

Hand-in Assignment 3

Milan Lopuhaä

To be handed in January 9th, 2017

All vector spaces are over \mathbb{C} and finite-dimensional.

1. Let V be the standard representation of \mathfrak{sl}_2 . Decompose the representation $\Lambda^2(V^{\otimes 2})$ into irreducible representations.

2. Let $X \in \mathfrak{sl}_3$ be the matrix

$$\begin{pmatrix} -12 & -7 & -8 \\ 4 & 4 & 4 \\ 12 & 6 & 8 \end{pmatrix}.$$

Determine its semisimple part X_s and its nilpotent part X_n .

3. Let V be a vector space, and let W be a subspace. Define the subgroup $G \subset \mathrm{GL}(V)$ by

$$G = \{g \in \mathrm{GL}(V) : gW = W\}.$$

Show that G is an algebraic subgroup of $\mathrm{GL}(V)$.

4. Let \mathfrak{h} be the diagonal subtorus of $\mathfrak{g} = \mathfrak{o}_4$.

(a) Determine the roots of \mathfrak{g} with respect to \mathfrak{h} .

(b) Determine the Killing form on \mathfrak{h} .

(c) Draw the root diagram of \mathfrak{o}_4 as an inner product space (i.e. such that the angles and lengths are correct).

5. Consider the Lie algebra \mathfrak{gl}_2 . Recall that $\mathfrak{gl}_2 = \mathfrak{z} \oplus \mathfrak{sl}_2$, where \mathfrak{z} is its center.

(a) Let V be any representation of \mathfrak{gl}_2 , and let $\lambda \in \mathfrak{z}^\vee$. Show that

$$V_\lambda = \{v \in V : Z(v) = \lambda(Z) \cdot v \ \forall Z \in \mathfrak{z}\}$$

is a \mathfrak{gl}_2 -subrepresentation of V .

(b) Suppose V is irreducible. Show that there exists a $\lambda \in \mathfrak{z}^\vee$ such that $Z(v) = \lambda(Z) \cdot v$ for all $Z \in \mathfrak{z}$.

(c) Let λ be as in (b), and define the representation

$$\begin{aligned}\varrho_\lambda: \mathfrak{z} &\rightarrow \mathfrak{gl}_1 \\ Z &\mapsto \lambda(Z).\end{aligned}$$

Show that $V \cong \varrho_\lambda \boxtimes \varrho$ for some irreducible representation ϱ of \mathfrak{sl}_2 .

6. Let \mathfrak{g} be a semisimple Lie algebra, and let \mathfrak{h} be a maximal toral subalgebra of \mathfrak{g} . Let R be the root system of \mathfrak{g} with respect to \mathfrak{h} . Fix a Weil chamber \mathcal{C} , and let R^+ be the corresponding set of positive roots; let Δ be the corresponding basis of positive roots. Let V be a representation of \mathfrak{g} , and let ψ be the highest weight in V . Let $v_0 \in V_\psi \setminus \{0\}$, and let W be the smallest subspace of V such that $v_0 \in W$ and such that $\mathfrak{g}_{-\alpha}W \subset W$ for all $\alpha \in \Delta$.

- (a) Show for any two roots α and β of \mathfrak{g} such that $\alpha + \beta \neq 0$ one has $[\mathfrak{g}_\alpha, \mathfrak{g}_\beta] = \mathfrak{g}_{\alpha+\beta}$.
Hint: consider the α -string through β in the adjoint representation.
- (b) Show that W is closed under the action of $\mathfrak{n}^- = \bigoplus_{\alpha \in R^-} \mathfrak{g}_\alpha$.
- (c) Show that W is closed under the action of \mathfrak{h} .
- (d) Choose, for every $\alpha \in \Delta$, a nonzero element $X_{-\alpha} \in \mathfrak{g}_{-\alpha}$. For $l \geq 0$, let W_l be the subspace of W generated by the set

$$\{(X_{-\alpha_1} \circ X_{-\alpha_2} \circ \dots \circ X_{-\alpha_k})(v_0) : k \leq l, \alpha_i \in \Delta\}.$$

Show that for every $\alpha \in \Delta$ and every $l \geq 0$ one has $\mathfrak{g}_\alpha W_l \subset W_{l-1}$, where $W_{-1} = 0$. *Hint:* use induction.

- (e) Show that W is closed under the action of $\mathfrak{n}^+ = \bigoplus_{\alpha \in R^+} \mathfrak{g}_\alpha$; hence W is a \mathfrak{g} -subrepresentation of V .
- (f) Show that ψ is the highest weight of W , and that W_ψ is one-dimensional.
- (g) Show that W is irreducible as a representation of \mathfrak{g} . *Hint:* Let $W = \bigoplus_i U_i$ be a decomposition of W into irreducible subrepresentations. Show that there is exactly one i such that $U_{i,\psi} \neq 0$.