomology with compact supports. The third
is excision. The fourth comes from the long exact sequences of the pairs (S", U). For
the final isomorphism, an easy special case is when K has a neighborhood that is a
mapping cylinder of some map X — K, as in the ‘letter examples’ at the beginning of
Chapter 0, since in this case we can compute the direct limit using neighborhoods U
which are segments of the mapping cylinder that deformation retract to K.

To obtain the last isomorphism in the general case we need to quote Theorem A.7
in the Appendix, which says that K is a retract of some neighborhood U, in S" since
K is locally contractible. In computing the direct limits we can then restrict attention
to open sets U C Uy, which all retract to K by restricting the retraction of U,. This
implies that the natural restriction map lim H* (U) — H* (K) is surjective since we can
pull back each element of H*(K) to the direct limit via the retractions U—K.

To see injectivity of the map im H*(U) — H*(K), we first show that each neigh-
borhood U c U, of K contains a neighborhood V such that the inclusion V — U is
homotopic to the retraction V—K C U. Namely, regarding U as a subspace of an
R"™ c S, the linear homotopy UxI— R" from the identity to the retraction U—K
takes KX I to K, hence takes V xI to U for some neighborhood V of K, by compact-
ness of I. Since the inclusion V — U is homotopic to the retraction V—K C U, the
restriction H*(U)— H* (V) factors through H*(K), and therefore if an element of
H™*(U) restricts to zero in H* (K), it restricts to zero in H* (V). This implies that the
map lim H*(U) — H*(K) is injective.

The only difficulty in the case i = 0 is that the fourth of the five isomorphisms
above does not hold, and instead we have only a short exact sequence

0 .’ﬁn_i_l(U) _)H‘}’L—l‘(S‘VL’ U) —_— HN-‘VL—i(SYL) —_— O

To get around this little problem, observe that all the groups involved in the first
three of the five isomorphisms map naturally to the corresponding groups with K
and U empty. Then if we take the kernels of these maps we get an isomorphism
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HO(S™ — K) ~ 11_mﬁ”(U), and we have seen that the latter group is isomorphic to
H"(K). O

Corollary 3.45. If X ¢ R" is compact and locally contractible then H;(X;Z) is O for
i > n and torsionfree fori=n—-1 and n — 2.

For example, a closed nonorientable n-manifold M cannot be embedded as a sub-
space of R"! since H, _,(M;Z) contains a Z, subgroup, by Corollary 3.28. Thus the
Klein bottle cannot be embedded in R®. More generally, the 2-dimensional complex
X n studied in Example 1.24, the quotient spaces of S 11 under the identifications
(z,0) ~ (e’™™z 0) and (z,1) ~ (e°™/"z 1), cannot be embedded in R> if m and n
are not relatively prime, since H; (X, ,Z) is Zx 7, where d is the greatest common
divisor of m and n. The Klein bottle is the case m =n = 2.

Proof: Viewing X as a subspace of the one-point compactification S™, Alexander
duality gives isomorphisms H(X;7) ~ ﬁn,i,l(S” — X;7). The latter group is zero
for i = n and torsionfree for i = n — 1, so the result follows from the universal
coefficient theorem since X has finitely generated homology groups. |

Here is another kind of duality which generalizes the calculation of the local ho-
mology groups H;(R",R" — {x};7):

Proposition 3.46. If K is a compact, locally contractible subspace of an orientable
n-manifold M, then there are isomorphisms H;(M,M - K;Z) = H"’i(K; Z) forall i.

Proof: Let U be an open neighborhood of K in M and let V be the complement of
a compact set in M. We assume U NV = &. Then cap product with fundamental
classes gives a commutative diagram with exact rows

- —— H,(M-K) H,(M) — H(M,M-K)~=H,(UU-K) — ---
I I I
- —H"(M,UUV) —H"(M,V) — H" (UUV,V)~H" (U) — ---
Passing to the direct limit over decreasing U D K and V/, the first two vertical arrows
become the Poincaré duality isomorphisms H;(M — K) ~ H* '(M — K) and H;(M) ~
HZ"i(M). The five-lemma then gives an isomorphism H;(M,M — K) =~ 11_mH””(U).
The latter group will be isomorphic to H"*(K) by the argument in the proof of The-

orem 3.44, provided that K is a retract of some neighborhood in M. To obtain such a
retraction we can first construct a map M — R¥ that is an embedding near the com-
pact set K, for some large k, by the method of Corollary A.9 in the Appendix. Then
a neighborhood of K in R¥ retracts onto K by Theorem A.7 in the Appendix, so the
restriction of this retraction to a neighborhood of K in M finishes the job. O

There is a way of extending Alexander duality and the duality in the preceding
proposition to compact sets K that are not locally contractible, by replacing the sin-
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gular cohomology of K with another kind of cohomology called Cech cohomology.
This is defined in the following way. To each open cover U = {U,} of a given space X
we can associate a simplicial complex N(U) called the nerve of U. This has a vertex
v, for each U,, and a set of k + 1 vertices spans a k-simplex whenever the k + 1
corresponding U,’s have nonempty intersection. When another cover V = {V;} is a
refinement of U, so each Vy is contained in some U, then these inclusions induce a
simplicial map N(V)— N(U) that is well-defined up to homotopy. We can then form
the direct limit lim H*(N (U); G) with respect to finer and finer open covers U. This
limit group is by definition the Cech cohomology group H Y(X;G). For a full exposi-
tion of this cohomology theory see [Eilenberg & Steenrod 1952]. With an analogous
definition of relative groups, Cech cohomology turns out to satisfy the same axioms as
singular cohomology, and indeed a stronger form of excision: a map (X,A)—(Y,B)
that restricts to a homeomorphism X — A—Y — B induces isomorphisms on Cech
cohomology groups. For spaces homotopy equivalent to CW complexes, Cech coho-
mology coincides with singular cohomology, but for spaces with local complexities it
often behaves more reasonably. For example, if X is the subspace of R® consisting
of the spheres of radius !/,, and center (1/,,0,0) for n = 1,2, ---, then contrary to
what one might expect, H 3(x ;Z) is nonzero, as shown in [Barratt & Milnor 1962]. But
H3(X;Z) =0 and H?(X;Z) = Z%, the direct sum of countably many copies of Z.

Oddly enough, the corresponding Cech homology groups defined using inverse
limits are not so well-behaved. This is because the exactness axiom fails due to the
algebraic fact that an inverse limit of exact sequences need not be exact, as a direct
limit would be; see §3.F. However, there is a way around this problem using a more
refined definition. This is Steenrod homology theory, which the reader can find out
about in [Milnor 1995].

Exercises

1. Show that there exist nonorientable 1-dimensional manifolds if the Hausdorff
condition is dropped from the definition of a manifold.

2. Show that deleting a point from a manifold of dimension greater than 1 does not
affect orientability of the manifold.

3. Show that every covering space of an orientable manifold is an orientable manifold.
4. Given a covering space action of a group G on an orientable manifold M by
orientation-preserving homeomorphisms, show that M/G is also orientable.

5. Show that M X N is orientable iff M and N are both orientable.

6. Given two disjoint connected n-manifolds M; and M,, a connected n-manifold
M, ¢M,, their connected sum, can be constructed by deleting the interiors of closed
n-balls B; ¢ M, and B, C M, and identifying the resulting boundary spheres 0B; and
0B, via some homeomorphism between them. (Assume that each B; embeds nicely
in a larger ball in M;.)
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(@) Show that if M, and M, are closed then there are isomorphisms H; (M, #M,;Z) =
H;(M,;Z)®H;(M,;Z) for 0 < i < n, with one exception: If both M; and M, are
nonorientable, then H,,_, (M, #M>;Z) is obtained from H,_,(M,;Z) ®H,,_,(M,;Z) by
replacing one of the two Z, summands by a Z summand. [Euler characteristics may
help in the exceptional case.]

(b) Show that X (M;#M,) = X (M;) + X (M,) — X (§™) if M; and M, are closed.

7. For amap f:M— N between connected closed orientable n-manifolds with fun-
damental classes [M] and [N], the degree of f is defined to be the integer d such
that f,([M]) = d[N], so the sign of the degree depends on the choice of fundamen-
tal classes. Show that for any connected closed orientable n-manifold M there is a
degree 1 map M —S".

8. For amap f:M— N between connected closed orientable n-manifolds, suppose
there is a ball B ¢ N such that f~(B) is the disjoint union of balls B; each mapped
homeomorphically by f onto B. Show the degree of f is > ; &; where ¢; is +1 or —1
according to whether f:B;— B preserves or reverses local orientations induced from
given fundamental classes [M] and [N].

9. Show that a p-sheeted covering space projection M — N has degree +p, when M
and N are connected closed orientable manifolds.

10. Show that for a degree 1 map f: M — N of connected closed orientable manifolds,
the induced map f, : ™M — 1N is surjective, hence also f, :H;(M)—H,;(N). [Lift
f to the covering space N—N corresponding to the subgroup Im f, C m; N, then
consider the two cases that this covering is finite-sheeted or infinite-sheeted.]

11. If M, denotes the closed orientable surface of genus g, show that degree 1 maps
M,— M, existiff g > h.

12. As an algebraic application of the preceding problem, show that in a free group
F with basis x, -+, Xy, the product of commutators [x;,x,] - [Xp,_1, X0, ] is not
equal to a product of fewer than k commutators [v;,w;] of elements v;,,w; € F.
[Recall that the 2-cell of M, is attached by the product [x,Xx5] -+ [X,_1, X2, ]. From
a relation [x,x5] -« [Xop_1, X5 ] = [V, wy] -+ [vj,wj] in F, construct a degree 1
map M;— M;.]

13. Let M), C M, be a compact subsurface of genus h with one boundary circle, so
M;, is homeomorphic to M;, with an open disk removed. Show there is no retraction
M g_>M]iL if h > g/2. [Apply the previous problem, using the fact that M, — M, has
genus g — h.]

14. Let X be the shrinking wedge of circles in Example 1.25, the subspace of R?
consisting of the circles of radius 1/,, and center (!/,,,0) for n = 1,2,---.

(@) If f,,:I—X is the loop based at the origin winding once around the n'" circle,
show that the infinite product of commutators [ f, f>1[.f5, f4] - - - defines aloop in X
that is nontrivial in H, (X). [Use Exercise 12.]
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(b) If we view X as the wedge sum of the subspaces A and B consisting of the odd-
numbered and even-numbered circles, respectively, use the same loop to show that
the map H, (X)— H,(A) ® H, (B) induced by the retractions of X onto A and B is not
an isomorphism.

15. For an n-manifold M and a compact subspace A ¢ M, show that H,(M,M —A;R)
is isomorphic to the group Iz (A) of sections of the covering space My — M over A,
that is, maps A— My whose composition with My — M is the identity.

16. Show that (x ~@) ~yp = x~(p - y) foral « € C,(X;R), @ € Ce(X;R), and
¢ € C"™(X;R). Deduce that cap product makes H, (X;R) aright H*(X; R)-module.

17. Show that a direct limit of exact sequences is exact. More generally, show that
homology commutes with direct limits: If {C,, faB} is a directed system of chain
complexes, with the maps f4:Cy— Cy chain maps, then H, (imC,) =limH, (C,).
18. Show that a direct limit lim G, of torsionfree abelian groups G, is torsionfree.
More generally, show that any finitely generated subgroup of imG,, is realized as a
subgroup of some G.

19. Show that a direct limit of countable abelian groups over a countable indexing
set is countable. Apply this to show that if X is an open set in R" then H;(X;Z) is
countable for all i.

20. Show that Hg (X;G) =0 if X is path-connected and noncompact.

21. For a space X, let X* be the one-point compactification. If the added point,
denoted o, has a neighborhood in X that is a cone with « the cone point, show that
the evident map H (X;G)—H" (X", o;G) is an isomorphism for all n. [Question:
Does this result hold when X = ZxR?]

22. Show that H*(XxR;G) ~ H' ' (X;G) for all n.

23. Show that for a locally compact A-complex X the simplicial and singular coho-
mology groups Hci(X ; G) are isomorphic. This can be done by showing that AE(X i G)
is the union of its subgroups A!(X, A;G) as A ranges over subcomplexes of X that
contain all but finitely many simplices, and likewise Cci (X; G) is the union of its sub-
groups C(X, A; G) for the same family of subcomplexes A.

24. Let M be a closed connected 3-manifold, and write H, (M;Z) as Z" ® F, the direct
sum of a free abelian group of rank » and a finite group F. Show that H,(M;Z) is
Z" if M is orientable and 7" ! ®7, if M is nonorientable. In particular, » > 1 when
M is nonorientable. Using Exercise 6, construct examples showing there are no other
restrictions on the homology groups of closed 3-manifolds. [In the nonorientable case
consider the manifold N obtained from S>x 1 by identifying S 2% {0} with S 2% {1}
via a reflection of S2.]

25. Show that if a closed orientable manifold M of dimension 2k has H;_,(M;Z)
torsionfree, then H (M;Z) is also torsionfree.
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26. Compute the cup product structure in H* (S2 X 58ﬁ54 X SG; Z), and in particular
show that the only nontrivial cup products are those dictated by Poincaré duality. [See
Exercise 6. The result has an evident generalization to connected sums of S'xS$" ’s
for fixed n and varying i.]

27. Show that after a suitable change of basis, a skew-symmetric nonsingular bilinear
form over Z can be represented by a matrix consisting of 2x2 blocks ((1) ‘é) along
the diagonal and zeros elsewhere. [For the matrix of a bilinear form, the following
operation can be realized by a change of basis: Add an integer multiple of the i* row
to the j" row and add the same integer multiple of the i column to the j column.
Use this to fix up each column in turn. Note that a skew-symmetric matrix must have

zeros on the diagonal.]

28. Show that a nonsingular symmetric or skew-symmetric bilinear pairing over a field
F, of the form F"x F*— F, cannot be identically zero when restricted to all pairs of
vectors v,w in a k-dimensional subspace V c F" if k > n/2.

29. Use the preceding problem to show that if the closed orientable surface M, of
genus g retracts onto a graph X ¢ M, then H,(X) has rank at most g. Deduce an
alternative proof of Exercise 13 from this, and construct a retraction of M, onto a
wedge sum of k circles for each k < g.
30. Show that the boundary of an R-orientable manifold is also R-orientable.
31. Show that if M is a compact R-orientable n-manifold, then the boundary map
H,(M,0M;R)—H, _,(0M;R) sends a fundamental class for (M,0M) to a fundamen-
tal class for oM.
32. Show that a compact manifold does not retract onto its boundary.
33. Show that if M is a compact contractible n-manifold then oM is a homology
(n — 1)-sphere, that is, H;(0M;Z) = Hi(S”’l;Z) for all i.
34. For a compact manifold M verify that the following diagram relating Poincaré
duality for M and oM is commutative, up to sign at least:

H*'(0M;R) — H*(M,0M;R) —— H*(M;R) —— H*(dM;R)

l [onM]~ l [M]~ l [M]~ l oM~
H, (0M;R) — H,_(M;R) — H,,_(M,0M;R) — H,,_,_,(0M;R)

35. If M is anoncompact R-orientable n-manifold with boundary oM having a collar
neighborhood in M, show that there are Poincaré duality isomorphisms Hf(M ;R) =
H, _(M,0M;R) for all k, using the five-lemma and the following diagram:
- — H}'(dM;R) — Hf (M,0M;R) — Hf(M;R) —— HS(3M;R) — -+
lDaM lDM lDM lDaM

. — H, (0M;R) — H,_(M;R) —> H,_(M,dM;R) — H,,_,_,(3M;R) —> -+~
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Additional Topics
3.A Universal Coefficients for Homology

The main goal in this section is an algebraic formula for computing homology with
arbitrary coefficients in terms of homology with Z coefficients. The theory parallels
rather closely the universal coefficient theorem for cohomology in §3.1.

The first step is to formulate the definition of homology with coefficients in terms
of tensor products. The chain group C, (X;G) as defined in §2.2 consists of the finite
formal sums >; g;0; with g; € G and 0;:A"™ —X. This means that C,,(X;G) is a
direct sum of copies of G, with one copy for each singular n-simplex in X. More gen-
erally, the relative chain group C, (X, A;G) = C,,(X;G)/C,(A;G) is also a direct sum
of copies of G, one for each singular n-simplex in X not contained in A. From the
basic properties of tensor products listed in the discussion of the Kiinneth formula
in §3.2 it follows that C, (X, A;G) is naturally isomorphic to C,(X,A)®G, via the
correspondence > ; g;0; — >.;0;®g;. Under this isomorphism the boundary map
C,(X,A;G)—C,,_1(X,A;G) becomes the map 0o 1:C,(X,A)®G—C,_1(X,A)®G
where 0:C,,(X,A)—C,_,(X,A) is the usual boundary map for Z coefficients. Thus
we have the following algebraic problem:

Given a chain complex --- — C, L, C,,_; — -+ of free abelian groups C,,,
is it possible to compute the homology groups H, (C;G) of the associated
chain complex --- — C,, ®G LS Cy_1®G—> - justin terms of G and

the homology groups H,,(C) of the original complex?

To approach this problem, the idea will be to compare the chain complex C with two
simpler subcomplexes, the subcomplexes consisting of the cycles and the boundaries
in C, and see what happens upon tensoring all three complexes with G.

Let Z, = Kero, c C,, and B, = Imd,,,; € C,. The restrictions of 0, to these
two subgroups are zero, so they can be regarded as subcomplexes Z and B of C
with trivial boundary maps. Thus we have a short exact sequence of chain complexes
consisting of the commutative diagrams

0 Zn c,—2 g 0
() o [ o
0 Zn Ch1r—— Bno» 0

The rows in this diagram split since each B,, is free, being a subgroup of the free group
C,. Thus C, = Z, ®B,,_;, but the chain complex C is not the direct sum of the chain
complexes Z and B since the latter have trivial boundary maps but the boundary
maps in C may be nontrivial. Now tensor with G to get a commutative diagram
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0,81
0 Z,®G C,®G B, ,®G——0
ii 2,81 3,01 3, 81
(ii) l 1 2, @l l 1®
0—>Zn,1®G Cn,1®G Bn,2®G—>0

The rows are exact since the rows in (i) split and tensor products satisfy (A®B)® G ~
A®G®B®G, so the rows in (ii) are split exact sequences too. Thus we have a short
exact sequence of chain complexes 0—Z® G— C®G— B® G — 0. Since the boundary
maps are trivial in Z® G and B® G, the associated long exact sequence of homology
groups has the form

(i)  ---—B,®G—Z,8G—H,(C;G) — B, ,8G—Z, | ®G— ---

The ‘boundary’ maps B, ® G— Z, ®G in this sequence are simply the maps i, ®1
where i, : B, — Z,, is the inclusion. This is evident from the definition of the boundary
map in along exact sequence of homology groups: In diagram (ii) one takes an element
of B, ,®G, pulls it back via (3,,e1)"' to C,®G, then applies 9, ®1 to get into
C,,_1®G, then pulls back to Z,,_;®G.

The long exact sequence (iii) can be broken up into short exact sequences

(iv) 0 — Coker(i,®1) — H, (C;G) — Ker(i,,_; 1) —0
where Coker(i,®1) = (Z,®G)/Im(i, ® 1). The next lemma shows this cokernel is

just H,(C)®G.

Lemma 3A.1. If the sequence of abelian groups A LB R C — 0 is exact, then
sois A®G 2L pec L2 co G — 0.

Proof: Certainly the compositions of two successive maps in the latter sequence are
zero. Also, je 1 is clearly surjective since j is. To check exactness at B® G it suffices
to show that the map B®G/Im(i® 1) —C®G induced by j® 1 is an isomorphism,
which we do by constructing its inverse. Define amap ¢ :CxG—B®G/Im(ie 1) by
@(c,g) = beg where j(b) = c. This @ is well-defined since if j(b) = j(b') =
then b — b = i(a) for some a € A by exactness, so beg —b'eg = (b—-b')eg

9}

i(a)eg € Im(i®1). Since @ is a homomorphism in each variable separately, it
induces a homomorphism C® G—B®G/Im(i® 1). This is clearly an inverse to the
map BOG/Im(iell)—C®G. O

Itremains to understand Ker(i,,_; ® 1), or equivalently Ker(i,, ® 1). The situation
is that tensoring the short exact sequence
(v) 0—> B, - 7, — H,(C) — 0

with G produces a sequence which becomes exact only by insertion of the extra term
Ker(i,®1):

(vi) 0—Ker(i,e1) — B, 86 225 7 € G— H, (C)®G — 0



Universal Coefficients for Homology Section 3.A | 263

—

What we will show is that Ker(i,, ® 1) does not really depend on B,, and Z,, but only
on their quotient H, (C), and of course G.

The sequence (v) is a free resolution of H,,(C), where as in §3.1 a free resolution
of an abelian group H is an exact sequence

f2 bil fo

'_’FZ Fl FO H—O0

with each F,, free. Tensoring a free resolution of this form with a fixed group G
produces a chain complex

—FecL L Fec L HeG—0
By the preceding lemma this is exact at F,® G and H ® G, but to the left of these two
terms it may not be exact. For the moment let us write H, (F®G) for the homology
group Ker(f, e 1)/Im(f,.,1).

Lemma 3A.2. For any two free resolutions F and F' of H there are canonical iso-
morphisms H,(F®G) ~ H,(F' ®G) for all n.

Proof: We will use Lemma 3.1(a). In the situation described there we have two free
resolutions F and F' with a chain map between them. If we tensor the two free
resolutions with G we obtain chain complexes F® G and F’ ® G with the maps «,, ® 1
forming a chain map between them. Passing to homology, this chain map induces
homomorphisms «, :H,,(F®G)—H, (F "® G) which are independent of the choice of
«,,’s since if «,, and «), are chain homotopic via a chain homotopy A,, then o, & 1
and o, ® 1 are chain homotopic via A, @ 1.

For a composition H = H' B, H'"" with free resolutions F, F', and F' of these
three groups also given, the induced homomorphisms satisfy (fx), = B,«, since
we can choose for the chain map F—F" the composition of chain maps F—F —F" .
In particular, if we take « to be an isomorphism, with S its inverse and F' = F,
then ., = (Bx), = 1, = 1, and similarly with f and « reversed. So «, is an
isomorphism if « is an isomorphism. Specializing further, taking « to be the identity
but with two different free resolutions F and F', we get a canonical isomorphism
1,:H,(F®G)—H, (F ®G). O

The group H,,(F®G), which depends only on H and G, is denoted Tor,, (H,G).
Since a free resolution 0— F, — F,— H — 0 always exists, as noted in §3.1, it follows
that Tor, (H,G) = 0 for n > 1. Usually Tor, (H, G) is written simply as Tor(H, G). As
we shall see later, Tor(H, G) provides a measure of the common torsion of H and G,
hence the name ‘Tor.’

Is there a group Tor((H, G)? With the definition given above it would be zero since
Lemma 3A.1 implies that F;®G—F,® G—H®G— 0 is exact. It is probably better
to modify the definition of H, (F®G) to be the homology groups of the sequence
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- —F,®G—F,®G— 0, omitting the term H® G which can be regarded as a kind
of augmentation. With this revised definition, Lemma 3A.1 then gives an isomorphism
Tory(H,G) = H®G.

We should remark that Tor(H, G) is a functor of both G and H: Homomorphisms
«:H—H' and B:G— G  induce homomorphisms «, :Tor(H,G)—Tor(H',G) and
B, :Tor(H,G)—Tor(H,G"), satisfying (ax«'), = o, &, (BB'), = B.B,,and 1, = 1.
The induced map «, was constructed in the proof of Lemma 3A.2, while for S the
construction of B, is obvious.

Before going into calculations of Tor(H, G) let us finish analyzing the earlier exact
sequence (iv). Recall that we have a chain complex C of free abelian groups, with
homology groups denoted H,,(C), and tensoring C with G gives another complex
C ® G whose homology groups are denoted H,, (C;G). The following result is known
as the universal coefficient theorem for homology since it describes homology with
arbitrary coefficients in terms of homology with the ‘universal’ coefficient group Z.

Theorem 3A.3. If C is a chain complex of free abelian groups, then there are natural
short exact sequences

0—H,(C)®G— H,(C;G) — Tor(H,_,(C),G) —0
for all n and all G, and these sequences split, though not naturally.

Naturality means that a chain map C — C’ induces a map between the correspond-
ing short exact sequences, with commuting squares.

Proof: The exact sequence in question is (iv) since we have shown that we can identify
Coker(i, ® 1) with H,(C)®G and Keri, _, with Tor(H,,_,(C),G). Verifying the nat-
urality of this sequence is a mental exercise in definition-checking, left to the reader.

The splitting is obtained as follows. We observed earlier that the short exact se-
quence 0— Z, — C, — B,,_; — 0 splits, so there is a projection p: C,, — Z,, restricting
to the identity on Z,,. The map p gives an extension of the quotient map Z,, — H,,(C)
to ahomomorphism C,, — H,,(C). Letting n vary, we then have a chainmap C— H(C)
where the groups H,, (C) are regarded as a chain complex with trivial boundary maps,
so the chain map condition is automatic. Now tensor with G to get a chain map
C®G—H(C)®G. Taking homology groups, we then have induced homomorphisms
H, (C;G)—H,(C)®G since the boundary maps in the chain complex H(C)® G are
trivial. The homomorphisms H,,(C; G)— H,,(C) ® G give the desired splitting since at
the level of chains they are the identity on cycles in C, by the definition of p. O

Corollary 3A.4. For each pair of spaces (X, A) there are split exact sequences
0—H,(X,A)®G— H,(X,A;G) — Tor(H,_,(X,A),G) —0
for all n, and these sequences are natural with respect to maps (X,A)— (Y,B). O

The splitting is not natural, for if it were, a map X—Y that induced trivial
maps H,(X)—H,(Y) and H,_;(X)—H,_;(Y) would have to induce the trivial map
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H,(X;G)—H,(Y;G) for all G, but in Example 2.51 we saw an instance where this
fails, namely the quotient map M (Z,,,n) —S™ with G = Z,,.

The basic tools for computing Tor are given by:

Proposition 3A.5.

(1) Tor(A,B) =~ Tor(B,A).

(2) Tor(p;A;,B) = P;Tor(A;,B).

(3) Tor(A,B) =0 if A or B is free, or more generally torsionfree.

(4) Tor(A,B) ~ Tor(T(A),B) where T(A) is the torsion subgroup of A.

(5) Tor(Z,,A) ~ Ker(A—> A).

(6) For each short exact sequence 0— B— C — D — 0 there is a naturally associated
exact sequence

0—Tor(A,B) —Tor(A,C)—Tor(A,D) >A®B—>A®C—A®D —0

Proof: Statement (2) is easy since one can choose as a free resolution of @; A; the
direct sum of free resolutions of the A;’s. Also easy is (5), which comes from tensoring
the free resolution 0—7 —»7—7,,—0 with A.

For (3), if A is free, it has a free resolution with F,, = 0 for n = 1, so Tor(A,B) =0
for all B. On the other hand, if B is free, then tensoring a free resolution of A with
B preserves exactness, since tensoring a sequence with a direct sum of Z’s produces
just a direct sum of copies of the given sequence. So Tor(A, B) = 0 in this case too.
The generalization to torsionfree A or B will be given below.

For (6), choose a free resolution 0— F; —F;— A—0 and tensor with the given
short exact sequence to get a commutative diagram

0—F,®B —F,®C —F,®D —0
| l |
0 —F,®B ——F®C ——F,®D——0
The rows are exact since tensoring with a free group preserves exactness. Extending
the three columns by zeros above and below, we then have a short exact sequence
of chain complexes whose associated long exact sequence of homology groups is the
desired six-term exact sequence.

To prove (1) we apply (6) to a free resolution 0— F; — F;— B— 0. Since Tor(A, F;)
and Tor(A, Fy) vanish by the part of (3) which we have proved, the six-term sequence
in (6) reduces to the first row of the following diagram:

0 —> Tor(A,B) — A®F, —A®F,—A®B—0
0—>T0r(B,A)—>Fli>A FOéA BéA—>O

The second row comes from the definition of Tor(B, A). The vertical isomorphisms

come from the natural commutativity of tensor product. Since the squares commute,
there is induced a map Tor(A, B) —Tor(B, A), which is an isomorphism by the five-
lemma.
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Now we can prove the statement (3) in the torsionfree case. For a free resolution
0 — F, =% F, — A — 0 we wish to show that @ e 1:F, ® B—F,®B is injective
if B is torsionfree. Suppose > ; x; ®b; lies in the kernel of @ © 1. This means that
> @(x;)®eb; can be reduced to 0 by a finite number of applications of the defining
relations for tensor products. Only a finite number of elements of B are involved in
this process. These lie in a finitely generated subgroup B, C B, so >; x; ®b; lies in
the kernel of @ ® 1:F, ® By— F,®B,,. This kernel is zero since Tor(A, B;) = 0, as B,
is finitely generated and torsionfree, hence free.

Finally, we can obtain statement (4) by applying (6) to the short exact sequence
0—-T(A)—A—A/T(A)—0 since A/T(A) is torsionfree. O

In particular, (5) gives Tor(Z,,,Z,,) = Z, where g is the greatest common divisor
of m and n. Thus Tor(Z,,,7,) is isomorphic to 7Z,, ®Z,,, though somewhat by acci-
dent. Combining this isomorphism with (2) and (3) we see that for finitely generated
A and B, Tor(A, B) is isomorphic to the tensor product of the torsion subgroups of
A and B, or roughly speaking, the common torsion of A and B. This is one reason
for the ‘Tor’ designation, further justification being (3) and (4).

Homology calculations are often simplified by taking coefficients in a field, usually
Q or Z,, for p prime. In general this gives less information than taking Z coefficients,
but still some of the essential features are retained, as the following result indicates:

Corollary 3A.6. () H,(X;Q) =~ H,(X;Z2)®Q, so when H,(X;Z) is finitely gen-
erated, the dimension of H,(X;Q) as a vector space over Q equals the rank of
H,(X;Z).
(b) If H,(X;Z) and H,,_,(X;Z) are finitely generated, then for p prime, H,(X;Z,)
consists of

() a Z, summand for each Z summand of H, (X;Z),

(i) a Zp summand for each Zpk summand in H,(X;72), k=1,

(iii) a Zp summand for each Zpk summandin H, (X;Z), k= 1. O

Even in the case of nonfinitely generated homology groups, field coefficients still
give good qualitative information:

Corollary 3A.7. (a) ﬁn(X;Z) =0 forallm iffﬁn(X;Q) =0 and ﬁn(X;Z ) =0 for
all n and all primes p.

(b) A map f:X—Y induces isomorphisms on homology with 7 coefficients iff it
induces isomorphisms on homology with Q and Z,, coefficients for all primes p.

Proof: Statement (b) follows from (a) by passing to the mapping cone of f. The
universal coefficient theorem gives the ‘only if’ half of (a). For the ‘if’ implication it
suffices to show that if an abelian group A is such that A® Q = 0 and Tor(A,Z,) =0
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for all primes p, then A = 0. For the short exact sequences 0—Z £, Z—17,—0 and
0—7Z—Q—Q/Z— 0, the six-term exact sequences in (6) of the proposition become

0— Tor(A,2,) > A-t>A—A®Z, —0
0— Tor(A,Q/Z) > A— A®Q — A®Q/Z— 0

If Tor(A,Z,) = 0 for all p, then exactness of the first sequence implies that A AN\
is injective for all p, so A is torsionfree. Then Tor(A,Q/Z) = 0 by (3) or (4) of the
proposition, so the second sequence implies that A— A® Q is injective, hence A =0
if AeQ =0. |

The algebra by means of which the Tor functor is derived from tensor products
has a very natural generalization in which abelian groups are replaced by modules
over a fixed ring R with identity, using the definition of tensor product of R-modules
givenin §3.2. Free resolutions of R-modules are defined in the same way as for abelian
groups, using free R-modules, which are direct sums of copies of R. Lemmas 3A.1 and
3A.2 carry over to this context without change, and so one has functors Torﬁ(A, B).
However, it need not be true that Torf(A,B) = 0 for n > 1. The reason this was
true when R = Z was that subgroups of free groups are free, but submodules of free
R-modules need not be free in general. If R is a principal ideal domain, submodules
of free R-modules are free, so in this case the rest of the algebra, in particular the
universal coefficient theorem, goes through without change. When R is afield F, every
module is free and Tori(A,B) = 0 for n > 0 via the free resolution 0—A—A—0.
Thus H,,(C®:G) = H,,(C) ®:G if F is a field.

Exercises

1. Use the universal coefficient theorem to show that if H, (X;Z) is finitely generated,
so the Euler characteristic X (X) = >, (—-1)"rank H, (X;Z) is defined, then for any
coefficient field F we have X (X) = > ,(-1)"dimH,,(X;F).

2. Show that Tor(A,Q/Z) is isomorphic to the torsion subgroup of A. Deduce that
A is torsionfree iff Tor(A,B) = 0 for all B.

3. Show that if H™(X;Q) and H"(X;Z,) are zero for all n and all primes p, then
ﬁn(X;Z) =0 for all n, and hence H"(X:G) = 0 for all G and n.

4. Show that ® and Tor commute with direct limits: (li_II}Aa) ®B = hiq(Ao(@)B) and
Tor(im A, B) = limTor(A,, B).

5. From the fact that Tor(A,B) = 0 if A is free, deduce that Tor(A,B) = 0 if A
is torsionfree by applying the previous problem to the directed system of finitely
generated subgroups A, of A.

6. Show that Tor(A,B) is always a torsion group, and that Tor(A,B) contains an
element of order n iff both A and B contain elements of order n.
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3.B The General Kiinneth Formula

Kiinneth formulas describe the homology or cohomology of a product space in

terms of the homology or cohomology of the factors. In nice cases these formulas take
the form H, (XX Y;R) ~ H (X;R)®H_(Y;R) or H*(XXY;R) ~ H*(X;R)® H*(Y;R)
for a coefficient ring R. For the case of cohomology, such a formula was given in
Theorem 3.16, with hypotheses of finite generation and freeness on the cohomology
of one factor. To obtain a completely general formula without these hypotheses it
turns out that homology is more natural than cohomology, and the main aim in this
section is to derive the general Kiinneth formula for homology. The new feature of
the general case is that an extra Tor term is needed to describe the full homology of
a product.

The Cross Product in Homology

A major component of the Kiinneth formula is a cross product map
H;(X;R)xH,(Y;R) —— H;, (XX Y;R)

There are two ways to define this. One is a direct definition for singular homology,
involving explicit simplicial formulas. More enlightening, however, is the definition in
terms of cellular homology. This necessitates assuming X and Y are CW complexes,
but this hypothesis can later be removed by the technique of CW approximation in
§4.1. We shall focus therefore on the cellular definition, leaving the simplicial defini-
tion to later in this section for those who are curious to see how it goes.

The key ingredient in the definition of the cellular cross product will be the fact
that the cellular boundary map satisfies d(eixej ) = delxel + (—l)ieixdej . Implicit
in the right side of this formula is the convention of treating the symbol X as a
bilinear operation on cellular chains. With this convention we can then say more
generally that d(axb) = daxb + (—1)ia>< db whenever a is a cellular i-chain and
b is a cellular j-chain. From this formula it is obvious that the cross product of two
cycles is a cycle. Also, the product of a boundary and a cycle is a boundary since
daxb =d(axb) if db = 0, and similarly axdb = (—l)id(ax b) if da = 0. Hence
there is an induced bilinear map Hi(X;R)xHj(Y;R)—>Hi+j(X>< Y;R), which is by
definition the cross product in cellular homology. Since it is bilinear, it could also
be viewed as a homomorphism H;(X;R) ®RHJ-(Y; R) —»Hi+j(X>< Y:R). In either form,
this cross product turns out to be independent of the cell structures on X and Y.

Our task then is to express the boundary maps in the cellular chain complex
C,(XxY) for XxY in terms of the boundary maps in the cellular chain complexes
C,(X) and C,(Y). For simplicity we consider homology with Z coefficients here,
but the same formula for arbitrary coefficients follows immediately from this special
case. With Z coefficients, the cellular chain group C;(X) is free with basis the i-cells
of X, but there is a sign ambiguity for the basis element corresponding to each cell e,
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namely the choice of a generator for the Z summand of H;(X Lxih corresponding
to e’. Only when i = 0 is this choice canonical. We refer to these choices as ‘choosing
orientations for the cells.” A choice of such orientations allows cellular i-chains to be
written unambiguously as linear combinations of i-cells.

The formula d(ei x el ) = delxel + (—l)iei x de’ is not completely canonical since
it contains the sign (—1)! but not (-1)7. Evidently there is some distinction being
made between the two factors of e'xe’. Since the signs arise from orientations, we
need to make explicit how an orientation of cells e! and e’ determines an orientation
of e'xe’. Via characteristic maps, orientations can be obtained from orientations of
the domain disks of the characteristic maps. It will be convenient to choose these
domains to be cubes since the product of two cubes is again a cube. Thus for a cell e,
we take a characteristic map ®,:1 i X where I' is the product of i intervals [0,1].
An orientation of I’ is a generator of H;(I i 9I'), and the image of this generator under
., gives an orientation of ef,(. We can identify Hi(Ii,ali) with Hi(Ii,Ii — {x}) for
any point x in the interior of I', and then an orientation is determined by a linear
embedding A'—1I' with x chosen in the interior of the image of this embedding.
The embedding is determined by its sequence of vertices v, ---,v;. The vectors
v, -V, +,V;—V, are linearly independent in Ii, thought of as the unit cube in [R{i, SO
an orientation in our sense is equivalent to an orientation in the sense of linear algebra,
that is, an equivalence class of ordered bases, two ordered bases being equivalent if
they differ by a linear transformation of positive determinant. (An ordered basis can
be continuously deformed to an orthonormal basis, by the Gram-Schmidt process,
and two orthonormal bases are related either by a rotation or a rotation followed by a
reflection, according to the sign of the determinant of the transformation taking one
to the other.)

With this in mind, we adopt the convention that an orientation of I'x I/ = 't/ is
obtained by choosing an ordered basis consisting of an ordered basis for I i followed
by an ordered basis for I/. Notice that reversing the orientation for either I or I/
then reverses the orientation for 1'*/ , so all that really matters is the order of the two
factors of I'xI7.

Proposition 3B.1. The boundary map in the cellular chain complex C,(XXY) is
determined by the boundary maps in the cellular chain complexes C,(X) and C,(Y)
via the formula d(eixej) =delxel + (—l)ieixdej.

