

Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

November 1st, 2016

As always, all vector spaces are finite dimensional and over \mathbb{C} . If \mathfrak{g} is a Lie algebra and V and W are representations of \mathfrak{g} , then $\text{Hom}_{\mathfrak{g}}(V, W)$ is the complex vector space of \mathfrak{g} -representation homomorphisms $V \rightarrow W$, i.e. the space of linear maps $f: V \rightarrow W$ such that $f(x(v)) = x(f(v))$ for all $v \in V$ and $x \in \mathfrak{g}$.

1. Let \mathfrak{g} be a semisimple Lie-algebra, and let $\mathfrak{g} = \mathfrak{s}_1 \oplus \dots \oplus \mathfrak{s}_n$ be its decomposition into simple factors. Let $J \subset \{1, \dots, n\}$. Show that $\bigoplus_{j \in J} \mathfrak{s}_j$ is an ideal of \mathfrak{g} , and that every ideal is of this form.
2. For any integer $n \geq 0$, let V_n be the representation $\text{Sym}^n(V)$ of \mathfrak{sl}_2 , where V is the standard representation.
 - (a) Remind yourself, or use induction to show, that $\sum_{i=0}^n i^2 = \frac{1}{2}n^2 + \frac{1}{2}n$ and $\sum_{i=0}^n i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$.
 - (b) Let e_1, e_2 be the standard basis of V , and let f_1, \dots, f_n be the basis of V_n given by $f_a = e_1^a \cdot e_2^{n-a}$. Show that the action of the standard elements $X, H, Y \in \mathfrak{sl}_2$ on V_n is given by the following:

$$\begin{aligned} X(f_a) &= a \cdot f_{a+1}; \\ H(f_a) &= (2a - n) \cdot f_a; \\ Y(f_a) &= (n - a) \cdot f_{a-1}. \end{aligned}$$

- (c) Show that with regards to the basis X, H, Y the form B_{V_n} is given by the matrix

$$\frac{n^3 + 3n^2 + 2n}{6} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

3. Let \mathfrak{g} be a Lie algebra.
 - (a) Suppose that \mathfrak{g} is semisimple. Let V be a faithful representation of \mathfrak{g} . Show that B_V is nondegenerate.

(b) Give an example of a solvable \mathfrak{g} and a faithful representation V of \mathfrak{g} such that B_V is nondegenerate. Why does this not contradict Cartan's criterion?

4. Let \mathfrak{g} be a Lie-algebra, and let V be an irreducible representation of \mathfrak{g} . Let W be a semisimple representation of \mathfrak{g} such that all simple subrepresentations of W are isomorphic to V . Show that the map

$$\begin{aligned} V \otimes_{\mathbb{C}} \text{Hom}_{\mathfrak{g}}(V, W) &\rightarrow W \\ (v, f) &\mapsto f(v) \end{aligned}$$

is an isomorphism of vector spaces.

5. Let \mathfrak{g}_1 and \mathfrak{g}_2 be two Lie algebras, and let $\rho_1: \mathfrak{g}_1 \rightarrow \mathfrak{gl}(V_1)$ and $\rho_2: \mathfrak{g}_2 \rightarrow \mathfrak{gl}(V_2)$ be two representations. Consider the map

$$\begin{aligned} \rho_1 \boxtimes \rho_2: \mathfrak{g}_1 \times \mathfrak{g}_2 &\rightarrow \mathfrak{gl}(V_1 \otimes V_2) \\ (x_1, x_2) &\mapsto \rho_1(x_1) \otimes \text{id}_{V_2} + \text{id}_{V_1} \otimes \rho_2(x_2); \end{aligned}$$

This is called the *outer tensor product* of ρ_1 and ρ_2 .

(a) Show that $\rho_1 \boxtimes \rho_2$ is a representation of $\mathfrak{g}_1 \times \mathfrak{g}_2$.

(b) Now suppose that V_1 and V_2 are irreducible representations of \mathfrak{g}_1 and \mathfrak{g}_2 , respectively. Show that the map

$$\begin{aligned} V_2 &\rightarrow \text{Hom}_{\mathfrak{g}_1}(V_1, V_1 \otimes V_2) \\ w &\mapsto (v \mapsto v \otimes w) \end{aligned}$$

is an isomorphism.

(c) Show that the induced isomorphism $V_1 \otimes V_2 \xrightarrow{\sim} V_1 \otimes \text{Hom}_{\mathfrak{g}_1}(V_1, V_1 \otimes V_2)$ is the inverse to the the isomorphism $V_1 \otimes \text{Hom}_{\mathfrak{g}_1}(V_1, V_1 \otimes V_2) \xrightarrow{\sim} V_1 \otimes V_2$ of problem 4.

(d) Show that the map

$$\begin{aligned} \{\text{subspaces of } V_2\} &\rightarrow \{\mathfrak{g}_1\text{-invariant subspaces of } V_1 \otimes V_2\} \\ Y &\mapsto V_1 \otimes Y \end{aligned}$$

is a bijection, with the inverse given by sending a \mathfrak{g}_1 -invariant subspace $X \subset V_1 \otimes V_2$ to the space $\text{Hom}_{\mathfrak{g}_1}(V_1, X)$, regarded as a subspace of $\text{Hom}_{\mathfrak{g}_1}(V_1, V_1 \otimes V_2) \cong V_2$. Hence every \mathfrak{g}_1 -invariant subspace of $V_1 \otimes V_2$ is of the form $V_1 \otimes Y$ for some $Y \subset V_2$.

(e) Deduce that $\rho_1 \boxtimes \rho_2$ is irreducible as representation of $\mathfrak{g}_1 \times \mathfrak{g}_2$.