
CHAPTER 1

Étale cohomology

This chapter summarizes the theory of the étale topology on schemes, culmi-
nating in the results on `-adic cohomology that are needed in the construction of
Galois representations and in the proof of the Ramanujan–Petersson conjecture.
In §1.1 we discuss the basic properties of the étale topology on a scheme, includ-
ing the concept of a constructible sheaf of sets. The étale fundamental group and
cohomological functors are introduced in §1.2, and we use Čech methods to com-
pute some H1’s in terms of π1’s, as in topology. These calculations provide the
starting point for the proof of the étale analogue of the topological proper base
change theorem. This theorem is discussed in §1.3, where we also explain the étale
analogue of homotopy-invariance for the cohomology of local systems and we intro-
duce the vanishing-cycles spectral sequence, Poincaré duality, the Künneth formula,
and the comparison isomorphism with topological cohomology over C (for torsion
coefficients).

The adic formalism is developed in §1.4, and it is used to define étale coho-
mology with `-adic coefficients; we discuss the Künneth isomorphism and Poincaré
duality with Q`-coefficients, and extend the comparison isomorphism with topo-
logical cohomology to the `-adic case. We conclude in §1.5 by discussing étale
cohomology over finite fields, L-functions of `-adic sheaves, and Deligne’s purity
theorems for the cohomology of `-adic sheaves.

Our aim is to provide an overview of the main constructions and some useful
techniques of proof, not to give a complete account of the theory. We generally
refer to the literature (especially [6], [9], and [15]) for additional technical details.

1.1. Étale sheaves

We begin with a summary of the definitions of étale and smooth morphisms,
and then we define the étale topology on a scheme. There are two categories of
sheaves that will be of interest to us: the category of sheaves of sets and the category
of sheaves of abelian groups. We initially put more emphasis on the sheaves of sets,
as this is the right framework for developing the concept of constructibility.

After setting forth these basics, we analyze the étale topology and sheaf theory
on Spec k for a field k, and we prove that these concepts are a reformulation of the
theory of discrete Galois-sets. This leads to an equivalence between étale cohomol-
ogy of Spec k and Galois cohomology of k. This special case underlies the relevance
of étale cohomology in the construction of Galois representations, and that is why
we work it out in detail.

The remainder of this section focuses on basic operations on sheaves of sets and
sheaves of abelian groups, such as the three operations of pushforward, pullback,
and extension-by-∅, as well as additional functors such as limits and stalks. We
also explain the rudiements of the theory of constructible sheaves. Aside from the
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2 1. ÉTALE COHOMOLOGY

restriction to the noetherian case when we define constructible étale sheaves, we
avoid noetherian hypotheses.

1.1.1. Smooth and étale scheme maps. There are several equivalent ways
to formulate the definitions of étaleness and smoothness for scheme morphisms.
The reader is referred to [3, Ch. 1] and [17, §17.3–§17.8] for treatments giving
much more detail than we do in our summary of the basics. We will give definitions
that avoid noetherian conditions, and this requires a replacement for the concept
of a locally finite-type morphism:

Definition 1.1.1.1. A map of schemes f : X → S is locally of finite presenta-
tion if, for any open affine Spec A = U ⊆ S and any open affine Spec B ⊆ f−1(U),
there is an A-algebra isomorphism B ' A[T1, . . . , Tn]/I for a finitely generated
ideal I.

This property may be checked with one open affine covering {Ui} of S and
one open affine covering of each f−1(Ui). Consequently, it is preserved under base
change and composition, and it is local on both X and S. See [17, §1.4] for further
details. There is also an elegant functorial criterion for a map to be locally of finite
presentation [17, 8.14.2], whereas no such criterion is know for being locally of finite
type, and so the entirety of condition (4) in each of the following two definitions
may be described in the language of functors.

Definition 1.1.1.2. A map of schemes f : S′ → S is étale if it satisfies one of
the following equivalent properties:

(1) For every s′ ∈ S′ there is an open neighborhood U ′ ⊆ S′ around s′ and an
open affine neighborhood Spec R ' U ⊆ S around f(s′) with f(U ′) ⊆ U
such that U ′ is U -isomorphic to an open subscheme of Spec(R[T ]/g)g′ for
some monic polynomial g ∈ R[T ] (with g′ = dg/dT ).