Proof: Let us first consider the special case of the cube I". We give I the CW structure
with two vertices and one edge, so the i" copy of T has a 1-cell e; and 0-cells 0; and
1;, with de; = 1; — 0;. The n-cell in the product I" is e; x - -- Xe,,, and we claim that
the boundary of this cell is given by the formula

(%) d(eyx - xey) = > (1) ey x -+ xde;x -+ xe,
i
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This formula is correct modulo the signs of the individual terms e; X -+ X0;X -+ Xe,
and e; x --- x1;x --- xe, since these are exactly the (n — 1)-cells in the boundary
sphere 91" of I"™. To obtain the signs in (%), note that switching the two ends of an
I factor of I"™ produces a reflection of 91", as does a transposition of two adjacent
I factors. Since reflections have degree —1, this implies that () is correct up to an
overall sign. This final sign can be determined by looking at any term, say the term
0;xeyx -+ xe,, which has a minus sign in (*). To check that this is right, consider
the n-simplex [vg,---,v, ] with v, at the origin and v, the unit vector along the
kt" coordinate axis for k > 0. This simplex defines the ‘positive’ orientation of I" as
described earlier, and in the usual formula for its boundary the face [vg, v,, -+, v,],
which defines the positive orientation for the face 0, xe, x --- xe,, of I'", has a minus
sign.

If we write I" = I'xI/ with i + j = n and we set e’ = e;x --- xe; and e’ =
e;.1X -+ xXe,, then the formula (%) becomes d(eixej) = delxel + (—l)ieixdej.
We will use naturality to reduce the general case of the boundary formula to this
special case. When dealing with cellular homology, the maps f:X—Y that induce
chain maps f, :C,(X)— C,(Y) of the cellular chain complexes are the cellular maps,
taking X" to Y" for all n, hence (X", X" 1) to (Y",Y"!). The naturality statement
we want is then:

Lemma 3B.2. For cellular maps f:X—Z7Z and g:Y —W, the cellular chain maps
o iCou(X)—=Co(2), gy :Cu(Y)—=Co(W),and (fXg),:Cou (XXY)—>Co (ZXW) are
related by the formula (fxXg), = fxX9x-

Proof: The relation (fxg), = f*xg* means that if f, (e} ) = 2y Myye ;, and if
g*(e‘B 25n55e5, then (fxg), (e, xeﬁ) = Zy(;maynﬁ(;(e ><e5) The coefficient
My, is the degree of the composition f,: St Xxi/xtt 57t/ 7i71 - 8 where the
first and third maps are induced by characteristic maps for the cells ea and ey, and the
middle map is induced by the cellular map f. With the natural choices of basepoints in
these quotient spaces, f(xy is basepoint-preserving. The ngs’s are obtained similarly
from maps gpg;: SJ—>SJ For fxg, the map (f XD apys: :§1 > §1J whose degree
is the coefficient of e! ><e5 in (fxg),(ek xeB) is obtained from the product map
Sfoy*x9ps S XSJ—>S‘><SJ by collapsing the (i + j — 1)-skeleton of S'x$’ to a point.
In other words, (fxXg)qg,ys is the smash product map fy, A ggs- What we need
to show is the formula deg(f A g) = deg(f) deg(g) for basepoint-preserving maps
f:S'—Stand g:S'— 8.

Since f A g is the composition of f A 1 and 1 A g, it suffices to show that
deg(fAll) = deg(f) and deg(ll Ag) = deg(g). We do this by relating smash products
to suspension. The smash product X AS! canbe viewed as X xI/(X x dIu {xo}xI),so
itis the reduced suspension XX, the quotient of the ordinary suspension SX obtained
by collapsing the segment {x,}xI to a point. If X is a CW complex with x, a 0-cell,
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the quotient map SX — X AS! induces an isomorphism on homology since it collapses
a contractible subcomplex to a point. Taking X = S', we S(SY) SF, g (s
have the commutative diagram at the right, and from the
induced commutative diagram of homology groups H;.; we Ging! FAl Ging!
deduce that Sf and f A 1 have the same degree. Since

suspension preserves degree by Proposition 2.33, we conclude that deg(f A 1) =
deg(f). The 1 in this formula is the identity map on S ! and by iteration we obtain
the same result for 1 the identity map on S’ since S’ is the smash product of j
copies of S 1 This implies also that deg(ll A g) = deg(g) since a permutation of

coordinates in S**/ does not affect the degree of maps S/ — /. ]

Now to finish the proof of the proposition, let ®:1'— X' and ¥:I’ — Y’ be char-
acteristic maps of cells e, ¢ X and eé C Y. The restriction of ® to dI' is the at-
taching map of ej,. We may perform a preliminary homotopy of this attaching map
dI' - X! to make it cellular. There is no need to appeal to the cellular approxima-
tion theorem to do this since a direct argument is easy: First deform the attaching
map so that it sends all but one face of I' to a point, which is possible since the union
of these faces is contractible, then do a further deformation so that the image point
of this union of faces is a 0-cell. A homotopy of the attaching map oI ‘X! does
not affect the cellular boundary defx, since defx is determined by the induced map
H,_, (aIi) —H, (Xi’l) —H, (Xi’l, Xi’z). So we may assume & is cellular, and like-
wise ¥, hence also ®xV¥. The map of cellular chain complexes induced by a cellular
map between CW complexes is a chain map, commuting with the cellular boundary
maps.

If e! is the i-cell of I' and e’ the Jj-cell of I, then <I>*(ei) = efx, ‘I’*(ej) = eé,

and (@x‘l’)*(eixej) = efxxeé, hence

dlelxe}) = d((@xY), (e'xel))
= (@x‘l’)*d(eixej) since (dx V), is a chain map
= (CIJX‘I’)*(deixej + (—l)ieixdej) by the special case
=d,(de')x¥, (/) + (-1)'®, (e')x ¥, (de’) by the lemma
=do, (e )x ¥, (/) + (-1)'®, (') xd¥, (e/)  since ®, and ¥, are
_ , chain maps
= dejxep + (-1)'el x deg

which completes the proof of the proposition. =]

Example 3B.3. Consider X xS k where we give S k jts usual CW structure with two
cells. The boundary formula in C, (X xS¥) takes the form d(axb) = daxb since
d =0in C*(Sk). So the chain complex C, (X><Sk) is just the direct sum of two
copies of the chain complex C, (X), one of the copies having its dimension shifted
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upward by k. Hence Hn(XxSk;Z) ~ H,(X;Z)®H,_;(X;Z) for all n. In particular,
we see that all the homology classes in X xS k are cross products of homology classes
in X and S*.

Example 3B.4. More subtle things can happen when X and Y both have torsion in
their homology. To take the simplest case, let X be S ! with a cell e? attached by a
map st—gsl of degree m, so H,(X;Z) = Z,, and H;(X;Z) = 0 for i > 1. Similarly,
let Y be obtained from S' by attaching a 2-cell by a map of degree n. Thus X and
Y each have CW structures with three cells and so XxY ,

e ° o — o

has nine cells. These are indicated by the dots in the
diagram at the right, with X in the horizontal direction ln l_n ln

1
and Y in the vertical direction. The arrows denote the = € * * *
nonzero cellular boundary maps. For example the two m
e0 . o — o
arrows leaving the dot in the upper right corner indi-
el el e?

cate that 8(62 xe?) = m(e1 ><e2) + n(e2 xel). Obviously
H,(XxY;Z) is Z,,®7,. In dimension 2, Ker 0 is generated by e' xe', and the image
of the boundary map from dimension 3 consists of the multiples (fm —kn) (e1 X el) .
These form a cyclic group generated by g(e!xe!) where g is the greatest common
divisor of m and n, so H,(XXY;Z) = Z,.-In dimension 3 the cycles are the multiples
of (m/q)(e!x e?) + (n/q) (e’xe'), and the smallest such multiple that is a boundary
is q[(m/q)(elxez) + (n/q)(ezxel)] = m(elxez) + n(ezxel), so H3(XXY;Z) = Z,.
Since X and Y have no homology above dimension 1, this 3-dimensional homol-
ogy of XxXY cannot be realized by cross products. As the general theory will show,
H,(XxY;Z) is H,(X;Z) ®H,(Y;Z) and H;(XxY;Z) is Tor(H, (X;Z),H,(Y;Z)).
This example generalizes easily to higher dimensions, with X = S U e!"! and
Y =S/ ue/!, the attaching maps having degrees m and n, respectively. Essentially

the same calculation shows that XxY has both H;,; and H,, ;,; isomorphic to Z,.

We should say a few words about why the cross product is independent of CW
structures. For this we will need a fact proved in the next chapter in Theorem 4.8, that
every map between CW complexes is homotopic to a cellular map. As we mentioned
earlier, a cellular map induces a chain map between cellular chain complexes. It is
easy to see from the equivalence between cellular and singular homology that the
map on cellular homology induced by a cellular map is the same as the map induced
on singular homology. Now suppose we have cellular maps f:X—Z and g:Y —W.
Then Lemma 3B.2 implies that we have a commutative diagram

H{(X;Z) x H(Y;Z) —>— H;,;(X X Y;Z)
lf*xg* l(fxg)*

Now take Z and W to be the same spaces as X and Y but with different CW structures,
and let f and g be cellular maps homotopic to the identity. The vertical maps in the
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diagram are then the identity, and commutativity of the diagram says that the cross
products defined using the different CW structures coincide.

Cross product is obviously bilinear, or in other words, distributive. It is not hard
to check that it is also associative. What about commutativity? If T:XXY—-YXxX
is transposition of the factors, then we can ask whether T, (axb) equals bxa. The
only effect transposing the factors has on the definition of cross product is in the
convention for orienting a product I' x I/ by taking an ordered basis in the first factor
followed by an ordered basis in the second factor. Switching the two factors can be
achieved by moving each of the i coordinates of I ¥ past each of the coordinates of
I/, This is a total of i j transpositions of adjacent coordinates, each realizable by a
reflection, so a sign of (—l)ij is introduced. Thus the correct formula is T, (axb) =
(-1)”bxa for a € Hy(X) and b € H(Y).

The Algebraic Kiinneth Formula

By adding together the various cross products we obtain a map
@;(H;(X;7)®H,_;(Y;7)) — H, (XX Y;2)

and it is natural to ask whether this is an isomorphism. Example 3B.4 above shows
that this is not always the case, though it is true in Example 3B.3. Our main goal
in what follows is to show that the map is always injective, and that its cokernel is
@, Tor(H;(X;7),H,,_;_,(Y;Z)). More generally, we consider other coefficients besides
Z and show in particular that with field coefficients the map is an isomorphism.

For CW complexes X and Y, the relationship between the cellular chain com-
plexes C,(X), C,(Y),and C, (X XxY) canbe expressed nicely in terms of tensor prod-
ucts. Since the n-cells of Xx Y are the products of i-cells of X with (n — i)-cellsof Y,
we have C,(XxY) ~ @,(C;(X)®C,,_;(Y)),with e'xe’ corresponding to e'®e’. Un-
der this identification the boundary formula of Proposition 3B.1 becomes d(e‘®e’/) =
detee’ + (—1)'e' @ de’. Our task now is purely algebraic, to compute the homology
of the chain complex C, (X xY) from the homology of C, (X) and C,(Y).

Suppose we are given chain complexes C and C’ of abelian groups C,, and C,,,
or more generally R-modules over a commutative ring R. The tensor product chain
complex C®,C’ is then defined by (C®xC"),, = P,(C; ®xC,,_;), with boundary maps
given by d(cec’) = dcec’ + (-1)'cedc’ for c € C; and ¢’ € C),_;. The sign (-1)°
guarantees that 8° = 0 in C®,C’, since

(cec’)=0d(dcec + (-1)icedc)
=0%cec +(-1)"1ocedc’ + (=1)dcedc’ +ced’c =0
From the boundary formula d(cec¢’) = dcec’ + (—1)cedc’ it follows that the tensor
product of cycles is a cycle, and the tensor product of a cycle and a boundary, in either

order, is a boundary, just as for the cross product defined earlier. So there is induced a
natural map on homology groups H;(C) ®;H,,_;(C")—H, (C®zC"). Summing over i
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then gives a map @; (H;(C) ®zH,,_;(C")) —H, (C®zC"). This figures in the following
algebraic version of the Kiinneth formula:

Theorem 3B.5. If R is a principal ideal domain and the R-modules C; are free, then
for each n there is a natural short exact sequence

0_’®1(H1(C) ®RH‘VL—i(C/)) _’Hn(C ®RC,) _’®i (TOIR (Hi(C)lH‘VL—i—l(C,)) —0
and this sequence splits.

This is a generalization of the universal coefficient theorem for homology, which
is the case that C’ consists of just the coefficient group G in dimension zero. The
proof will also be a natural generalization of the proof of the universal coefficient
theorem.

Proof: First we do the special case that the boundary maps in C are all zero, so
H;(C) = C;. In this case d(cec’) = (-1)'c®dc’ and the chain complex C®yC’ is
simply the direct sum of the complexes C; ®,C’, each of which is a direct sum of copies
of C" since C; is free. Hence H,(C;®xC’) ~ C;®xH, _;(C") = H;(C)®xH,_;(C").
Summing over i yields an isomorphism H, (C®zC") ~ @;(H;(C) ®;H,,_;(C")), which
is the statement of the theorem since there are no Tor terms, H;(C) = C; being free.

In the general case, let Z; € C; and B; C C; denote kernel and image of the
boundary homomorphisms for C. These give subchain complexes Z and B of C
with trivial boundary maps. We have a short exact sequence of chain complexes
0—Z—C—B—0 made up of the short exact sequences 0— Z;,—C; N B, _,—0
each of which splits since B;_; is free, being a submodule of C;_; which is free by
assumption. Because of the splitting, when we tensor 0—Z—C—B—0 with C’
we obtain another short exact sequence of chain complexes, and hence a long exact
sequence in homology

- _>H1’L(Z®RC,) _>Hn(C®RC,) _’Hn_l(B®RC,) _>H7L—1(Z®RC,) —_—>

where we have H,_, (B®;C’) instead of the expected H,,(B®C’) since 0:C— B de-
creases dimension by one. Checking definitions, one sees that the ‘boundary’ map
H,_,(B&xC')—H,_ ,(Z®C") in the preceding long exact sequence is just the map
induced by the natural map B®yC'— Z®yC’ coming from the inclusion B C Z.

Since Z and B are chain complexes with trivial boundary maps, the special case
at the beginning of the proof converts the preceding exact sequence into

o (28 Hyy (C)) — H,y (CO,CT) — @y (B & H,y i 1(C')) =
@i(Z;8Hy_ i 1(C)) —---
So we have short exact sequences

0 — Cokeri,, — H,(C®yC") —Keri,_;, — 0
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where Cokeri, = @;(Z;®xH,_;(C"))/Imi,, and this equals @, (H;(C) ®zH,,_;(C"))
by Lemma 3A.1. It remains to identify Keri,,_, with @;Torg(H;(C),H,_;(C")).

By the definition of Tor, tensoring the free resolution 0—B;—Z;—H;(C)—0
with H,_;(C") yields an exact sequence

0 —>TOI'R (HI(C)’anl(C,)) _>Bi®RHn7i(C,) — Zi®RH1’L*i(C,) -
H,(C)®xH, _(C') —0

Hence, summing over i, Keri, = @,;Torg (H;(C),H,_;(C")).

Naturality should be obvious, and we leave it for the reader to fill in the details.

We will show that the short exact sequence in the statement of the theorem splits
assuming that both C and C’ are free. This suffices for our applications. For the
extra argument needed to show splitting when C’ is not free, see the exposition in
[Hilton & Stammbach 1970].

The splitting is via a homomorphism H,, (C®zC")— @, (H;(C) ®;H,,_;(C")) con-
structed in the following way. As already noted, the sequence 0—Z;,—C;—B;_; —0
splits, so the quotient maps Z; — H;(C) extend to homomorphisms C;— H;(C). Sim-
ilarly we obtain C;— H;(C") if C’ is free. Viewing the sequences of homology groups
H;(C) and HJ(C') as chain complexes H(C) and H(C’) with trivial boundary maps,
we thus have chain maps C— H(C) and C'— H(C'), whose tensor product is a chain
map C®zC'— H(C)®zxH(C'). The induced map on homology for this last chain map
is the desired splitting map since the chain complex H(C) ®zH(C ") equals its own
homology, the boundary maps being trivial. o

The Topological Kiinneth Formula

Now we can apply the preceding algebra to obtain the topological statement we
are looking for:

Theorem 3B.6. If X and Y are CW complexes and R is a principal ideal domain,
then there are natural short exact sequences

0— P,;(H;(X;R)®xH,,_;(Y;R)) — H,(XxXY;R) —
@, Torg (H;(X;R),H,_; ;(Y;R)) —0

and these sequences split.

Naturality means that maps X— X' and Y—Y  induce a map from the short
exact sequence for X xY to the corresponding short exact sequence for X' xY’, with
commuting squares. The splitting is not natural, however, as an exercise at the end
of this section demonstrates.

Proof: When dealing with products of CW complexes there is always the bothersome
fact that the compactly generated CW topology may not be the same as the product
topology. However, in the present context this is not a real problem. Since the two
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topologies have the same compact sets, they have the same singular simplices and
hence the same singular homology groups.

Let C = C,(X;R) and C' = C,.(Y;R), the cellular chain complexes with coeffi-
cientsin R. Then C®,C’ = C, (XX Y;R) by Proposition 3B.1, so the algebraic Kiinneth
formula gives the desired short exact sequences. Their naturality follows from natu-
rality in the algebraic Kiinneth formula, since we can homotope arbitrary maps X — X’
and Y—Y’ to be cellular by Theorem 4.8, assuring that they induce chain maps of
cellular chain complexes. a

With field coefficients the Kiinneth formula simplifies because the Tor terms are
always zero over a field:

Corollary 3B.7. IfF isafieldand X and Y are CW complexes, then the cross product
map h:@;(H;(X;F)®:H,_;(Y;F)) — H, (XX Y;F) is an isomorphism for all n. O

There is also a relative version of the Kiinneth formula for CW pairs (X, A) and
(Y, B). This is a split short exact sequence

0— @, (H;(X,A;R)®H,_;(Y,B;R)) — H,(XXY,AXY UXXB;R) —
@, Torg (H;(X,A;R),H,,_;_,(Y,B;R)) — 0

for R a principal ideal domain. This too follows from the algebraic Kiinneth formula
since the isomorphism of cellular chain complexes C, (XX Y) =~ C, (X)®C,(Y) passes
down to a quotient isomorphism

Co(XXY)/Cl(AXY UXXB) = Cy (X)/C (A)®C, (Y)/C, (B)

since bases for these three relative cellular chain complexes correspond bijectively
with the cells of (X — A)x(Y —B), X — A, and Y — B, respectively.

As a special case, suppose A and B are basepoints x, € X and y, € Y. Then
the subcomplex AXY U X X B can be identified with the wedge sum X v Y and the
quotient XX Y /X v Y is the smash product X A Y. Thus we have a reduced Kiinneth
formula

0 — @ (H;(X;R) &g f,,_;(Y;R)) — H,(X A Y;R) —
@, Torg (H;(X;R),H, ; ;(Y;R)) —0

If we take Y = S¥ for example, then X A S k' is the k-fold reduced suspension of X,
and we obtain isomorphisms ﬁn(X;R) ~ ﬁn+k(X A Sk;R).

The Kiinneth formula and the universal coefficient theorem can be combined to
give a more concise formula H,(XxY;R) ~ @, H,(X;H,_;(Y;R)). The naturality of
this isomorphism is somewhat problematic, however, since it uses the splittings in
the Kiinneth formula and universal coefficient theorem. With a little more algebra the
formula can be shown to hold more generally for an arbitrary coefficient group G in
place of R; see [Hilton & Wylie 1967], p. 227.



The General Kiinneth Formula Section 3.B | 277

—

There is an analogous formula ﬁn(X AY:R) = EBilLNIi (X; ﬁn,i(Y;R)). As a spe-
cial case, when Y is a Moore space M(G,k) we obtain isomorphisms PNIn(X;G) =
ﬁn (X AM(G,k);Z). Again naturality is an issue, but in this case there is a natural
isomorphism obtainable by applying Theorem 4.59 in §4.3, after verifying that the
functors h,,(X) = ﬁn+k(X AM(G,k);Z) define a reduced homology theory, which is
not hard. The isomorphism ﬁn (X;G) ~ ﬁn+k (XAM (G, k); Z) says that homology with
arbitrary coefficients can be obtained from homology with Z coefficients by a topolog-
ical construction as well as by the algebra of tensor products. For general homology
theories this formula can be used as a definition of homology with coefficients.

One might wonder about a cohomology version of the Kiinneth formula. Tak-
ing coefficients in a field F and using the natural isomorphism Hom(A®B,C) =
Hom (A, Hom(B, C)), the Kiinneth formula for homology and the universal coefficient
theorem give isomorphisms

H™"(XXY;F) =~ Homg(H, (XXY;F),F) ~ @;Homg(H;(X;F)®H, _;(Y;F),F)
~ @;Hom (H;(X;F),Homy(H,_;(Y;F),F))
~ @;Hom; (H;(X;F),H" '(Y; F))
~ @;H' (OXGH" (Y;F))
More generally, there are isomorphisms H" (X x Y;G) ~ @, H' (X; H""'(Y;G)) for any
coefficient group G; see [Hilton & Wylie 1967], p. 227. However, in practice it usually
suffices to apply the Kiinneth formula for homology and the universal coefficient

theorem for cohomology separately. Also, Theorem 3.16 shows that with stronger
hypotheses one can draw stronger conclusions using cup products.

The Simplicial Cross Product

Let us sketch how the cross product H,,(X;R)®H, (Y;R)—H,, ., (XXY;R) can
be defined directly in terms of singular homology. What one wants is a cross prod-
uct at the level of singular chains, C,,(X;R)®C, (Y;R)—C,,,,(XxXY;R). If we are
given singular simplices f:A™—X and g:A"—Y, then we have the product map
fxg:A"x A" — Xx Y, and the idea is to subdivide A™ x A™ into simplices of dimen-
sion m +n and then take the sum of the restrictions of fx g to these simplices, with
appropriate signs.

In the special cases that m or n is 1 we have already seen how to subdivide
A™x A" into simplices when we constructed prism operators in §2.1. The general-
ization to A™x A" is not completely obvious, however. Label the vertices of A™ as
Vg, Vq, -+, U, and the vertices of A" as wy, Wy, -+ -, W, . Think of the pairs (i, j) with
0<i<mandO0 < j<n as the vertices of an mxn rectangular grid in R®. Let o
be a path formed by a sequence of m + n horizontal and vertical edges in this grid
starting at (0,0) and ending at (m,n), always moving either to the right or upward.
To such a path o we associate a linear map £, :A™*"—A™x A" sending the k"

vertex of A™*" to (v,

i Wj,) where (iy, ji) is the k" vertex of the edgepath . Then
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we define a simplicial cross product
Cp(X;R)®C, (Y;R) —=— C,pp iy (XX Y;R)

by the formula
fxg=> D" (Fxg)t,

where |o| is the number of squares in the grid lying below the path o. Note that
the symbol ‘ X’ means different things on the two sides of the equation. From this
definition it is a calculation to show that 0(fxg) = 0f xg+(=1)" fx dg. This implies
that the cross product of two cycles is a cycle, and the cross product of a cycle and a
boundary is a boundary, so there is an induced cross product in singular homology.

One can see that the images of the maps ¥, give a simplicial structure on A™ x A"
in the following way. We can view A™ as the subspace of R™ defined by the in-
equalities 0 < x; < --- < x,,, < 1, with the vertex v; as the point having coordi-
nates m — i zeros followed by i ones. Similarly we have A™ ¢ R" with coordinates
0 <y <+ <y, <1. The product A™xA" then consists of (m + n)-tuples
(X1, s Xy V1s -+ V) satisfying both sets of inequalities. The combined inequal-
ities 0 < x; < -+ <x,, < <+ <, <1 define a simplex A™™ in A™x A",
and every other point of A™x A" satisfies a similar set of inequalities obtained from
0<x;<--<x,, <y < =<y, <1 bya permutation of the variables ‘shuffling’
the y;’s into the x;’s. Each such shuffle corresponds to an edgepath o consisting
of a rightward edge for each x; and an upward edge for each y; in the shuffled se-
quence. Thus we have A™ x A™ expressed as the union of simplices A" indexed
by the edgepaths o. One can check that these simplices fit together nicely to form
a A-complex structure on A™ x A", which is also a simplicial complex structure. See
[Eilenberg & Steenrod 1952], p. 68. In fact this construction is sufficiently natural to
make the product of any two A-complexes into a A-complex.

The Cohomology Cross Product

In §3.2 we defined a cross product
H*X;R)xH' (Y;R) = H**'(Xx Y;R)

in terms of the cup product. Let us now describe the alternative approach in which
the cross product is defined directly via cellular cohomology, and then cup product
is defined in terms of this cross product.

The cellular definition of cohomology cross product is very much like the defini-
tion in homology. Given CW complexes X and Y, define a cross product of cellular
cochains @ € Ck(X;R) and y € Cy(Y;R) by setting

(@xw)(ekxep) = Plek)yiep)

and letting @ x ¢ take the value 0 on (k +¥)-cells of X xY which are not the product
of a k-cell of X with an £-cell of Y. Another way of saying this is to use the convention
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that a cellular cochain in C k(X :R) takes the value 0 on cells of dimension different
from k, and then we can let (@ X L/J)(e('x”xeg) = (p(e’gf)qj(eg) for all m and n.

The cellular coboundary formula §(@x @) = S@xy + (—1)*@x sy for cellular
cochains ¢ € C K(X;R) and Y e C E(Y;R) follows easily from the corresponding
boundary formula in Proposition 3B.1, namely

S(@xy)(ey xeg) = (@xy)(0(ey xep))
= (pxy)(0ey xeg + (—1)"ey x deg)
= 0@ (e )yleg) + (=1)"@(ey ) oy (ep)
= Bexy+ (- @xdy) (el xep)
where the coefficient (—1)"™ in the next-to-last line can be replaced by (-1
@el) = 0 unless k = m. From the formula d(@xXy) = SQxXyY + (—1)"q?><6np
it follows just as for homology and for cup product that there is an induced cross

)k since

product in cellular cohomology.

To show this agrees with the earlier definition, we can first reduce to the case that
X has trivial (k — 1)-skeleton and Y has trivial (£ — 1)-skeleton via the commutative
diagram

HYX/X*"R) x H'(Y/Y'";R) —=

Hk+F(X/Xk—1 % Y/Yg—l’R)

H*(X:R) x H'(Y;R) X H*'(X X Y:R)
The left-hand vertical map is surjective, so by commutativity, if the two definitions

of cross product agree in the upper row, they agree in the lower row. Next, assuming
X* 1 and Y/! are trivial, consider the commutative diagram

H*(X:R) x H'(Y;:R) —=— H""Y(X x Y;R)

l

H*(X%R) x H'(Y";R) H'(X*xY"R)

The vertical maps here are injective, X ky? being the (k + ¥)-skeleton of XX Y, so

X

it suffices to see that the two definitions agree in the lower row. We have x* =/, s¥
and Y! = VB Sg, so by restriction to these wedge summands the question is reduced
finally to the case of a product S’D‘(ng. In this case, taking R = Z, we showed in
Theorem 3.16 that the cross product in question is the map Zx7Z— 7 sending (1,1)
to =1, with the original definition of cross product. The same is obviously true using
the cellular cross product. So for R = Z the two cross products agree up to sign, and
it follows that this is also true for arbitrary R. We leave it to the reader to sort out
the matter of signs.

To relate cross product to cup product we use the diagonal map A: X— XXX,
x — (x,x). If we are given a definition of cross product, we can define cup product
as the composition

HY(X:R)x H (X:R) = H*"{(Xx X:R) =2 H**!(X:R)
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This agrees with the original definition of cup product since we have A*(axb) =
A*(pf(a) < p3 (b)) = A*(pf(a)) « A*(p) (b)) = a~ b, as both compositions p;A
and p,A are the identity map of X.

Unfortunately, the definition of cellular cross product cannot be combined with
A to give a definition of cup product at the level of cellular cochains. This is because
A is not a cellular map, so it does not induce a map of cellular cochains. It is possible
to homotope A to a cellular map by Theorem 4.8, but this involves arbitrary choices.
For example, the diagonal of a square can be pushed across either adjacent triangle. In
particular cases one might hope to understand the geometry well enough to compute
an explicit cellular approximation to the diagonal map, but usually other techniques
for computing cup products are preferable.

The cohomology cross product satisfies the same commutativity relation as for
homology, namely T*(axb) = (—l)k'gbxa for T:XxY—YxX the transposition
map, a € H*(Y;R), and b € H”(X;R). The proof is the same as for homology.
Taking X = Y and noting that TA = A, we obtain a new proof of the commutativity
property of cup product.

Exercises

1. Compute the groups H;(RP™x RP";G) and H'(RP™xRP";G) for G = Z and Z,
via the cellular chain and cochain complexes. [See Example 3B.4.]

2. Let C and C’ be chain complexes, and let I be the chain complex consisting of
Z in dimension 1 and Zx 7 in dimension 0, with the boundary map taking a gener-
ator e in dimension 1 to the difference v, — v, of generators v; of the two Z’s in
dimension 0. Show that a chain map f:I®C—C’ is precisely the same as a chain
homotopy between the two chain maps f;: C—C',c— fv;ec),i=0,1. [The chain
homotopyis h(c) = f(eec).]

3. Show that the splitting in the topological Kiinneth formula cannot be natural by con-
sidering the map f><]1:M(Zm,n)xM(Zm,n)ﬁS"“XM(Zm,n) where f collapses
the n-skeleton of M(Z,,,n) = S™ ue™"! to a point.

4. Show that the cross product of fundamental classes for closed R-orientable mani-
folds M and N is a fundamental class for M X N.

5. Show that slant products
H,(XXY;R)XH’(Y;R) — H,_;j(Y;R), (e'xe/, ) — @(e/)e’
H™(XXY;R)XH;(Y;R) = H" (Y;R), (@,e/) — (' — ple'xe))
can be defined via the indicated cellular formulas. [These ‘products’ are in some ways
more like division than multiplication, and this is reflected in the common notation
a/b for them, or a\b when the order of the factors is reversed. The first of the two

slant products is related to cap product in the same way that the cohomology cross
product is related to cup product.]
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3.C H-Spaces and Hopf Algebras

Of the three axioms for a group, it would seem that the least subtle is the existence
of an identity element. However, we shall see in this section that when topology is
added to the picture, the identity axiom becomes much more potent. To give a name
to the objects we will be considering, define a space X to be an H-space, ‘H’ standing
for ‘Hopf,’ if there is a continuous multiplication map u:X x X— X and an ‘identity’
element e € X such that the two maps X— X given by x — u(x,e) and x — p(e,x)
are homotopic to the identity through maps (X, e) — (X, e). In particular, this implies
that u(e,e) = e.

In terms of generality, this definition represents something of a middle ground.
One could weaken the definition by dropping the condition that the homotopies pre-
serve the basepoint e, or one could strengthen it by requiring that e be a strict identity,
without any homotopies. An exercise at the end of the section is to show the three
possible definitions are equivalent if X is a CW complex. An advantage of allowing
homotopies in the definition is that a space homotopy equivalent in the basepointed
sense to an H-space is again an H-space. Imposing basepoint conditions is fairly
standard in homotopy theory, and is usually not a serious restriction.

The most classical examples of H-spaces are topological groups, spaces X with
a group structure such that both the multiplication map X x X — X and the inversion

map X—X, X - x !

, are continuous. For example, the group GL, (R) of invertible
nxn matrices with real entries is a topological group when topologized as a subspace
of the n’-dimensional vector space M, (R) of all nxn matrices over R. It is an open
subspace since the invertible matrices are those with nonzero determinant, and the
determinant function M, (R)—R is continuous. Matrix multiplication is certainly
continuous, being defined by simple algebraic formulas, and it is not hard to see that
matrix inversion is also continuous if one thinks for example of the classical adjoint

formula for the inverse matrix.

Likewise GL,(C) is a topological group, as is the quaternionic analog GL, (H),
though in the latter case one needs a somewhat different justification since deter-
minants of quaternionic matrices do not have the good properties one would like.
Since these groups GL,, over R, C, and H are open subsets of Euclidean spaces, they
are examples of Lie groups, which can be defined as topological groups which are also
manifolds. The GL, groups are noncompact, being open subsets of Euclidean spaces,
but they have the homotopy types of compact Lie groups O(n), U(n), and Sp(n).
This is explained in §3.D for GL,(R), and the other two cases are similar.

Among the simplest H-spaces from a topological viewpoint are the unit spheres

s'in C, S? in the quaternions H, and S’ in the octonions O. These are H-spaces
since the multiplications in these division algebras are continuous, being defined by



282 Chapter 3 Cohomology

—_—T

polynomial formulas, and are norm-preserving, |ab| = |a||b|, hence restrict to multi-
plications on the unit spheres, and the identity element of the division algebra lies in
the unit sphere in each case. Both S' and S° are Lie groups since the multiplications
in C and H are associative and inverses exist since aa = |a|> = 1 if |a| = 1. How-
ever, S’ is not a group since multiplication of octonions is not associative. Of course
$% = {+1} is also a topological group, trivially. A famous theorem of J. F. Adams as-
serts that SO, Sl, 53, and S are the only spheres that are H-spaces; see §4.B for a
fuller discussion.

Let us describe now some associative H-spaces where inverses fail to exist. Multi-
plication of polynomials provides an H-space structure on CP” in the following way.
A nonzero polynomial a, + a,z + --- + a,,z" with coefficients a; € C corresponds
to a point (ag,--+,a,,0,---) € C* — {0}. Multiplication of two such polynomials
determines a multiplication C* — {0} x C* — {0} — C* — {0} which is associative, com-
mutative, and has an identity element (1,0,---). Since C is commutative we can
factor out by scalar multiplication by nonzero constants and get an induced product
CP* x CP” — CP” with the same properties. Thus CP” is an associative, commutative
H-space with a strict identity. Instead of factoring out by all nonzero scalars, we could
factor out only by scalars of the form pe®™*/4 with p an arbitrary positive real, k an
arbitrary integer, and g a fixed positive integer. The quotient of C* — {0} under this
identification, an infinite-dimensional lens space L® with 1 (L%) =~ Z,,is therefore
also an associative, commutative H-space. This includes RP* in particular.

The spaces J(X) defined in §3.2 are also H-spaces, with the multiplication given
by (X1, -, X)) V1, V) = (X1, Xy Y1y -+ 5 V) » Which is associative and has
an identity element (e) where e is the basepoint of X. One could describe J(X)
as the free associative H-space generated by X. There is also a commutative ana-
log of J(X) called the infinite symmetric product SP(X) defined in the following
way. Let SP,(X) be the quotient space of the n-fold product X" obtained by iden-
tifying all n-tuples (xq,---,x,) that differ only by a permutation of their coordi-
nates. The inclusion X" < X"*!, (x,---,x,) — (x,---,X,,e) induces an inclusion
SP,(X) — SP,.;, and SP(X) is defined to be the union of this increasing sequence
of SP, (X)’s, with the weak topology. Alternatively, SP(X) is the quotient of J(X)
obtained by identifying points that differ only by permutation of coordinates. The
H-space structure on J(X) induces an H-space structure on SP(X) which is commu-
tative in addition to being associative and having a strict identity. The spaces SP(X)
are studied in more detail in §4.K.

The goal of this section will be to describe the extra structure which the multi-
plication in an H-space gives to its homology and cohomology. This is of particular
interest since many of the most important spaces in algebraic topology turn out to be
H-spaces.
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Hopf Algebras

Let us look at cohomology first. Choosing a commutative ring R as coefficient
ring, we can regard the cohomology ring H* (X;R) of a space X as an algebra over R
rather than merely a ring. Suppose X is an H-space satisfying two conditions:

(1) X is path-connected, hence HO(X;R) ~ R.
(2) H™(X;R) is a finitely generated free R-module for each 7, so the cross product

H*(X;R)®H*(X;R)—H* (X x X;R) is an isomorphism.

The multiplication p:XxX—X induces a map pu*:H*(X;R)—H™*(XxX;R), and
when we combine this with the cross product isomorphism in (2) we get a map

H*(X;R) =8> H*(X;R) @ H*(X;R)

which is an algebra homomorphism since both u* and the cross product isomorphism
are algebra homomorphisms. The key property of A turns out to be that for any
x € H"(X;R), n > 0, we have

rr

Al) =xel+1leox+ Z x;®,_; where |o<3| =j= Ia}'l
O<i<n
To verify this, let i: X — X x X be the inclusion x — (x,e) for e the identity element
of X, and consider the commutative diagram

i*

H*(X;R) — X H*(X x X;R) H*(X:R)
A\; XI: / XIE

H*(X:R) ® H(X;R) 22 [*(X;R) ®, H*(e:R)

The map P is defined by commutativity, and by looking at the lower right triangle we
see that P(x®1) = o and P(x® ) = 0 if |B| > 0. The H-space property says that
ui=1,s0 PA = 1. This implies that the component of A(x) in H*(X;R) ®RH°(X;R)
is a® 1. A similar argument shows the component in H°(X;R) ®gH"(X;R) is 1® «.

We can summarize this situation by saying that H*(X;R) is a Hopf algebra, that
is, a graded algebra A = @,.,A" over a commutative base ring R, satisfying the
following two conditions:

(1) There is an identity element 1 € A° such that the map R—»AO, r+—7v-1,isan
isomorphism; one says A is connected.

(2) There is a diagonal or coproduct A:A— A® A, a homomorphism of graded al-
gebras satisfying A(«) = xel+1e &+ > o ;o X;®,_; for « € A™, n >0, and

Lo € AT,

Here and in what follows we take ® to mean ®;. The multiplicationin A® A is given

by the standard formula (xe B)(y®d) = (fl)jk((xyoa B6) where 8 € A’ and Yy € Ak,

For a general Hopf algebra the multiplication is not assumed to be either associative

X

or commutative (in the graded sense), though in the example of H*(X;R) for X an
H-space the algebra structure is of course associative and commutative.
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Example 3C.1. One of the simplest Hopf algebras is a polynomial ring R[«]. The
coproduct A(x) must equal xe1 + 1 e « since the only elements of R[«x] of lower
dimension than « are the elements of R in dimension zero, so the terms o and «,_;
in the coproduct formula A(x) = x®1 + 1@ &+ Y iy &; ® &;,_; must be zero. The
requirement that A be an algebra homomorphism then determines A completely. To
describe A explicitly we distinguish two cases. If the dimension of « isevenorif 2 =0
in R, then the multiplication in R[«x]®R[«] is strictly commutative and A(x™) =
(xel+1leo)™ =3, (’f) «'® ™ '. In the opposite case that « is odd-dimensional,
then A((xz) = (xol + 1®o()2 = «’el + 1o’ since (x®l)(1ex) = xex and
(lex)(xel) = —xe« if « has odd dimension. Thus if we set § = «, then B
is even-dimensional and we have A(a®™) = A(B") = (Bel+10p)" = >, (?)Bi o B
and A(a*™1) = A(aB™) = A@AB™) = 5 (T)aB e B + 5 (1) B e aB™ .
Example 3C.2. The exterior algebra Ag[«] on an odd-dimensional generator « is a
Hopf algebra, with A(x) = x®1+1 ® x. To verify that A is an algebra homomorphism
we must check that A(o<2) = A((x)z, or in other words, since o’ = 0, we need to see
that A(x)> = 0. As in the preceding example we have Al)? = (el +1ox) =
oCel+leand , SO A(o<)2 is indeed 0. Note that if « were even-dimensional we would
instead have A(x)? = o®®1 + 2ae & + 1 ® o>, which would be 0 in Apla]l®Agl«]
only if 2 =0 in R.

An element « of a Hopf algebra is called primitive if A(x) = x®1+1® x. As the
preceding examples illustrate, if a Hopf algebra is generated as an algebra by primitive
elements, then the coproduct A is uniquely determined by the product. This happens
in a number of interesting special cases, but certainly not in general, as we shall see.

The existence of the coproduct in a Hopf algebra turns out to restrict the multi-
plicative structure considerably. Here is an important example illustrating this:

Example 3C.3. Suppose that the truncated polynomial algebra F[«]/(«™) over a field
F is a Hopf algebra. Then « is primitive, just as it is in F[«], so if we assume either
that « is even-dimensional or that F has characteristic 2, then the relation «™ = 0
yields an equation
0=Ac") =a"ol+lea”+ > (?)ai@a(x"’i = > (?)(xi(@a"’i
O<i<n O<i<n

which implies that (Tl‘) = 0 in F for each i in the range 0 < i < n. This is impossible
if F has characteristic 0, and if the characteristic of F is p > 0 then it happens only
when 7 is a power of p. For p = 2 this was shown in the proof of Theorem 3.20, and
the argument given there works just as well for odd primes. Conversely, it is easy to
check that if F has characteristic p then F[«x]/ (a”i) is a Hopf algebra, assuming still
that « is even-dimensional if p is odd.

The characteristic 0 case of this result implies that CP" is not an H-space for
finite n, in contrast with CP® which is an H-space as we saw earlier. Similarly, taking
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F = Z,,we deduce that RP" can be an H-space only if n + 1 is a power of 2. Indeed,
RP! = S$'/+1, RP? = §%/+1, and RP” = S7/+1 have quotient H-space structures from
Sl, $3 and S7 since —1 commutes with all elements of Sl, 53, or S7. However, these
are the only cases when RP" is an H-space since, by an exercise at the end of this
section, the universal cover of an H-space is an H-space, and S 1 $3 and S’ are the
only spheres that are H-spaces, by the theorem of Adams mentioned earlier.

It is an easy exercise to check that the tensor product of Hopf algebras is again a
Hopf algebra, with the coproduct A(x e ) = A(x) ® A(B). So the preceding examples
yield many other Hopf algebras, tensor products of polynomial, truncated polynomial,
and exterior algebras on any number of generators. The following theorem of Hopf is
a partial converse:

Theorem 3C.4. If A is a commutative, associative Hopf algebra over a field F of
characteristic 0, and A" is finite-dimensional over F for each n, then A is isomor-
phic as an algebra to the tensor product of an exterior algebra on odd-dimensional
generators and a polynomial algebra on even-dimensional generators.

There is an analogous theorem of Borel when F is a finite field of characteris-
tic p. In this case A is again isomorphic to a tensor product of single-generator Hopf
algebras, of one of the following types:

= Fl[«], with o even-dimensional if p + 2.

* Ap[a] with & odd-dimensional.

. F[(x]/(a”i) , with o« even-dimensional if p + 2.
For a proof see [Borel 1953] or [Kane 1988].

Proof of 3C.4: Since A" is finitely generated over F for each n, we may choose
algebra generators x,,X,, - - - for A with x; € AXil and |x;| < |x,,,| forall i. Let A,
be the subalgebra generated by x,,---,x,. This is a Hopf subalgebra of A, that is,
A(A,) C A, ®A,, since A(x;) involves only x; and terms of smaller dimension. We
may assume x, doesnotliein A,_;. Since A is associative and commutative, there is
a natural surjection A,_; ® F[x,]— A, if |x,| iseven,or A,,_; ® Ag[x,]— A, if |x,]
is odd. By induction on n it will suffice to prove these surjections are injective. Thus
in the two cases we must rule out nontrivial relations 3; &;x}, = 0 and o+ &;x,, = 0,
respectively, with coefficients «; € A, _;.

Let I be theidealin A,, generated by x2 and the positive-dimensional elements of
A,_1,so I consists of the polynomials 3; ot;x", with coefficients «; € A,,_;, the first
two coefficients «, and «; having trivial components in A°. Note that x,, ¢ I since
elements of I having dimension |x,, | must lie in A,,_,. Consider the composition

A, —2-A,0A, —15 A ®(A,/]

with g the natural quotient map. By the definition of I, this composition gA sends
x€A, ; toxel and x,, to x,®1 + 1eXx, where X, is the image of x,, in A, /I.
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In case |x,,| is even, applying gA to a nontrivial relation > ; (xixil = 0 gives
0=Y(x;el)(x, 0l +10X,) = (3, ax;x’)el+> ic;x tex,

Since Y; o;x!, = 0, this implies that >, ix;x’ ' ®%,, is zero in the tensor product
A,®(A,/I), hence ¥;ic;x;' = 0 since x,, ¢ I implies X, # 0. The relation
S ic;xi"! = 0 has lower degree than the original relation, and is not the trivial rela-
tion since F has characteristic 0, «; = 0 implying ic; = 0 if i > 0. Since we could
assume the original relation had minimum degree, we have reached a contradiction.
The case |x,| odd is similar. Applying gA to a relation &, + «;x, = 0 gives
O=cxpgel+(;el)(x,®1+10X,) = (Xg+01X,)®1+x; ®X,. Since xy+o;x, =0,
we get «; @ x,, = 0, which implies «; = 0 and hence &, = 0. O

The structure of Hopf algebras over Z is much more complicated than over a
field. Here is an example that is still fairly simple.

Example 3C.5: Divided Polynomial Algebras. We showed in Proposition 3.22 that the
H-space J(S§™) for n evenhas H*(J(§™);Z) a divided polynomial algebra, the algebra
I;[ ] with additive generators «; in dimension ni and multiplication given by (x’f =
e ”ij ) ®;j. The coproduct in I3[«] is uniquely determined by
the multiplicative structure since A(x¥) = (; 01+ 1o ) =3, (’f) o © ¥ which
implies that A(«X/k!) = 3, (i /i) ® (k"7 (k — i)1), that is, A(og) = ; & © Xg_;. SO
in this case the coproduct has a simpler description than the product.

klx,, hence x;x; = (

It is interesting to see what happens to the divided polynomial algebra I’;[«]
when we change to field coefficients. Clearly FQ[(X] is the same as Q[«]. In contrast
ijj) ;. j, happens to be
isomorphic as an algebra to the infinite tensor product ®;., Zylex,il/ (O(Zi)’ as we
will show in a moment. However, as Hopf algebras these two objects are different

with this, I"Zp[cx], with multiplication defined by o;; = (

since «,: is primitive in &;. Zp[apt]/((xii) but not in I“Zp[a] when i > 0, since the
coproduct in I3 [«] is given by A(oq) = 2; ot ® ;-
Now let us show that there is an algebra isomorphism

I, [ = ®i20Z, [,/ (X))

Since I [«] = T;[a]®Z),, this is equivalent to:

(%) The element O(?OO(ZL

no N1 Nk
The product o ox,' - -+ &

integer m. The question is whether p divides m. We will show:

e (x’;,f in I3[ «] is divisible by p iff n; = p for some i.

equals ma,, for n = ng+ nyp + --- + n;p* and some

(%) o & is divisible by p iff n, = p — 1, assuming that n; < p for each i.

This implies (*) by an inductive argument in which we build up the product in ()
by repeated multiplication on the right by terms «,:.
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k
To prove () we recall that o, o = (™57

binomial coefficient can be computed using Lemma 3C.6 below. Assuming that n; < p
for each i and that n; +1 < p, the p-adic representations of n+ p* and n differ only
in the coefficient of p*, so mod p we have ("tf’k> = ("’;lzl> = ny + 1. This conclusion
also holds if n; +1 = p, when the p-adic representations of n + p* and n differ also

k+1 The statement (*) then follows.

)an+pk. The mod p value of this

in the coefficient of p

Lemma 3C.6. If p is a prime, then (2) =[], (7:) mod p where n = 3, n;p' and
k=>,kjpt with0<n; <p and 0 < k; < p are the p-adic representations of n
and k.

Here the convention is that (2) =0 if n < k, and (3) =1 forall n > 0.

Proof: In Zp[x] there is an identity (1 + x)” =1 + x” since p clearly divides (’Z) =
p!/k!(p — k)! for 0 < k < p. By induction it follows that (1 + x)P' =1+ x"". Hence
if n = >, n;p' is the p-adic representation of n then:

(1+2)" = (1+x)™1 +xP)" (1 +xP )2 ...
= [+ () x+ ()22 4w ()2
X [1 + ()X ()X p’?l)x(’”’””]

y [1 . (712)}(!,2 N (Téz)xZPZ Tt (,,"fl)x(”’”"’z]x

When this is multiplied out, one sees that no terms combine, and the coefficient of
x* is just T1, (t) where k = 3. k,;p' is the p-adic representation of k. O

Pontryagin Product

Another special feature of H-spaces is that their homology groups have a prod-
uct operation, called the Pontryagin product. For an H-space X with multiplication
U:XxX— X, this is the composition

H,(X;R)®H,(X;R) L>H*(X><X;R) L>H>,<(X;R)

where the first map is the cross product defined in §3.B. Thus the Pontryagin product
consists of bilinear maps H;(X;R) xHj(X;R)—>Hi+j(X;R). Unlike cup product, the
Pontryagin product is not in general associative unless the multiplication u is associa-
tive or at least associative up to homotopy, in the sense that the maps X x XxX— X,
(x,v,z) — u(x,u(y,z)) and (x,y,z) — u(u(x,y),z) are homotopic. Fortunately
most H-spaces one meets in practice satisfy this associativity property. Nor is the
Pontryagin product generally commutative, even in the graded sense, unless u is
commutative or homotopy-commutative, which is relatively rare for H-spaces. We
will give examples shortly where the Pontryagin product is not commutative.
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In case X is a CW complex and u is a cellular map the Pontryagin product can be
computed using cellular homology via the cellular chain map

Ci(X;R)XCi(X;R) — Ciyj(XXX;R) SN Ciyj(X;R)
where the cross product map sends generators corresponding to cells e! and ¢’ to

the generator corresponding to the product cell e'x e’ and then U, is applied to this
product cell.

Example 3C.7. Let us compute the Pontryagin product for J(S§™). Here there is one
cell e™ for each i > 0, and u takes the product cell e x el homeomorphically onto
the cell ¢"™*" This means that H,(J(S™);Z) is simply the polynomial ring Z[x]
on an n-dimensional generator x. This holds for n odd as well as for n even, so
the Pontryagin product need not satisfy the same general commutativity relation as
cup product. In this example the Pontryagin product structure is simpler than the cup
product structure, though for some H-spaces it is the other way round. In applications
it is often convenient to have the choice of which product structure to use.

This calculation immediately generalizes to J(X) where X is any connected CW
complex whose cellular boundary maps are all trivial. The cellular boundary maps in
the product X™ of m copies of X are then trivial by induction on m using Propo-
sition 3B.1, and therefore the cellular boundary maps in J(X) are all trivial since the
quotient map X" — J,. (X) is cellular and each cell of J,,(X) is the homeomorphic
image of a cell of X™. Thus H,(J(X);Z) is free with additive basis the products

Mx ... xe™ of positive-dimensional cells of X, and the multiplicative structure

e
is that of polynomials in noncommuting variables corresponding to the positive-

dimensional cells of X.

Another way to describe H,(J(X);Z) in this example is as the tensor algebra
TH «(X;Z), where for a graded R-module M that is trivial in dimension zero, like
the reduced homology of a path-connected space, the tensor algebra TM is the direct
sum of the n-fold tensor products of M with itself for all n > 1, together with a copy
of R in dimension zero, with the obvious multiplication coming from tensor product
and scalar multiplication.

Generalizing the preceding example, we have:

Proposition 3C.8. If X is a connected CW complex with H, (X;R) a free R-module,
then H, (J(X);R) is isomorphic to the tensor algebra TPNI* (X;R).

This can be paraphrased as saying that the homology of the free H-space gener-
ated by a space with free homology is the free algebra generated by the homology of
the space.

Proof: With coefficients in R, let cp:Tﬁ* (X)—H,(J(X)) be the homomorphism

whose restriction to the n-fold tensor product H « (X )®™ is the composition

H,(X)®" & H, (X)®" =5 H,(X") — H, (J,(X)) — H, (J(X))
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where the next-to-last map is induced by the quotient map X" — J,,(X). Itis clear that
@ is a ring homomorphism since the product in J(X) is induced from the natural
map X" x X" —X™*"_ To show that @ is an isomorphism, consider the following
commutative diagram of short exact sequences:

~

0 — T, 1 H(X) —— T, H(X) —— H(X)*" — 0

ol o -

0 — H,(J, (X)) — H,(J,(X)) — H(X"") — 0

In the upper row, TmPNI* (X) denotes the direct sum of the products ﬁ* (X)®k for
k < m, so this row is exact. The second row is the homology exact sequence for
the pair (J,(X), J,._; (X)), with quotient J,,(X)/J,,_;(X) the n-fold smash product
X" This long exact sequence breaks up into short exact sequences as indicated, by
commutativity of the right-hand square and the fact that the right-hand vertical map
is an isomorphism by the Kiinneth formula, using the hypothesis that H, (X) is free
over the given coefficient ring. By induction on n and the five-lemma we deduce from
the diagram that @: Tnﬁ* (X)—H,(J,(X)) is an isomorphism for all n. Letting n
g0 to oo, this implies that @: Tﬁ* (X)—H,(J(X)) is an isomorphism since in any
given dimension Tnﬁ* (X) is independent of n when n is sufficiently large, and the
same is true of H, (J,(X)) by the second row of the diagram. |

Dual Hopf Algebras

There is a close connection between the Pontryagin product in homology and

the Hopf algebra structure on cohomology. Suppose that X is an H-space such that,
with coefficients in a field R, the vector spaces H,(X;R) are finite-dimensional for
all n. Alternatively, we could take R = Z and assume H, (X;Z) is finitely gener-
ated and free for all n. In either case we have H™(X;R) = Homg(H, (X;R),R), and
as a consequence the Pontryagin product H, (X;R)®H, (X;R)—H,(X;R) and the
coproduct A:H*(X;R)—H™(X;R)® H* (X;R) are dual to each other, both being in-
duced by the H-space product p:XxX—X. Therefore the coproduct in cohomol-
ogy determines the Pontryagin product in homology, and vice versa. Specifically,
the component Aij:Hi+j(X;R)—>Hi(X;R)®HJ(X;R) of A is dual to the product
H;(X;R)®H;(X;R)—H;, ;(X;R).
Example 3C.9. Consider J(S™) with n even, so H*(J(S");Z) is the divided poly-
nomial algebra I';[«]. In Example 3C.5 we derived the coproduct formula A(&y) =
>0 ® 0y ;. Thus A;; takes o, ; to o; ® o, soif x; is the generator of H;,, (J(S™);2)
dual to «;, then XiXj =X This says that H,, (J(S™);Z) is the polynomial ring Z[x].
We showed this in Example 3C.7 using the cell structure of J(S™), but the present
proof deduces it purely algebraically from the cup product structure.

Now we wish to show that the relation between H*(X;R) and H, (X;R) is per-
fectly symmetric: They are dual Hopf algebras. This is a purely algebraic fact:
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Proposition 3C.10. Let A be a Hopf algebra over R that is a finitely generated
free R-module in each dimension. Then the product T:A® A— A and coproduct
A:A—A®A have duals " : A* > A* @ A* and A* : A* ® A* — A* that give A* the
structure of a Hopf algebra.

Proof: This will be apparent if we reinterpret the Hopf algebra structure on A for-
mally as a pair of graded R-module homomorphisms m:A® A—A and A:A—A®A
together with an element 1 € A° satisfying:

(1) The two compositions A e, A®ATS A and A tr, A®A -5 A are the identity,
where iy(a) = ael and i,(a) = 1®a. This says that 1 is a two-sided identity
for the multiplication in A.

(2) The two compositions A 2, 40425 A and A2 A9 A5 A are the identity,
where py(a®1) = a, pylaeb) = 0 if b € A’ with j > 0, p,(1ea) = a, and
p,(aseb) =0if a € AJ with Jj > 0. This is just the coproduct formula A(a) =

ael+lea+ g ,a;9d, ;.

(3) The diagram at the right commutes, where
T(a®ebeced) = (—l)ija®¢:®b®d for
b € A', c € A’. This is the condition that
A is an algebra homomorphism since if we
follow an element aeb € A™ ® A™ across the top of the diagram we get A(ab),
while the lower route gives first A(a) @ A(b) = (X;a;@ay_;) e (Z;b;eb,_;),
then after applying T and e 1 this becomes 3, ;(-1)™ Vajbieay, b, ;=

n-j -
(Ziaieay )(X;bjeb, ;), whichis A(a)A(D).

Condition (1) for A dualizes to (2) for A*, and similarly (2) for A dualizes to (1) for
A*. Condition (3) for A dualizes to (3) for A*. O

ARA —T L A2 L, A®A
lA@A In@rr
ARARA®A ARARAR®A

Example 3C.11. Let us compute the dual of a polynomial algebra R[x]. Suppose
first that x has even dimension. Then A(x") = (x&1 + 1ex)" = >, (7.1>x"®x""'

i ’

so if «; is dual to x!, the term (’Z)xicax"’i in A(x™) gives the product relation
KKy = (71‘) o, . This is the rule for multiplication in a divided polynomial algebra,
so the dual of R[x] is I3[ «] if the dimension of x is even. This also holds if 2 =0
in R, since the even-dimensionality of x was used only to deduce that R[x]®R[x]
is strictly commutative.

In case x is odd-dimensional, then as we saw in Example 3C.1, if we set y = x?,
we have A(y™) = (yeol+1ey)" =3, (’i‘)yit&y"‘i and A(xy") = Ax)A(Y™) =
D (?)xyi oy IS, (Vi‘)yi ® xy" '. These formulas for A say that the dual of R[x]
is Aglax]®IR[B] where « is dual to x and S is dual to y.

This algebra allows us to deduce the cup product structure on H*(J(S™);R) from
the geometric calculation H, (J (8™);R) = R[x] in Example 3C.7. As another applica-
tion, recall from earlier in this section that RP® and CP* are H-spaces, so from their
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cup product structures we can conclude that the Pontryagin rings H, (RP*;Z,) and
H, (CP%;7Z) are divided polynomial algebras.

In these examples the Hopf algebra is generated as an algebra by primitive ele-
ments, so the product determines the coproduct and hence the dual algebra. This is
not true in general, however. For example, we have seen that the Hopf algebra l"zn [x]
is isomorphic as an algebra to &, Zplexyil/ (ai,-,) , but if we regard the latter tensor
product as the tensor product of the Hopf algebras Z,[ ]/ (‘Xzf) then the elements
&,i are primitive, though they are not primitive in l"zn [«x] for i > 0. In fact, the Hopf
algebra ;. Zp[(xp,t]/ (O(Zi) is its own dual, according to one of the exercises below,
but the dual of I3 [«] is Z,[«].

Exercises

1. Suppose that X is a CW complex with basepoint e € X a 0-cell. Show that X is an
H-space if there is a map p: XX X— X such that the maps X— X, x — pu(x,e) and
x — l(e,x), are homotopic to the identity. [Sometimes this is taken as the definition
of an H-space, rather than the more restrictive condition in the definition we have
given.] With the same hypotheses, show also that y can be homotoped so that e is a
strict two-sided identity.

2. Show that a retract of an H-space is an H-space if it contains the identity element.

3. Show that if X is an H-space such that the set of path-components of X is a
group with respect to the multiplication induced by the H-space structure, then all
the path-components are homotopy equivalent.

4. Show that an H-space or topological group structure on a path-connected, locally
path-connected space can be lifted to such a structure on its universal cover. [For
the group SO(n) considered in the next section, the universal cover for n > 2 is a
2-sheeted cover, a group called Spin(n).]

5. Show that if (X,e) is an H-space then 11, (X,e) is abelian. [Compare the usual
composition f-g of loops with the product u(f(t),g(t)) coming from the H-space
multiplication u.]

6. Show that S" is an H-space iff the attaching map of the 2n-cell of J,(S") is
homotopically trivial.

7. What are the primitive elements of the Hopf algebra Z,[x] for p prime?
8. Show that the tensor product of two Hopf algebras is a Hopf algebra.

9. Apply the theorems of Hopf and Borel to show that for an H-space X that is a
connected finite CW complex with ﬁ* (X;Z) # 0, the Euler characteristic X (X) is 0.

10. Let X be a path-connected H-space with H*(X;R) free and finitely generated
in each dimension. For maps f,g:X— X, the product fg:X—X is defined by
(fg)(x) = f(x)g(x), using the H-space product.
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(a) Show that (fg)*(x) = f*(x) + g* () for primitive elements « € H*(X;R).

(b) Deduce that the k'-power map x — x* induces the map & — ko on primitive
elements «. In particular the quaternionic k-power map S°— S has degree k.

(c) Show that every polynomial a, x"b,, + --- + a,xb, + a, of nonzero degree with
coefficients in H has a root in H. [See Theorem 1.8.]

11. If T" is the n-dimensional torus, the product of n circles, show that the Pontrya-
ginring H, (T™;Z) is the exterior algebra A;[xy, -, x, ] with |x;| = 1.

12. Compute the Pontryagin product structure in H, (L;Z,) where L is an infinite-
dimensional lens space S/ Z,, for p an odd prime, using the coproductin H*(L; Z,).

13. Verify that the Hopf algebras Az[«] and Zp[(x]/(tx"’) are self-dual.

14. Show that the coproduct in the Hopf algebra H, (X;R) dual to H *(X;R) isinduced
by the diagonal map X > Xx X, x — (x,x).

15. Suppose that X is a path-connected H-space such that H*(X;Z) is free and finitely
generated in each dimension, and H* (X; Q) is a polynomial ring Q[«]. Show that the
Pontryagin ring H, (X;Z) is commutative and associative, with a structure uniquely
determined by the ring H*(X;Z).

16. Classify algebraically the Hopf algebras A over Z such that A" is free for each n
and A®Q ~ Q[«]. In particular, determine which Hopf algebras A®Z,, arise from
such A’s.

3.D The Cohomology of SO(n)

After the general discussion of homological and cohomological properties of
H-spaces in the preceding section, we turn now to a family of quite interesting and
subtle examples, the orthogonal groups O(n). We will compute their homology and
cohomology by constructing very nice CW structures on them, and the results illus-
trate the general structure theorems of the last section quite well. After dealing with
the orthogonal groups we then describe the straightforward generalization to Stiefel
manifolds, which are also fairly basic objects in algebraic and geometric topology.

The orthogonal group O(n) can be defined as the group of isometries of R"
fixing the origin. Equivalently, this is the group of nx#n matrices A with entries in
R such that AA' = I, where A! is the transpose of A. From this viewpoint, O (n) is
topologized as a subspace of R™ , with coordinates the n? entries of an n x n matrix.
Since the columns of a matrix in O(n) are unit vectors, O(n) can also be regarded
as a subspace of the product of n copies of ™ '. It is a closed subspace since the
conditions that columns be orthogonal are defined by polynomial equations. Hence
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O(n) is compact. The map O(n)x0O(n)— 0O(n) given by matrix multiplication is
continuous since it is defined by polynomials. The inversion map A — A~! = A! is
clearly continuous, so O(n) is a topological group, and in particular an H-space.

The determinant map O(n)— {+1} is a surjective homomorphism, so its kernel
SO (n), the ‘special orthogonal group,’ is a subgroup of index two. The two cosets
SO(n) and O(n) — SO(n) are homeomorphic to each other since for fixed B € O (n)
of determinant —1, the maps A — AB and A — AB~! are inverse homeomorphisms
between these two cosets. The subgroup SO(n) is a union of components of O(n)
since the image of the map O(n)— {+1} is discrete. In fact, SO(n) is path-connected
since by linear algebra, each A € SO(n) is a rotation, a composition of rotations in
a family of orthogonal 2-dimensional subspaces of R", with the identity map on the
subspace orthogonal to all these planes, and such a rotation can obviously be joined
to the identity by a path of rotations of the same planes through decreasing angles.
Another reason why SO(n) is connected is that it has a CW structure with a single
0-cell, as we show in Proposition 3D.1. An exercise at the end of the section is to show
that a topological group with a CW structure is an orientable manifold, so SO(n) is
a closed orientable manifold. From the CW structure it follows that its dimension is
n(n — 1)/2. These facts can also be proved using fiber bundles.

The group O(n) is a subgroup of GL, (R), the ‘general linear group’ of all invert-
ible nx n matrices with entries in R, discussed near the beginning of §3.C. The Gram-
Schmidt orthogonalization process applied to the columns of matrices in GL,, (R) pro-
vides a retraction 7 :GL, (R)— O (n), continuity of + being evident from the explicit
formulas for the Gram-Schmidt process. By inserting appropriate scalar factors into
these formulas it is easy to see that O(n) is in fact a deformation retract of GL,(R).
Using a bit more linear algebra, namely the polar decomposition, it is possible to show
that GL,,(R) is actually homeomorphic to O(n)x R¥ for k =n(n+1)/2.

The topological structure of SO (n) for small values of n can be described in
terms of more familiar spaces:

= SO(1) is a point.
« SO(2), the rotations of R?, is both homeomorphic and isomorphic as a group to

s, thought of as the unit complex numbers.

= SO(3) is homeomorphic to RP3. To see this, let @ D3 —S0(3) send a nonzero
vector x to the rotation through angle |x|m about the axis formed by the line
through the origin in the direction of x. An orientation convention such as the

‘right-hand rule’ is needed to make this unambiguous. By continuity, ¢ then

sends O to the identity. Antipodal points of S? = dD® are sent to the same

rotation through angle 7, so @ induces a map @:RP*—SO0O(3), regarding RP>
as D*® with antipodal boundary points identified. The map @ is clearly injective
since the axis of a nontrivial rotation is uniquely determined as its fixed point
set, and @ is surjective since by easy linear algebra each nonidentity element
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of SO(3) is a rotation about some axis. It follows that @ is a homeomorphism
RP? ~ SO(3).

» SO(4) is homeomorphic to $*xS0(3). Identifying R* with the quaternions H
and S° with the group of unit quaternions, the quaternion multiplication v — vw
for fixed w € S° defines an isometry p,, € O(4) since |[vw| = [v||lw| = |v]
if lw| = 1. Points of O(4) are 4-tuples (vq,---,v,) of orthonormal vectors
v; € H = R*, and we view O(3) as the subspace with v; = 1. A homeomorphism
$3x0(3)—0(4) is defined by sending (v, (1,V5,V3,04)) 10 (V, V5V, V3V, 0,V) =
P, (1,05,V3,v4), with inverse (v,v,,v3,v4) — (v, (1L, v,v v v,o)) =
(v, py-1(v,v,,V5,V4)) . Restricting to identity components, we obtain a homeo-
morphism $3xS0O(3) ~ SO(4). This is not a group isomorphism, however. It
can be shown, though we will not digress to do so here, that the homomorphism
Y:S 3% 8§3—S50(4) sending a pair (u,v) of unit quaternions to the isometry
w— uwv_ ! of H is surjective with kernel Z, = {+(1,1)}, and that ¢ is a
covering space projection, representing S°xS°® as a 2-sheeted cover of SO(4),
the universal cover. Restricting ¢ to the diagonal §3 = {tu,u)} c $3x §3 gives
the universal cover S°—§ 0(3), so SO(3) is isomorphic to the quotient group of
$3 by the normal subgroup {+1}.

Using octonions one can construct in the same way a homeomorphism SO(8) =
$”xS0(7). But in all other cases SO(n) is only a ‘twisted product’ of SO(n — 1)
and S™'; see Example 4.55 and the discussion following Corollary 4D.3.

Cell Structure

Our first task is to construct a CW structure on SO (n). This will come with a very
nice cellular map p:RP" !xRP" 2x --- x RP' —> SO (n). To simplify notation we will
write P! for RP'.

To each nonzero vector v € R" we can associate the reflection »(v) € O(n)
across the hyperplane consisting of all vectors orthogonal to v. Since r(v) is a re-
flection, it has determinant —1, so to get an element of SO(n) we consider the com-
position p(v) = r(v)r(e;) where e, is the first standard basis vector (1,0,---,0).
Since p(v) depends only on the line spanned by v, p defines amap P" '-S0 (n).
This map is injective since it is the composition of v — ¥ (v), which is obviously an in-
jection of P" !into O(n)—-SO(n), with the homeomorphism O (n)-S0O(n)—S0O(n)
given by right-multiplication by v (e;). Since p is injective and P" ! is compact Haus-
dorff, we may think of p as embedding P! as a subspace of SO (n).

More generally, for a sequence I = (iy,---,i,,) with each i; < n, we define a
map p:P' = Piix ... xP"™ —SO(n) by letting p(vy,---,v,,) be the composition
pwy) ---plvy). If @':D'— P! is the standard characteristic map for the i-cell of
Pt, restricting to the 2-sheeted covering projection 0D'— P!, then the product
@' : D! — P! of the appropriate @%’s is a characteristic map for the top-dimensional
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cell of P'. We will be especially interested in the sequences I = (iy, -+, 1,,) satisfying
n>i; > - >1i, > 0. These sequences will be called admissible, as will the sequence
consisting of a single 0.

Proposition 3D.1. The maps pp’:D'—S0On), for I ranging over all admissible
sequences, are the characteristic maps of a CW structure on SO (n) for which the
map p:P" IxP" 2x ... xP' -SO0(n) is cellular.

In particular, there is a single 0-cell e¥ = {1}, so SO(n) is path-connected. The
other cells e/ = e ... e are products, via the group operationin SO (n), of the cells
el c P csom).

Proof: According to Proposition A.2 in the Appendix, there are three things to show
in order to obtain the CW structure:
(1) For each decreasing sequence I, p@' is a homeomorphism from the interior of

D' onto its image.

(2) The resulting image cells e’ are all disjoint and cover SO (n).
(3) For each e! , p(pl (BDI ) is contained in a union of cells of lower dimension than el

To begin the verification of these properties, define p:SO(n)—S" ! by evaluation

at the vector e,, = (0,---,0,1), p(x) = «(e,,). Isometries in P" %2 c Pl c SO(n)
fix e,, so p(P"?) = {e,}. We claim that p is a homeo- en
morphism from P* ! — P"2 onto §"! — {e,,}. This can be

seen as follows. Thinking of a point in P"! as a vector v, q

the map p takes this to p(v)(e,) = ¥(v)r(e;)(e,), which

equals v (v)(e,) since e, isin the hyperplane orthogonal to ﬁ‘ p)
e, . From the picture at the rightitis then clear that p simply - (1

stretches the lower half of each meridian circle in $"~! onto
the whole meridian circle, doubling the angle up from the south pole, so prl_pn-2
represented by vectors whose last coordinate is negative, is taken homeomorphically
onto S" ! — {e,}.

The next statement is that the map

h: (P 'xSO0m—-1),P" 2xS0(n-1))—(SOn),S0n-1)), hv,x) =pv)x

is a homeomorphism from (P! = P"?)xSO(n—-1) onto SO(n) —SO(n—1). Here
we view SO(n — 1) as the subgroup of SO(n) fixing the vector e,,. To construct
an inverse to this homeomorphism, let § € SO(n) — SO(n — 1) be given. Then
B(e,) # e, so by the preceding paragraph there is a unique vz € Pl — p"2 with
p(vg)(e,) = B(e,), and vy depends continuously on B since B(e,) does. The com-
position o = p(vB)’lﬁ then fixes e,,, hence lies in SO(n — 1). Since p(vﬁ)(xﬁ =B,
the map B — (vg, «g) is an inverse to h on SO(n) —SO(n—1).

Statements (1) and (2) can now be proved by induction on n. The map p takes
P"? to SO(n —1), so we may assume inductively that the maps pg’ for I ranging
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over admissible sequences with first term i; < n —1 are the characteristic maps for a
CW structure on SO (n —1), with cells the corresponding products e’. The admissible
sequences I with i; = n — 1 then give disjoint cells el covering SO(n) —SO(n-1)
by what was shown in the previous paragraph. So (1) and (2) hold for SO (n).

To prove (3) it suffices to show there is an inclusion PPt c PPl in SO(n)
since for an admissible sequence I, the map p:P'—SO(n) takes the boundary of
the top-dimensional cell of P! to the image of products P/ with J obtained from
I by decreasing one term i; by 1, yielding a sequence which is admissible except
perhaps for having two successive terms equal. As a preliminary to showing that
PPt c P'P!, observe that for & € O(n) we have r(x(v)) = ar(v)a'. Hence
pw)p(w) = rw)r(e)r(w)r(e;) = r(v)r(w') where w' = r(e;)w. Thus to show
PP' c PP it suffices to find for each pair v, w € R*! a pair x € R*!, y € R
with r(v)r(w) = r(x)r(y).

Let V c R¥*! be a 2-dimensional subspace containing v and w. Since V N R’ is
at least 1-dimensional, we can choose a unit vector ¥ € VNR!. Let x € O(i+1) take
V to R? and y to e; . Then the conjugate ar(V)rw)o ! = r(a())r(x(w)) lies in
SO(2), hence has the form p(z) = v(z)r(e;) for some z € R’ by statement (2) for
n = 2. Therefore

r()r(w) =« 'r@re)a=r(a(2)r(a (e)) =rx)r(y)

for x = a'(z) € R™"! and y € R'.

It remains to show that the map p:P" !xP" ?x ... xP'—>S0(n) is cellular.
This follows from the inclusions P'P' c P'Pi"! derived above, together with another
family of inclusions P'P/ c P/P! for i < j. To prove the latter we have the formulas

p(v)pw) =rw)rw’) where w' = 7 (e;)w, as earlier

=r(w)rwHrw)rv)

rir(v)w')rw) from r (x(v)) = oar(v)o !

r(rw)re)w)rw) =r(pw)w)r(v)

plpv)w)p’) where v’ = r(e;)v, hence v = r(e;)v’

In particular, taking v € R'"! and w € R’*! with i < j, we have p(v)w € R/*!, and
the product p(v)p(w) € pipJ equals the product p(p(v)w)p (') € pipt. O

Mod 2 Homology and Cohomology

Each cell of SO (n) is the homeomorphic image of a cellin P* ' x P ?x ... x P!,
so the cellular chain map induced by p:P"* 'xP" ?x ... xP' —>S0(n) is surjective.
It follows that with Z, coefficients the cellular boundary maps for SO (n) are all trivial
since this is true in P' and hence in P* ' x P"?x ... x P! by Proposition 3B.1. Thus
H,(50(n);Z,) has a Z, summand for each cell of SO(n). One can rephrase this
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as saying that there are isomorphisms H;(SO(n);Z,) = Hi(S"’1 XS 2% ... ><Sl; Z,)
for all i since this product of spheres also has cells in one-to-one correspondence
with admissible sequences. The full structure of the Z, homology and cohomology
rings is given by:

Theorem 3D.2. (a) H*(S0(n);7,) ~ ®ioddZZ[Bi]/(Bfi) where |B;| =1 and p; is
the smallest power of 2 such that IBf > n.

(b) The Pontryagin ring H, (SO (n);Z,) is the exterior algebra Az, [el, .- ,e"’l].

Here ¢! denotes the cellular homology class of the cell elcptlcs O(n), and
B; is the dual class to e', represented by the cellular cochain assigning the value 1 to
the cell e’ and 0 to all other i-cells.

Proof: As we noted above, p induces a surjection on cellular chains. Since the cellular
boundary maps with Z, coefficients are trivial for both P lx ... xP! and SO(n),
it follows that p, is surjective on H,(—;Z,) and p* is injective on H*(—;Z,). We
know that H* (P" !x ... x P1;Z,) is the polynomial ring Z,[ &, - - -, &, _;] truncated
by the relations aﬁ“ = 0. For B; € Hi(SO(n);ZZ) the dual class to ei, we have
p*(B;) = 3 o}, the class assigning 1 to each i-cell in a factor P/ of P""'x - x P!
and O to all other i-cells, which are products of lower-dimensional cells and hence
map to cells in SO (n) disjoint from e’.

First we will show that the monomials B; = B; ---B; corresponding to admissi-
ble sequences I are linearly independent in H* (SO (n);Z,), hence are a vector space
basis. Since p* is injective, we may identify each B; with its image > j o<§ in the trun-
cated polynomial ring Z,[xy, -, (xn,l]/((xf, -+, 00_1). Suppose we have a linear
relation >, b;B; = 0 with b; € Z, and I ranging over the admissible sequences. Since
each B; is a product of distinct f;’s, we can write the relation in the form xf, +y =0
where neither x nor y has B, as a factor. Since «; occurs only in the term f; of
xB;, + v, where it has exponent 1, we have xf, + ¥ = x«; + z where neither x nor
z involves o . The relation xo; +z = 0 in Zy[ &y, ---, &,_11/ (e, -+, &’ ;) then
implies x = 0. Thus we may assume the original relation does not involve ;. Now
we repeat the argument for ,. Write the relation in the form xf, + y = 0 where
neither x nor y involves 8, or f;. The variable &, now occurs only in the term f,
of xB, + v, where it has exponent 2, so we have xf, + ¥ = x&5 + z where x and
z do not involve o or «,. Then xa5 + z = 0 implies x = 0 and we have a relation
involving neither 8, nor B,. Continuing inductively, we eventually deduce that all
coefficients b; in the original relation > ; b;8; = 0 must be zero.

Observe now that 7 = By, if 2i < n and B? = 0 if 2i = n, since (3;«})® =
ZJ- (x?i. The quotient Q of the algebra Z,[;, B>, -1 by the relations 312 = B,; and
B; = 0 for j = n then maps onto H*(SO(n);Z,). This map Q—H*(SO(n);Z,)
is also injective since the relations defining Q allow every element of Q to be rep-
resented as a linear combination of admissible monomials B!, and the admissible
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monomials are linearly independent in H*(SO (n); Z,). The algebra Q can also be
described as the tensor product in statement (a) of the theorem since the relations
Ef = f,; allow admissible monomials to be written uniquely as monomials in powers
of the B;’s with i odd, and the relation B; = 0 for j > n becomes B;, = Bf" =0
where j = ip; with i odd and p; a power of 2. For a given i, this relation holds iff
ip; = n, or in other words, iff |Bf"| > n. This finishes the proof of (a).

For part (b), note first that the group multiplication SO(n)xS0O(n)—S0(n) is
cellular in view of the inclusions P'P' c P'P'"! and PP/ c P/P! for i < j. So
we can compute Pontryagin products at the cellular level. We know that there is at
least an additive isomorphism H, (SO(n);Z,) = Az, [e!,.--,e" 1] since the products

eI = ell..