(2) The map f is locally of finite presentation and flat, and each fiber f−1(s)
is

∐
i∈Is

Spec ki,s for finite separable extensions ki,s of k(s).
(3) The map f is locally of finite presentation and flat, and Ω1

S′/S = 0.
(4) The map f is locally of finite presentation and satisfies the functorial

criterion for being formally étale: for any closed immersion Spec A0 ↪→
Spec A over S with I = ker(A � A0) satisfying I2 = 0, the natural map
S′(A) → S′(A0) is bijective (i.e., solutions to the equations defining S′

over S can be uniquely lifted through nilpotent thickenings).

Property (1) is the structure theorem for étale morphisms, and this property
visibly implies that f is flat. If S is locally noetherian, then in (4) it suffices to use
only artin local Spec A over s ∈ S with residue field equal to a chosen algebraic
closure of k(s). Condition (4) is the one that can be checked in abstract situations
with moduli problems, and deducing the structure theorem (and hence flatness)
from (4) is the hardest part of the proof that these conditions are equivalent. Étale
maps are open (as are locally finitely presented flat maps in general), and any map
between étale S-schemes is étale.

Example 1.1.1.3. The basic example of an étale scheme over S = Spec R is
the situation described by the equations in the inverse function theorem in analytic
geometry: we take S′ to be an open subscheme in Spec(R[T1, . . . , Tn]/(f1, . . . , fn))
such that the Jacobian matrix J = (∂fi/∂Tj) has determinant that is a unit on S′.
The structure theorem is the special case n = 1.
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It is not obvious by explicit computation that this example satisfies any of
the conditions (1), (2), or (3), but the invertibility of J on S′ allows us to verify
condition (4), as follows. Let M = An and let ~f : M →M be the polynomial map
defined by the fi’s. Let ~f0 : M0 → M0 be the reduction modulo I. We suppose
v0 ∈ M0 satisfies ~f0(v0) = 0 and det J(v0) ∈ A×0 , and we seek to uniquely lift v0

to v ∈ M satisfying ~f(v) = 0. Pick v ∈ M lifting v0, so ~f(v) ∈ IM and we seek
unique ε ∈ IM such that ~f(v + ε) = 0. Since I2 = 0 we have

~f(v + ε) = ~f(v) + (J(v))(ε),

and det(J(v)) ∈ A has reduction det(J(v0)) ∈ A×0 , so J(v) is invertible. Thus, we
may indeed uniquely solve ε = −J(v)−1(~f(v)).

Definition 1.1.1.4. A map of schemes f : X → S is smooth if it satisfies any
of the following equivalent conditions:

(1) For all x ∈ X there are opens V ⊆ X around x and U ⊆ S around f(x)
with f(V ) ⊆ U such that V admits an étale U -map to some An

U .
(2) The map f is locally of finite presentation and flat, and all fibers f−1(s) are

regular and remain so after extension of scalars to some perfect extension
of k(s).

(3) The map f is locally of finite presentation and flat, and Ω1
X/S is locally

free with rank near x ∈ X equal to dimx Xf(x) (the maximal dimension
of an irreducible component of Xf(x) through x) for each x ∈ X.

(4) The map f is locally of finite presentation and satisfies the functorial
criterion for being formally smooth: for any closed immersion Spec A0 ↪→
Spec A over S with I = ker(A � A0) satisfying I2 = 0, the natural map
X(A) → X(A0) is surjective (i.e., solutions to the equations defining X
over S can be lifted through nilpotent thickenings).

Property (1) is the structure theorem for smooth morphisms. If S is locally
noetherian, then in (4) it suffices to use artin local Spec A with residue field equal
to a chosen algebraic closure of the residue field at the image point in S. As with
étaleness, (4) is the easy condition to check in abstract situations. The difficult
part in the proof of the equivalence is again that (4) implies (1).