. e with I admissible form a basis for H,(50(n);Z,). The inclusion
PPt c P'P*"! then implies that the Pontryagin product (e')? is 0. It remains only to
see the commutativity relation e‘e’ = e/e’. The inclusion P'P/ c P/P! for i < j was
obtained from the formula p(v)p(w) = p(p(v)w)p ') for v € R, w e R/,
and v’ = r(e;)v. The map f:P'xP’—P/xP', f(v,w) = (p(v)w,v’), is a homeo-
morphism since it is the composition of homeomorphisms (v,w) — (v,p(vV)w) —
', p(v)w) — (p(v)w,v’). The first of these maps takes elxel homeomorphically
onto itself since p(v)(ej )y =el if i< j. Obviously the second map also takes elxel
homeomorphically onto itself, while the third map simply transposes the two fac-
tors. Thus f restricts to a homeomorphism from e'xel onto e’ ><ei, and therefore
elel = elel in H,(SO0(n);Z,). O

The cup product and Pontryagin product structures in this theorem may seem at
first glance to be unrelated, but in fact the relationship is fairly direct. As we saw in the
previous section, the dual of a polynomial algebra Z,[x] is a divided polynomial alge-
bra I7,[«], and with Z, coefficients the latter is an exterior algebra Az, [, &, -]
where |x;| = 2i|x\. If we truncate the polynomial algebra by a relation x%" = 0,
then this just eliminates the generators «; for i > n. In view of this, if it were the
case that the generators B; for the algebra H* (SO (n);Z,) happened to be primitive,
then H* (SO (n); Z,) would be isomorphic as a Hopf algebra to the tensor product of
the single-generator Hopf algebras Z,[f;1/ (Bfi), i=1,3, -+, hence the dual algebra
H,(S0(n);Z,) would be the tensor product of the corresponding truncated divided
polynomial algebras, in other words an exterior algebra as just explained. This is in
fact the structure of H, (SO (n); Z,), so since the Pontryagin productin H, (SO (n); Z,)
determines the coproduct in H*(SO(n); Z,) uniquely, it follows that the B;’s must
indeed be primitive.

It is not difficult to give a direct argument that each f; is primitive. The coprod-
uct A:H*(SO(n);Z,) —>H*(SO(n);Z,) ® H* (50 (n);Z,) isinduced by the group mul-
tiplication p:SO(n)xSO(n)—SO(n). We need to show that the value of A(j;) on
e’ e/, whichwe denote (A(B;),e’ @e’),is the same as the value (8, 1+1ef;,e' ®e’)
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for all cells e/ and ¢/ whose dimensions add up to i. Since A = p*, we have
(A(Bi),el(@ef) = (Bi,u*(eleaef)). Because u is the multiplication map, u(eIer)
is contained in P'P’ , and if we use the relations P/pJ c pIpi~1 and P/P* c P*P/ for
j < k to rearrange the factors P/ of P'P’ so that their dimensions are in decreasing
order, then the only way we will end up with a term P! is if we start with P'P’/ equal
to P'P% or P°P'. Thus (B;,u, (e @e’)) = 0 unless e’ ee’ equals e’ ee or e’ee’.
Hence A(B;) contains no other terms besides 8;®1 + 1® f3;, and B; is primitive.

Integer Homology and Cohomology

With Z coefficients the homology and cohomology of SO(n) turns out to be a
good bit more complicated than with Z, coefficients. One can see a little of this
complexity already for small values of 7, where the homeomorphisms SO(3) ~ RP3
and SO (4) ~ $°x RP? would allow one to compute the additive structure as a direct
sum of a certain number of Z’s and Z,’s. For larger values of n the additive structure
is qualitatively the same:

|| Proposition 3D.3. H,(SO0(n);2) is a direct sum of Z’s and Z,’s.

Proof: We compute the cellular chain complex of SO (n), showing that it splits as a
tensor product of simpler complexes. Foracell ¢! ¢ P"~' ¢ SO(n) the cellular bound-
ary de' is 2e'"! for even i > 0 and 0 for odd i. To compute the cellular boundary of
acell e --- e we can pull it back to a cell e’ x --- xe of P* !x ... xP' whose
cellular boundary, by Proposition 3B.1, is Zj(—l)"fei‘ X -+ xdelix -+ xe™ where
0j=1i,+---+1i;_,. Hence d(e™ ... em) = Zj(—l)“fe“ coodel ... et where it is un-
derstood that e --- del - .. '™ is zero if ij = in +1 since P~ lpii—l ¢ Pif‘lPif‘z,
in a lower-dimensional skeleton.

To split the cellular chain complex C,(SO(n)) as a tensor product of smaller
chain complexes, let C?! be the subcomplex of C, (SO(n)) with basis the cells eo,
eZi, eZi’l, and e®'e?"!. This is a subcomplex since de®! = 0, de’t = 2e2i’1,
and, in P2'x P>, d(e®ix ey = de’ixe?! 4 e¥ixde’t ! = 2271 x %71 hence
d(eZieZi’l) = 0 since P%1p?i~l ¢ p2i-1p2i=2 " The claim is that there are chain
complex isomorphisms

C.(SORk+1)) ~ C?0C*® ... ®C%k
C.(SOk +2)) ~ C*0C® .- 0C*ko 2!

where C?**! has basis ¢ and e?**!. Certainly these isomorphisms hold for the chain
groups themselves, so it is only a matter of checking that the boundary maps agree.
For the case of C, (SO(2k + 1)) this can be seen by induction on k, as the reader can
easily verify. Then the case of C, (SO (2k + 2)) reduces to the first case by a similar
argument.

Since H, (C 2i) consists of Z’s in dimensions 0 and 4i — 1 and a Z, in dimension
2i — 1, while H, (C***!) consists of Z's in dimensions 0 and 2k + 1, we conclude
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from the algebraic Kiinneth formula that H,(SO(n);Z) is a direct sum of Z’s and
Zy’s. O

Note that the calculation shows that SO(2k) and SO(2k —1)x S 2k=1 have iso-
morphic homology groups in all dimensions.

In view of the preceding proposition, one can get rather complete information
about H,(50(n);Z) by considering the natural maps to H,(SO(n);Z,) and to the
quotient of H,(SO(n);Z) by its torsion subgroup. Let us denote this quotient by
ere (50(n); 7). The same strategy applies equally well to cohomology, and the uni-
versal coefficient theorem gives an isomorphism H}kyee (S0(n);72) = Hﬁ:”e (50(n); 7).

The proof of the proposition shows that the additive structure of H"*¢(SO (n);2)
is fairly simple:

HIT(SO(2k +1);7) ~ H, (S3xS7x -+ x §¥1y
HI{T(SO(k +2);7) =~ H, (S>x 8" x -+ x §H 1 g2k+1)

The multiplicative structure is also as simple as it could be:

Proposition 3D.4. The Pontryagin ring ij”e(S O (n);Z) is an exterior algebra,

HZ:”Q(SO(2k +1);2) =~ Ajlas,a,,---,aq4,_1] Wwhere|a;| =i
Hf:ree(SO(Zk + 2),1) ~ Az[ag,a7, e ,a/4k71,a,2k+1]

The generators a; are primitive, so the dual Hopf algebra Hj,,,(SO(n);2) is an

exterior algebra on the dual generators «;.

Proof: As in the case of Z, coefficients we can work at the level of cellular chains
since the multiplication in SO(n) is cellular. Consider first the case n = 2k + 1.
Let E' be the cycle e?ie?il generating a Z summand of H,(SO(n);Z). By what we
have shown above, the products E' ---E'™ with i, > --- > i, form an additive
basis for ere(SO(n);Z), so we need only verify that the multiplication is as in
an exterior algebra on the classes E'. The map f in the proof of Proposition 3D.2
gives a homeomorphism e'xe’ ~ e/ xe! if i < Jj, and this homeomorphism has local
ij+1

degree (-1) since it is the composition (v,w) — (v,p(v)w) — V', p(v)W) —

(p(v)w,v’) of homeomorphisms with local degrees +1,—1, and (-1)¥. Applying
this four times to commute E'E/ = e?1e?i710%1 02171 1o EIE! = 0270217 10%102171 three
of the four applications give a sign of —1 and the fourth gives a +1, so we conclude
that E'F/ = —E/E' if i < j. When i = j we have (Ei)2 = 0 since e%le?i1e?ip?i7l =
eZieZieZi’leZi’l, which lies in a lower-dimensional skeleton because of the relation
plip2i - p2ip2i-1_

Thus we have shown that H, (SO(2k + 1);Z) contains AZ[EI, .- ,Ek] as a sub-
algebra. The same reasoning shows that H, (SO (2k + 2);Z) contains the subalgebra
AZ[El, oy ,Ek,eZk”]. These exterior subalgebras account for all the nontorsion in

H,(SO(n);Z), so the product structure in H,"®(S0(n);Z) is as stated.
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2k+1 are primitive in HL (SO (n);Z).

Now we show that the generators E' and e
Looking at the formula for the boundary maps in the cellular chain complex of SO(n),
we see that this chain complex is the direct sum of the subcomplexes C(m) with
basis the m-fold products e’ ---e'™ with i; > -++ > i,, > 0. We allow m = 0 here,
with C(0) having basis the 0-cell of SO(n). The direct sum C(0)® --- ®@C(m) is
the cellular chain complex of the subcomplex of SO (n) consisting of cells that are
products of m or fewer cells e'. In particular, taking m = 2 we have a subcomplex
X C SO(n) whose homology, mod torsion, consists of the 7Z in dimension zero and
the Z’s generated by the cells E', together with the cell e?**! when n = 2k + 2. The
inclusion X — SO (n) induces a commutative diagram

H*free(X;Z) A H{TEE(X;Z) ®H*fme(X;Z)

! |

HI™(S0m);7) =2 H/™(S0();2) ® H{™(S0(n);2)

where the lower A is the coproduct in ere(SO(n); Z) and the upper A is its ana-
log for X, coming from the diagonal map X — X x X and the Kiinneth formula. The
classes E! in the lower left group pull back to elements we label E' in the upper left
group. Since these have odd dimension and H{:ree (X;Z) vanishes in even positive
dimensions, the images A(Ei) can have no components a®b with both a and b
positive-dimensional. The same is therefore true for A(E') by commutativity of the

2k+1 when

diagram, so the classes E' are primitive. This argument also works for e
n=2k+2.

Since the exterior algebra generators of Hﬁ:”e(S O(n);Z) are primitive, this alge-
bra splits as a Hopf algebra into a tensor product of single-generator exterior algebras
Azla;]. The dual Hopf algebra H}‘Tee(S O(n);Z) therefore splits as the tensor prod-
uct of the dual exterior algebras A;[«x;], hence H}‘me(SO(n);Z) is also an exterior

algebra. O

The exact ring structure of H*(SO(n);Z) can be deduced from these results
via Bockstein homomorphisms, as we show in Example 3E.7, though the process is
somewhat laborious and the answer not very neat.

Stiefel Manifolds

Consider the Stiefel manifold V,, ,, whose points are the orthonormal k-frames
in R", thatis, orthonormal k-tuples of vectors. Thus Vo isa subset of the product of
k copies of S™1, and it is given the subspace topology. As special cases, Vi =0m)
and V,,; =S "1 Also, V,.» can be identified with the space of unit tangent vectors to
$™1 since a vector v at the point x € $" ! is tangent to S™ ! iff it is orthogonal to
x. We can also identify V,, ,,_; with SO(n) since there is a unique way of extending
an orthonormal (n — 1)-frame to a positively oriented orthonormal n-frame.
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There is a natural projection p: O(n)—»Vn,k sending « € O(n) to the k-frame
consisting of the last k columns of «, which are the images under « of the last k
standard basis vectors in R"™. This projection is onto, and the preimages of points are
precisely the cosets xO(n — k), where we embed O(n—k) in O(n) as the orthogonal
transformations of the first n — k coordinates of R". Thus V,, ; can be viewed as the
space O(n)/O(n — k) of such cosets, with the quotient topology from O (n). This is
the same as the previously defined topology on V,, ; since the projection O(n)—V,,
is a surjection of compact Hausdorff spaces.

When k < n the projection p:50(n)—V, , is surjective, and V,, , can also be
viewed as the coset space SO(n)/SO(n—k). We can use this to induce a CW structure
on Vy from the CW structure on SO (n). The cells are the sets of cosets of the form
elSoOm—k) =e" -..emSO(n - k) for n > i, > --- > i,, = n — k, together with the
coset SO(n — k) itself as a 0-cell of Vik- These sets of cosets are unions of cells of
SO(n) since SO(n—k) consists of the cells ¢/ = e/! ... ¢/ with n—k > J1> > gy
This implies that V,, ; is the disjoint union of its cells, and the boundary of each cell
is contained in cells of lower dimension, so we do have a CW structure.

Since the projection SO (n) -V, isa cellular map, the structure of the cellular
chain complex of V, ;, can easily be deduced from that of SO(n). For example, the
cellular chain complex of V5., is just the complex C 2k defined earlier, while for
Vyi.2 the cellular boundary maps are all trivial. Hence the nonzero homology groups

of V,,, are
7 fori=0,4k-1
Hi (Vg1 22) = {Zz fori=2k-1

H,(Voyy;7) =7 fori=0, 2k—2, 2k -1, 4k -3

Thus SO(n) has the same homology and cohomology groups as the product space

§%k+1 when

V320X VsoX o XV when n =2k+1,0ras Vi, X Vs o X - XV g5 X
n = 2k + 2. However, our calculations show that SO(n) is distinguished from these
products by its cup product structure with Z, coefficients, at least when n > 5, since
B‘f is nonzero in H 4(S 0O(n);Z,) if n = 5, while for the product spaces the nontrivial
element of Hl(—;Zz) must lie in the factor Vj,, and H4(V3‘2;Zz) =0. When n =4
we have SO (4) homeomorphic to SO (3) x §3 = V3, X $% as we noted at the beginning

of this section. Also SO(3) = V3, and SO(2) = st

Exercises
1. Show that a topological group that has a CW structure is an orientable manifold.
[Consider the homeomorphisms x — xg for a fixed group element g.]

2. Using the CW structure on SO(n), show that 7;SO(n) =~ Z, for n > 3. Find a
loop representing a generator, and describe how twice this loop is nullhomotopic.

3. Compute the Pontryagin ring structure in H, (SO (5);2).
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3.E Bockstein Homomorphisms

Homology and cohomology with coefficients in a field, particularly 7, with p
prime, often have more structure and are easier to compute than with Z coefficients.
Of course, passing from Z to Z,, coefficients can involve a certain loss of information,
a blurring of finer distinctions. For example, a Z,. in integer homology becomes
a pair of Z,’s in 7, homology or cohomology, so the exponent n is lost with 7,
coefficients. In this section we introduce Bockstein homomorphisms, which in many
interesting cases allow one to recover Z coefficient information from 7, coefficients.
Bockstein homomorphisms also provide a small piece of extra internal structure to
Z,, homology or cohomology itself, which can be quite useful.

We will concentrate on cohomology in order to have cup products available,
but the basic constructions work equally well for homology. If we take a short ex-
act sequence 0— G— H — K—0 of abelian groups and apply the covariant functor
Hom((C,,(X), —), we obtain

0—C"(X;G) — C"(X;H) — C"(X;K)—0

which is exact since C,,(X) is free. Letting n vary, we have a short exact sequence of
chain complexes, so there is an associated long exact sequence

- — H"(X;G) — H"(X;H) — H"(X;K) — H"" 1 (X;G) — - --

whose ‘boundary’ map H"(X;K) — H™"(X; G) is called a Bockstein homomorphism.

We shall be interested primarily in the Bockstein 8: H"(X;Z,,) —H"(X; Z,,) as-
sociated to the coefficient sequence 0—Z,, — Z,,,. — Z,, —0, especially when m is
prime, but for the moment we do not need this assumption. Closely related to B is the
Bockstein E:H”(X; Z,,) —H""Y(X;7) associated to 0—7 27 — Z,,—0. From the
natural map of the latter short exact sequence onto the former one, we obtain the re-
lationship 8 = p E where p:H*(X;Z)—H*(X;Z,,) is the homomorphism induced by
the map Z— 7, reducing coefficients mod m. Thus we have a commutative triangle
in the following diagram, whose upper row is the exact sequence containing E .

H™(X:7) -2~ H"(X:Z,,) =2~ H™\(X:7) -~ H™"\(X:Z)

I

H'n+1(X; Zm)

Example 3E.1. Let X be a K(Z,,,1), for example RP* when m = 2 or an infinite-
dimensional lens space with fundamental group Z,, for arbitrary m. From the ho-
mology calculations in Examples 2.42 and 2.43 together with the universal coefficient
theorem or cellular cohomology we have H" (X;Z,,) ~ Z,,, for all n. Let us show that
B:H"(X; Zm)—>H"+1(X; Z,,) is an isomorphism for n odd and zero for n even. If
n is odd the vertical map p in the diagram above is surjective for X = K(Z,,,1), as
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is E since the map m is trivial, so B is surjective, hence an isomorphism. On the
other hand, when 7 is even the first map p in the diagram is surjective, so § = 0 by
exactness, hence 8 =0.

A useful fact about S is that it satisfies the derivation property
(%) Bla~b) =Ba)-b+ (-1)"a p(b)

which comes from the corresponding formula for ordinary coboundary. Namely, let
@ and ¢ be Z,, cocycles representing a and b, and let @ and ¢ be lifts of these to
Z,,2 cochains. Concretely, one can view @ and ¢ as functions on singular simplices
with values in {0,1,---,m — 1}, and then @ and ¢ can be taken to be the same
functions, but with {0,1,---,m — 1} regarded as a subset of Z,,.. Then §@ = mn
and ¢ = mu for Z, cocycles n and p representing B(a) and B(b). Taking cup
products, @ « (¢ is a Z,,,. cochain lifting the Z,, cocycle @ - ¢, and

(PP =P PxPsP=mn-PxPmp=mn-y =@ -p)

where the sign + is (-1)'%!. Hence n— ¢ + (-1)'% @ < u represents B(a - b), giving
the formula ().

Example 3E.2: Cup Products in Lens Spaces. The cup product structure for lens
spaces was computed in Example 3.41 via Poincaré duality, but using Bocksteins we
can deduce it from the cup product structure in CP*, which was computed in Theo-
rem 3.12 without Poincaré duality. Consider first the infinite-dimensional lens space
L =S8%/Z,, where Z,, acts on the unit sphere S in C* by scalar multiplication, so
the action is generated by the rotation v — e2™/™y . The quotient map S® — CP®
factors through L, so we have a projection L— CP*. Looking at the cell structure
on L described in Example 2.43, we see that each even-dimensional cell of L projects
homeomorphically onto the corresponding cell of CP®”. Namely, the 2n-cell of L
is the homeomorphic image of the 2n-cell in $?"*! ¢ C™*! formed by the points
cos0(zy,-++,2,,0) +sin0(0,---,0,1) with Eizf =1 and 0 < 0 < 1T, and the same
is true for the 2n-cell of CP”. From cellular cohomology it then follows that the
map L— CP* induces isomorphisms on even-dimensional cohomology with Z,, co-
efficients. Since H*(CP®;Z,,) is a polynomial ring, we deduce that if y € H 2(L; Z,,)
is a generator, then yk generates H 2k(L;Zm) for all k.

By Example 3E.1 there is a generator x € H 1(L;Zm) with B(x) = y. The prod-
uct formula (%) gives B(xyk) = B(x)yk - xB(yk) = yk“. Thus B takes xyk
to a generator, hence xyk must be a generator of H2k+1(L;Zm). This completely
determines the cup product structure in H *(L;Zm) if m is odd since the commu-
tativity property of cup product implies that x> = 0 in this case. The result is that
H*(L; Zy,) = Ny, [x]®Z,,[y] for odd m. When m is even this statement needs to
be modified slightly by inserting the relation that x? is the unique element of order
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2in H 2(L; Z,) = Z,, as we showed in Example 3.9 by an explicit calculation in the
2-skeleton of L.

The cup product structure in finite-dimensional lens spaces follows from this
since a finite-dimensional lens space embeds as a skeleton in an infinite-dimensional
lens space, and the homotopy type of an infinite-dimensional lens space is determined
by its fundamental group since it is a K(mr,1). It follows that the cup product struc-
ture on a lens space $°"*1/z,, with Z,, coefficients is obtained from the preceding

calculation by truncating via the relation y"*! = 0.

The relation 8 = pﬁ implies that p° = pﬁpE = 0 since Ep = 0 in the long exact
sequence containing B . Because BZ = 0, the groups H"(X;Z,,) form a chain complex
with the Bockstein homomorphisms B as the ‘boundary’ maps. We can then form the
associated Bockstein cohomology groups Ker B/ Im B, which we denote BH" (X;Z,,) in
dimension 7. The most interesting case is when m is a prime p, so we shall assume
this from now on.

Proposition 3E.3. If H,(X;Z) is finitely generated for all n, then the Bockstein co-

homology groups BH" (X; Z,) are determined by the following rules:

(@) Each Z summand of H"(X;Z) contributes a Z,, summand to BH"(X; Zy).

(b) Each Zpk summand of H"(X;Z) with k > 1 contributes Zp summands to both
BH""'(X;Z,) and BH"(X;Z,,).

(c) Az, summand of H"(X;Z) gives Z,, summands of H" 1(X; Z,) and H"(X; z,)
with B an isomorphism between these two summands, hence there is no contri-
bution to BH* (X; z,).

Proof: We will use the algebraic notion of minimal chain complexes. Suppose that C
is a chain complex of free abelian groups for which the homology groups H,,(C) are
finitely generated for each n. Choose a splitting of each H,(C) as a direct sum of
cyclic groups. There are countably many of these cyclic groups, so we can list them
as Gy, G,,---. For each G; choose a generator g; and define a corresponding chain
complex M(g;) by the following prescription. If g; has infinite order in G; C H, (C),
let M(g;) consist of justa Z in dimension n,;, with generator z;. On the other hand, if
g; has finite order k in H, (C),let M(g;) consist of Z’s in dimensions n; and n; +1,
generated by x; and y; respectively, with 0y; = kx;. Let M be the direct sum of the
chain complexes M(g;). Define a chain map o : M — C by sending z; and x; to cycles
C; and &; representing the corresponding homology classes g;, and y; to a chain n;
with 0n; = k&;. The chain map ¢ induces an isomorphism on homology, hence also
on cohomology with any coefficients, by Corollary 3.4. The dual cochain complex
M™* obtained by applying Hom(—, Z) splits as the direct sum of the dual complexes
M*(g;). So in cohomology with Z coefficients the dual basis element z;* generates
a Z summand in dimension n;, while y; generates a Z, summand in dimension
n; + 1 since 6x;° = ky;". With Z,, coefficients, p prime, z gives a Z,, summand of
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H"(M;Z,), while x; and y; give 7, summands of H"(M;Z,) and H L (M; z,) i
p divides k and otherwise they give nothing.

The map o induces an isomorphism between the associated Bockstein long exact
sequences of cohomology groups, with commuting squares, so we can use M* to
compute S and E , and we can do the calculation separately on each summand M*(g;).
Obviously S and E are zero on y; and z. When p divides k we have the class
xi* e HY(M; Zp), and from the definition of Bockstein homomorphisms it follows
that ﬁ(xi*) = (k/p)yF € H""'(M;Z) and B(xF) = (k/p)y] € H""”(M;Zp). The
latter element is nonzero iff k is not divisible by p?. O

Corollary 3E.4. In the situation of the preceding proposition, H* (X;Z) contains no
elements of order p° iff the dimension of BH"(X; Z,) as a vector space over 7,
equals the rank of H"(X;Z) for all n. In this case p:H* (X;7)— H™* (X; z,) is injec-
tive on the p-torsion, and the image of this p-torsion under p is equal to Im 3.

Proof: The first statement is evident from the proposition. The injectivity of p on
p-torsion is in fact equivalent to there being no elements of order p>. The equality
Im p = Im 8 follows from the fact that Im 8 = p(Im E ) = p(Kerm) in the commutative
diagram near the beginning of this section, and the fact that for m = p the kernel of
m is exactly the p-torsion when there are no elements of order p~. O

Example 3E.5. Let us use Bocksteins to compute H™ (RP®x RP®;Z). This could in-
stead be done by first computing the homology via the general Kiinneth formula, then
applying the universal coefficient theorem, but with Bocksteins we will only need the
simpler Kiinneth formula for field coefficients in Theorem 3.16. The cup product
structure in H* (RP® x RP*; Z) will also be easy to determine via Bocksteins.

For p an odd prime we have ﬁ*([RP‘”;Zp) =0, hence H* (RP* x RP*;Z,) = 0 by
Theorem 3.16. The universal coefficient theorem then implies that H* (RP® x RP®; 7)
consists entirely of elements of order a power of 2. From Example 3E.1 we know that
Bockstein homomorphisms in H* (RP*; Z,) = Z,[x] are given by B(ka_l) = x?* and
B(ka) =0.In H*(RP* x RP*;Z,) ~ Z,[x, y] we can then compute S via the product
formula B(x™y™) = (Bx™)y" + x"™(By™). The

6
answer can be represented graphically by the fig- Y ] I I:I I:I I:I
y bl

ure to the right. Here the dot, diamond, or circle

in the (m,n) position represents the monomial y4

x™y™ and line segments indicate nontrivial Bock- y3 I I:I I:I I:I
steins. For example, the lower left square records y?

the formulas B(xy) = x2y + xyz, B(xzy) = I I:I I:I I:I
x?y? = B(xy?), and B(x?y?) = 0. Thus in this )11

square we see that Ker 8 = Im 8, with generators
the ‘diagonal’ sum x°y + xy? and x%y?. The

o —O —O0 *—O0

1 x x? x3 x* x5 x6
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same thing happens in all the other squares, so it is apparent that Ker 8 = Im 8 ex-
cept for the zero-dimensional class ‘1.” By the preceding corollary this says that all
nontrivial elements of H *(RP® x RP%;Z) have order 2. Furthermore, Im f consists
of the subring Zz[xz, 2], indicated by the circles in the figure, together with the
multiples of x? Y+ xy2 by elements of Z2[x2, yz]. It follows that there is a ring
isomorphism

H*(RP® X RP®;Z) ~ Z[A, u, v1/ (2A, 2, 2v, vZ + A%u + Ap?)

where p(A) = x2, p(u) = y2, p(v) = x2y +xy2, and the relation v° +2\2u +2\u2 =0
holds since (x?y + xy?)? = x*y? + x2y?.

This calculation illustrates the general principle that cup product structures with
Z coefficients tend to be considerably more complicated than with field coefficients.
One can see even more striking evidence of this by computing H* (RP* x RP® x RP®;Z)
by the same technique.

Example 3E.6. Let us construct finite CW complexes Xy, X5, and Y such that the
rings H*(X,;Z) and H*(X,;Z) are isomorphic but H*(X;xY;Z) and H*(X,XY;Z)
are isomorphic only as groups, not as rings. According to Theorem 3.16 this can
happen only if all three of X;, X5, and Y have torsion in their Z-cohomology. The
space X, is obtained from $2x $? by attaching a 3-cell e* to the second S? factor
by a map of degree 2. Thus X; has a CW structure with cells e, e%, e%, e3, e* with
e3 attached to the 2-sphere e, U e5. The space X, is obtained from §° v % v §* by
attaching a 3-cell to the second S summand by a map of degree 2, so it has a CW
structure with the same collection of five cells, the only difference being that in X,
the 4-cell is attached trivially. For the space Y we choose a Moore space M (Z,,2),
with cells labeled f°, 2, f3, the 3-cell being attached by a map of degree 2.

From cellular cohomology we see that both H*(X;;Z) and H*(X,;Z) consist of
Z’s in dimensions 0, 2, and 4, and a Z, in dimension 3. In both cases all cup products
of positive-dimensional classes are zero since for dimension reasons the only possible
nontrivial product is the square of the 2-dimensional class, but this is zero as one sees
by restricting to the subcomplex $°xS? or S% v §2 v §*. For the space Y we have
H*(Y;Z) consisting of a Z in dimension 0 and a Z, in dimension 3, so the cup
product structure here is trivial as well.

With Z, coefficients the cellular cochain complexes for X;, Y, and X;xY are
all trivial, so we can identify the cells with a basis for Z, cohomology. In X; and Y
the only nontrivial Z, Bocksteins are S (e%) = e and B(f?) = f3. The Bocksteins
in X;xY can then be computed using the product formula for S, which applies to
cross product as well as cup product since cross product is defined in terms of cup
product. The results are shown in the following table, where an arrow denotes a
nontrivial Bockstein.
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e x f° eixfe edx fO etx fO eix f? etxfi—etxf?

esx f° e’ x f? ef><f2/ve3><f2;re3><f3

e’ x f*? eixfi—esxf?

The two arrows from e%xf2 mean that B(e%xfz) = ex f2+ e%xf3. It is evident
that BH* (X;xY;Z,) consists of Z,’s in dimensions 0, 2, and 4, so Proposition 3E.3
implies that the nontorsion in H* (X;xY;Z) consists of Z’s in these dimensions. Fur-
thermore, by Corollary 3E.4 the 2-torsion in H* (X;xY;Z) corresponds to the image
of B and consists of Z, x Z,’s in dimensions 3 and 5 together with Z,’s in dimensions
6 and 7. In particular, there is a Z, corresponding to e3x fi+ eg x f3 in dimension 5.
There is no p-torsion for odd primes p since H* (X; X Y; 7,) ~ H*(X;; Z,) QH*(Y; Z,)
is nonzero only in even dimensions.

We can see now that with Z coefficients, the cup product H>x H> — H” is nontriv-
ial for X; XY but trivial for X, xY. For in H* (X;xY;Z,) we have, using the relation
(axb) - (cxd) = (a~c)X (b~ d) which follows immediately from the definition of
cross product,

(1) e2xfoce?xfd=(e2wed)x(fO< f3) =0 since e? —e? =0
2) eExfO o (@xfi+esxf?) = (ef v e)x(fO v f2) + (ef v ed)x(fO v f3) =
(e? —e5)x f3 since e v e =0
and in H'(X;xY;Z,) ~ H (X;xY;Z) we have (e5 — e3)x f3 =exf> +0 fori=1
but (e we3)x f3=0xf3 =0 for i=2.
Thus the cohomology ring of a product space is not always determined by the
cohomology rings of the factors.

Example 3E.7. Bockstein homomorphisms can be used to get a more complete pic-
ture of the structure of H*(SO(n);Z) than we obtained in the preceding section.
Continuing the notation employed there, we know from the calculation for RP® in
Example 3E.1 that B(3; cxfi‘l) =2 (xﬁi and B(2; cx?i) = 0, hence B(B5;_1) = By;
and B(B,;) = 0. Taking the case n = 5 as an example, we have H*(SO(S);ZZ) =
Z5[B;, 133]/([3?, B%). The upper part of the table at the top of the next page shows
the nontrivial Bocksteins. Once again two arrows from an element mean ‘sum,’ for
example B(B,B3) = B(B1)B3 + B1B(B3) = BaB3 + B1By = ‘3%53 + B3. This Bockstein
data allows us to calculate H i(S 0O(5);7Z) modulo odd torsion, with the results indi-
cated in the remainder of the table, where the vertical arrows denote the map p. As
we showed in Proposition 3D.3, there is no odd torsion, so this in fact gives the full
calculation of H (SO (5);2).
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L Bi—B  BI——=Bl BB B

53/3133~3333 BiB;— BBy BiB;—BIBs BiB;
z 0 7, Z, z, 7, Z,xZ 0 z, z
1 X y x? xy x3=y? x%*y,z x3y=y% yz

R N I S
BY BB Bl piipip, P gl BB, BB

It is interesting that the generator v € H 3(5’ 0O(5);Z) =~ Z has y2 nontrivial,
since this implies that the ring structures of H* (SO(5);Z) and H*(RP’x S%;7) are
not isomorphic, even though the cohomology groups and the Z, cohomology rings of
these two spaces are the same. An exercise at the end of the section is to show that
in fact SO(5) is not homotopy equivalent to the product of any two CW complexes
with nontrivial cohomology.

A natural way to describe H*(SO(5);Z) would be as a quotient of a free graded
commutative associative algebra F[x, y, z] over Z with |x| =2, |y| =3,and |z| = 7.
Elements of F[x, v, z] arerepresentable as polynomials p(x, v, z), subject only to the
relations imposed by commutativity. In particular, since y and z are odd-dimensional

we have yz = —zy, and y2 and z°
2

are nonzero elements of order 2 in F[x,y,z].
Any monomial containing y? or z° as a factor also has order 2. In these terms, the
calculation of H*(SO(5);Z) can be written

H*(SO(5);7) = Flx,y,z]1/(2x,x*, y*, 2%, xz,x3 — y*)

The next figure shows the nontrivial Bocksteins for H* (SO(7); Z,). Here the num-
bers across the top indicate dimension, stopping with 21, the dimension of SO(7).
The labels on the dots refer to the basis of products of distinct j;’s. For example, the
dot labeled 135 is B, B385.

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21

2356 12356 13456 123456
[ ] L] L] [ o [ o L]
2 1 2 3 4 ANI2\ 124 134 234 1234 56 156 236 356 /456 12456 23456
35 36 1245 1246
12 13 23 24 34 1256 1356 1456 2456 3456
16 26 \45 12351236/ 1345 2345
G——

5 6 46 12345 12346
136 245
15 25 125 1245 346 1346 2346
"’ 246

0

135 “iﬁ”'\\

145 236

The left-right symmetry of the figure displays Poincaré duality quite graphically. Note
that the corresponding diagram for SO(5), drawn in a slightly different way from
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the preceding figure, occurs in the upper left corner as the subdiagram with labels 1
through 4. This subdiagram has the symmetry of Poincaré duality as well.

From the diagram one can with some effort work out the cup product structure
in H*(SO(7);Z), but the answer is rather complicated, just as the diagram is:

FIx,y,z,v,wl/(2x,2v,x*, %, 22 v?, wi xz, vz, vw, y*w, x*y?v,

3v,xw - yzv - x3v)

yzz - X
where x, v, z, v, w have dimensions 2, 3, 7, 7, 11, respectively. It is curious that

the relation x® = 32 in H*(S0O(5);Z) no longer holds in H*(SO(7);Z).

Exercises

1. Show that H*(K(Z,,,1);Z,,) is isomorphic as a ring to H*(K(Z,,,1);Z,,) ®Z, if k
divides m. In particular, if m/k is even, this is Az, [x]®Z;[¥].

2. In this problem we will derive one half of the classification of lens spaces up
to homotopy equivalence, by showing that if L, (¢,,---,¥,) = L,,({},---,¥,) then
Oy, = +;--- £, k" mod m for some integer k. The converse is Exercise 29
for §4.2.

(@) Let L = L,,(,,---,¥,) and let Z;, be the multiplicative group of invertible ele-
ments of Z,,. Define t € Z};, by the equation xy”’l = tz where x is a generator
of H'(L;Z,,), ¥ = B(x), and z € H*""'(L;Z,,) is the image of a generator of
H?""1(L;Z). Show that the image T(L) of t in the quotient group ZJ, /=(Z} )"
depends only on the homotopy type of L.

(b) Given nonzero integers k,,---,k,, define a map J?:SZ"’1 — 82" sending the

unit vector (1%, ... 7,e%) in C" to (r,e®1% ... v, en%) Show:
i) f has degree k; --- k,,.
(ii) f induces a quotient map f:L—L  for L' = L, (0}, --,¥,) provided that
k;t; =L; mod m for each j.
(iii) f induces an isomorphism on T, hence on H 1 (= 2,,).
(iv) f has degree k, --- k,,i.e., f, is multiplication by k, --- k,, on Hy,_;(—;Z).

(c) Using the f in (b), show that T(L) = ky ---k,T(L").

(d) Deduce that if L, (¢;,---,¢,) =~ L, ({1, ---,¢,), then £, --- €, = =] --- £, k"
modm for some integer k.

3. Let X be the smash product of k copies of a Moore space M(Z,,n) with p
prime. Compute the Bockstein homomorphisms in H* (X; Zp) and use this to de-
scribe H*(X;Z).

4. Using the cup product structure in H*(SO(5);Z), show that SO(5) is not homotopy
equivalent to the product of any two CW complexes with nontrivial cohomology.
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3.F Limits and Ext

It often happens that one has a CW complex X expressed as a union of an in-
creasing sequence of subcomplexes X, C X; € X, C ---. For example, X; could be
the i-skeleton of X, or the X;’s could be finite complexes whose union is X. In situa-
tions of this sort, Proposition 3.33 says that H,,(X; G) is the direct limit li_n}Hn (X;;G).
Our goal in this section is to show this holds more generally for any homology the-
ory, and to derive the corresponding formula for cohomology theories, which is a bit
more complicated even for ordinary cohomology with Z coefficients. For ordinary
homology and cohomology the results apply somewhat more generally than just to
CW complexes, since if a space X is the union of an increasing sequence of subspaces
X; with the property that each compact set in X is contained in some X;, then the
singular complex of X is the union of the singular complexes of the X;’s, and so this
gives a reduction to the CW case.

Passing to limits can often result in nonfinitely generated homology and cohomol-
ogy groups. At the end of this section we describe some of the rather subtle behavior
of Ext for nonfinitely generated groups.

Direct and Inverse Limits

As a special case of the general definition in §3.3, the direct limit imG; of a
sequence of homomorphisms of abelian groups G, LN G, =, G3 — -+ is defined
to be the quotient of the direct sum D, G; by the subgroup consisting of elements of
the form (g,,9, — &;(g1),93 — &>(g>), - +). It is easy to see from this definition that
every element of imG; is represented by an element g; € G; for some i, and two
such representatives g; € G; and g; € G; define the same element of im G; iff they
have the same image in some G; under the appropriate composition of «,’s. If all
the «;’s are injective and are viewed as inclusions of subgroups, lim G, is just U; G;.

JE—

Example 3F.1. For a prime p, consider the sequence Z L7457 — ... with all
maps multiplication by p. Then limG; can be identified with the subgroup Z[1/p]
of Q consisting of rational numbers with denominator a power of p. More generally,
we can realize any subgroup of Q as the direct limit of a sequence Z -7 —7 — - - -
with an appropriate choice of maps. For example, if the nt" map is multiplication by
n, then the direct limit is Q itself.

Example 3F.2. The sequence of injections Z, £, /s £, Z,s — -+, with p prime,
has direct limit a group we denote pr . This isisomorphic to Z[1/p]/Z, the subgroup
of Q/Z represented by fractions with denominator a power of p. In fact Q/Z is
isomorphic to the direct sum of the subgroups Z[1/p]l/Z = pr for all primes p. Itis
not hard to determine all the subgroups of Q/Z and see that each one can be realized
as a direct limit of finite cyclic groups with injective maps between them. Conversely,
every such direct limit is isomorphic to a subgroup of Q/Z.
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We can realize these algebraic examples topologically by the following construc-
tion. The mapping telescope of a sequence of maps X, o, X i Xy — -
is the union of the mapping cylinders M, with the copies of X; in M, and My,
identified for all i. Thus the mapping tele-
scope is the quotient space of the disjoint
union [, (X;x[i,i+ 1]) in which each point
(x;,i+1) € X;x[i,i+ 1] is identified with
(fi(x;),i+1) € X;,; x[i+1,i+2]. In the
mapping telescope T, let T; be the union of
the first i mapping cylinders. This deformation retracts onto X; by deformation re-

X X X X

0 1 2 3

tracting each mapping cylinder onto its right end in turn. If the maps f; are cellular,
each mapping cylinder is a CW complex and the telescope T is the increasing union
of the subcomplexes T; = X;. Then Proposition 3.33, or Theorem 3F.8 below, implies
that H,(T;G) ~ imH, (X;; G).

Example 3F.3. Suppose each f; is amap S"—S" of degree p for a fixed prime p.
Then H,, (T) is the direct limit of the sequence Z £, 727 — ... considered in
Example 3F.1 above, and ﬁk(T) =0 for k + n, so T is a Moore space M(Z[1/p],n).

Example 3F.4. In the preceding example, if we attach a cell e™"! to the first S* in T
via the identity map of S™, we obtain a space X which is a Moore space M (Zps,n)

since X is the union of its subspaces X; = T; U e"*!, which are M(Z,:,n)’s, and the

pt

inclusion X; C X;,; induces the inclusion Z,i C Z,:.1 on H,.

pi+
Generalizing these two examples, we can obtain Moore spaces M(G,n) for arbi-

trary subgroups G of Q or Q/Z by choosing maps f;:S™ —S™ of suitable degrees.

The behavior of cohomology groups is more complicated. If X is the increasing
union of subcomplexes X;, then the cohomology groups H" (X;;G), for fixed n and
G, form a sequence of homomorphisms

o7 04
._,GZ_Z,Gl_l,GO

Given such a sequence of group homomorphisms, the inverse limit lim G; is defined
to be the subgroup of [[;G; consisting of sequences (g;) with «;(g;) = g,_, forall i.
There is a natural map A:H™(X;G) — lim H"(X;; G) sending an element of H"(X;G)
to its sequence of images in H" (X;; G) under the maps H"(X; G) —H" (X;; G) induced
by inclusion. One might hope that A is an isomorphism, but this is not true in general,
as we shall see. However, for some choices of G it is:

Proposition 3F.5. Ifthe CW complex X is the union of an increasing sequence of sub-
complexes X; and if G is one of the fields Q or Z,,, then A:H" (X; G) — lim H" (X;; G)
is an isomorphism for all n.

Proof: First we have an easy algebraic fact: Given a sequence of homomorphisms
of abelian groups G; —> G, —> G5 — ---, then Hom(im G;,G) = limHom(G;, G)
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for any G. Namely, it follows from the definition of lim G; that a homomorphism

@:lim G, — G is the same thing as a sequence of homomorphisms @;:G;— G with

@; = @i, «; forall i. Such a sequence (@;) is exactly an element of limHom(G;, G).
Now if G is a field Q or Z,, we have

H"(X;G) = Hom(H,(X;G),G)
= Hom(limH, (X;;G),G)
= limHom(H,, (X;; G), G)
= limH"(X;;G) O

Let us analyze what happens for cohomology with an arbitrary coefficient group,
or more generally for any cohomology theory. Given a sequence of homomorphisms
of abelian groups

— Gy — G, —5 G,
define amap 6:1[;G;—I[;G; by 6(---,9;,--+) = (++,9; — ®;41(gis1)s ), so that
lim G, is the kernel of §. Denoting the cokernel of § by lim'G;, we have then an exact
sequence
0—limG; — [[;G; - [1;G; _’@161’ —0

This may be compared with the corresponding situation for the direct limit of a se-
quence G; —> G, —> G5 — ---. In this case one has a short exact sequence

0— @G~ ®,G, —limG, —0

where 6(---,g;,-++) = (+-+,9;—&;_1(g;_1), - **), SO O is injective and there is no term
lim' G; analogous to lim'G;.
Here are a few simple observations about lim and lim':

« If all the o;’s are isomorphisms then limG; ~ G, and lim'G; = 0. In fact,
lim'G, = 0 if each «; is surjective, for to realize a given element (h;) € [[;G; as
6(g;) we can take g, = 0 and then solve «,(g;) = —hy, x:(g») =g, —hy, -

. Ifall the ;’s are zero then lim G, = lim'G, = 0.

= Deleting a finite number of terms from the end of the sequence --- — G, — G,
does not affect imG; or im'G,. More generally, imG; and lim'G; are un-
changed if we replace the sequence --- —G;— G, by a subsequence, with the
appropriate compositions of «;’s as the maps.

Example 3F.6. Consider the sequence of natural surjections -- - —2y—1L,—1Z,
with p aprime. The inverse limit of this sequence is a famous object in number theory,
called the p-adic integers. Our notation for it will be 217 . Itis actually a commutative
ring, not just a group, since the projections Z,:.1 —Z,: are ring homomorphisms, but
we will be interested only in the additive group structure. Elements of Z,, are infinite
sequences (---,a,,a,) with a; € Z,,; such that a; is the mod p' reduction of a;, .
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For each choice of a; there are exactly p choices for a;,,, so 2p is uncountable.
There is a natural inclusion Z C Z,, as the constant sequences a; = n € Z. Itis easy
to see that Z,, is torsionfree by checking that it has no elements of prime order.

There is another way of looking at Zg. An element of 2:} has a unique represen-
tation as a sequence (---,d,,a,) of integers a; with 0 < a; < p* for each i. We can
write each a; uniquely in the form b; ,p"™' + --- + byp + b, with 0 < b; <p. The
fact that a;,, reduces mod p' to a; means that the numbers b; depend only on the
element (---,a,,a,) € Z,,, so we can view the elements of Z, as the ‘base p infinite
numbers’ --- b, b, with 0 < b; < p for all i, with the familiar rule for addition in base
p notation. The finite expressions b,, --- b, b, represent the nonnegative integers,
but negative integers have infinite expansions. For example, —1 has b; = p — 1 for
all i, as one can see by adding 1 to this number.

Since the maps Z,in1 —Z,: are surjective, mlllpi = 0. The next example shows
how p-adic integers can also give rise to a nonvanishing }11111 term.

Example 3F.7. Consider the sequence --- — Z 2,727 for p prime. In this case
the inverse limit is zero since a nonzero integer can only be divided by p finitely often.
The lim' term is the cokernel of the map §:[1,Z—[1,Z given by §(3y,¥p,-+*) =
(1 = PY>2, > — PYV3, --+). We claim that the map ZU/Z—» Coker 6 sending a p-adic
number --- b, b, as in the preceding example to (b, b, ---) is an isomorphism. To
see this, note that the image of é consists of the sums y,(1,0,--:)+y,(-p,1,0,--+) +
¥3(0,-p,1,0,---) + ---. The terms after y,(1,0,---) give exactly the relations that
hold among the p-adic numbers --- b,b,, and in particular allow one to reduce an
arbitrary sequence (b, by, ---) to a unique sequence with 0 < b; < p for all i. The
term y,(1,0,---) corresponds to the subgroup Z C 219'

We come now to the main result of this section:
Theorem 3F.8. For a cw complex X which is the union of an increasing sequence
of subcomplexes X, C X, C --- there is an exact sequence
0 — lim' "1 (X;) — h"(X) 2 lim h" (X;) — 0

where h™ is any reduced or unreduced cohomology theory. For any homology theory

h, , reduced or unreduced, the natural maps 11_m h, (X;)—h, (X) are isomorphisms.

Proof: Let T be the mapping telescope of the inclusion sequence X, < X; < ---. This
is a subcomplex of X% [0, ) when [0, ) is given the CW structure with the integer
points as 0-cells. We have T ~ X since T is a deformation retract of Xx [0, «), as
we showed in the proof of Lemma 2.34 in the special case that X; is the i-skeleton of
X, but the argument works just as well for arbitrary subcomplexes X;.

Let T} C T be the union of the products X;x[i,i+ 1] for i odd, and let T, be
the corresponding union for i even. Thus T, n T, = [[; X; and T, U T, = T. For an
unreduced cohomology theory h™* we have then a Mayer-Vietoris sequence
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" (T)eh" (T,)—h""(T,nT,) — h"(T) — h"(T)) @ h'(T,) — h"(T, N T>)
2 2 2 2 2
I k" N(X,) —2— 1 (X)) — h(X) — T1 (X)) —2—TT, h'(X,)
The maps @ making the diagram commute are given by the formula @(---,g;,---) =
(-, (1)t (g;—p(gis1)), ), the p’s being the appropriate restriction maps. This
differs from ¢ only in the sign of its even coordinates, so if we change the isomor-
phism hk(".l"1 NT,) = l_[ihk(Xi) by inserting a minus sign in the even coordinates, we
canreplace @ by ¢ in the second row of the diagram. This row then yields a short ex-
act sequence 0— Coker 6 —h"(X;G) — Ker § — 0, finishing the proof for unreduced
cohomology.

The same argument works for reduced cohomology if we use the reduced tele-
scope obtained from T by collapsing {x,}x[0, ) to a point, for x, a basepoint
0-cell of X,. Then T; N T, = V; X; rather than [[; X;, and the rest of the argument
goes through unchanged. The proof also applies for homology theories, with direct
products replaced by direct sums in the second row of the diagram. As we noted
earlier, Ker 6 = 0 in the direct limit case, and Coker = 11_m O

Example 3F.9. As in Example 3F.3, consider the mapping telescope T for the sequence
of degree p maps S" —S" — ---. Letting T; be the union of the first i mapping cylin-
ders in the telescope, the inclusions T; < T, — - -- induce on H"(—;Z) the sequence

.—7-%57in Example 3F.7. From the theorem we deduce that H"! (T;7) =~ %/Z
and H*(T;Z) = 0 for k + n+1. Thus we have the rather strange situation that the CW
complex T is the union of subcomplexes T; each having cohomology consisting only
of a Z in dimension n, but T itself has no cohomology in dimension n and instead
has a huge uncountable group 2p /Z in dimension n + 1. This contrasts sharply with
what happens for homology, where the groups H,, (T;) ~ Z fit together nicely to give
H,(T) = Z[1/p].

Example 3F.10. A more reasonable behavior is exhibited if we consider the space
X = M(Z,~,n) in Example 3F.4 expressed as the union of its subspaces X;. By the
universal coefficient theorem, the reduced cohomology of X; with Z coefficients con-
pi = EXt(Zpi,
inclusion Z,; < Z,:.1 on H,,, and on Ext this induced map is a surjection Z,i.1 —Z,:
as one can see by looking at the diagram of free resolutions on the left:

sistsof a Z Z) in dimension n + 1. The inclusion X; — X;,; induces the

i

0—zts7—17,—0 0 — Ext(Z,:,Z) <— Hom(Z,Z) «— -+
lﬂ pitl ll’) lp T T]I
0—2t—>7—7,.—0 0 «— Ext(Z,i:,Z) «— Hom(Z,Z) — -+-

Applying Hom(—,Z) to this diagram, we get the diagram on the right, with exact
rows, and the left-hand vertical map is a surjection since the vertical map to the
right of it is surjective. Thus the sequence --- —H"*1(X,;Z)—H"*!(X,;Z) is the
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sequence in Example 3F.6, and we deduce that H" ! (X;2) ~ 2p, the p-adic integers,
and flk(X;Z) =0fork+n+1.

This example can be related to the 0 — g, (§")—H,(T)— H,(X)— 0
preceding one. If we view X as the map- I I Il
ping cone of the inclusion $" < T of one z Z[1/p] Ly~

end of the telescope, then the long exact . .
0—H"(S")—H"" (X)—H"(T)—0

Il [ 1
groups for the pair (T,S™) reduce to the 7 ip ip/Z

short exact sequences at the right.

sequences of homology and cohomology

From these examples and the universal coefficient theorem we obtain isomor-
phisms EXt(me,Z) = 270 and Ext(Z[1/p]l,2) =~ 2p/Z. These can also be derived
directly from the definition of Ext. A free resolution of 7. is

0—2°%7°—17,. —0

where Z% is the direct sum of an infinite number of Z’s, the sequences (x;, x5, ")
of integers all but finitely many of which are zero, and @ sends (x;,x,,---) to
(px, — X5, pX> — X3, -+). We can view @ as the linear map corresponding to the infi-
nite matrix with p’s on the diagonal, —1’s just above the diagonal, and 0’s everywhere
else. Clearly Ker = 0 since integers cannot be divided by p infinitely often. The im-
age of @ is generated by the vectors (p,0,---),(-1,p,0,---),(0,-1,p,0,---),--- SO
Coker @ =~ pr. Dualizing by taking Hom(—,Z), we have Hom(Z*,Z) the infinite di-
rect product of Z’s,and @™ (yy, ¥, +*) = (PY1,PY2 — Y1, PY3— V2, -+ +), correspond-
ing to the transpose of the matrix of @. By definition, Ext(Z,,Z) = Coker @*. The
image of @™ consists of the infinite sums v, (p,—1,0---) + ¥,(0,p,—1,0,-++) + - - -,
so Coker @™ can be identified with 217 by rewriting a sequence (z;,z,,---) as the
p-adic number ---z,z,;.

The calculation Ext(Z[1/p]l,7) =~ Z,/ Z is quite similar. A free resolution of
Z[1/p] can be obtained from the free resolution of me by omitting the first col-
umn of the matrix of @ and, for convenience, changing sign. This gives the for-
mula @(x,Xx,,--+) = (X1,X, — pX;,X3 — PX5,--+), with the image of @ generated
by the elements (1,-p,0,---), (0,1,-p,0,---),---. The dual map @™ is given by
@ (Y1, Yo, 1) = (¥ —PY2, Yo —PY3, - - +), and this has image consisting of the sums
y1(1,0--) + ¥, (-p,1,0,--+) + ¥3(0,-p,1,0,---) + -- -, s0o we get Ext(Z[1/p],Z) =
Coker ™ = 2,9/1. Note that ™ is exactly the map & in Example 3F.7.

It is interesting to note also that the map @ :Z” —Z% in the two cases Z,~ and
Z[1/p] is precisely the cellular boundary map Hn+1(X”“,X")—»Hn(X”,X”’l) for
the Moore space M(Z,~,n) or M(Z[1/p],n) constructed as the mapping telescope
of the sequence of degree p maps S"—S"— ..., with a cell e"™! attached to the
first $™ in the case of 7.
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More About Ext

The functors Hom and Ext behave fairly simply for finitely generated groups,
when cohomology and homology are essentially the same except for a dimension shift
in the torsion. But matters are more complicated in the nonfinitely generated case. A
useful tool for getting a handle on this complication is the following:

Proposition 3F.11. Given an abelian group G and a short exact sequence of abelian
groups 0— A— B— C— 0, there are exact sequences

0—Hom(G, A) —Hom(G, B) —Hom(G, C) — Ext(G,A) > Ext(G, B) = Ext(G,C)—0
0—Hom(C,G)—Hom(B, G) —Hom(A, G) = Ext(C, G) —Ext(B,G) = Ext(A,G)—0
Proof: A free resolution 0— F, —F,— G — 0 gives rise to a commutative diagram

0 — Hom(F,,A) — Hom(F,,B) — Hom(F,,C) — 0

0— Hom%Fl,A) — Homl(Fl,B) — Homl(Fl,C) —0
Since F, and F,; are free, the two rows are exact, as they are simply direct products
of copies of the exact sequence 0—A—B— C—0, in view of the general fact that
Hom(;G,, H) = [[;Hom(G;, H). Enlarging the diagram by zeros above and below,
it becomes a short exact sequence of chain complexes, and the associated long exact

sequence of homology groups is the first of the 0 0 0
two six-term exact sequences in the proposition. | | |

To obtain the other exact sequence we will 0— F,— F — F'—0
construct the commutative diagram at the right, | l , | .
where the columns are free resolutions and the 0— lfo — 11"0 - Iio —0
rows are exact. To start, let F,— A and Fy —C 0— A B C 0
be surjections from free abelian groups onto A l l |
and C. Then let F) = F,®F, with the obvious 0 0 0

maps in the second row, inclusion and projection. The map F)— B is defined on the
summand F, to make the lower left square commute, and on the summand F(')' itis
defined by sending basis elements of F; to elements of B mapping to the images of
these basis elements in C, so the lower right square also commutes. Now we have
the bottom two rows of the diagram, and we can regard these two rows as a short
exact sequence of two-term chain complexes. The associated long exact sequence of
homology groups has six terms, the first three being the kernels of the three vertical
maps to A, B, and C, and the last three being the cokernels of these maps. Since
the vertical maps to A and C are surjective, the fourth and sixth of the six homology
groups vanish, hence also the fifth, which says the vertical map to B is surjective. The
first three of the original six homology groups form a short exact sequence, and we
let this be the top row of the diagram, formed by the kernels of the vertical maps to
A, B, and C. These kernels are subgroups of free abelian groups, hence are also free.
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Thus the three columns are free resolutions. The upper two squares automatically
commute, so the construction of the diagram is complete.

The first two rows of the diagram split by freeness, so applying Hom(—, G) yields
a diagram

0 — Hom(F,,G) — Hom(F,,G) — Hom(F,,G) — 0

l l !

0 — Hom(F,/G) — Hom(F,,G) — Hom(F,,G) — 0

with exact rows. Again viewing this as a short exact sequence of chain complexes,
the associated long exact sequence of homology groups is the second six-term exact
sequence in the statement of the proposition. O

The second sequence in the proposition says in particular that an injection A— B
induces a surjection Ext(B,C) —Ext(A, C) for any C. For example, if A has torsion,
this says Ext(A,Z) is nonzero since it maps onto Ext(Z,,Z) = Z, for some n > 1.
The calculation Ext(me,Z) ~ 217 earlier in this section shows that torsion in A does
not necessarily yield torsion in Ext(A, Z), however.

Also useful are the formulas

EXt(@iAi,B) ~ l_[iEXt(Ai,B) EXt(A, @iBi) ~ @iEXt(A,Bl’)

whose proofs we leave as exercises. For example, since Q/Z = EBp Z,~ We obtain
Ext(Q/Z,7Z) = Hpip from the calculation Ext(me,Z) ~ z,. Then from the exact
sequence 0—-7Z—-Q—Q/Z—0 we get Ext(Q, 7Z) =~ (]_[p ip)/l using the second exact
sequence in the proposition.

In these examples the groups Ext(A, Z) are rather large, and the next result says
this is part of a general pattern:

Proposition 3F.12. If A is not finitely generated then either Hom(A, Z) or Ext(A,Z)
is uncountable. Hence if H,(X;Z) is not finitely generated then either H"™(X;Z) or
H"\(X:;Z) is uncountable.

Both possibilities can occur, as we see from the examples Hom(,7,2) ~ [[.,Z
and EXt(Z,~,2) ~ Z,,.

This proposition has some interesting topological consequences. First, it implies
that if a space X has PNI*(X;Z) = 0, then ﬁ* (X;Z) = 0, since the case of finitely
generated homology groups follows from our earlier results. And second, it says that
one cannot always construct a space X with prescribed cohomology groups H"(X;Z),
as one can for homology. For example there is no space whose only nonvanishing
H™(X;Z) is a countable nonfinitely generated group such as Q or Q/Z. Even in the
finitely generated case the dimension n = 1 is somewhat special since the group
H'(X;Z) ~ Hom(H, (X),Z) is always torsionfree.
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Proof: Consider the map A £, A, a — pa, multiplication by the positive integer p.
Denote the kernel, image, and cokernel of this map by pA, pA, and Ap , respectively.
The short exact sequences 0—,A—A—pA—0 and 0—>pA—>A—A,—0 give two
six-term exact sequences involving Hom(—, Z) and Ext(—, Z). The parts of these exact
sequences we need are

0 — Hom(pA,Z) — Hom(A,Z) — Hom(, A, Z) = 0
Hom(pA,Z) — EXt(Ap, 7) — Ext(A,7)

where the term Hom( pA, Z) in the first sequence is zero since pA is a torsion group.

Now let p be a prime, so Ap is a vector space over Zp. If this vector space is
infinite-dimensional, it is an infinite direct sum of Zp 's and Ext(Ap, Z) is the direct
product of an infinite numbers of Zp’s, hence uncountable. Exactness of the sec-
ond sequence above then implies that one of the two adjacent terms Ext(A,Z) or
Hom(pA,Z) ~ Hom(A, Z) must be uncountable, so we are done when Ap is infinite.

At the other extreme is the possibility that A, = 0. This means that A = pA,
so every element of A is divisible by p. Hence if A is nontrivial, it then contains a
subgroup isomorphic to either Z[1/p] or Zr,m. We have seen that Ext(Z[1/p],Z) =
Z,/7 and Ext(Z,~,Z) =~ Z,,, an uncountable group in either case. As noted earlier, an
inclusion B — A induces a surjection Ext(A, Z) — Ext(B, Z), so it follows that Ext(A, Z)
is uncountable when A, = 0 and A # 0.

The remaining case that A, is a finite direct sum of Z,’s will be reduced to
the case A, = 0. Choose finitely many elements of A whose images in A, are
a set of generators, and let B C A be the subgroup generated by these elements.
Thus the map B,—A, induced by the inclusion B — A is surjective. The func-
tor A — A, is the same as A — A®Z,, so exactness of B—A—A/B—0 implies
exactness of Bp—>Ap—>(A/B)p—>O, and hence (A/B),[J = 0. If A is not finitely
generated, A/B is nonzero, so the preceding case implies that Ext(A/B,Z) is un-
countable. This implies that Ext(A,Z) is also uncountable via the exact sequence
Hom(B, Z) —Ext(A/B,Z) —Ext(A, Z), since Hom(B, Z) is finitely generated and there-
fore countable. O

From this proposition one might conjecture that cohomology groups with Z co-
efficients are either finitely generated or uncountable.

As was explained in §3.1, the functor Ext generalizes to a sequence of functors
Exty for modules over a ring R. In this generality the six-term sequences of Propo-
sition 3F.11 become long exact sequences of Extg groups associated to short exact
sequences of R-modules. These are derived in a similar fashion, by constructing short
exact sequences of free resolutions. There are also analogous long exact sequences
for the functors Torﬁ, specializing to six-term sequences when R = Z. These six-
term sequences are perhaps less useful than their Ext analogs, however, since Tor is
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less mysterious than Ext for nonfinitely generated groups, as it commutes with direct
limits, according to an exercise for §3.A.

Exercises

1. Given maps f;:X;— X;,, for integers i < 0, show that the ‘reverse mapping tele-
scope’ obtained by glueing together the mapping cylinders of the f;’s in the obvious
way deformation retracts onto Xj,. Similarly, if maps f;:X;— X;,, are given for all
i € Z, show that the resulting ‘double mapping telescope’ deformation retracts onto
any of the ordinary mapping telescopes contained in it, the union of the mapping
cylinders of the f;’s for i greater than a given number n.

2. Show that lim'G; = 0 if the sequence --- — G, —> G; —> G, satisfies the
Mittag-Leffler condition that for each i the images of the maps G,,,,— G; are inde-
pendent of n for sufficiently large n.

3. Show that Ext(A, Q) = 0 for all A. [Consider the homology with Q coefficients of
a Moore space M(A,n).]

4. An abelian group G is defined to be divisible if the map G — G, g — ng, is
surjective for all n > 1. Show that a group is divisible iff it is a quotient of a direct sum
of Q’s. Deduce from the previous problem that if G is divisible then Ext(A,G) = 0
for all A.

5. Show that Ext(A, Z) is isomorphic to the cokernel of Hom(A, Q) —Hom(A,Q/Z),
the map induced by the quotient map Q— Q/Z. Use this to get another proof that
Ext(pr,Z) ~ 2,0 for p prime.

6. Show that Ext(pr,Zp) = Zp.

7. Show that for a short exact sequence of abelian groups 0—A— B— C — 0, a Moore
space M (C,n) canberealized as a quotient M(B,n)/M (A, n). Applying the long exact
sequence of cohomology for the pair (M(B,n),M(A,n)) with any coefficient group
G, deduce an exact sequence

0—Hom(C,G)—Hom(B,G) —Hom(A, G) = Ext(C, G) = Ext(B,G) = Ext(A,G)—0

8. Show that for a Moore space M (G, n) the Bocksteinlong exact sequence in cohomol-
ogy associated to the short exact sequence of coefficient groups 0-A—B—C—0
reduces to an exact sequence

0—Hom(G, A) —Hom(G,B) —Hom(G, C) = Ext(G, A) = Ext(G, B) = Ext(G,C) —0

9. For an abelian group A let p:A— A be multiplication by p, and let ,A = Kerp,
pA =Imp,and A, = Cokerp as in the proof of Proposition 3F.12. Show that the six-
term exact sequences involving Hom(—, Z) and Ext(—, Z) associated to the short exact
sequences 0—,A—>A—pA—0 and 0—pA—A—A,—0 can be spliced together
to yield the exact sequence across the top of the following diagram
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Hom(pA,Z) — Ext(A,,7) — Ext(A,7) —F— Ext(A,7) — Ext(,A,Z) — 0

N 7
Ext(pA,Z)
o—»Hom(pA,Z)i»Hom(A,Z)—»o/ \‘0

where the map labeled ‘p’ is multiplication by p. Use this to show:
(a) Ext(A,7Z) is divisible iff A is torsionfree.
(b) Ext(A,Z) is torsionfree if A is divisible, and the converse holds if Hom(A,Z) = 0.

3.G Transfer Homomorphisms

There is a simple construction called ‘transfer’ that provides very useful informa-
tion about homology and cohomology of finite-sheeted covering spaces. After giving
the definition and proving a few elementary properties, we will use the transfer in the
construction of a number of spaces whose Z,, cohomology is a polynomial ring.

Let m: X— X be an n-sheeted covering space, for some finite n. In addition
to the induced map on singular chains 7, :Ck()? )— C(X) there is also a homomor-
phism in the opposite direction T: C, (X) — Cy, ()? ) which assigns to a singular simplex
o :A¥— X the sum of the n distinct lifts & : AK— X. This is obviously a chain map,
commuting with boundary homomorphisms, so it induces transfer homomorphisms
T :Hk(X;G)—>Hk()?;G) and *:H*(X:G) - H*(X;G) for any coefficient group G.
We focus on cohomology in what follows, but similar statements hold for homology
as well.

The composition 7,7 is clearly multiplication by 7, hence T*1* = n. This
has the consequence that the kernel of * :H*(X; G)— H*(X; G) consists of torsion
elements of order dividing n, since * () = 0 implies T*m* () = nx = 0. Thus the
cohomology of X must be ‘larger’ than that of X except possibly for torsion of order
dividing n. This can be a genuine exception as one sees from the examples of $™
covering RP™ and lens spaces. More generally, if S — X is any n-sheeted covering
space, then the relation T*7* = n implies that H*(X;Z) consists entirely of torsion
elements of order dividing n, apart from a possible Z in dimension m. (Since X is
a closed manifold, its homology groups are finitely generated by Corollaries A.8 and
A.9 in the Appendix.)

By studying the other composition 7w*T* we will prove:

Proposition 3G.1. Let t: X— X be an n-sheeted covering space defined by an ac-
tion of a group T on X. Then with coefficients in a field F whose characteristic is 0
or a prime not dividing n, the map * :Hk(X;F) —»Hk()?;F) is injective with image
the subgroup H* X;F)F consisting of classes « such that y*(x) = « forall y €T.
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Proof: We have already seen that elements of the kernel of 7t* have finite order
dividing n, so * is injective for the coefficient fields we are considering here. It
remains to describe the image of *. Note first that 77T, sends a singular simplex
A¥— X to the sum of all its images under the T-action. Hence 1* 7% () = Syer Y ()
for x € Hk(X;F). If « is fixed under the action of T on Hk()?;F),the sum Zyel" y* ()
equals n«, so if the coefficient field F has characteristic O or a prime not dividing n,
we can write & = T*7*(«/n) and thus « lies in the image of 7m*. Conversely, since
my =1 forall y € T, we have y*m* () = m* () for all «, and so the image of *
is contained in H* (X:; F)". 0

Example 3G.2. Let X =S' v S kK k> 1, with X the n-sheeted cover corresponding
to the index n subgroup of 1, (X), so X is a circle with n S*’s attached at equally
spaced points around the circle. The deck transformation group Z,, acts by rotating
the circle, permuting the skog cyclically. Hence for any coefficient group G, the in-
variant cohomology H* (X; )™ is all of H® and H', plus a copy of G in dimension
k, the cellular cohomology classes assigning the same element of G to each S¥. Thus
Hi()?;G)Z" is exactly the image of 7t for i = 0 and k, while the image of 7* in
dimension 1 is the subgroup nH'(X;G). Whether this equals H'(X;G)%* or not de-
pends on G. For G = Q or Z, with p not dividing n, we have equality, but not for
G =7 or Z, with p dividing n. In this last case the map m* is not injective on H'.

Spaces with Polynomial mod p Cohomology

An interesting special case of the general problem of realizing graded commuta-
tive rings as cup product rings of spaces is the case of polynomial rings 7, [xy, - - -, x,,]
over the coefficient field Z,,, p prime. The basic question here is, which sets of num-
bers d,,---,d,, arerealizable as the dimensions |x;| of the generators x;? From §3.2
we have the examples of products of CP®’s and HP*’s with d;’s equal to 2 or 4, for
arbitrary p, and when p = 2 we can also take RP*’s with d,’s equal to 1.

As an application of transfer homomorphisms we will construct some examples
with larger d;’s. In the case of polynomials in one variable, it turns out that these
examples realize everything that can be realized. But for two or more variables, more
sophisticated techniques are necessary to realize all the realizable cases; see the end
of this section for further remarks on this.

The construction can be outlined as follows. Start with a space Y already known
to have polynomial cohomology H*(Y;Zp) = Z,[¥,-+",¥,], and suppose there is
an action of a finite group I on Y. A simple trick called the Borel construction shows
that without loss of generality we may assume the action is free, defining a covering
space Y — Y /I'. Then by Proposition 3G.1 above, if p does not divide the order of T,
H*(Y/T;Z,) is isomorphic to the subring of Z,,[y, - - -, ,,] consisting of polynomials
that are invariant under the induced action of T on H*(Y; Zp). And in some cases
this subring is itself a polynomial ring.
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For example, if Y is the product of n copies of CP* then the symmetric group
%, acts on Y by permuting the factors, with the induced action on H*(Y;Zp) ~
Zp [¥1,+ -+, ¥,] permuting the y;’s. A standard theorem in algebra says that the
invariant polynomials form a polynomial ring Zp[ol, --+,0,] where o; is the ith
elementary symmetric polynomial, the sum of all products of i distinct y;’s. Thus
0; is a homogeneous polynomial of degree i. The order of X, is n! so the condition
that p not divide the order of I' amounts to p > n. Thus we realize the polynomial
ring Z,[xy,---,x,] with |x;| = 2i, provided that p > n.

This example is less than optimal since there happens to be another space, the
Grassmann manifold of #-dimensional linear subspaces of C*, whose cohomology
with any coefficient ring R is R[x,,---,x,] with |x;| = 2i, as we show in §4.D, so
the restriction p > n is not really necessary.

To get further examples the idea is to replace CP” by a space with the same
Z, cohomology but with ‘more symmetry,” allowing for larger groups I' to act. The
constructions will be made using K (7, 1) spaces, which were introduced in §1.B. For
a group 1 we constructed there a A-complex Brr with contractible universal cover
Etr. The construction is functorial: A homomorphism @:7m— 7 induces a map
B :Bmr—B1, Bp(lg,l 19, =[®g|---1p(g,)], satisfying the functor prop-
erties B(py) = BBy and B1 = 1. In particular, if I' is a group of automorphisms
of 1, then I' acts on BTr.

The other ingredient we shall need is the Borel construction, which converts an
action of a group I' on a space Y into a free action of I' on a homotopy equivalent
space Y’'. Namely, take Y’ = Y x ET with the diagonal action of T, y(y,z) = (yy,yz)
where T acts on ET as deck transformations. The diagonal action is free, in fact a
covering space action, since this is true for the action in the second coordinate. The
orbit space of this diagonal action is denoted Y X ET.

Example 3G.3. Let ™ = Z, and let I' be the full automorphism group Aut(Z,).
Automorphisms of Z, have the form x — mx for (m,p) = 1, so I is the multi-
plicative group of invertible elements in the field Z,,. By elementary field theory this
is a cyclic group, of order p — 1. The preceding constructions then give a covering
space K(Z,,1)—K(Z,,1)/T with H*(K(Zp,l)/r;Zp) ~ H*(K(Zp,l);Zp)r. We may
assume we are in the nontrivial case p > 2. From the calculation of the cup product
structure of lens spaces in Example 3.41 or Example 3E.2 we have H* (K(Zp, 1); Zp) =
Azn[cx]®zp[ﬁ] with |x| = 1 and |B] = 2, and we need to figure out how I' acts on
this cohomology ring.

Let y € T be a generator, say y(x) = mx. The induced action of y on m,K(Z,,, 1)
is also multiplication by m since we have taken K (Zp, 1) = BZp X ET and y takes an
edge loop [g] in BZ, to [y(g)] = [mg]. Hence y acts on H,(K(Z,,1);Z) by multi-
plication by m. It follows that y(x) = m« and y(B) = mp8 since Hl(K(Zp, 1);Zp) =
Hom(H, (K(Zp, 1)), Zp) and HZ(K(Zp, 1); Zp) ~ Ext(H, (K(Zp, 1)), Zp), and it is a gen-
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eral fact, following easily from the definitions, that multiplication by an integer m in
an abelian group H induces multiplication by m in Hom(H, G) and Ext(H,G).

Thus y(Bk) = kak and y((ka) = mk“aBk. Since m was chosen to be a
generator of the multiplicative group of invertible elements of Z,,, it follows that the
only elements of H* (K(Zp, 1); Zp) fixed by y, hence by I, are the scalar multiples of
P~V and xB!?~V-1 Thus H* (K(Z,,1); Z,l,)r =17z, [xpP~?1® z, [BP1], so we have
produced a space whose Z, cohomology ring is Azp [xzp_3] ®Z, [yzp_z], subscripts
indicating dimension.

Example 3G.4. As an easy generalization of the preceding example, replace the group
I' there by a subgroup of Aut(Z,) of order d, where d is any divisor of p — 1. The

new I' is generated by the automorphism x — mp-D/d

x, and the same analysis
shows that we obtain a space with Z,, cohomology Az, [x>;3 11®Z,[y>4], subscripts
again denoting dimension. For a given choice of d the condition that d divides p — 1
says p = 1 mod d, which is satisfied by infinitely many p’s, according to a classical

theorem of Dirichlet.

Example 3G.5. The two preceding examples can be modified so as to eliminate the
exterior algebra factors, by replacing 7, by Z,,~, the union of the increasing sequence
Z, CZ, C1Zy C ---. The first step is to show that H* (K(Z,~,1);Z,,) ~ Z,[B] with
|Bl = 2. We know that H, (K(Z
clusion 7, — 7

pis 1);Z) consists of Zpi 's in odd dimensions. The in-
pi+1 induces amap K(Z,i, 1) > K(Z,i1,1) thatis unique up to homo-
topy. We can take this map to be a p-sheeted covering space since the covering space
of a K(me, 1) corresponding to the unique index p subgroup of an(Zle, 1) isa
K(Z,:,1). The homology transfer formula 1, 7, = p shows that the image of the in-
duced map Hn(K(Zpi, 1);7) —>Hn(K(Zp,-,+1, 1);7Z) for n odd contains the multiples of
p, hence this map is the inclusion Z,,: — Z,,:.. . We canuse the universal coefficient the-
orem to compute the induced map H* (K(Zis1,1)52,) —H* (K(Z,:,1);2,). Namely,
the inclusion Z,; — Z,.1 induces the trivial map Hom(Zi1,Z,,) —-Hom(Z,:,Z,), so
on odd-dimensional cohomology the induced map is trivial. On the other hand, the
induced map on even-dimensional cohomology is an isomorphism since the map of
free resolutions .
14

0O—2——272—172,,—0

pi

bl b

0—2—2Z—Z,in—0
dualizes to

0 «— Ext(Z,:,Z,) “— Hom(Z,Z,) > Hom(Z,Z,)

I In I

0 — Ext(Z,1,7,) — Hom(Z,Z,) >~ Hom(Z,Z,,)

Since Z,~ is the union of the increasing sequence of subgroups Z,,:, the space BZ,,~ is
the union of the increasing sequence of subcomplexes BZ,:. We can therefore apply
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Proposition 3F.5 to conclude that H* (K (Zpoo, 1); Zp) is zero in odd dimensions, while
in even dimensions the map H*(K(Z,«,1);Z,)—H"*(K(Z,,1);Z,) induced by the
inclusion Zp — pr is an isomorphism. Thus H*(K(pr, 1);Zp) = ZP[B] as claimed.

Next we show that the map Aut(Z,~)—Aut(Z,) obtained by restriction to the
subgroup Z,, C Z,~ is a split surjection. Automorphisms of Z,; are the maps x — mx
for (m,p) = 1, so the restriction map Aut(Z,:.1) —Aut(Z,:) is surjective. Since
Aut(me) = @Aut(lp,t), the restriction map Aut(pr)—>Aut(Zp) is also surjec-
tive. The order of Aut(Z,:), the multiplicative group of invertible elements of 7, is
p'—p ! = pH(p-1) and p — 1 is relatively prime to p'~!, so the abelian group
Aut(Z,:) contains a subgroup of order p — 1. This subgroup maps onto the cyclic
group Aut(Zp) of the same order, so Aut(Zpi)—>Aut(Zp) is a split surjection, hence
o is Aut(Z,~)—Aut(Z,).

Thus we have an action of I' = Aut(Z,) on BZ,. extending its natural action
on BZ,. The Borel construction then gives an inclusion BZ, X EI' — BZ,~ X ET
inducing an isomorphism of H* (BZ,~ Xy ET;Z,,) onto the even-dimensional part of
H* (BZ, xyET;Z,), a polynomial algebra Z,[y,,_,]. Similarly, if d is any divisor of
p — 1, then taking I to be the subgroup of Aut(Z,) of order d yields a space with Z,,
cohomology the polynomial ring Z,,[y,,].

Example 3G.6. Now we enlarge the preceding example by taking products and bring-
ing in the permutation group to produce a space with Z, cohomology the polyno-
mial ring 7, (Y24, Y44, "+ Yonal Where d is any divisor of p — 1 and p > n. Let
X be the product of n copies of BZ,. and let I' be the group of homeomorphisms
of X generated by permutations of the factors together with the actions of Z; in
each factor constructed in the preceding example. We can view I' as a group of
nxn matrices with entries in Z,, the matrices obtained by replacing some of the
1’s in a permutation matrix by elements of Z, of multiplicative order a divisor of
d. Thus there is a split short exact sequence 0— (Z;)" —T'—3, —0, and the order
of T is d"n!. The product space X has H*(X;Zp) ~ Z,[By, -+, By] with |B;] = 2,
so H* (X xET; Z,) = Z,By,--- ,Bn]r provided that p does not divide the order of
I', which means p > n. For a polynomial to be invariant under the Z,; action in
each factor it must be a polynomial in the powers B‘Zl, and to be invariant under
permutations of the variables it must be a symmetric polynomial in these powers.
Since symmetric polynomials are exactly the polynomials in the elementary symmet-
ric functions, the polynomials in the §;’s invariant under I' form a polynomial ring
Ly YoasYVadr "+ » YVonal With ;. the sum of all products of k distinct powers ﬁ‘ii.