Example 1.1.1.5. The basic example of a smooth scheme over S = Spec R
is any open subscheme X in Spec(R[T1, . . . , Tn]/(f1, . . . , fr)) such that the r × n
matrix J = (∂fi/∂Tj) has rank r at all points of X. Conditions (1), (2), and (3) are
not easily checked by explicit computation, but condition (4) may be checked by
the same method as in Example 1.1.1.3. In the present case, J(v) = (∂fi/∂Tj)(v)
is pointwise of rank-r on Spec A, so (by Nakayama’s lemma) it is a surjective linear
map An → Ar.

The following elementary lemma partly justifies the preceding definitions.

Lemma 1.1.1.6. A map f : X → S between algebraic C-schemes is étale if and
only if fan is a local isomorphism of analytic spaces. Likewise, f is smooth if and
only if fan is smooth.

A local isomorphism is a map that is an open immersion locally on the source.

Proof. To pass from f to fan we use condition (1), and to pass from fan to f
we use condition (3) and the fact that analytification commutes with formation of
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complete local rings. Alternatively, with a bit more technique, both the algebraic
and analytic cases may be checked by considering (4) with A a finite local C-algebra
(analytification does not affect the set of points with values in such rings). �

This lemma shows that étale morphisms in algebraic geometry are a good
analogue of the local isomorphisms in complex-analytic geometry. The concept of
local analytic isomorphism is topological in the sense that if X is an analytic space
and U → X is a map of topological spaces that is a local homeomorphism, then
there exists a unique structure of analytic space on U such that U → X is a local
analytic isomorphism. Hence, the category of analytic X-spaces U → X with étale
structure map is equivalent to the category of topological spaces endowed with a
local homeomorphism to X; this equivalence identifies open immersion with open
embeddings and analytic fiber products with topological fiber products.

1.1.2. Topological motivation for sites. Let us say that a map of topolog-
ical spaces is étale if it is a local homeomorphism. Étale maps in topology are more
general than open embeddings, yet for the purposes of sheaf theory it is not neces-
sary to restrict attention to open subsets and covers by open subsets. As a warm-up
to the étale topology of schemes, let us briefly consider the following definition (that
will arise naturally in the comparison isomorphisms between topological and étale
cohomology).

Definition 1.1.2.1. Let X be a topological space. The topological étale site of
X consists of the following data:

(1) the category Xét of étale X-spaces U → X;
(2) the rule τ that assigns to each U in Xét a distinguished class τU of étale

coverings: τU is the collections of maps {fi : Ui → U} in Xét such that
∪i∈Ifi(Ui) = U .

The étale coverings satisfy the properties that constitute the axioms for a
Grothendieck topology on the category Xét, but rather than digress into a discussion
of general sites and Grothendieck topologies (a site is a category endowed with a
Grothendieck topology), we shall merely illustrate the key features in the concrete
example of the topological étale site. The interested reader is referred to [6, Ar-
cata, Ch. I] and [3, §6.1–6.2, §8.1] (and the references therein) for basic generalities
concerning Grothendieck topologies and the related theory of descent.

A presheaf of sets on Xét is, by definition, a contravariant functor F : Xét →
Set, and a morphism between presheaves of sets on Xét is (by definition) a natural
transformation.

The main point is that the role of overlaps in ordinary sheaf theory is replaced
with fiber products: a presheaf F on Xét is a sheaf if, for all U in Xét and all
coverings {Ui → U} in τU , the sheaf axiom holds: the diagram of sets

F (U)→
∏

i

F (Ui)⇒
∏
i,i′

F (Ui ×U Ui′)

is exact in the sense that the first map is an injection whose image consists of those
I-tuples (ci) ∈

∏
F (Ui) such that F (pr1)(ci) = F (pr2)(ci′) in F (Ui×U Ui′) for all

i, i′ ∈ I. The category of sheaves of sets on Xét is denoted Ét(X), and is called the
(étale) topos on Xét; strictly speaking, we should say that F is a sheaf on (Xét, τ)
rather than on Xét, but no confusion seems likely. The category Ét(X) admits
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arbitrary products, has an initial object (the empty sheaf), and has a final object
(the sheaf X = HomXét(·, X) that assigns the singleton {∅} to all objects in Xét).