Example 3G.7. As a further variant on the preceding example, choose a divisor g
of d and replace T by its subgroup consisting of matrices for which the product of
the gt powers of the nonzero entries is 1. This has the effect of enlarging the ring
of polynomials invariant under the action, and it can be shown that the invariant
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polynomials form a polynomial ring z, [Vods Vags
generator ¥,,, replaced by ¥,,, =

s Y2(n-1)d» Yangl, With the last
HiB?. For example, if n = 2 and q = 1 we obtain
7,[y4, ¥24] wWith v, = B, B, and y,4 = B{ + B3. The group T in this case happens to
be isomorphic to the dihedral group of order 24d.

General Remarks

The problem of realizing graded polynomial rings Z,[] in one variable as cup
product rings of spaces was discussed in §3.2, and Example 3G.5 provides the re-
maining examples, showing that |y| can be any even divisor of 2(p — 1). In more
variables the problem of realizing Z,[y,,-- -, ¥, ] with specified dimensions |y;| is
more difficult, but has been solved for odd primes p. Here is a sketch of the answer.

Assuming that p is odd, the dimensions |y;| are even. Call the number d; =
|y;1/2 the degree of y,. In the examples above this was in fact the degree of y; as
a polynomial in the 2-dimensional classes B; invariant under the action of T'. It was
proved in [Dwyer, Miller, & Wilkerson 1992] that every realizable polynomial algebra
Z,[y,--+,¥y,] is the ring of invariant polynomials Z,[f, - -

some finite group I' on Z,[B;,---

,B,1" for an action of
, 8,1, where |B;| = 2. The basic examples, whose
products yield all realizable polynomial algebras, can be divided into two categories.
First there are classifying spaces of Lie groups, each of which realizes a polynomial
algebra for all but finitely many primes p. These are listed in the following table.

Lie group degrees primes
st 1 all
SU(n) 2,3, all
Sp(n) 2,4, - 2n all

SO (2k) 2,4,---,2k -2,k p>2
G, 2,6 p>2
F, 2,6,8,12 p>3
Eg 2,5,6,8,9,12 p>3
E, 2,6,8,10,12,14 p>3
Eq 2,8,12,14,18, 20, 24,30 p>5

The remaining examples have to be constructed by hand. They form two infinite
families plus 30 sporadic exceptions shown in the table on the next page. The first
row is the examples we have constructed, though our construction needed the extra
condition that p not divide the order of the group I'. For all entries in both tables
the order of T, the group such that Z,[y,,---,¥,] = Z,[B;, - ,B,1", turns out to
equal the product of the degrees. When p does not divide this order, the method we
used for the first row can also be applied to give examples for all the other rows. In
some cases the congruence conditions on p, which are needed in order for I' to be
a subgroup of Aut(Z’;) = GLn(Zp), automatically imply that p does not divide the
order of I'. But when this is not the case a different construction of a space with the
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desired cohomology is needed. To find out more about this the reader can begin by
consulting [Kane 1988] and [Notbohm 1999].

degrees | primes

a,2d,---,(n—-1)d,nq with q |d p=1modd

2,d p=-1modd

degrees | primes degrees primes

4,6 p =1mod 3 60,60 p =1 mod 60
6,12 p =1mod 3 12,30 p =1,4mod 15
4,12 p =1mod 12 12,60 p = 1,49 mod 60
12,12 p =1mod 12 12,20 p = 1,9 mod 20
8,12 p =1 mod 4 2,6,10 p=1,4mod>5
8,24 p =1mod 8 4,6,14 p=1,24mod 7
12,24 p =1mod 12 6,9,12 p =1 mod 3
24,24 p = 1 mod 24 6,12,18 p =1 mod 3

6,8 p=1,3mod8 6,12,30 p =1,4mod 15
8,12 p =1 mod 8 4,8,12,20 p =1 mod 4
6,24 p =1,19 mod 24 2,12,20,30 p =1,4mod 5
12,24 p =1 mod 24 8,12,20,24 p =1 mod 4
20,30 p =1 mod 5 12,18, 24,30 p =1mod 3
20,60 p =1 mod 20 4,6,10,12,18 p =1 mod 3
30,60 p =1 mod 15 6,12,18,24,30,42 p =1mod 3

For the prime 2 the realization problem is still not completely solved. The known

examples are listed in the short table at the right,

where again we give only the irreducible examples,

which generate others by taking products. All but the
last entry in the table arise from classifying spaces of

Lie groups, as described in §4.D. The construction for
the last entry is in [Dwyer & Wilkerson 1993].

3.JH Local Coefficients

Homology and cohomology with local coefficients are fancier versions of ordi-

Lie group | degrees
o(1) 1

SO(n) 2,3, n

SUm) 4,6,---,2n

Sp(n) 4,8,---,4n
— 8,12,14,15

nary homology and cohomology that can be defined for nonsimply-connected spaces.

In various situations these more refined homology and cohomology theories arise

naturally and inevitably. For example, the only way to extend Poincaré duality with

Z coefficients to nonorientable manifolds is to use local coefficients. In the overall
scheme of algebraic topology, however, the role played by local coefficients is fairly
small. Local coefficients bring an extra level of complication that one tries to avoid
whenever possible. With this in mind, the goal of this section will not be to give a full

exposition but rather just to sketch the main ideas, leaving the technical details for
the interested reader to fill in.
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The plan for this section is first to give the quick algebraic definition of homology
and cohomology with local coefficients, and then to reinterpret this definition more
geometrically in a way that looks more like ordinary homology and cohomology. The
reinterpretation also allows the familiar properties of homology and cohomology to
be extended to the local coefficient case with very little effort.

Local Coefficients via Modules

Let X be a path-connected space having a universal cover X and fundamental
group T, so that X is the quotient of X by the action of 1 by deck transforma-
tions X — y.X for y € w and ¥ € X. The action of  on X induces an action of
1T on the group Cn()? ) of singular n-chains in X, by sending a singular n-simplex
0 :A"— X to the composition A" -%> X - X. The action of 1 on Cn()?) makes
Cn()? ) a module over the group ring Z[1r], which consists of the finite formal sums
>im;y; with m; € Z and y; € m, with the natural addition >; m;y; + >;n;y; =
>.i (m; + n;)y; and multiplication (X; m;y;) (3;n;y;) = X, jm;n;y;y;. The bound-
ary maps 0:C,(X)—C,,_; (X) are Z[m]-module homomorphisms since the action of
7 on these groups comes from an action on X.

If M is an arbitrary module over Z[1r], we would like to define C, (X;M) to be
Cn()? )® 71 M, but for tensor products over a noncommutative ring one has to be a
little careful with left and right module structures. In general, if R is a ring, possibly
noncommutative, one defines the tensor product A®yB of a right R-module A and a
left R-module B to be the abelian group with generators a® b for a € A and b € B,
subject to distributivity and associativity relations:

(i) (a; +a,)eb=a,9b+a,eb and ase (b, +b,) =aeb, +asb,.

(i) areb=aerb.

In case R = Z[mr], a left Z[mr]-module A can be regarded as a right Z[7r]-module
by setting ay = y 'a for y € . So the tensor product of two left Z[mr]-modules
A and B is defined, and the relation ay b = a® yb becomes y 'aeb = asyb, or
equivalently a’ @b = ya' ® yb where a’ = y 'a. Thus tensoring over Z[mr] has the
effect of factoring out the action of 7r. To simplify notation we shall write A®;(,\B
as A®_ B, emphasizing the fact that the essential part of a Z[r]-module structure is
the action of 7.

In particular, Cn()?') ®,.M is defined if M is a left Z[mr]-module. These chain
groups C,(X;M) = Cn()?) ®,M form a chain complex with the boundary maps 0 1.
The homology groups H,,(X;M) of this chain complex are by definition homology
groups with local coefficients.

For cohomology one can set C"(X; M) = Homy(;(C,(X),M), the Z[1r]-module
homomorphisms Cn()?) — M. These groups C"(X; M) form a cochain complex whose
cohomology groups H™(X; M) are cohomology groups with local coefficients.
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Example 3H.1. Let us check that when M is a trivial Z[7r]-module, with ym = m for
all y e mand m € M, then H, (X; M) is just ordinary homology with coefficients in
the abelian group M. For a singular n-simplex o : A" — X, the various lifts ¢ : A" —X
form an orbit of the action of 7 on C,,(X). In C,(X)®, M all these lifts are identi-
fied via the relation 0 ®m = yo ® ym = yod ®m. Thus we can identify Cn()?) ®. M
with C,,(X)®M, the chain group denoted C,,(X;M) in ordinary homology theory, so
H,, (X; M) reduces to ordinary homology with coefficients in M. The analogous state-
ment for cohomology is also true since elements of Homgy,(C,, (X), M) are functions
from singular n-simplices 7 : A"—X to M taking the same value on all elements of
a tr-orbit since the action of ™ on M is trivial, so Homl[,ﬂ(Cn()? ), M) is identifiable
with Hom(C,,(X), M), ordinary cochains with coefficients in M.

Example 3H.2. Suppose we take M = Z[1], viewed as a module over itself via its
ring structure. For a ring R with identity element, A®yR is naturally isomorphic
to A via the correspondence a®v — ar. So we have a natural identification of
Cn()?) ® Z[1r] with Cn()?), and hence an isomorphism H,,(X;Z[m]) = Hn()?). Gen-
eralizing this, let X' — X be the cover corresponding to a subgroup 7' C 1. Then
the free abelian group Z[m/m’] with basis the cosets ym’ is a Z[1]-module and
Cn()N() ®mZlm/m'] = Cy(X'), s0 Hy(X;Z[1r/m']) = H, (X"). More generally, if A is
an abelian group then A[7r/7m’] is a Z[mr]-module and H,,(X; A[1t/mt']) ~ H,,(X; A).
So homology of covering spaces is a special case of homology with local coefficients.
The corresponding assertions for cohomology are not true, however, as we shall see
later in the section.

For a Z[mr]-module M, let 7t’ be the kernel of the homomorphism p : T — Aut(M)
defining the module structure, given by p(y)(m) = ym, where Aut(M) is the group
of automorphisms of the abelian group M. If X' — X is the cover corresponding to
the normal subgroup 7’ of 1, then C,(X)®, M ~ C,(X')®, M ~ Cp(X') @/ M.
This gives a more efficient description of H, (X;M).

Example 3H.3. As a special case, suppose that we take M = 7, s0 Aut(Z) ~ Z, = {+1}.
For anontrivial Z[1]-module structure on M, 7r’ is a subgroup of index 2 and X' — X
is a 2-sheeted covering space. If T is the nontrivial deck transformation of X’, let
Ch(X') = {ae Cp(X) | T,(00) = &} and C, (X') = {x € C(X) | Ty(x) = —ax}. Tt
follows easily that C, (X’) has basis the chains o + 7o for ¢:A" — X', and we have
short exact sequences

0—C, (X') o Cy(X) = CH(X')—0

0—CHX') o> Cy(X') = Cr (X)) —0
where 3(x) = a+T,(x) and A(x) = x—T, (). The homomorphism C, (X) —C, (X")
sending a singular simplex in X to the sum of its two lifts to X’ is an isomorphism.

The quotient map C, (X')—C, (X') ®,Z has kernel C,; (X'), so the second short ex-
act sequence gives an isomorphism C,, (X') ~ C,,(X’) ®,Z. These isomorphisms are
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isomorphisms of chain complexes and the short exact sequences are short exact se-
quence of chain complexes, so from the first short exact sequence we get a long exact
sequence of homology groups

- —H,(X;7) > H,(X') 25 H,(X) = H, | (X;7) — -

where the symbol Z indicates local coefficients in the module Z and p, is induced
by the covering projection p: X — X.

Let us apply this exact sequence when X is a nonorientable n-manifold M which
is closed and connected. We shall use terminology and notation from §3.3. We can
view Z as a Z[m;M]-module by letting a loop y in M act on Z by multiplication
by +1 or —1 according to whether y preserves or reverses local orientations of M.
The double cover X’ — X is then the 2-sheeted cover M— M with M orientable. The
nonorientability of M implies that H,,(M) = 0. Since H, (M) = 0, the exact se-
quence above then gives Hn(M;i) ~ Hn(]\N/I) ~ 7. This can be interpreted as saying
that by taking homology with local coefficients we obtain a fundamental class for a
nonorientable manifold.

Local Coefficients via Bundles of Groups

Now we wish to reinterpret homology and cohomology with local coefficients in
more geometric terms, making it look more like ordinary homology and cohomology.

Let us first define a special kind of covering space with extra algebraic structure.
A bundle of groups is a map p : E— X together with a group structure on each subset
p’l (x), such that all these groups p’l (x) are isomorphic to a fixed group G in the
following special way: Each point of X has a neighborhood U for which there exists
a homeomorphism hU:p’l(U)—>U><G taking each p’l(x) to {x}xG by a group
isomorphism. Since G is given the discrete topology, the projection p is a covering
space. Borrowing terminology from the theory of fiber bundles, the subsets p ' (x)
are called the fibers of p:E— X, and one speaks of E as a bundle of groups with
fiber G. It may be worth remarking that if we modify the definition by replacing the
word ‘group’ with ‘vector space’ throughout, then we obtain the much more common
notion of a vector bundle; see [VBKT].

Trivial examples are provided by products E = XX G. Nontrivial examples we
have considered are the covering spaces M;— M of nonorientable manifolds M de-
fined in §3.3. Here the group G is the homology coefficient group 7, though one could
equally well define a bundle of groups M;— M for any abelian coefficient group G.

Homology groups of X with coefficients in a bundle E of abelian groups may
be defined as follows. Consider finite sums >; n;0; where each 0;:A" — X is a sin-
gular n-simplex in X and n,;:A"—E is a lifting of o;. The sum of two lifts n;
and m; of the same o; is defined by (n; + m;)(s) = n;(s) + m;(s), and is also a
lift of o;. In this way the finite sums >; n;0; form an abelian group C, (X;E), pro-
vided we allow the deletion of terms n;0; when n; is the zero-valued lift. A bound-
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ary homomorphism 0:C,,(X;E)— C,_, (X;E) is defined by the formula 0(>,; n;0;) =
Zi,j(—l)jni(ri [[vg,---, 7}, ---,v,] where ‘n;” in the right side of the equation means
the restricted lifting n;|[vg,---,?;, -+, v,]. The proof that the usual boundary ho-
momorphism 0 satisfies 9° = 0 still works in the present context, so the groups
C,,(X;E) form a chain complex. We denote the homology groups of this chain com-
plex by H,(X;E).

In case E is the product bundle XX G, lifts n; are simply elements of G, so
H,(X;E) = H,(X;G), ordinary homology. In the general case, lifts ni:A"—>E are
uniquely determined by their value at one point s € A", and these values can be
specified arbitrarily since A" is simply-connected, so the n;’s can be thought of as
elements of p’l((ri(s)), a group isomorphic to G. However if E is not a product,
there is no canonical isomorphism between different fibers p’l(x), SO one cannot
identify H,, (X;E) with ordinary homology.

An alternative approach would be to take the coefficients n; to be elements of
the fiber group over a specific point of o;(A"), say o;(v,). However, with such a
definition the formula for the boundary operator 0 becomes more complicated since
there is no point of A" that lies in all the faces.

Our task now is to relate the homology groups H,,(X;E) to homology groups
with coefficients in a module, as defined earlier. In §1.3 we described how covering
spaces of X with a given fiber F can be classified in terms of actions of 1, (X) on F,
assuming X is path-connected and has the local properties guaranteeing the existence
of auniversal cover. It is easy to check that covering spaces that are bundles of groups
with fiber a group G are equivalent to actions of 1, (X) on G by automorphisms of
G, that is, homomorphisms from 1 (X) to Aut(G).

For example, for the bundle M;— M the action of a loop y on the fiber Z is
multiplication by +1 according to whether y preserves or reverses orientation in
M, that is, whether y lifts to a closed loop in the orientable double cover M—M
or not. As another example, the action of 77;(X) on itself by inner automorphisms
corresponds to a bundle of groups p:E— X with fibers p’l(x) = 11,(X,x). This
example is rather similar in spirit to the examples M;— M. In both cases one has a
functor associating a group to each point of a space, and all the groups at different
points are isomorphic, but not canonically so. Different choices of isomorphisms are
obtained by choosing different paths between two points, and loops give rise to an
action of r; on the fibers.

In the case of bundles of groups p : E— X whose fiber G is abelian, an action of
1, (X) on G by automorphisms is the same as a Z[1; X]-module structure on G.

Proposition 3H.4. If X is a path-connected space having a universal covering space,
then the groups H,,(X; E) are naturally isomorphic to the homology groups H,,(X; G)
with local coefficients in the Z[1t]-module G associated to E, where 1t = 11, (X).
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Proof: As noted earlier, a bundle of groups E— X with fiber G is equivalent to
an action of 71 on G. In more explicit terms this means that if X is the universal
cover of X, then E is identifiable with the quotient of XxG by the diagonal action
of 1, y(X,g) = (yX,yg) where the action in the first coordinate is by deck trans-
formations of X. For a chain >, n,;0; € C,(X;E), the coefficient n; gives a lift of
0; to E, and n; in turn has various lifts to XxG. Thus we have natural surjec-
tions Cn()?x G)—C,(E)—C,(X;E) expressing each of these groups as a quotient of
the preceding one. More precisely, identifying Cn(}? X G) with Cn()? )®Z[G] in the
obvious way, then C, (E) is the quotient of Cn()? )®Z[G] under the identifications
o0e®g ~y-0ey-g. This quotient is the tensor product Cn()?) ®.Z[G]. To pass to
the quotient C,,(X;E) of C,(E) = Cn()?) ®,.Z[G] we need to take into account the
sum operation in C, (X;E), addition of lifts n;:A"™ —E. This means that in sums
0eg, +08g, =0e(g, +9,), the term g, + g, should be interpreted not in Z[G]
but in the natural quotient G of Z[G]. Hence C, (X;E) is identified with the quo-
tient Cn()N( )®,.G of Cn()? )®,Z[G]. This natural identification commutes with the
boundary homomorphisms, so the homology groups are also identified. a

More generally, if X has a number of path-components X, with universal covers
X,, then C,(X;E) = D, (C,(X,) ®21m (xo01G)» 80 Hy, (X;E) splits accordingly as a
direct sum of the local coefficient homology groups for the path-components X,,.

We turn now to the question of whether homology with local coefficients satisfies
axioms similar to those for ordinary homology. The main novelty is with the behav-
ior of induced homomorphisms. In order for a map f:X— X  to induce a map on
homology with local coefficients we must have bundles of groups E— X and E' — X’
that are related in some way. The natural assumption to make is that there is a com-

mutative diagram as at the right, such that f restricts to a homo- 7 ,
morphism in each fiber. With this hypothesis there is then a chain ]fp pr,
homomorphism f,:C,(X;E)—C,(X;E’) obtained by composing f e

singular simplices with f and their lifts with f, hence there is an in-
duced homomorphism f, : H, (X;E)—H, (X;E"). The fibers of E and E’ need not be
isomorphic groups, so change-of-coefficient homomorphisms H,, (X; G,) — H,,(X; G>)
for ordinary homology are a special case. To avoid this extra complication we shall
consider only the case that f restricts to an isomorphism on each fiber. With this
condition, a commutative diagram as above will be called a bundle map.

Here is a method for constructing bundle maps. Starting with a map f:X—X’
and a bundle of groups p':E'— X', let

E={(x,e) e XxE | f(x)=p'(e)}.

This fits into a commutative diagram as above if we define p(x,e’) = x and f(x, e') =
¢’ . In particular, the fiber p~!(x) consists of pairs (x,e’) with p'(e’) = f(x), so f
is a bijection of this fiber with the fiber of E'— X’ over f(x). We use this bijection
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to give p’l (x) a group structure. To check that p:E— X is a bundle of groups, let
h':(p")"N(U')— U’ x G be an isomorphism as in the definition of a bundle of groups.
Define h:p ' (U)—UxG over U = f 1 (U’) by h(x,e’) = (x,hy(e’)) where h) is
the second coordinate of h’. An inverse for h is (x,g) € (x, (W) (f(x),g)),and h
is clearly an isomorphism on each fiber. Thus p :E— X is a bundle of groups, called
the pullback of F'— X' via f, or the induced bundle. The notation f*(E’) is often
used for the pullback bundle.

Given any bundle map E—FE  as in the diagram above, it is routine to check
that the map E— f*(E'), e — (p(e),f(e)), is an isomorphism of bundles over X,
so the pullback construction produces all bundle maps. Thus we see one reason
why homology with local coefficients is somewhat complicated: H, (X;E) is really a
functor of two variables, covariant in X and contravariant in E.

Viewing bundles of groups over X as Z[m; X]-modules, the pullback construc-
tion corresponds to making a Z[m X "J-module into a Z[1r; X]-module by defining
yg = f.(y)g for f :1m(X)—1(X"). This follows easily from the definitions. In
particular, this implies that homotopic maps f;, f; : X — X' induce isomorphic pull-
back bundles f(E'), f;*(E"). Hence the map f,:H,(X;E)—H, (X;E") induced by
a bundle map depends only on the homotopy class of f.

Generalizing the definition of H,, (X; E) to pairs (X, A) is straightforward, starting
with the definition of H,, (X, A;E) as the n'* homology group of the chain complex
of quotients C, (X;E)/C, (A;E) where p:E— X becomes a bundle of groups over A
by restriction to p’l(A). Associated to the pair (X,A) there is then a long exact
sequence of homology groups with local coefficients in the bundle E. The excision
property is proved just as for ordinary homology, via iterated barycentric subdivision.
The final axiom for homology, involving disjoint unions, extends trivially to homology
with local coefficients. Simplicial and cellular homology also extend without difficulty
to the case of local coefficients, as do the proofs that these forms of homology agree
with singular homology for A-complexes and CW complexes, respectively. We leave
the verifications of all these statements to the energetic reader.

Now we turn to cohomology. One might try defining H" (X;E) by simply dual-
izing, taking Hom(C,,(X), E), but this makes no sense since E is not a group. In-
stead, the cochain group C"(X;E) is defined to consist of all functions @ assigning
to each singular simplex o :A"—X a lift ¢(0):A"—E. In case E is the product
X X G, this amounts to assigning an element of G to each o, so this definition gen-
eralizes ordinary cohomology. Coboundary maps 6:C"(X;E)—>C”“(X;E) are de-
fined just as with ordinary cohomology, and satisfy 6> = 0, so we have cohomology
groups H™(X;E), and in the relative case, H" (X, A; E), defined via relative cochains
C"(X,A;E) =Ker(C"(X;E)—>C"(AE)).

For a path-connected space X with universal cover X and fundamental group
T, we can identify H" (X; E) with H"(X; G), cohomology with local coefficients in the
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Z[tt]-module G corresponding to E, by identifying C"(X; E) with Homy; (Cn()?), G)
in the following way. An element @ € C"(X;E) assigns to each o:A"— X aliftto E.
Regarding E as the quotient of X x G under the diagonal action of 1, a lift of o to
E is the same as an orbit of a lift to Xx G. Such an orbit is a function f assigning to
each lift &:A"— X an element f(&) € G such that f(y&) = yf(&) forall y € G,
that is, an element of Homy(C,(X),G).

The basic properties of ordinary cohomology in §3.1 extend without great dif-
ficulty to cohomology groups with local coefficients. In order to define the map
f*:H™"(X';E'") > H"(X;E) induced by a bundle map as before, it suffices to observe
that a singular simplex o:A" —X and a lift ' :A"—E’ of fo define a lift & =
(0,0"):A"— f*(E) of o. To show that f = g implies f* = g* requires some mod-
ification of the proof of the corresponding result for ordinary cohomology in §3.1,
which proceeded by dualizing the proof for homology. In the local coefficient case
one constructs a chain homotopy P* satisfying g* — f* = P*§+6P* directly from the
subdivision of A" x I used in the proof of the homology result. Similar remarks apply
to proving excision and Mayer-Vietoris sequences for cohomology with local coeffi-
cients. To prove the equivalence of simplicial and cellular cohomology with singular
cohomology in the local coefficient context, one should use the telescope argument
from the proof of Lemma 2.34 to show that H™"(X* E) ~ HY(X;E) for k > n. Once
again details will be left to the reader.

The difference between homology with local coefficients and cohomology with lo-
cal coefficients is illuminated by comparing the following proposition with our earlier
identification of H, (X;Z[m,X]) with the ordinary homology of the universal cover
of X.

Proposition 3H.5. If X is a finite CW complex with universal cover X and funda-
mental group 1T, then for all n, H" (X;Z[1r]) is isomorphic to H?()?; 7), cohomology
of X with compact supports and ordinary integer coefficients.

For example, consider the the n-dimensional torus T", the product of n circles,
with fundamental group 1 = Z" and universal cover R". We have Hi(T";Z[Tr]) =~
H;(R™), which is zero except for a Z in dimension 0, but HYT™ Z[T]) ~ Hé([R")
vanishes except for a Z in dimension n, as we saw in Example 3.34.

To prove the proposition we shall use a few general facts about cohomology
with compact supports. One significant difference between ordinary cohomology
and cohomology with compact supports is in induced maps. A map f:X—Y in-
duces f#:C"(Y;G)— C"(X;G) and hence f*:H!"(Y;G)— H"(X;G) provided that f
is proper: The preimage f '(K) of each compact set K in Y is compact in X. Thus
if @ € C"(Y;G) vanishes on chains in Y — K then f*(@p) € C"(X;G) vanishes on
chains in X — f~!(K). Further, to guarantee that f ~ g implies f* = g* we should
restrict attention to homotopies that are proper as maps X xI—Y . Relative groups
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HZ‘(X ,A;G) are defined when A is a closed subset of X, which guarantees that the
inclusion A — X is a proper map. With these constraints the basic theory of §3.1
translates without difficulty to cohomology with compact supports.

In particular, for a locally compact CW complex X one can compute H (X;G)
using finite cellular cochains, the cellular cochains vanishing on all but finitely many
cells. Namely, to compute H' (X", X" !;G) using excision one first has to identify
this group with HC”(X”,N(X”_l);G) where N(X"!) is a closed neighborhood of
X" in X" obtained by deleting an open n-disk from the interior of each n-cell. If
X is locally compact, the obvious deformation retraction of N (X" 1 onto X" ! is
a proper homotopy equivalence. Hence via long exact sequences and the five-lemma
we obtain isomorphisms H' (X", X"1G) ~ HMX™, N(X"1):G), and by excision the
latter group can be identified with the finite cochains.

Proof of 3H.5: As noted above, we can compute HC* ()? ;Z) using the groups C}‘()? 1 7)
of finite cellular cochains @ :C,—Z, where C, = Hn()?",)?”_l). Giving X the CW
structure lifting the CW structure on X, then since X is compact, finite cellular
cochains are exactly homomorphisms @ :C, —Z such that for each cell e" of X,
@ (ye™) is nonzero for only finitely many covering transformations y € 7r. Such a
@ determines a map @:C,, —Z[1r] by setting @(e") = Zycp(y’le”)y. The map
@ is a Z[1r]-homomorphism since if we replace the summation index y in the right
side of @(ne™) = Zycp(y’lne”)y by ny, we get Zycp(y’le")ny. The function
@ — @ defines a homomorphism C}?()?;Z)—»Homz[n](Cn,Z[n]) which is injective
since @ is recoverable from @ as the coefficient of y = 1. Furthermore, this ho-
momorphism is surjective since a Z[m]-homomorphism ¢ : M — Z[1r] has the form
Y(x) =2, ¥, (x)y with ¢, € Hom, (M, Z) satisfying g, (x) = wl(y’lx), so y; de-
termines . The isomorphisms C}‘()N( 7)) ~ Homz[n](Cn,Z[Tr]) are isomorphisms of
cochain complexes, so the respective cohomology groups HC”()?; 7Z) and H"(X;Z[TT])
are isomorphic. |

Cup and cap product work easily with local coefficients in a bundle of rings, the
latter concept being defined in the obvious way. The cap product can be used to give
a version of Poincaré duality for a closed n-manifold M using coefficients in a bundle
of rings E under the same assumption as with ordinary coefficients that there exists
a fundamental class [M] € H,,(M;E) restricting to a generator of H,,(M,M — {x};E)
for all x € M. By excision the latter group is isomorphic to the fiber ring R of E. The
same proof as for ordinary coefficients then shows that [M]~: H¥ (M;E)—H, _,(M;E)
is an isomorphism for all k.

Taking R to be one of the standard rings Z, Q, or Z,, does not give anything new
since the only ring automorphism these rings have is the identity, so the bundle of
rings E must be the product M xXR. To get something more interesting, suppose we
take R to be the ring Z[i] of Gaussian integers, the complex numbers a + bi with
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a,b € Z. This has complex conjugation a + bi — a — bi as a ring isomorphism. If
M is nonorientable and connected we can use the homomorphism w: 1, (M) — {£1}
that defines the bundle of groups M; to build a bundle of rings E corresponding to
the action of 1; (M) on Z[i] given by y(a + bi) = a + w(y)bi. The homology and
cohomology groups of M with coefficients in E depend only on the additive structure
of Z[i] so they split as the direct sum of their real and imaginary parts, which are
just the homology or cohomology groups with ordinary coefficients Z and twisted
coefficients 7, respectively. The fundamental class in H,, (M; 7) constructed in Exam-
ple 3H.3 can be viewed as a pure imaginary fundamental class [M] € H,,(M;E). Since
cap product with [M] interchanges real and imaginary parts, we obtain:

Theorem 3H.6. If M is a nonorientable closed connected n-manifold then cap prod-
uct with the pure imaginary fundamental class [M] gives isomorphisms H KM;2) ~
H, (M;Z) and H*(M;7) ~ H,, (M;Z).

More generally this holds with Z replaced by other rings such as Q or Z,,. There
is also a version for noncompact manifolds using cohomology with compact supports.

Exercises

1. Compute H*(Sl;E) and H*(Sl;E) for E—S! the nontrivial bundle with fiber Z.

2. Compute the homology groups with local coefficients H, (M;M;) for a closed
nonorientable surface M.

3. Let B(X;G) be the set of isomorphism classes of bundles of groups E— X with
fiber G, and let E,— BAut(G) be the bundle corresponding to the ‘identity’ action
p:Aut(G) — Aut(G). Show that the map [X, BAut(G)]—B(X,G), [f]1+— f*(E,),is
a bijection if X is a CW complex, where [X, Y] denotes the set of homotopy classes
of maps X—Y.

4. Show that if finite connected CW complexes X and Y are homotopy equivalent,
then their universal covers X and Y are proper homotopy equivalent.

5. If X is a finite nonsimply-connected graph, show that H" (X;Z[, X]) is zero un-
less n = 1, when it is the direct sum of a countably infinite number of Z’s. [Use
Proposition 3H.5 and compute HC”()?) as ELHH”()?,)? — T;) for a suitable sequence
of finite subtrees T, C T, C --- of X with J; T, = X.]

6. Show that homology groups Hﬁf (X;G) can be defined using locally finite chains,
which are formal sums >, g,o of singular simplices o :A" — X with coefficients
Jo € G, such that each x € X has a neighborhood meeting the images of only finitely
many o’s with g, # 0. Develop this homology theory far enough to show that for
a locally compact CW complex X, Hﬁf (X;G) can be computed using infinite cellular
chains >, guen-



Chapter 4

Homotopy Theory

Homotopy theory begins with the homotopy groups 1, (X), which are the nat-
ural higher-dimensional analogs of the fundamental group. These higher homotopy
groups have certain formal similarities with homology groups. For example, 1, (X)
turns out to be always abelian for n > 2, and there are relative homotopy groups fit-
ting into a long exact sequence just like the long exact sequence of homology groups.
However, the higher homotopy groups are much harder to compute than either ho-
mology groups or the fundamental group, due to the fact that neither the excision
property for homology nor van Kampen'’s theorem for 1r; holds for higher homotopy
groups.

In spite of these computational difficulties, homotopy groups are of great theo-
retical significance. One reason for this is Whitehead’s theorem that a map between
CW complexes which induces isomorphisms on all homotopy groups is a homotopy
equivalence. The stronger statement that two CW complexes with isomorphic homo-
topy groups are homotopy equivalent is usually false, however. One of the rare cases
when a CW complex does have its homotopy type uniquely determined by its homo-
topy groups is when it has just a single nontrivial homotopy group. Such spaces,
known as Eilenberg-MacLane spaces, turn out to play a fundamental role in algebraic
topology for a variety of reasons. Perhaps the most important is their close connec-
tion with cohomology: Cohomology classes in a CW complex correspond bijectively
with homotopy classes of maps from the complex into an Eilenberg-MacLane space.
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Thus cohomology has a strictly homotopy-theoretic interpretation, and there is an
analogous but more subtle homotopy-theoretic interpretation of homology, explained
in §4.F.

A more elementary and direct connection between homotopy and homology is
the Hurewicz theorem, asserting that the first nonzero homotopy group T, (X) of a
simply-connected space X is isomorphic to the first nonzero homology group I—NIn (X).
This result, along with its relative version, is one of the cornerstones of algebraic
topology.

Though the excision property does not always hold for homotopy groups, in some
important special cases there is a range of dimensions in which it does hold. This
leads to the idea of stable homotopy groups, the beginning of stable homotopy theory.
Perhaps the major unsolved problem in algebraic topology is the computation of the
stable homotopy groups of spheres. Near the end of §4.2 we give some tables of
known calculations that show quite clearly the complexity of the problem.

Included in §4.2 is a brief introduction to fiber bundles, which generalize covering
spaces and play a somewhat analogous role for higher homotopy groups. It would
easily be possible to devote a whole book to the subject of fiber bundles, even the
special case of vector bundles, but here we use fiber bundles only to provide a few
basic examples and to motivate their more flexible homotopy-theoretic generalization,
fibrations, which play a large role in §4.3. Among other things, fibrations allow one
to describe, in theory at least, how the homotopy type of an arbitrary CW complex
is built up from its homotopy groups by an inductive procedure of forming ‘twisted
products’ of Eilenberg-MacLane spaces. This is the notion of a Postnikov tower. In
favorable cases, including all simply-connected CW complexes, the additional data
beyond homotopy groups needed to determine a homotopy type can also be described,
in the form of a sequence of cohomology classes called the k-invariants of a space. If
these are all zero, the space is homotopy equivalent to a product of Eilenberg-MacLane
spaces, and otherwise not. Unfortunately the k-invariants are cohomology classes
in rather complicated spaces in general, so this is not a practical way of classifying
homotopy types, but it is useful for various more theoretical purposes.

This chapter is arranged so that it begins with purely homotopy-theoretic notions,
largely independent of homology and cohomology theory, whose roles gradually in-
crease in later sections of the chapter. It should therefore be possible to read a good
portion of this chapter immediately after reading Chapter 1, with just an occasional
glimpse at Chapter 2 for algebraic definitions, particularly the notion of an exact se-
quence which is just as important in homotopy theory as in homology and cohomology
theory.
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4.1 Homotopy Groups

Perhaps the simplest noncontractible spaces are spheres, so to get a glimpse of
the subtlety inherent in homotopy groups let us look at some of the calculations of
the groups ;(S™) that have been made. A small sample is shown in the table below,
extracted from [Toda 1962].

;(S™)
i —
1 234 5 6 7 8 9 10 11 12
n 1 Z 000 0 O 0 0 0 0 0 0
l 2 07z 1z 72, 7, 7,5, Z, Z, Z; 25 7y IyXx 1,
3 002z 7, 7, Z,, Z, Z, Z5 25 7, Iyx1,
4 000 Z Z, Z, ZX1Zyp ZyXLy LyXZy IpyXl3 Zy5 2,
5 0000 2z 2, 7 oy Z, Z, 7, I3
6 00O0O0O O 7 7, Z, Zyy 0 VA Z,
7 000O0 O O z Z, Z, Loy 0 0
8 000O0O O O 0 VA Z, Z, Zo4 O

This is an intriguing mixture of pattern and chaos. The most obvious feature is the
large region of zeros below the diagonal, and indeed ;(S™) = 0 for all i < n as we
show in Corollary 4.9. There is also the sequence of zeros in the first row, suggesting
that ﬂi(Sl) = 0 for all i > 1. This too is a fairly elementary fact, a special case of
Proposition 4.1, following easily from covering space theory.

The coincidences in the second and third rows can hardly be overlooked. These
are the case n = 1 of isomorphisms 1;(S°") ~ 1,_; (§" 1) x m;(S*""!) that hold for
n =1,2,4 and all i. The next case n = 2 says that each entry in the fourth row is
the product of the entry diagonally above it to the left and the entry three units below
it. Actually, these isomorphisms ni(SZ") ~ 7Ti_1(52”’1)><17i(5’4"’1) hold for all n if
one factors out 2-torsion, the elements of order a power of 2. This is a theorem of
James that will be proved in [SSAT].

The next regular feature in the table is the sequence of Z’s down the diagonal. This
is an illustration of the Hurewicz theorem, which asserts that for a simply-connected
space X, the first nonzero homotopy group m,, (X) is isomorphic to the first nonzero
homology group H, (X).

One may observe that all the groups above the diagonal are finite except for
T3 (SZ), 7T7(S4), and 7711(56). In §4.C we use cup products in cohomology to show
that 1T4k_1(52k) contains a Z direct summand for all k > 1. It is a theorem of Serre
proved in [SSAT] that Tri(S”) is finite for i > n except for 7T4k,1(52k), which is the
direct sum of Z with a finite group. So all the complexity of the homotopy groups of
spheres resides in finite abelian groups. The problem thus reduces to computing the
p-torsion in 1r;(S™) for each prime p.
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An especially interesting feature of the table is that along each diagonal the groups
1,1 (S™) with k fixed and varying n eventually become independent of n for large
enough n. This stability property is the Freudenthal suspension theorem, proved in
§4.2 where we give more extensive tables of these stable homotopy groups of spheres.

Definitions and Basic Constructions

Let I" be the n-dimensional unit cube, the product of n copies of the interval
[0,1]. The boundary 91" of I" is the subspace consisting of points with at least one
coordinate equal to O or 1. For a space X with basepoint x, € X, define , (X, x,)
to be the set of homotopy classes of maps f:(I",dI")— (X, x,), where homotopies
f; are required to satisfy f,(0I") = x, for all t. The definition extends to the case
n = 0 by taking I° to be a point and 3I° to be empty, so My (X, X) is just the set of
path-components of X.

When n = 2, a sum operation in 1, (X, x,), generalizing the composition opera-
tion in 17, is defined by

f(ZSI,SZ""ISn)’ Sl € [0,1/2]

‘f+g)“1'52"”’5")=5Lg<2s1—1,s2,---,sn>, sy € [y, 11

It is evident that this sum is well-defined on homotopy classes. Since only the first
coordinate is involved in the sum operation, the same arguments as for 7r; show that
M, (X, x,) is a group, with identity element the constant map sending I" to x, and
with inverses given by —f(s;,85,---,5,,) = f(1 —51,8,--+,5,).