Observe that if we define the ordinary topological site by replacing étale maps
with open embeddings, then the resulting category Xtop is (equivalent to) the cat-
egory of open subsets in X, its coverings are the usual coverings of one open by
others, and the resulting topos Top(X) (i.e., category of sheaves of sets on Xtop

with respect to the specified coverings) is the usual category of sheaves of sets on
the topological space X. The final and initial objects in Top(X) are described as
in the case of Ét(X).

Here is an important point: the categories Xét and Xtop are not equivalent,
since objects in Xét can have non-trivial automorphisms, yet the associated cate-
gories of sheaves are the same:

Lemma 1.1.2.2. The categories Ét(X) and Top(X) are equivalent.

Proof. We define functors in both directions and leave it to the reader to
check via the sheaf axioms that these are naturally quasi-inverse to each other. For
any F in Ét(X), we define a sheaf ι∗F on the usual topological space X by only
evaluating on opens in X. If F is in Top(X), then we define ι∗F ∈ Ét(X) as
follows: its value on any h : U → X is Γ(U, h∗F ), where h∗F denotes the usual
topological pullback. �

The global-sections functor F  F (X) on Top(X) is isomorphic to the functor
HomTop(X)(X0, ·) of morphisms from the final object X0 = HomXtop(·, X), and the
subcategory of abelian sheaves on Xtop is the subcategory of abelian groups in
Top(X), where an abelian group in a category C admitting finite products and a
final object e is an object G equipped with maps fitting into the diagrams that
axiomatize a commutative group (the identity is a map e → G); i.e., the functor
HomC(·, G) is endowed with a structure of group-functor. We conclude that sheaf
cohomology on the topological space X can be intrinsically described in terms of the
category Top(X): it is the derived functor of the restriction of HomTop(X)(X0, ·)
to the subcategory of abelian groups in Top(X), where X0 is the final object in
Top(X). Since Ét(X) is equivalent to Top(X), we can therefore construct sheaf
cohomology in terms of Ét(X).

To be precise, the global-sections functor on Ét(X) is the functor F  F (X),
and this is clearly the same as the functor of morphisms from the final object X.
The restriction of this functor to the category of abelian groups in Ét(X) must have
sheaf-cohomology as its right derived functor via the equivalence between Ét(X)
and Top(X). Even though Xét is not equivalent to Xtop, both sites give rise to
the same theories of abelian sheaf cohomology. Hence, when considering sheaf
cohomology, the category of sheaves of sets is more important than the underlying
space.

1.1.3. The étale topology and étale topos on a scheme.

Definition 1.1.3.1. Let S be a scheme. The étale site of S consists of
(1) the category Sét of étale S-schemes U → S;
(2) for each U in Sét, the class τU of étale coverings: collections {fi : Ui → U}

of (necessarily étale) maps in Sét such that the (necessarily open) subsets
fi(Ui) ⊆ U are a set-theoretic cover of U .
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Definition 1.1.3.2. A presheaf (of sets) F on Sét, or an étale presheaf on S,
is a contravariant functor from Sét to the category Set of sets.

If f : S′′ → S′ is a morphism in Sét and c ∈ F (S′) is an element, then we
usually write c|S′′ to denote (F (f))(c) ∈ F (S′′).

Definition 1.1.3.3. A sheaf (of sets) on the étale site of S is a presheaf F on
Sét that satisfies the sheaf axiom: for S′ in Sét and any étale covering {S′i} of S′,
the diagram

F (S′)→
∏

i

F (S′i)⇒
∏
(i,i′)

F (S′ii′)

(with S′ii′ = S′i ×S′ S′i′) is exact in the sense that the left map is an injection onto
the set of those I-tuples (ci) ∈

∏
F (S′i) such that ci|S′

ii′
= ci′ |S′

ii′
in F (S′ii′) for

all i, i′ ∈ I.

The category of sheaves of sets on Sét is denoted Ét(S), and it is called the étale
topos of S. This category admits arbitrary products, and it has both a final object
(with value {∅} on all S′ ∈ Sét) and an initial object (the functor HomSét(·, S)).
The abelian sheaves on Sét are the abelian-group objects in the étale topos; these
are sheaves with values in the category of abelian groups, and this subcategory of
Ét(S) is denoted Ab(S). The final object in Ab(S) is the same as the final object
in Ét(S), but the initial objects are not the same.

Example 1.1.3.4. Let F be an object in the étale topos Ét(S). Consider the
empty cover of the empty object. Since a product over an empty collection in Set
is (by universality) the final object {∅} in Set, we conclude that F (∅) = {∅} and
that F naturally converts disjoint unions into products. The reader who finds this
reasoning too bizarre can take the condition F (∅) = {∅} as part of the definition
of a sheaf of sets.

If j : U → S is an étale map, we define the functor j∗ : Ét(S) → Ét(U) to
send any F in Ét(S) to the étale sheaf j∗F : U ′ → F (U ′) on U , where an étale
U -scheme U ′ → U is viewed as an étale S-scheme via composition with j. It is
readily checked that j∗F is a sheaf on Uét, and we usually denote it F |U .

Example 1.1.3.5. Let F and G be objects in Ét(S). As in ordinary sheaf
theory, we can define a presheaf

H om(F ,G ) : U 7→ HomÉt(U)(F |U ,G |U )

on Sét, and the sheaf axioms ensure that this is a sheaf. If F and G are abelian
sheaves, then we can carry out a similar construction via

U 7→ HomAb(U)(F |U ,G |U );

this is also denoted H om(F ,G ) when the context makes the intended meaning
clear (i.e., Hom’s of abelian sheaves or of sheaves of sets).

Definition 1.1.3.6. Let f : S′ → S be a map of schemes. The pushforward
functor f∗ : Ét(S′)→ Ét(S) is

(f∗F ′)(U) = F (S′ ×S U)

for étale S-schemes U ; the presheaf f∗F is a sheaf.
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When f : S′ → S is étale, it is clear that there is a bifunctorial isomorphism

HomÉt(S′)(f
∗F ,F ′) ' HomÉt(S)(F , f∗F

′),

with f∗ defined as in Example 1.1.3.4. There are evident isomorphisms (f1 ◦f2)∗ '
f1∗◦f2∗ for a composite of scheme maps f1 and f2, and pushforward also makes sense
for sheaves of abelian groups. Observe that the forgetful functors Ét(S) → Ab(S)
for varying S are compatible with pullback and pushforward functors; from the
viewpoint of sheaf theory, the pair of adjoint functors (f∗, f∗) is more important
than the geometric map f .

Let us continue with more basic examples.

Example 1.1.3.7. If S = Spec k for a separably closed field k, then étale k-
schemes are disjoint unions of copies of S. Thus, Sét is equivalent to the category
of sets (the equivalence being defined by the connected-component functor π0), and
for any F in Ét(S) and any object X =

∐
i∈I S we have

F (X) =
∏
i∈I

F (S) = HomSet(I,F (S)) = HomSet(π0(X),F (S)).

It follows that the global-sections functor F  F (S) is an equivalence of categories
from the étale topos on S = Spec k to the category Set of sets.

An étale cover {S′′j → S′}j∈J is a refinement of an étale cover {S′i → S′}i∈I if
there exists a map t : J → I and S′-maps fj : S′′j → S′t(j) for all j ∈ J ; if J is a
finite set then this is a finite refinement. We call a choice of t and fj ’s a refinement
map between the two covers.

Example 1.1.3.8. An fpqc map of schemes is a map f : T → S that is faithfully
flat and quasi-compact (fidèlement plat et quasi-compact); such maps are quotient
maps for the Zariski topology [17, 2.3.12], and an fpqc cover of S is a collection of
flat quasi-compact maps fi : Si → Ui to Zariski-opens Ui ⊆ S such that any quasi-
compact open in S is set-theoretically covered by finitely many fi(Si)’s. Since étale
maps are open, every étale cover {Si} of a quasi-compact scheme S admits a finite
refinement {S′j} whose constituents are quasi-compact (and even affine) schemes.
It follows that any étale cover of an arbitrary scheme S admits a refinement that
is also an fpqc cover.