The additive notation for the group operation is used because ,, (X, X)) is abelian
for n = 2. Namely, f +g ~ g+ f via the homotopy indicated in the following figures.

fla| = |[F][g]| = ~ [d][F]| = |9~

The homotopy begins by shrinking the domains of f and g to smaller subcubes of

I, with the region outside these subcubes mapping to the basepoint. After this has
been done, there is room to slide the two subcubes around anywhere in I" as long
as they stay disjoint, so if n > 2 they can be slid past each other, interchanging their
positions. Then to finish the homotopy, the domains of f and g can be enlarged
back to their original size. If one likes, the whole process can be done using just the
coordinates s; and s,, keeping the other coordinates fixed.

Maps (I",0I") — (X, x,)) are the same as maps of the quotient I"'/oI" = S" to X
taking the basepoint s, = 01" /31" to x,. This means that we can also view 17, (X, x)
as homotopy classes of maps (5", s,) — (X, x,) , where homotopies are through maps
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of the same form (S", s,) — (X, X)) . In this

interpretation of 1, (X, x,), the sum f +g ‘

) fvg . Y9 L
is the composition §" — S" v §" —5 X B e = X
where ¢ collapses the equator $" ! in $" v — g

to a point and we choose the basepoint s,
to lie in this " '.

We will show next that if X is path-connected, different choices of the base-
point x, always produce isomorphic groups m, (X, x,), just as for m;, so one is
justified in writing 1, (X) for 1, (X, x,) in these cases. Given a

X,
path y:I—X from x, = y(0) to another basepoint x; = y(1), \\|7/
we may associate to each map f:(I",0I")— (X, x;) a new map ™ M s
yf: ", 01" — (X, x,) by shrinking the domain of f to a smaller 0 E Xl J; . E o
concentric cube in I", then inserting the path y on each radial 771 i\

Xo

segment in the shell between this smaller cube and 0I". When
n =1 the map yf is the composition of the three paths y, f, and the inverse of y,
so the notation y f conflicts with the notation for composition of paths. Since we are
mainly interested in the cases n > 1, we leave it to the reader to make the necessary
notational adjustments when n = 1.

A homotopy of y or f through maps fixing dI or 01", respectively, yields a homo-
topy of yf through maps (I",8I")— (X, x,) . Here are three other basic properties:

1) y(f+9) =yf+yg.
@) (ymf=ymnf).
(3) 1f =~ f, where 1 denotes the constant path.

The homotopies in (2) and (3) are obvious. For (1), we first deform f and g to be
constant on the right and left halves of I", respectively, producing maps we may
call f+0 and 0+ g, then we excise a progressively wider symmetric middle slab of
y(f +0)+ y(0+g) until it becomes y(f + g):

M/ N\ AMU/ZAN T/ N\
sERslel = B ePeH = B R
/11 2 LINY/TTN AN

An explicit formula for this homotopy is

Y(f+0)((2 - t)S1152, T 1Sn)l Sl € [0,1/2]

ht“l’SZ"“'Sn):{y<0+g>(<2—t>sl+t—1,s2,---,sn>, sy € [y, 11

Thus we have y(f +g) =y(f +0) +y(0+g) =yf +yg.

If we define a change-of-basepoint transformation B, : 1, (X, x;) — 1, (X, x,) by
Ey([f]) = [y f], then (1) shows that B, is a homomorphism, while (2) and (3) im-
ply that B, is an isomorphism with inverse B; where Y is the inverse path of y,
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Y(s) = y(1-s). Thusif X is path-connected, different choices of basepoint x,, yield
isomorphic groups m,, (X, x;), which may then be written simply as T, (X).

Now let us restrict attention to loops y at the basepoint x,. Since B,, = B, 8,, the
association [y] — B, defines a homomorphism from m, (X, x,) to Aut(m, (X, x,)),
the group of automorphisms of T, (X, x,). This is called the action of 1 on m,,
each element of 7r; acting as an automorphism [f] — [yf] of m,. When n =1
this is the action of 1r; on itself by inner automorphisms. When n > 1, the action
makes the abelian group T, (X, x,) into a module over the group ring Z[m; (X, x)].
Elements of Z[7r,] are finite sums >; n;y; with n; € Z and y; € 1T, multiplication
being defined by distributivity and the multiplication in 7r, . The module structure on
m, is given by (3, n;y;) o = >;n;(y;®) for « € m,,. For brevity one sometimes says
T, is a 11;-module rather than a Z[; ]-module.

In the literature, a space with trivial 7r; action on T, is called ‘n-simple,” and
‘simple’ means ‘n-simple for all n.” It would be nice to have more descriptive terms
for these properties. In this book we will call a space abelian if it has trivial action
of 1, on all homotopy groups ,,, since when n = 1 this is the condition that
be abelian. This terminology is consistent with a long-established usage of the term
‘nilpotent’ to refer to spaces with nilpotent 7r; and nilpotent action of 7r; on all higher
homotopy groups; see [Hilton, Mislin, & Roitberg 1975].

We next observe that 1, is a functor. Namely, a map @:(X,x,)— (Y, y,) in-
duces @, :m, (X, x,) —1m,(Y,y,) defined by @, ([f]) = [pf]. It is immediate from
the definitions that @, is well-defined and a homomorphism for n = 1. The func-
tor properties (py), = @y, and 1, = 1 are also evident, as is the fact that if
@;:(X,xq)—(Y,y,) is a homotopy then @, = @,

In particular, a homotopy equivalence (X, x,) = (Y, y,) in the basepointed sense
induces isomorphisms on all homotopy groups ,,. This is true even if basepoints are
not required to be stationary during homotopies. We showed this for 7r; in Proposi-
tion 1.18, and the generalization to higher n’s is an exercise at the end of this section.

Homotopy groups behave very nicely with respect to covering spaces:

Proposition 4.1. A covering space projection p: (X, Xy) — (X, x,) induces isomor-
phisms p, : 1, (X,%,) — 1, (X, x,) foralln=2.

Proof: For surjectivity of p, we apply the lifting criterion in Proposition 1.33, which
implies that every map (S",s,) — (X, x,) lifts to (X, X,) provided that n > 2 so that
S™ is simply-connected. Injectivity of p, is immediate from the covering homotopy
property, just as in Proposition 1.31 which treated the case n = 1. O

In particular, T, (X, x,) = 0 for n = 2 whenever X has a contractible universal
cover. This applies for example to S, so we obtain the first row of the table of homo-
topy groups of spheres shown earlier. More generally, the n-dimensional torus T",
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the product of n circles, has universal cover R", so Tri(T") =0 for i > 1. This is
in marked contrast to the homology groups H;(T") which are nonzero for all i < n.
Spaces with 1,, = 0 for all n > 2 are sometimes called aspherical.

The behavior of homotopy groups with respect to products is very simple:

Proposition 4.2. For a product [[,X, of an arbitrary collection of path-connected
spaces X, there are isomorphisms 1, ([ [, X,) = [, (X,) forall n.

Proof: A map f:Y—[[,X, is the same thing as a collection of maps f,:Y—X,.
Taking Y to be S™ and S™x1I gives the result. O

Very useful generalizations of the homotopy groups T, (X, x,) are the relative
homotopy groups m,, (X, A, x) for a pair (X, A) with a basepoint x, € A. To define
these, regard 1" ! as the face of I" with the last coordinate S, = 0 and let J" ! be the
closure of 31" — I""!, the union of the remaining faces of I". Then M, (X, A, x,) for
n > 1 is defined to be the set of homotopy classes of maps (I, 31", J" 1) — (X, A, X0),
with homotopies through maps of the same form. There does not seem to be a com-
pletely satisfactory way of defining 1, (X, A, x), so we shall leave this undefined (but
see the exercises for one possible definition). Note that 1, (X, x, x,) = 1, (X, X(), so
absolute homotopy groups are a special case of relative homotopy groups.

A sum operationis defined in ,, (X, A, x) by the same formulas as for m,, (X, x,),
except that the coordinate s, now plays a special role and is no longer available for
the sum operation. Thus m, (X, A, x) is a group for n > 2, and this group is abelian
for n > 3. For n = 1 we have I' = [0,1], ° = {0}, and JO = {1}, so (X, A, x;)
is the set of homotopy classes of paths in X from a varying point in A to the fixed
basepoint x, € A. In general this is not a group in any natural way.

Just as elements of , (X,x;) can be regarded as homotopy classes of maps
(8™, 59) — (X, x,), there is an alternative definition of T, (X, A, x,) as the set of ho-
motopy classes of maps (D",S”_l,so)—> (X, A, x,), since collapsing J™! to a point
converts (I, 91", J™ ') into (D", S"!, Sy) - From this viewpoint, addition is done via
the map c¢:D"—D" v D" collapsing D" ! c D" to a point.

A useful and conceptually enlightening reformulation of what it means for an
element of 1, (X, A, x,) to be trivial is given by the following compression criterion:

= Amap f: (D”,S"‘l,so)—> (X, A, x,) represents zero in m, (X, A, x,) iff it is ho-

motopic rel $”! to a map with image contained in A.

For if we have such a homotopy to a map g, then [f] = [g] in 7,(X, A, x,), and
[g] = 0 via the homotopy obtained by composing g with a deformation retraction of
D™ onto s,. Conversely, if [f] = 0 via a homotopy F:D"xI— X, then by restricting
F to a family of n-disks in D" xI starting with D" x {0} and ending with the disk
D"x{1}uS n=lyr , all the disks in the family having the same boundary, then we get
a homotopy from f to a map into A, stationary on snL
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A map @:(X,A, xy)— (Y,B,y,) induces maps @, :m,(X, A, xq,)—m,(Y,B,y,)
which are homomorphisms for n > 2 and have properties analogous to those in the
absolute case: (), = @ @,, 1, =1, and @, = ¢, if ¢ = ¢ through maps
(X, A, xq)—(Y,B,y,).

Probably the most useful feature of the relative groups m, (X, A, x) is that they
fit into a long exact sequence

L% B 0
C— T, (A, X ) = T, (X, X) <25 1, (X, A, X) == T, (A, Xg) — -+ — T, (X, Xg)

Here i and j are the inclusions (A, x) — (X, x,) and (X, x,xg) — (X,A4A,xy). The
map 0 comes from restricting maps (I", 01", J — (X, A, x,) to I"!, or by restrict-
ing maps (D", 8", 5,)— (X,A,x,) to " '. The map 9, called the boundary map,
is a homomorphism when »n > 1.

‘VL—I)

H Theorem 4.3. This sequence is exact.

Near the end of the sequence, where group structures are not defined, exactness
still makes sense: The image of one map is the kernel of the next, those elements
mapping to the homotopy class of the constant map.

Proof: With only a little more effort we can derive the long exact sequence of a triple
(X,A,B,xy) with x, € BC ACX:

+ = 11, (A, B, xq) 5 1, (X, B, xq) L5 1, (X, A, X0) =5 10, (A, B, xg) — -+
— 11 (X, A, X))
When B = x, this reduces to the exact sequence for the pair (X, A, x), though the lat-

ter sequence continues on two more steps to 1, (X, x,). The verification of exactness
at these last two steps is left as a simple exercise.

Exactness at 1, (X, B, x(): First note that the composition j,1i, is zero since every
map (I", BI",J”’I)—%A,B,xO) represents zero in 1, (X, A, x,) by the compression
criterion. To see that Ker j, ¢ Imi,,let f:(I",0I",J" ') — (X, B, x,) represent zero
in 1, (X, A, x,) . Then by the compression criterion again, f is homotopic rel oI" to
a map with image in A, hence the class [ f] € m, (X, B, x,) is in the image of i,.
Exactness at T, (X, A, x,): The composition dj, is zero since the restriction of a
map (I", aI",J”’l)—>(X,B,xO) to I""! has image lying in B, and hence represents
zero in m,_; (A, B,x,). Conversely, suppose the restriction

of f:(I”,@I",J”‘l)—>(X,A,x0) to I""! represents zero in %o
M, _1(A,B,x,). Then f|I"! is homotopic to a map with im- X, f X,
age in B via a homotopy F:I" 'xI—A reldaI"'. We can A
tack F onto f to get a new map (I",dI",J" ')— (X,B,x,) X, F X,
which, as a map (I",31",J" ') — (X, A, x,), is homotopic to

B

f by the homotopy that tacks on increasingly longer initial
segments of F. So [f] € Im}j,.



Homotopy Groups Section 4.1 | 345

—

Exactness at T, (A, B, x,): The composition i,0 is zero since the restriction of a map
foa@ o+t ) — (X, A, x,) to I'" is homotopic rel 31" to a constant map via f
itself. The converse is easy if B is a point, since a nullhomotopy f; : (I, 0I") — (X, x;)
of fu:(I",0I")— (A, x,) gives amap F:(I"", 01", J")— (X, A, x,) with 3([F]) =
[fo]l. Thus the proof is finished in this case. For a general B, let F be a nullhomo-
topy of f:(I",d1",J" ')— (A, B, x,) through maps (I",o1",J" ') — (X, B, x,), and
let g be the restriction of F to " Ixr , as in the first of the two pictures below.
Reparametrizing the n'* and (n + 1) st coor-

X X
dinates as shown in the second picture, we see 0 0
that f with g tacked on is in the image of 0.

. . g X % X
But as we noted in the preceding paragraph,
tacking g onto f gives the same element of G G

Trn(AlB’x())- O

Example 4.4. Let CX be the cone on a path-connected space X, the quotient space
of XxI obtained by collapsing X x {0} to a point. We can view X as the subspace
Xx {1} c CX. Since CX is contractible, the long exact sequence of homotopy groups
for the pair (CX, X) gives isomorphisms m,(CX, X, x() = m,_;(X,x,) forall n > 1.
Taking n = 2, we can thus realize any group G, abelian or not, as a relative m, by
choosing X to have m(X) = G.

The long exact sequence of homotopy groups is clearly natural: A map of base-
pointed triples (X, A, B, xy) — (Y, C, D, y,) induces amap between the associated long
exact sequences, with commuting squares.

There are change-of-basepoint isomorphisms B, for relative homotopy groups
analogous to those in the absolute case. One starts with a path y in A ¢ X from x,
to x, and this induces B, :m, (X, A, x;) — 1, (X, A, x,) by setting
B, (Lf]D) = [yf] where yf is defined as in the picture, by placing \\\ //
a copy of f in a smaller cube with its face "' centered in the

SRl=

-

y A VY

corresponding face of the larger cube. This construction satisfies

the same basic properties as in the absolute case, with very similar
proofs that we leave to the exercises. Separate proofs must be given in the two cases
since the definition of y f in the relative case does not specialize to the definition of
y.f in the absolute case.

The isomorphisms B, show that m, (X, A, x,) is independent of x, when A is
path-connected. In this case T, (X, A, x) is often written simply as 7, (X, A).

Restricting to loops at the basepoint, the association y — B, defines an action
of mm (A, x,) on m,(X,A,x,) analogous to the action of (X, x,) on ,(X,x,) in
the absolute case. In fact, it is clear from the definitions that 7 (A, x;) acts on the
whole long exact sequence of homotopy groups for (X, A, x,), the action commuting
with the various maps in the sequence.
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A space X with basepoint x, is said to be n-connected if ;(X,x,) = 0 for
i < n. Thus 0-connected means path-connected and 1-connected means simply-
connected. Since n-connected implies 0-connected, the choice of the basepoint x,, is
not significant. The condition of being n-connected can be expressed without mention
of a basepoint since it is an easy exercise to check that the following three conditions
are equivalent.

(1) Every map S L SXis homotopic to a constant map.
(2) Every map S'— X extends to a map D! — X.
(3) m;(X,xq) =0 forall x, € X.
Thus X is n-connected if any one of these three conditions holds for all i < n.
Similarly, in the relative case it is not hard to see that the following four conditions
are equivalent, for i > 0:
(1) Every map (Di,aDi)—>(X,A) is homotopic rel D' to a map Di>A.
(2) Every map (D', 0D")— (X, A) is homotopic through such maps to amap D' — A.
(3) Every map (Di, aDi) — (X, A) is homotopic through such maps to a constant map
Di—A.
4) m;(X,A,xy) =0 forall x, € A.
When i = 0 we did not define the relative 17, and (1)-(3) are each equivalent to saying
that each path-component of X contains points in A since D’ isa point and oD is
empty. The pair (X, A) is called n-connected if (1)-(4) hold for all i < n, i > 0, and
(1)-(3) hold for i = 0.
Note that X is n-connected iff (X, x,) is n-connected for some x, and hence
for all x,.

Whitehead’s Theorem

Since CW complexes are built using attaching maps whose domains are spheres,
it is perhaps not too surprising that homotopy groups of CW complexes carry a lot of
information. Whitehead’s theorem makes this explicit:

Theorem 4.5. Ifamap f:X—Y between connected CW complexes induces isomor-
phisms f, :1,(X)— T, (Y) forall n, then f is a homotopy equivalence. In case f is
the inclusion of a subcomplex X — Y , the conclusion is stronger: X is a deformation
retract of Y.

The proof will follow rather easily from a more technical result that turns out to
be very useful in quite a number of arguments. For convenient reference we call this
the compression lemma.

Lemma 4.6. Let (X,A) be a CW pair and let (Y,B) be any pair with B + &. For
each n such that X — A has cells of dimension n, assume that 1, (Y, B, y,) = 0 for
all y, € B. Then every map f:(X,A)— (Y, B) is homotopic rel A to a map X — B.
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When n = 0 the condition that m, (Y, B, y,) = 0 for all y, € B is to be regarded
as saying that (Y, B) is 0-connected.

Proof: Assume inductively that f has already been homotoped to take the skeleton
X*1 to B. If @ is the characteristic map of a cell ek of X — A, the composition
fo: (D¥,0D%)— (Y, B) can be homotoped into B rel oD in view of the hypothesis
that m, (Y, B,y,) = 0 if k > 0, or that (Y, B) is 0-connected if k = 0. This homotopy
of f® induces a homotopy of f on the quotient space X* ! U eX of X* 1 11 DX, a
homotopy rel Xk, Doing this for all k-cells of X — A simultaneously, and taking
the constant homotopy on A, we obtain a homotopy of f|X ¥ U A to a map into B.
By the homotopy extension property in Proposition 0.16, this homotopy extends to a
homotopy defined on all of X, and the induction step is completed.

Finitely many applications of the induction step finish the proof if the cells of
X — A are of bounded dimension. In the general case we perform the homotopy of
the induction step during the t-interval [1 — 1/2%,1 — 1/2%¥"']. Any finite skeleton
Xk is eventually stationary under these homotopies, hence we have a well-defined
homotopy f;, t € [0,1], with f;(X) C B. O

Proof of Whitehead’s Theorem: In the special case that f is the inclusion of a sub-
complex, consider the long exact sequence of homotopy groups for the pair (Y, X).
Since f induces isomorphisms on all homotopy groups, the relative groups m,, (Y, X)
are zero. Applying the lemma to the identity map (Y, X)— (Y, X) then yields a de-
formation retraction of Y onto X.

The general case can be proved using mapping cylinders. Recall that the mapping
cylinder M, of amap f:X—Y is the quotient space of the disjoint union of X X1
and Y under the identifications (x,1) ~ f(x). Thus M f contains both X = Xx {0}
and Y as subspaces, and M, deformation retracts onto Y. The map f becomes the
composition of the inclusion X — M, with the retraction M — Y . Since this retraction
is a homotopy equivalence, it suffices to show that M deformation retracts onto X if
f induces isomorphisms on homotopy groups, or equivalently, if the relative groups
nn(Mf,X) are all zero.

If the map f happens to be cellular, taking the n-skeleton of X to the n-skeleton
of Y for all n, then (Mg, X) is a CW pair and so we are done by the first paragraph of
the proof. If f is not cellular, we can either appeal to Theorem 4.8 which says that f
is homotopic to a cellular map, or we can use the following argument. First apply the
preceding lemma to obtain a homotopy rel X of the inclusion (XUY, X) — (M, X) to
amap into X. Since the pair (My, X UY) obviously satisfies the homotopy extension
property, this homotopy extends to a homotopy from the identity map of M, to a map
g:My—M; taking X U'Y into X. Then apply the lemma again to the composition
XxITTTY,Xx0I 1Y) — (Mf,X uY) g, (Mf,X) to finish the construction of a
deformation retraction of M, onto X. a
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Whitehead’s theorem does not say that two CW complexes X and Y with iso-
morphic homotopy groups are homotopy equivalent, since there is a big difference
between saying that X and Y have isomorphic homotopy groups and saying that
there is a map X—Y inducing isomorphisms on homotopy groups. For example,
consider X = RP? and Y = S?xRP®. These both have fundamental group Z,, and
Proposition 4.1 implies that their higher homotopy groups are isomorphic since their
universal covers S° and S?xS® are homotopy equivalent, $® being contractible.
But RP? and S x RP® are not homotopy equivalent since their homology groups are
vastly different, $?x RP® having nonvanishing homology in infinitely many dimen-
sions since it retracts onto RP*. Another pair of CW complexes that are not homotopy
equivalent but have isomorphic homotopy groups is S 2 and $®x CP*®, as we shall see
in Example 4.51.

One very special case when the homotopy type of a CW complex is determined by
its homotopy groups is when all the homotopy groups are trivial, for then the inclusion
map of a 0-cell into the complex induces an isomorphism on homotopy groups, so
the complex deformation retracts to the 0-cell.

Somewhat similar in spirit to the compression lemma is the following rather basic
extension lemma:

Lemma 4.7. Given a CW pair (X,A) and a map f:A—Y with Y path-connected,
then f can be extended to a map X—Y if ,,_,(Y) = 0 for all n such that X — A
has cells of dimension n.

Proof: Assume inductively that f has been extended over the (n —1)-skeleton. Then
an extension over an n-cell exists iff the composition of the cell’s attaching map
s 1 x" 1 with f: X" ! —Y is nullhomotopic. O

Cellular Approximation

When we showed that T, (Sk) =0 for k > 1 in Proposition 1.14, we first showed
that every loopin S k can be deformed to miss at least one pointif k > 1, then we used
the fact that the complement of a point in S k is contractible to finish the proof. The
same strategy could be used to show that nn(Sk) = 0 for n < k if we could do the
first step of deforming a map S"—S k to be nonsurjective. One might at first think
this step was unnecessary, that no continuous map S"— S k could be surjective when
n < k, butitis not hard to use space-filling curves from point-set topology to produce
such maps. Some work must then be done to construct homotopies eliminating this
rather strange behavior.

For maps between CW complexes it turns out to be sufficient for this and many
other purposes in homotopy theory to require just that cells map to cells of the same
or lower dimension. Such amap f:X—Y, satisfying f(X™) c Y" for all n, is called
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a cellular map. It is a fundamental fact that arbitrary maps can always be deformed
to be cellular. This is the cellular approximation theorem:

Theorem 4.8. Every map f:X—Y of CW complexes is homotopic to a cellular map.
If f is already cellular on a subcomplex A C X, the homotopy may be taken to be
stationary on A.

H Corollary 4.9. M, (5%) =0 for n < k.

Proof: If ™ and S* are given their usual CW structures, with the 0-cells as basepoints,
then every basepoint-preserving map S" — S k canbe homotoped, fixing the basepoint,
to be cellular, and hence constant if n < k. ]

Linear maps cannot increase dimension, so one might to try to show that arbi-
trary maps can be homotoped to maps with some sort of linearity properties. One
of the oldest results of this sort is the simplicial approximation theorem in §2.C.
Cellular approximation can be regarded as an analog for CW complexes of simplicial
approximation for simplicial complexes since simplicial maps are cellular. However,
simplicial maps are much more rigid than cellular maps, which perhaps explains why
subdivision of the domain is required for simplicial approximation but not for cellular
approximation. The core of the proof of cellular approximation will be a weak form of
simplicial approximation that can be proved by a rather elementary direct argument.

Proof of 4.8: Suppose inductively that f:X—Y is already cellular on the skeleton
X""! and let " be an n-cell of X. The closure of e” in X is compact, being the
image of a characteristic map for e", so f takes the closure of e" to a compact
set in Y. Since a compact set in a CW complex can meet only finitely many cells by
Proposition A.1 in the Appendix, it follows that f(e™) meets only finitely many cells
of Y. Let e c Y be a cell of highest dimension meeting f(e™). We may assume
k > n, otherwise f is already cellular on e". We will show below that it is possible to
deform f| X" 'ue™, staying fixed on X" !, so that f(e") misses some point p € e*.
Then we can deform f|X" ' Ue” rel X"~ ! so that f(e™) misses the whole cell ek

by composing with a deformation retraction of Yk - {p} onto Yk — ek,

By finitely
many iterations of this process we eventually make f(e™) miss all cells of dimension
greater than n. Doing this for all n-cells, staying fixed on n-cells in A where f is
already cellular, we obtain a homotopy of f|X" rel X"~ ! U A" to a cellular map. The
induction step is then completed by appealing to the homotopy extension property
in Proposition 0.16 to extend this homotopy, together with the constant homotopy
on A, to a homotopy defined on all of X. Letting n go to o, the resulting possibly
infinite string of homotopies can be realized as a single homotopy by performing the
nt" homotopy during the t-interval [1 — 1/2",1 — 1/2""!]. This makes sense since
each point of X lies in some X", which is eventually stationary in the infinite chain
of homotopies.
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To fill in the missing step in this argument we will use the following technical
statement:

Lemma 4.10. Let f:I"—Z be a map, where Z is obtained from a subspace W by
attaching a cell e*. Then f is homotopic rel £~ (W) to a map fy for which there
is a simplex Ak c e* with ffl(Ak) a union (possibly empty) of finitely many convex
polyhedra, on each of which f, is the restriction of a linear surjection R — R,

Here a convex polyhedron in I"™ ¢ R" is any subspace that can be obtained as
the intersection of a finite number of half-spaces defined by linear inequalities of the
form >;a;x; <b.

Before proving the lemma, let us see how it finishes the proof of the cellular
approximation theorem. Composing the given map f:X" ' u e"—Y* with a char-
acteristic map I" — X for e”, we obtain a map f as in the lemma, with Z = Y* and
W = Y* - e*. The homotopy given by the lemma is fixed on 9I", hence induces a
homotopy f, of f|X" ' ue" fixed on X" . If k > n, there are no surjective linear
maps R"—RX, so ffl(Ak) must be empty, and we can choose p to be any point
of A, O

Proof of 4.10: Identifying e* with R¥, let B;, B, C e be the closed balls of radius 1
and 2 centered at the origin. Since f~! (B,) is closed and therefore compact in I™, it
follows that f is uniformly continuous on f -1 (B,) . Thus there exists € > 0 such that
|x — y| < € implies |f(x) — f(¥)| <, forall x,y € f‘l(BZ). Subdivide the interval
I so that the induced subdivision of I" into cubes has each cube lying in a ball of
diameter less than ¢. Let K; be the union of all the closed cubes meeting f’1 (By),
and let K, be the union of all the closed cubes meeting K;. Then we have inclusions
f’l(Bl) CcK, CK, C f’l(BZ), the last one because points of f(K,) have distance
less than '/, from f(K;) and points of f(K;) have distance less than !/, from B, .

We can view K, as a CW complex whose i-cells are i-dimensional open cubes, the
interiors of the i-dimensional faces of the k-dimensional cubes of K, for i < k. The
barycentric subdivision of this cubical cell structure is a simplicial complex structure
on K, whose vertices are the center points of the cells. One can build this simplicial
structure inductively over skeleta of the cubical cell structure, the induction step being
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to cone off the simplicial structure on the boundary of each cubical cell to the center
point of the cell.

Let g:K2—>ek = R* be the map that equals f on all vertices of simplices of
the subdivision and is linear on each simplex. Define a homotopy f;: K> —ek by the
formula (1 - te)f + (tp)g where @:K,—[0,1] is a map with @ (0K,) = 0 and
@(K,) = 1. Thus f, = f and f,|K; = g|K,. Since f; is the constant homotopy on
0K, , we may extend f; to be the constant homotopy of f on the rest of I".

We claim that there is a neighborhood N of 0 in B; such that f;'(N) c K.
This is equivalent to saying that f; sends the complement of K; to the complement
of N. Points in the complement of K, are no problem since f; = f on such points
and f sends the complement of K, to the complement of B, . For points of K, — K;
consider a simplex o of the subdivision of K,. This is mapped by f into a ball B,
of radius /,. Since B, is convex, g also maps o into B, and therefore so does f.
If o is not contained in K;, then B, meets the exterior of B; and hence is disjoint
from a neighborhood of 0 in B;. Since there are only finitely many o’s, there is a
neighborhood N of 0 in B, disjoint from f; (o) for all o not contained in K;. For
this N we have ffl(N) CK;.

For a simplex A¥ ¢ N, the preimage fi Lak) c K, is the union of its intersections
with simplices o of K;, and each such intersection is a convex polyhedron since it
is the intersection of o with the convex polyhedron L;'(A¥) where L, :R" —RF is
the linear map restricting to g on o. (Recall that f; = g on K;.) To finish the
proof it therefore suffices to choose A¥ to be disjoint from the images of all the
nonsurjective L, ’s, which is certainly possible since these images consist of finitely
many hyperplanes of dimension less than k. =]

Example 4.11: Cellular Approximation for Pairs. Every map f:(X,A)— (Y,B) of
CW pairs can be deformed through maps (X,A)—(Y,B) to a cellular map. This
follows from the theorem by first deforming the restriction f:A— B to be cellular,
then extending this to a homotopy of f on all of X, then deforming the resulting map
to be cellular staying fixed on A. As a further refinement, the homotopy of f can be
taken to be stationary on any subcomplex of X where f is already cellular.

An easy consequence of this is:

Corollary 4.12. A CW pair (X,A) is n-connected if all the cells in X — A have
dimension greater than n. In particular the pair (X, X™) is n-connected, hence the
inclusion X" — X induces isomorphisms on 1; for i <n and a surjection on Tt,,.

Proof: Applying cellular approximation to maps (D}, 0D") — (X, A) with i <n gives
the first statement. The last statement comes from the long exact sequence of the
pair (X,X"). O
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CW Approximation

A map f:X—Y is called a weak homotopy equivalence if it induces isomor-
phisms 1, (X, x,) — 1, (Y, f(x,)) for all n > 0 and all choices of basepoint x,.
Whitehead’s theorem can be restated as saying that a weak homotopy equivalence
between CW complexes is a homotopy equivalence. It follows easily that this holds
also for spaces homotopy equivalent to CW complexes. In general, however, weak
homotopy equivalence is strictly weaker than homotopy equivalence. For example,
there exist noncontractible spaces whose homotopy groups are all trivial, such as the
‘quasi-circle’ according to an exercise at the end of this section, and for such spaces a
map to a point is a weak homotopy equivalence that is not a homotopy equivalence.

One of the more important results in this subsection is that for every space X
there is a CW complex Z and a weak homotopy equivalence f:Z— X. Such a map
f:Z—X is called a CW approximation to X. A weak homotopy equivalence induces
isomorphisms on all homology and cohomology groups, as we will show, so CW ap-
proximations allow many general statements in algebraic topology to be reduced to
the case of CW complexes, where one can often make cell-by-cell arguments.

The technique for constructing CW approximations can be used to do other things
as well. For a start, one could try for a relative version in which X is assumed to
contain a subspace A which is already a CW complex and Z is constructed to contain
A as a subcomplex, with f:Z— X restricting to the identity map on A. Next, if (X, A)
is n-connected, one could try to make (Z,A) n-connected in the strong geometric
sense that all cells of Z — A have dimension greater than n. In fact, it turns out to
be possible to do a construction satisfying the latter condition even if (X, A) is not
n-connected, but in this case m;(Z) for i < n will be isomorphic to 7r;(A) rather than
to 1 (X).

Here is a definition that is sufficiently general to cover all these situations. Given
a pair (X, A) where the subspace A C X is a nonempty CW complex, an n-connected
CW model for (X,A) is an n-connected CW pair (Z,A) and a map f:Z— X with
f|A the identity, such that f, :1;(Z) —;(X) is an isomorphism for i > n and an
injection for i = n, for all choices of basepoint. Since (Z, A) is n-connected, the map
m;(A) — 1;(Z) is an isomorphism for i < n and a surjection for i = n. In the critical
dimension n, the maps A — Z L, X induce a composition T, (A) — 1T, (Z) — 17, (X)
factoring the map m,, (A) — 1, (X) as a surjection followed by an injection, just as any
homomorphism @ :G— H can be factored (uniquely) as a surjection @ :G— Im @
followed by an injection Im@ — H. One can think of Z as a sort of homotopy-
theoretic hybrid of A and X. As 7 increases, the hybrid looks more and more like
A, and less and less like X.

This definition specializes to the earlier notion of a CW approximation by taking
n = 0 and letting A consist of one point in each path-component of X. This forces
[y 11 (Z) = 11y(X) to be surjective as well as injective.
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Proposition 4.13. For every pair (X, A) with A a nonempty CW complex there exist
n-connected CW models f:(Z,A)— (X,A) for all n = 0, and these models can be
chosen to have the additional property that Z is obtained from A by attaching cells
of dimension greater than n.

Note that the condition that Z — A consists of cells of dimension greater than n
automatically implies that (Z, A) is n-connected, by cellular approximation.

Proof: We will construct Z as a union of subcomplexes A = Z, C Z,,,, C -+ with Z,
obtained from Z;_; by attaching k-cells. Suppose inductively that we have already
constructed Z;, and a map f:Z; — X restricting to the identity on A and such that
the induced map on ; is an injection for n < i < k and a surjection for n < i < k,
with respect to a choice of basepoint 0-cell x, in each component A, of A. The
induction begins with k = n and Z,, = A, when these conditions are vacuous.

For the induction step, choose cellular maps @, : S kz « Tepresenting generators
for the kernel of f, :m (Z, x,) —m (X, x,), for all y. Attach cells ekl to 7, via
these maps @, and call the resulting complex Y ;. Since the compositions f@,, are
nullhomotopic, we can extend f over Y. Themap f, :m (Y., x,) = m (X, x,) is
then injective since each element of the kernel is represented by a cellular map, with
image in Z;, and such maps are nullhomotopicin Y} ,; by construction. The extended
f still induces a surjection on T, since the composition 1, (Z;) — (Y1) — T (X)
is surjective. The homotopy groups m; for i < k are not affected by attaching the
cells eX*!. When k = 0 the construction needs to be done differently since 1, has
no group structure. Instead, we form Y; by attaching 1-cells joining all basepoint
0-cells x, lying in the same path-component of X.

. Sk+1

Next, choose maps g — X generating 1., (X, x,) for all y. Let Z;,, be

the wedge sum of Y}, with spheres S E“ at the appropriate basepoints x,,, and ex-
tend f over Z;,, bylettingitequal ¢z on § E“ . This guarantees that the induced map
So 1T (Zyyr, X)) = My (X, X)) is surjective. The inclusion Yy < Z;,; induces
an isomorphism on ; for i < k, surjectivity coming from cellular approximation and
injectivity from a retraction of Z;,, onto Y;,,. This finishes the induction step.
Since the maps f, :m;(Z, x,) —m;(X, x,) depend only on the (i + 1)-skeleton of
Z, they are isomorphisms for all i > n and injective for i = n. This holds in fact for
all basepoints in Z, not just the x,’s, since every point in Z is joined by a path to
some x,,. O

Example 4.14. When X is path-connected and A is a point, the construction of a
0-connected CW model for (X, A) gives a CW approximation to X with a single 0-cell
and all higher cells attached by basepoint-preserving maps. In particular, any con-
nected CW complex is homotopy equivalent to a CW complex with these properties.

Example 4.15. One can also apply the proposition to obtain a CW approximation to
an arbitrary pair (X, X,). First construct a CW approximation f;: Z,— X, then form
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a 0-connected CW model (Z, Z,) — (M, Z,) where M is the mapping cylinder of the
composition of f, with the inclusion X, — X. Composing the map Z— M with the
retraction of M onto X, we obtain an extension of f;, toa CW approximation f:Z—X.
It follows from the five-lemma that the map (Z, Z,) — (X, X)) induces isomorphisms
on relative as well as absolute homotopy groups.

Here is a rather different application of the preceding proposition, giving a more
geometric interpretation to n-connectedness:

‘ Corollary 4.16. If (X,A) is an n-connected CW pair, then there exists a CW pair
(Z,A) = (X,A) rel A such that all cells of Z — A have dimension greater than n.

Proof: An n-connected CW approximation f:(Z,A) — (X, A) given by the preceding
proposition will do the trick. First we check that f induces isomorphisms m;(Z) =
1;(X) for all i. This is true for i > n by definition, and for i < » it holds since both
inclusions A — Z and A — X induce isomorphisms on these lower homotopy groups.
For i = n, f induces an injection on 1r,, by definition, and since the inclusion A — X
induces a surjection on T,,, so does f via the composition 1, (A) — 17, (Z) = 17,,(X).

Since f induces isomorphisms on all homotopy groups, it is a homotopy equiv-
alence. To see that it is a homotopy equivalence rel A, form a quotient space W of
the mapping cylinder M, by collapsing each segment {a}XI to a point, for a € A.
Assuming f has been made cellular, W is a CW complex containing X and Z as sub-
complexes, and W deformation retracts to X just as My does. Also, m;(W,Z) = 0
for all i since f induces isomorphisms on all homotopy groups, so W deformation
retracts onto Z. These two deformation retractions of W onto X and Z are stationary
on A, hence give a homotopy equivalence X ~ Z rel A. O

Example 4.17: Postnikov Towers. For a CW complex X, which we may as well take
to be connected, let us construct a sequence of spaces X,, such that m;(X,,) = m;(X)
for i <n and m;(X,,) = 0 for i > n. Choose cellular maps cpa:S”Jrl—»X generating
m,.,., and use these to attach cells e**? to X, forming a CW complex Y. By cellular
approximation the inclusion X — Y induces isomorphisms on m; for i < n, and
1,.1(Y) = 0 since any element of , ., (Y) is represented by a map to X by cellular
approximation, and such maps are nullhomotopic in Y by construction. Now the
process can be be repeated with Y in place of X and n replaced by n + 1 to make
a space with m, ., zero as well as m,_,, by attaching (n + 3)-cells. After infinitely
many iterations we have enlarged X to a CW complex X,, such that the inclusion
X — X, induces an isomorphism on m; for i < n and m;(X,,) = 0 for i > n. This
construction is in fact a special case of the construction of CW models, with (X,,, X)
an (n + 1)-connected CW model for (CX, X) with CX the cone on X.

The inclusion X — X,, extends to amap X, ,; —X,, since X,,,; is obtained from
X by attaching cells of dimension n + 3 and greater, and ;(X,,) = 0 for i > n so we
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can apply Lemma 4.7, the extension lemma. Thus we have a commu-

tative diagram as at the right. This is a called a Postnikov tower for X. )1(
One can regard the spaces X,, as truncations of X which provide suc- 13
cessively better approximations to X as n increases. Postnikov towers X,
turn out to be quite powerful tools for proving general theorems, and / |

we will study them further in §4.3. X—X,

After this example one may wonder whether #n-connected CW models (Z,,, A) for
an arbitrary pair (X, A) always fit into a tower. The following proposition will allow
us to construct such towers, among other things.