The reason for interest in fpqc covers is Grothendieck’s fundamental discovery
that for any S-scheme X, the functor X(T ) = HomS(T,X) on the category of
S-schemes satisfies the sheaf axioms with respect to fpqc covers of any S-scheme
S′ [3, 8.1/1]. That is, if {Ti} is an fpqc covering of an S-scheme T , the diagram of
sets

X(T )→
∏

i

X(Ti)⇒
∏
(i,i′)

X(Ti ×T Ti′)

is exact. It follows from this fact and elementary considerations with the Zariski
topology that for any S-scheme X, the functor X : Sét → Set is a sheaf. Such
sheaves play a crucial role in étale sheaf theory.

Example 1.1.3.9. It is not generally true (in the non-noetherian case) that
an étale cover {Si} of a quasi-compact scheme S admits a finite refinement {S′j}
that is fpqc and such that the overlaps S′j ×S S′j′ are also quasi-compact. For a
counterexample, let A be a ring such that the topological space underlying Spec A is
not noetherian (e.g., an infinite product of nonzero rings). As in any non-noetherian
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topological space, there must exist an open U in Spec A that is not quasi-compact.
Let S be the gluing of Spec A to itself along U , and let S1 and S2 be the two copies
of Spec A that form a Zariski-cover of S.

Suppose that the étale cover {S1, S2} of S admits a finite refinement {S′j} such
that all S′j ×S S′j′ are quasi-compact. Let V1 be the disjoint union of the S′j ’s that
factor through S′1 and let V2 be the disjoint union of the S′j ’s that factor through
S′2 (some S′j ’s may contribute to both V1 and V2). Since V1×S V2 is a finite disjoint
union of quasi-compact schemes, it is quasi-compact. The refinement property
implies that Vi surjects onto Si, and so V1×SV2 surjects onto S1×SS2 = S1∩S2 = U .
This is inconsistent with the fact that U is not quasi-compact.

By Yoneda’s lemma, the functor Sét → Ét(S) defined by X  X = HomS(·, X)
is fully faithful; sheaves arising as X for étale S-schemes X are called representable.
The full-faithfulness implies that the natural map

F (X)→ HomÉt(S)(X,F )

is bijective for all étale S-schemes X. In particular, the functor X  X on Sét

carries coproducts (i.e., disjoint unions) to coproducts. The full-faithfulness of
X  X breaks down if we consider X not étale over S (e.g., S = SpecC, X = A1

C).
The site Sét has a final object, namely S, and its associated sheaf S evaluates

to a singleton {∅} on all objects. Thus, we see that S is the final object in the étale
topos on S. The functor HomÉt(S)(S,F ) is naturally isomorphic to the functor
F  F (S), and this functor

F  HomÉt(S)(S,F ) = F (S)

is the global-sections functor.

1.1.4. Étale sheaves and Galois modules. Let S = Spec k for a field k.
For a choice of separable algebraic closure ks of k, we shall explain the functorial
equivalence between the étale topos on Spec k and the category of (left) discrete
Gal(ks/k)-sets. This will imply that Galois cohomology for ks/k computes sheaf
cohomology on Ab(Spec k).

Definition 1.1.4.1. Let G be a profinite group. A (left) discrete G-set is a set
M equipped with a left action of G that is continuous for the discrete topology on
M and for the profinite topology on G; i.e., each m ∈M is invariant under an open
subgroup of G. If M is an abelian group and the G-action respects this structure,
then M is a discrete G-module.

When G is presented as a Galois group, the terminology discrete Galois-set (or
discrete Galois-module) will be used.

Remark 1.1.4.2. The abelian category of discrete G-modules admits enough
injectives, and so admits a good theory of derived functors for left-exact functors.

To construct injectives, let CG and Cdisc
G denote the categories of G-modules

and discrete G-modules. The exact inclusion functor Cdisc
G → CG has a right adjoint

given by discretization: for any M in CG, Mdisc is the G-submodule of elements in
M fixed by an open subgroup of G. Since discretization has an exact left adjoint,
it carries injectives to injectives; concretely, HomCdisc

G
(N, Idisc) = HomCG

(N, I) is
exact in the discrete N for any injective G-module I. Thus, M in Cdisc

G embeds
into the injective object Idisc, where I is an injective object in CG containing M .
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Consider the family of functors

H̃•(G, M) = lim−→H•(G/H,MH),

where H runs over open normal subgroups in G; this is a δ-functor in M , but the
terms in the limit are generally not δ-functors in M . For such H, the functor of
H-invariants carries injectives in Cdisc

G to injectives in CG/H , and so H̃•(G, ·) is
erasable. Thus, this δ-functor is the derived functor of M  H̃0(G, M) = MG.