Proposition 4.18. Suppose we are given:

S
(i) an n-connected CW model f:(Z,A)— (X,A), 4 X
(i) an n'-connected CW model f':(Z',A")— (X', A"), hl I lg
(ili) amap g: (X,A)— (X', A). z' X’

Thenif n>n’, thereisamap h:Z—Z' suchthat h|A =g and gf ~ f'h rel A, so
the diagram above is commutative up to homotopy rel A. Furthermore, such a map
h is unique up to homotopy rel A.

Proof: By Corollary 4.16 we may assume all cells of Z — A have dimension greater
than n. Let W be the quotient space of the mapping cylinder of f' obtained by
collapsing each line segment {a’}xI to a point, for a’ € A". We can think of W as a
relative mapping cylinder, and like the ordinary mapping cylinder, W contains copies
of Z' and X', the latter as a deformation retract. The assumption that (Z’,A’) is an
n’-connected CW model for (X', A") implies that the relative groups ;(W,Z’) are
zero for i > n’'.

Via the inclusion X’ < W we can view gf as amap Z— W. As a map of pairs
(Z,A)—(W,Z"), gf is homotopic rel A to a map h with image in Z’, by the com-
pression lemma and the hypothesis n = n’. This proves the first assertion. For the
second, suppose h, and h, are two maps Z— Z  whose compositions with f’ are
homotopic to g f rel A. Thus if we regard h, and h, as maps to W, they are homo-
topic rel A. Such a homotopy gives amap (ZxI,Zx0IUAxI)— (W,Z"), and by the
compression lemma again this map can be deformed rel Zx o0l U AXI to a map with
image in Z', which gives the desired homotopy h, ~ h, rel A. O

Corollary 4.19. An n-connected CW model for (X,A) is unique up to homotopy
equivalence rel A. In particular, CW approximations to spaces are unique up to ho-
motopy equivalence.

Proof: Given two n-connected CW models (Z,A) and (Z', A) for (X, A), we apply the
proposition twice with g the identity map to obtain maps h:Z—Z" and h':Z'— Z.
The uniqueness statement gives homotopies hh' =1 and h'h =~ 1 rel A. a
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Taking n = n’ in the proposition, we obtain also a functoriality property for
n-connected CW models. For example, a map X — X’ induces a map of CW approxi-
mations Z— Z', which is unique up to homotopy.

The proposition allows us to relate n-connected CW models
(Z,,A) for (X,A) for varying n, by means of maps Z,—Z,,_;

that form a tower as shown in the diagram, with commutative 2
triangles on the left and homotopy-commutative triangles on /
A—0s

\,

Example 4.20: Whitehead Towers . If we take X to be an arbitrary CW complex with

the right. We can make the triangles on the right strictly com-

N — N N

mutative by replacing the maps Z,— X by the compositions
through Z,.

the subspace A a point, then the resulting tower of n-connected CW models amounts
to a sequence of maps
. _’Zz_’Zl _’ZO_’X

with Z,, n-connected and the map Z,, — X inducing an isomorphism on all homotopy
groups 1; with i > n. The space Z, is path-connected and homotopy equivalent
to the component of X containing A, so one may as well assume Z, equals this
component. The next space Z; is simply-connected, and the map Z; — X has the
homotopy properties of the universal cover of the component Z, of X. For larger
values of n one can by analogy view the map Z,— X as an ‘n-connected cover’ of
X. For n > 1 these do not seem to arise so frequently in nature as in the case
n = 1. A rare exception is the Hopf map S* — $? defined in Example 4.45, which is a
2-connected cover.

Now let us show that CW approximations behave well with respect to homology
and cohomology:

Proposition 4.21. A weak homotopy equivalence f:X—Y induces isomorphisms
fo:H, (X;G)—H,(Y;G) and f*:H"(Y;G)—H"(X;G) forall n and all coefficient
groups G.

Proof: Replacing Y by the mapping cylinder M ¢ and looking at the long exact se-
quences of homotopy, homology, and cohomology groups for (M, X), we see that it
suffices to show:

= If (Z,X) is an n-connected pair of path-connected spaces, then H;(Z,X;G) =0

and Hi(Z,X;G) =0 foralli <mn andall G.

Let @ = > jn;0; be arelative cycle representing an element of Hy(Z, X;G), for sin-
gular k-simplices o;: A¥— 7. Build a finite A-complex K from a disjoint union of
k-simplices, one for each o, by identifying all (k — 1)-dimensional faces of these
k-simplices for which the corresponding restrictions of the o;’s are equal. Thus the
0;’s induce a map o:K—Z. Since « is a relative cycle, do is a chain in X. Let
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L C K Dbe the subcomplex consisting of (k — 1)-simplices corresponding to the sin-
gular (k — 1)-simplices in dx, so o (L) C X. The chain « is the image under the
chain map o, of a chain & in K, with 0& a chain in L. In relative homology we then
have o, [&] = [«]. If we assume 1;(Z,X) = 0 for i < k, then o:(K,L)—(Z,X) is
homotopic rel L to a map with image in X, by the compression lemma. Hence o, [&]
is in the image of the map H (X, X;G)— H(Z,X;G), and since H(X,X;G) = 0 we
conclude that [«] = o, [&] = 0. This proves the result for homology, and the result
for cohomology then follows by the universal coefficient theorem. O

CW approximations can be used to reduce many statements about general spaces
to the special case of CW complexes. For example, the cup product version of the
Kiinneth formula in Theorem 3.16, asserting that H* (X xY;R) ~ H*(X;R)® H*(Y;R)
under certain conditions, can now be extended to non-CW spaces since if X and Y
are CW approximations to spaces Z and W, respectively, then X XY is a CW approx-
imation to Zx W . Here we are giving X XY the CW topology rather than the product
topology, but this has no effect on homotopy groups since the two topologies have
the same compact sets, as explained in the Appendix. Similarly, the general Kiinneth
formula for homology in §3.B holds for arbitrary products X xY.

The condition for a map Y — Z to be a weak homotopy equivalence involves only
maps of spheresinto Y and Z, but in fact weak homotopy equivalences Y — Z behave
nicely with respect to maps of arbitrary CW complexes into Y and Z, not just spheres.
The following proposition gives a precise statement, using the notations [X, Y] for
the set of homotopy classes of maps X—Y and (X,Y) for the set of basepoint-
preserving-homotopy classes of basepoint-preserving maps X—Y. (The notation
(X,Y) is not standard, but is intended to suggest ‘pointed homotopy classes.’)

‘ Proposition 4.22. A weak homotopy equivalence f:Y — Z induces bijections
[X,Y]—=[X,Z] and (X,Y)— (X, Z) for all CW complexes X.

Proof: Consider first [X,Y]—[X, Z]. We may assume f is an inclusion by replacing
Z by the mapping cylinder M, as usual. The groups , (Z,Y, y,) are then zero for all
n and all basepoints y, € Y, so the compression lemma implies that any map X —Z
can be homotoped to have image in Y. This gives surjectivity of [X,Y]—[X, Z].
A relative version of this argument shows injectivity since we can deform a homotopy
(XxI,Xx0I)—(Z,Y) to have imagein Y.

In the case of (X,Y)— (X, Z) the same argument applies if Mf is replaced by the
reduced mapping cylinder, the quotient of M, obtained by collapsing the segment
{>vo} xI to a point, for y, the basepoint of Y. This collapsed segment then serves
as the common basepoint of Y, Z, and the reduced mapping cylinder. The reduced
mapping cylinder deformation retracts to Z just as the unreduced one does, but with
the advantage that the basepoint does not move. O
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Exercises

1. Suppose asum f+ g of maps f,g:(I",0I") — (X, x,) is defined using a coordinate
of I" other than the first coordinate as in the usual sum f + g. Verify the formula
(f+9)+ (h+k)=(f+ h)+(g+ k), and deduce that f +" k =~ f + k so the two
sums agree on T, (X, x,), and also that g +' h = h + g so the addition is abelian.

2. Show that if @:X—Y is a homotopy equivalence, then the induced homomor-
phisms @, 11, (X, x,) —m,(Y,®(x,)) are isomorphisms for all n. [The case n =1
is Proposition 1.18.]

3. For an H-space (X,x;) with multiplication p:XxX— X, show that the group
operation in 1, (X, x,) can also be defined by the rule (f + g)(x) = u(f(x),g(x)).

4. let p :X— X be the universal cover of a path-connected space X. Show that

under the isomorphism 1, (X) = Trn()? ), which holds for n > 2, the action of

1, (X) on 1, (X) corresponds to the action of m;(X) on Wn()N() induced by the ac-

tion of m(X) on X as deck transformations. More precisely, prove a formula like

YP () = p, (By(y, () where y € m(X,x(), x € m,(X,%,), and y, denotes the

homomorphism induced by the action of y on X.

5. For apair (X, A) of path-connected spaces, show that 1T, (X, A, x,) canbe identified

in a natural way with the set of cosets «H of the subgroup H C T, (X, X)) represented

by loopsin A at x.

6. If p: ()?, ﬁ, Xy)— (X, A, x,) is a covering space with A= p_l(A), show that the

map p, :1, (X, A, Xy) — 1, (X, A, x,) is an isomorphism for all n > 1.

7. Extend the results proved near the beginning of this section for the change-of-

basepoint maps B, to the case of relative homotopy groups.

8. Show the sequence 1, (X, x;) — 11 (X, A, X() N M (A, X)) — (X, X)) 1s exact.

9. Suppose we define 11,(X, A, x,) to be the quotient set 1,(X, x()/1y(A, Xx), SO

that the long exact sequence of homotopy groups for the pair (X,A) extends to
- =TT (X, x) = T (X, A, xg) —O0.

(a) Show that with this extension, the five-lemma holds for the map of long exact
sequences induced by a map (X, A, x,) — (Y, B, y,), in the following form: One
of the maps between the two sequences is a bijection if the four surrounding
maps are bijections for all choices of x,.

(b) Show that the long exact sequence of a triple (X, A, B, x,) can be extended only to
the term 11 (A, B, X)) in general, and that the five-lemma holds for this extension.

10. Show the ‘quasi-circle’ described in Exercise 7 in §1.3 has trivial homotopy groups
but is not contractible, hence does not have the homotopy type of a CW complex.

11. Show that a CW complex is contractible if it is the union of an increasing sequence
of subcomplexes X; C X, C --- such that each inclusion X; — X;,; is nullhomotopic,
a condition sometimes expressed by saying X; is contractible in X, ;. An example is
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S*, or more generally the infinite suspension S*X of any CW complex X, the union
of the iterated suspensions S"X.

12. Show that an n-connected, n-dimensional CW complex is contractible.

13. Use the extension lemma to show that a CW complex retracts onto any contractible
subcomplex.

14. Use cellular approximation to show that the n-skeletons of homotopy equivalent
CW complexes without cells of dimension n + 1 are also homotopy equivalent.

15. Show that every map f:S"™—S" is homotopic to a multiple of the identity map

by the following steps.

(a) Use Lemma 4.10 (or simplicial approximation, Theorem 2C.1) to reduce to the
case that there exists a point g € " with f‘l(q) = {p;,---,pi} and f is an
invertible linear map near each p;.

(b) For f as in (a), consider the composition gf where g:S"—S" collapses the
complement of a small ball about g to the basepoint. Use this to reduce (a)
further to the case k = 1.

(c) Finish the argument by showing that an invertible n x n matrix can be joined by
a path of such matrices to either the identity matrix or the matrix of a reflection.
(Use Gaussian elimination, for example.)

16. Show that a map f:X—Y between connected CW complexes factors as a com-
position X — Z, —Y where the first map induces isomorphisms on m; for i <n and
the second map induces isomorphisms on rr; for i = n + 1.

17. Show thatif X and Y are CW complexes with X m-connected and Y n-connected,
then (XXY,XVY)is (m+ n + 1)-connected, as is the smash product X A Y.

18. Give an example of a weak homotopy equivalence X —Y for which there does not
exist a weak homotopy equivalence Y — X.

19. Consider the equivalence relation =,, generated by weak homotopy equivalence:
X =, Y if there are spaces X = X}, X,, - -+, X,, = Y with weak homotopy equivalences
X;—X;,, or X; < X; , for each i. Show that X =, Y iff X and Y have a common
CW approximation.

20. Show that [X,Y] is finite if X is a finite connected CW complex and ;(Y) is
finite for i < dim X.

21. For this problem it is convenient to use the notations X" for the n'" stage in a
Postnikov tower for X and X,, for an (m — 1)-connected covering of X, where X is a
connected CW complex. Show that (X™"),,, ~ (X,,)", so the notation X, — X"
X' is unambiguous. Thus ; (X)) ~ m;(X) for m <i <n and all l l
other homotopy groups of X;, are zero. X—X"
22. Show that a path-connected space X is homotopy equivalent to a CW complex with
countably many cells iff 7, (X) is countable for all n. [Use the results on simplicial
approximations to maps and spaces in §2.C.]
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23. If f:X—Y is amap with X and Y homotopy equivalent to CW complexes, show
that the pair (M, X) is homotopy equivalent to a CW pair, where M is the mapping
cylinder. Deduce that the mapping cone C; has the homotopy type of a CW complex.

4.2 FElementary Methods of Calculation

We have not yet computed any nonzero homotopy groups 1, (X) with n = 2.
In Chapter 1 the two main tools we used for computing fundamental groups were
van Kampen’s theorem and covering spaces. In the present section we will study
the higher-dimensional analogs of these: the excision theorem for homotopy groups,
and fiber bundles. Both of these are quite a bit weaker than their fundamental group
analogs, in that they do not directly compute homotopy groups but only give relations
between the homotopy groups of different spaces. Their applicability is thus more
limited, but suffices for anumber of interesting calculations, such as r,, (™) and more
generally the Hurewicz theorem relating the first nonzero homotopy and homology
groups of a space. Another noteworthy application is the Freudenthal suspension
theorem, which leads to stable homotopy groups and in fact the whole subject of
stable homotopy theory.

Excision for Homotopy Groups

What makes homotopy groups so much harder to compute than homology groups
is the failure of the excision property. However, there is a certain dimension range,
depending on connectivities, in which excision does hold for homotopy groups:

Theorem 4.23. Let X be a CW complex decomposed as the union of subcomplexes
A and B with nonempty connected intersection C = AnB. If (A, C) is m-connected
and (B, C) is n-connected, m,n = 0, then the map 1;(A, C)— 1;(X, B) induced by
inclusion is an isomorphism for i < m + n and a surjection for i = m + n.

This yields the Freudenthal suspension theorem:
Corollary 4.24. The suspension map Tri(S")—>7Ti+1(S"“) is an isomorphism for

i < 2n — 1 and a surjection for i = 2n — 1. More generally this holds for the
suspension 1;(X) — ;1 (SX) whenever X is an (n — 1)-connected CW complex.

Proof: Decompose the suspension SX as the union of two cones C,X and C_X
intersecting in a copy of X. The suspension map is the same as the map
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where the two isomorphisms come from long exact sequences of pairs and the middle
map is induced by inclusion. From the long exact sequence of the pair (C, X, X) we
see that this pair is n-connected if X is (n — 1)-connected. The preceding theorem
then says that the middle map is an isomorphism for i + 1 < 2n and surjective for
i+1=2n. |

Corollary 4.25. ,(S") ~ Z, generated by the identity map, for all n > 1. In
particular, the degree map T, (S")—Z is an isomorphism.

Proof: From the preceding corollary we know that in the suspension sequence
™ (ST =1, (SH) >3 (5%) — - -

the first map is surjective and all the subsequent maps are isomorphisms. Since
(S 1) is Z generated by the identity map, it follows that nn(S") for n > 2 is a
finite or infinite cyclic group independent of n, generated by the identity map. The
fact that this cyclic group is infinite can be deduced from homology theory since
there exist basepoint-preserving maps S"— S" of arbitrary degree, and degree is a
homotopy invariant. Alternatively, if one wants to avoid appealing to homology theory
one can use the Hopf bundle S'— $®—$? described in Example 4.45, whose long
exact sequence of homotopy groups gives an isomorphism 71, (S DR T (S 2y.

The degree map 1, (S") — Z is an isomorphism since the the map z zK of §!
has degree k, as do its iterated suspensions by Proposition 2.33. a

Proof of 4.23: We proceed by proving successively more general cases. The first case
contains the heart of the argument, and suffices for the calculation of , (S™).

m+1

Case 1: A is obtained from C by attaching cells e, " and B is obtained from C by
attaching a cell "' To show surjectivity of ; (A, C) — 1, (X, B) we start with a map
f:UbaI', J©1)—(X,B,x,). The image of f is compact and therefore meets only
finitely many of these cells e&"“ and e"'. By repeated applications of Lemma 4.10
we may homotope f, through maps (1, o1, JHY— (X, B, X;), so that the preimages
FHAm Yy and f1(A™!) of simplices in ¢! and ! are finite unions of convex
polyhedra, on each of which f is the restriction of a linear surjection from R! onto

[Rm+1 or [Rn+1

Claim: If i < m+n, then there exist points p, € AT+,

g €A™ andamap @:I'"' —[0,1) such that: £y \
@ f'(q) lies below the graph of ¢ in I'"'xI =I'. ! % fr@
(b) f ' (p,) lies above the graph of @ for each «.

() ¢ =0ondl "' I

Granting this, let f; be a homotopy of f excising the region under the graph of @ by
restricting f to the region above the graph of t@ for 0 <t < 1. By (b), ft(Ii’l) is
disjoint from P = J,{p,} for all t, and by (a), f; (1" is disjoint from Q = {q}. This
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means that in the commutative diagram ,(A.C) ,(X, B)
at the right the given element [f] in lz l:
the upper-right group, Whe?l regarded (X— 0. X—Q-P) — m.(X. X— P)
as an element of the lower-right group, ’ ’
is equal to the element [f;] in the image of the lower horizontal map. Since the
vertical maps are isomorphisms, this proves the surjectivity statement.

Now we prove the Claim. For any g € A™"!, f71(g) is a finite union of convex
polyhedra of dimension < i — n — 1 since f “L(A™1) is a finite union of convex
polyhedra on each of which f is the restriction of a linear surjection R'—R""!.
We wish to choose the points p, € AZ("“ so that not only is f~'(q) disjoint from
f! (p,) for each &, but also so that FY(q) and f7! (p,) have disjoint images under
the projection 7 :I'—I""!. This is equivalent to saying that f ' (p,) is disjoint from
T=m"" (Tr(f’] (q))), the union of all segments {x}xI meeting f’l (q). This set T is
a finite union of convex polyhedra of dimension < i —n since f~!(g) is a finite union
of convex polyhedra of dimension < i — n — 1. Since linear maps cannot increase
dimension, f(T) N Af,(”“ is also a finite union of convex polyhedra of dimension
<i-mn. Thusif m +1 > i — n, there is a point p, € A’;”l not in f(T). This gives
f‘l(pa) NT = @ if i < m+n. Hence we can choose a neighborhood U of 7 (f 1(q))
in I""! disjoint from Tr(f’l(pa)) for all «. Then there exists @ :I'"' —[0, 1) having
support in U, with f~!(q) lying under the graph of @. This verifies the Claim, and
so finishes the proof of surjectivity in Case 1.

For injectivity in Case 1 the argument is very similar. Suppose we have two
maps fo,fl:(Ii,ali,Ji’l)—>(A,C,x0) representing elements of 1;(A, C,x,) having
the same image in 77; (X, B, X)) . Thus there is a homotopy from f, to f; in the form
of amap F: (Ii, 8Ii,Ji’1) x[0,1]— (X, B, x). After a preliminary deformation of F
via Lemma 4.10, we construct a function @ :I'"'xI—[0,1) separating F~'(q) from
the sets F ’1(]00() as before. This allows us to excise F ’1(q) from the domain of F,
from which it follows that f;, and f; represent the same element of ;(A,C,x).
Since I'xI now plays the role of I’ the dimension i is replaced by i + 1 and the
dimension restriction i < m + n becomes i+ 1 <m+mn,or i <m+n.

Case 2: A is obtained from C by attaching (m + 1)-cells as in Case 1 and B is
obtained from C by attaching cells of dimension > n + 1. To show surjectivity of
1;(A,C)—11;(X, B), consider a map f': (Ii, aIi, Ji’1 )— (X, B, x,) representing an ele-
ment of 77;(X, B). The image of f is compact, meeting only finitely many cells, and by
repeated applications of Case 1 we can push f off the cells of B — C one at a time, in
order of decreasing dimension. Injectivity is quite similar, starting with a homotopy
F: (Ii,ali,Ji’l)x [0,1]— (X, B, x) and pushing this off cells of B - C.

Case 3: A is obtained from C by attaching cells of dimension > m + 1 and B is as in
Case 2. We may assume all cells of A — C have dimension < m + n + 1 since higher-
dimensional cells have no effect on m; for i < m + n, by cellular approximation. Let
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Ay C A be the union of C with the cells of A of dimension < k and let X}, = A, U B.
We prove the result for r; (A, C) — 1;(X;, B) by induction on k. The induction starts
with k = m + 1, which is Case 2. For the induction step consider the following
commutative diagram formed by the exact sequences of the triples (A, A;_;,C) and
(X3, X 1, B):

(A, Ag) — (A, C) — (A, C) — (A Apy) — 11 (A4, C)

|

M0 ( Xy, Xy 1) — (X1, B) — (X ,B) — (X, X)) — 111(Xy 4, B)

When i < m + n the first and fourth vertical maps are isomorphisms by Case 2, while
by induction the second and fifth maps are isomorphisms, so the middle map is an
isomorphism by the five-lemma. Similarly, when i = m + n the second and fourth
maps are surjective and the fifth map is injective, which is enough to imply the middle
map is surjective by one half of the five-lemma. When i = 2 the diagram may contain
nonabelian groups and the two terms on the right may not be groups, but the five-
lemma remains valid in this generality, with trivial modifications to the proof in §2.1.
When i = 1 the assertion about 1, (A, C) — 11, (X, B) follows by a direct argument: If
m > 1 then both terms are trivial, while if m = 0 then n > 1 and the result follows
by cellular approximation.

After these special cases we can now easily deal with the general case. The con-
nectivity assumptions on the pairs (A, C) and (B, C) imply by Corollary 4.16 that they
are homotopy equivalent to pairs (A", C) and (B’, C) as in Case 3, via homotopy equiv-
alences fixed on C, so these homotopy equivalences fit together to give a homotopy
equivalence AU B ~ A" U B'. Thus the general case reduces to Case 3. |

Example 4.26. The calculation of 7t,,(S™) can be extended to show that ,, (\/, Sk) for
n > 2 is free abelian with basis the homotopy classes of the inclusions Sy — V,Sg-
Suppose first that there are only finitely many summands S}. We can regard V, Sk
as the n-skeleton of the product [[,Sy, where S7 is given its usual CW structure
and [],Sy has the product CW structure. Since [[,S4 has cells only in dimen-
sions a multiple of n, the pair ([[,Sk,V,Sk) is (2n — 1)-connected. Hence from
the long exact sequence of homotopy groups for this pair we see that the inclusion
Vo Sk — [14Sk induces an isomorphism on ,, if n > 2. By Proposition 4.2 we have
M, (I Sk) = D, 1, (S%), a free abelian group with basis the inclusions Sy < [[,Sx,
so the same is true for \/, Sy . This takes care of the case of finitely many Sy ’s.

To reduce the case of infinitely many summands S to the finite case, consider the
homomorphism ®: P, m, (Sk) — 1, (V4 Sy) induced by the inclusions Sy — V,Sk.
Then & is surjective since any map f :S”—»\/a Sg has compact image contained in
the wedge sum of finitely many S ’s, so by the finite case already proved, [f] is in
the image of ®. Similarly, a nullhomotopy of f has compact image contained in a
finite wedge sum of Sy ’s, so the finite case also implies that ¢ is injective.



364 | Chapter 4 Homotopy Theory

—_—T

Example 4.27. Let us show that ,,(S 1V §™) for n > 2 is free abelian on a countably
infinite number of generators. By Proposition 4.1 we may compute Tr;(S v s™) for
i > 2 by passing to the universal cover. This consists of a copy of R with a sphere
S¢ attached at each integer point k € R, so it is homotopy equivalent to \/; S;'. The
preceding Example 4.26 says that , (\/, Si*) is free abelian with basis represented
by the inclusions of the wedge summands. So a basis for mr,, of the universal cover
of S' v S™ is represented by maps that lift the maps obtained from the inclusion
$™ — S v §" by the action of the various elements of 11, (S' v §") ~ Z. This means
that 7'(,1(51 v §™) is a free Z[Trl(Sl v $™)]-module on a single basis element, the
homotopy class of the inclusion S™ — S' v §™. Writing a generator of 1, (S' v §™)
as t, the group ring Z[1T1(51 v §™)] becomes Z[t, t’l], the Laurent polynomials in t
and t~! with Z coefficients, and we have ,,(S* v §™) ~ Z[t,t"'].

This example shows that the homotopy groups of a finite CW complex need not
be finitely generated, in contrast to the homology groups. However, if we restrict
attention to spaces with trivial action of rm; on all ,,’s, then a theorem of Serre,
proved in [SSAT], says that the homotopy groups of such a space are finitely generated
iff the homology groups are finitely generated.

In this example, T, (S Ly S™) is finitely generated as a Z[ 17 ]-module, but there
are finite CW complexes where even this fails. This happens in fact for (S v s?),
according to Exercise 38 at the end of this section. In §4.A we construct more com-
plicated examples for each T, with n > 1, in particular for ;.

A useful tool for more complicated calculations is the following general result:

Proposition 4.28. If a CW pair (X,A) is r-connected and A is s-connected, with
v,s = 0, then the map 1;(X,A)—1;(X/A) induced by the quotient map X — X /A
is an isomorphism for i <v + s and a surjection for i =v + s+ 1.

Proof: Consider X U CA, the complex obtained from X by attaching a cone CA
along A C X. Since CA is a contractible subcomplex of X u CA, the quotient map
XUCA—(XUCA)/CA = X/A is a homotopy equivalence by Proposition 0.17. So we
have a commutative diagram

T (X,A) — m;(XUCA,CA) — m;(XUCA/CA) = 11; (X/A)
I” /
T, (XU CA)
where the vertical isomorphism comes from a long exact sequence. Now apply the
excision theorem to the first map in the diagram, using the fact that (CA, A) is
(s + 1)-connected if A is s-connected, which comes from the exact sequence for the
pair (CA,A). O

Example 4.29. Suppose X is obtained from a wedge of spheres \/, Sk by attaching

cells ez‘“ via basepoint-preserving maps @g:S" —V, Sy, with n > 2. By cellular
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approximation we know that mr;(X) = 0 for i < n, and we shall show that m,(X) is
the quotient of the free abelian group m,, (\/,Sx) ~ ©«Z by the subgroup generated
by the classes [@g]. Any subgroup can be realized in this way, by choosing maps
@p to represent a set of generators for the subgroup, so it follows that every abelian
group can be realized as T, (X) for such a space X = (V,S%) Ug eg“. This is the
higher-dimensional analog of the construction in Corollary 1.28 of a 2-dimensional
CW complex with prescribed fundamental group.

To see that T, (X) is as claimed, consider the following portion of the long exact
sequence of the pair (X, V, SQ):

Ts1 (X, Vy S =2 11, (Vo S — 11, (X) — 0

n+1

The quotient X/\/, Sk is a wedge of spheres S 5, so the preceding proposition and
Example 4.26 imply that ,,_ (X, \,S«) is free with basis the characteristic maps of
the cells ef}“. The boundary map 0 takes these to the classes [@g], and the result

follows.

Eilenberg-MacLane Spaces

A space X having just one nontrivial homotopy group 1, (X) ~ G is called an
Eilenberg-MacLane space K(G,n). The case n = 1 was considered in §1.B, where
the condition that r;(X) = 0 for i > 1 was replaced by the condition that X have a
contractible universal cover, which is equivalent for spaces that have a universal cover
of the homotopy type of a CW complex.

We can build a CW complex K (G, n) for arbitrary G and n, assuming G is abelian
if n > 1, in the following way. To begin, let X be an (n — 1)-connected CW complex
of dimension n + 1 such that m, (X) = G, as was constructed in Example 4.29 above
when n > 1 and in Corollary 1.28 when n = 1. Then we showed in Example 4.17 how
to attach higher-dimensional cells to X to make Tr; trivial for i > n without affecting
T, or the lower homotopy groups.

By taking products of K(G,n)’s for varying n we can then realize any sequence
of groups G,,, abelian for n > 1, as the homotopy groups ,, of a space.

A fair number of K(G,1)’s arise naturally in a variety of contexts, and a few of
these are mentioned in §1.B. By contrast, naturally occurring K(G,n)’s for n > 2
are rare. It seems the only real example is CP*, which is a K(Z,2) as we shall see
in Example 4.50. One could of course trivially generalize this example by taking a
product of CP*’s to get a K(G,2) with G a product of Z’s.

Actually there is a fairly natural construction of a K(Z,n) for arbitrary n, the
infinite symmetric product SP(S™) defined in §3.C. In §4.K we prove that the functor
SP has the surprising property of converting homology groups into homotopy groups,
namely 77, (SP(X)) ~ H;(X;Z) forall i > 0 and all connected CW complexes X. Taking
X to be a sphere, we deduce that SP(S") is a K(Z,n). More generally, SP(M(G,n))
is a K(G,n) for each Moore space M(G,n).
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Having shown the existence of K(G,n)’s, we now consider the uniqueness ques-
tion, which has the nicest possible answer:

Proposition 4.30. The homotopy type of a CW complex K(G,n) is uniquely deter-
mined by G and n.

The proof will be based on a more technical statement:
Lemma 4.31. Let X be a CW complex of the form (\,S™) Ug eg‘“ for some n > 1.

Then for every homomorphism Y : 1, (X) — 1, (Y) with Y path-connected there ex-
istsamap f:X—Y with f, =y

Proof: To begin, let f send the natural basepoint of \/,S§ to a chosen basepoint
Yo € Y. Extend f over each sphere S} via a map representing ¢ ([i,]) where i,
is the inclusion S}; — X. Thus for the map f:X"—Y constructed so far we have
Fulig) = w(liyD) for all &, hence f,([p]) = ¢([@]) for all basepoint-preserving
maps @ :S"— X" since the i,’s generate 1, (X"). To extend f over a cell eﬁ” all
we need is that the composition of the attaching map g :S™— X™ for this cell with f
be nullhomotopic in Y. But this composition f(pB represents f*([(pﬁ]) = w([(pﬁ]),
and ¢ ([pgl) = 0 because [@g] is zero in 1, (X) since @y is nullhomotopic in X
via the characteristic map of eg“. Thus we obtain an extension f:X—Y. This has
f« = @ since the elements [i,] generate 1, (X") and hence also 1, (X) by cellular
approximation. m|

Proof of 4.30: Suppose K and K" are K(G,n) CW complexes. Since homotopy equiv-
alence is an equivalence relation, there is no loss of generality if we assume K is a
particular K(G,n), namely one constructed from a space X as in the lemma by at-
taching cells of dimension n + 2 and greater. By the lemma there is amap f:X—K’
inducing an isomorphism on ,,. To extend this f over K we proceed inductively.

For each cell e™*?

, the composition of its attaching map with f is nullhomotopic
in K’ since m,,,(K') = 0, so f extends over this cell. The same argument applies
for all the higher-dimensional cells in turn. The resulting f:K— K’ is a homotopy

equivalence since it induces isomorphisms on all homotopy groups. O

The Hurewicz Theorem

Using the calculations of homotopy groups done above we can easily prove the
simplest and most often used cases of the Hurewicz theorem:

Theorem 4.32. If a space X is (n —1)-connected, n > 2, then ﬁi(X) =0fori<n
and m,,(X) = H,(X). If a pair (X,A) is (n — 1)-connected, n = 2, with A simply-
connected and nonempty, then H;(X,A) =0 for i <n and m,(X,A) =~ H,(X,A).

Thus the first nonzero homotopy and homology groups of a simply-connected
space occur in the same dimension and are isomorphic. One cannot expect any nice
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relationship between 1r;(X) and H;(X) beyond this. For example, S™ has trivial ho-
mology groups above dimension 7 but many nontrivial homotopy groups in this range
when n > 2. In the other direction, Eilenberg-MacLane spaces such as CP* have triv-
ial higher homotopy groups but many nontrivial homology groups.

The theorem can sometimes be used to compute 77, (X) if X is a path-connected
space that is nice enough to have a universal cover. For if X is the universal cover, then
M, (X) = 1, (X) and the latter group is isomorphic to H, X by the Hurewicz theorem.
So if one can understand X well enough to compute Hz()? ), one can compute 17, (X).

In the part of the theorem dealing with relative groups, notice that X must be
simply-connected as well as A since (X,A) is 1-connected by hypothesis. There is
a more general version of the relative Hurewicz theorem given later in Theorem 4.37
that allows A and X to be nonsimply-connected, but this requires 1, (X, A) to be
replaced by a certain quotient group.

Proof: We may assume X is a CW complex and (X, A) is a CW pair by taking CW
approximations to X and (X,A). For CW pairs the relative case then reduces to
the absolute case since 1;(X,A) = m;(X/A) for i < n by Proposition 4.28, while
H;(X,A) = ﬁi(X/A) for all i by Proposition 2.22.

In the absolute case we can apply Corollary 4.16 to replace X by a homotopy
equivalent CW complex with (n — 1)-skeleton a point, hence ﬁi(X) =0 for i< mn.
To show m,,(X) = H,,(X), we can further simplify by throwing away cells of dimen-
sion greater than n + 1 since these have no effect on m, or H,. Thus X has the
form (V,Sy) Ug eg”l. We may assume the attaching maps @ of the cells ef;‘“
are basepoint-preserving since this is what the proof of Corollary 4.16 gives. Ex-
ample 4.29 then applies to compute 7, (X) as the cokernel of the boundary map
Ty (X, X™) =1, (X™), amap Dy Z— P, Z. This is the same as the cellular bound-
ary map d:Hml(X”“,X”) —»Hn(Xn,X"’l) since for a cell ef;”l, the coefficients of
de}}“ are the degrees of the compositions q,@g where g, collapses all n-cells ex-
cept el to a point, and the isomorphism 1,,(S") ~ Z in Corollary 4.25 is given by
degree. Since there are no (n — 1)-cells, we have H,, (X) =~ Cokerd. O

Since homology groups are usually more computable than homotopy groups, the
following version of Whitehead’s theorem is often easier to apply:

Corollary 4.33. Amap f:X—Y between simply-connected CW complexes is a ho-
motopy equivalence if f, :H,(X)— H,(Y) is an isomorphism for each n.

Proof: Afterreplacing Y by the mapping cylinder M r wemay take f tobe aninclusion
X — Y. Since X and Y are simply-connected, we have 1 (Y,X) = 0. The relative
Hurewicz theorem then says that the first nonzero , (Y, X) is isomorphic to the first
nonzero H, (Y, X). All the groups H, (Y, X) are zero from the long exact sequence
of homology, so all the groups ,, (Y, X) also vanish. This means that the inclusion
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X < Y induces isomorphisms on all homotopy groups, and therefore this inclusion
is a homotopy equivalence. O

Example 4.34: Uniqueness of Moore Spaces. Let us show that the homotopy type of
a CW complex Moore space M(G,n) is uniquely determined by G and n if n > 1, so
M (G, n) is simply-connected. Let X be an M (G, n) as constructed in Example 2.40 by
attaching (n + 1)-cells to a wedge sum of n-spheres, and let Y be any other M (G, n)
CW complex. By Lemma 4.31 there is a map f:X—Y inducing an isomorphism on
1, . If we can show that f also induces an isomorphism on H,,, then the preceding
corollary will imply the result.

One way to show that f induces an isomorphism on H,, would be to use a more
refined version of the Hurewicz theorem giving an isomorphism between 1,, and
H,, that is natural with respect to maps between spaces, as in Theorem 4.37 below.
However, here is a direct argument which avoids naturality questions. For the mapping
cylinder My we know that 11;(My, X) = 0 for i < n. If this held also for i = n + 1
then the relative Hurewicz theorem would say that H; (M X )=0fori<n+1 and
hence that f, would be an isomorphism on H,,. To make this argument work, let
us temporarily enlarge Y by attaching (n + 2)-cells to make ,,; zero. The new
mapping cylinder M, then has m, ., (M, X) = 0 from the long exact sequence of the
pair. So for the enlarged Y the map f induces an isomorphism on H,,. But attaching
(n + 2)-cells has no effect on H,,, so the original f:X—Y had to be an isomorphism
on H,.

It is certainly possible for a map of nonsimply-connected spaces to induce isomor-
phisms on all homology groups but not on homotopy groups. Nonsimply-connected
acyclic spaces, for which the inclusion of a point induces an isomorphism on ho-
mology, exhibit this phenomenon in its purest form. Perhaps the simplest nontrivial
acyclic space is the 2-dimensional complex constructed in Example 2.38 with funda-
mental group {(a,b ' a’>=b’= (ab)z) of order 120.

It is also possible for a map between spaces with abelian fundamental groups to
induce isomorphisms on homology but not on higher homotopy groups, as the next
example shows.

Example 4.35. We construct a space X = (S' v $™) ue™"!, for arbitrary n > 1, such
that the inclusion S' < X induces an isomorphism on all homology groups and on
m; for i < n, but not on ,,. From Example 4.27 we have 1Tn(51 v S™ ~ Z[t, t71].
Let X be obtained from S' v S™ by attaching a cell e""! via a map S"—S' v §"
corresponding to 2t — 1 € Z[t,t ']. By looking in the universal cover we see that
M, (X) = Z[¢, t’l]/(Zt —1),where (2t — 1) denotes the ideal in Z[t, t’l] generated by
2t — 1. Note that setting t = !/, embeds Z[t,t ']/(2t — 1) in Q as the subring Z[/,]
consisting of rationals with denominator a power of 2. From the long exact sequence
of homotopy groups for the (n — 1)-connected pair (X,S') we see that the inclusion



Elementary Methods of Calculation Section 4.2 369

—

$' < X induces an isomorphism on ; for i < n. The fact that this inclusion also in-
duces isomorphisms on all homology groups can be deduced from cellular homology.
The key point is that the cellular boundary map H,,,, (X" x™) —H, (X", X" 1 isan
isomorphism since the degree of the composition of the attaching map S" —S! v §"
of ™! with the collapse S' v §"—S"is 2 -1 =1.

This example relies heavily on the nontriviality of the action of m; (X) on m,(X),
so one might ask whether the simple-connectivity assumption in Corollary 4.33 can
be weakened to trivial action of 1, on all m,’s. This is indeed the case, as we will
show in Proposition 4.74.

The form of the Hurewicz theorem given above asserts merely the existence of an
isomorphism between homotopy and homology groups, but one might want a more
precise statement which says that a particular map is an isomorphism. In fact, there
are always natural maps from homotopy groups to homology groups, defined in the
following way. Thinking of , (X, A, x,) for n > 0 as homotopy classes of ma