We are going to prove that for a field k equipped with a choice of separable
closure ks, the category of discrete Gal(ks/k)-sets is equivalent to the étale topos
on Spec k, and that this equivalence identifies the functor of Gal(ks/k)-invariants
with the global-sections functor. Thus, once we have set up the general definition
of étale sheaf cohomology, it will follow that Galois cohomology for ks/k computes
sheaf cohomology on Ab(Spec k).

Let k a field, but do not yet make a choice of separable closure. Let F be an
étale sheaf of sets on Spec k. Since an étale k-scheme X is a disjoint union

∐
Xi,

where Xi = Spec ki for finite separable field extensions ki/k, the sheaf axioms imply

F (X) =
∏

F (Xi) =
∏

F (Spec ki).

This allows us to focus attention on the restriction of F to the full subcategory of
objects of the form Spec k′ for k′ finite and separable over k. By considering how
F (Spec k′) varies functorially in the extension k′/k, we will be led to a discrete
Galois-set that encodes F .

If g : k′ → k′′ is a morphism between finite separable extensions of k, then
we have a morphism Spec g : Spec k′′ → Spec k′ in (Spec k)ét, and so there is an
induced morphism of sets

F (Spec g) : F (Spec k′)→ F (Spec k′′)

with F (Spec h) ◦ F (Spec g) = F (Spec(h ◦ g)) for h : k′′ → k′′′ another such
map over k; the contravariance of F and Spec cancel out. We will usually write
such functorial maps as F (g) instead of F (Spec g), so this notation is covariant in
g. Since Spec g is a covering map, it follows from the sheaf axioms that F (g) is
injective.

Consider the special case when ι : k′ → k′′ over k is Galois. The group

Gal(k′′/k′) = Aut(Spec k′′/ Spec k′)opp

has a natural left action on F (Spec k′′), and the injective map

F (ι) : F (Spec k′) ↪→ F (Spec k′′)

is invariant for this action. To exploit this, consider the diagram

Spec k′′ ×Spec k′ Spec k′′ ⇒ Spec k′′ → Spec k′

with natural projections on the left. This diagram is identified with the diagram

(1.1.4.1)
∐

g∈Gal(k′′/k′)

Spec k′′ ⇒ Spec k′′ → Spec k′

where the two maps on the left are the tuple of identity maps on Spec k′′ and the
map that is Spec g on the gth coordinate for all g; explicitly, this identification of
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diagrams is obtained via the isomorphism

k′′ ⊗k′ k′′ '
∏

g∈Gal(k′′/k′)

k′′

x⊗ y 7→
(
xg(y)

)
of k′′-algebras, where k′′ ⊗k′ k′′ is a k′′-algebra via the left tensor-factor and

∏
k′′

is a k′′-algebra via the diagonal action.
Since we have identified (1.1.4.1) with a covering diagram for an étale cover,

the sheaf axioms yield an exact sequence of sets

(1.1.4.2)
∏
g

F (Spec k′′)⇔ F (Spec k′′)← F (Spec k′)

where the top map on the left is the diagonal map s 7→ (s, . . . , s) and the bot-
tom map is the action-map s 7→ (gs)g∈G. Thus, exactness of (1.1.4.2) says that
F (Spec k′)→ F (Spec k′′) is injective and

F (Spec k′) = F (Spec k′′)Gal(k′′/k′).

Now choose a separable algebraic closure ks of k, and let Σ be the set of finite
Galois extensions of k inside ks. For each k′ ∈ Σ, we have a set F (Spec k′) with a
left action of Gal(k′/k), and for k′′ ∈ Σ containing k′ inside of ks we have an injec-
tion F (Spec k′) ↪→ F (Spec k′′) identifying F (Spec k′) with F (Spec k′′)Gal(k′′/k′).
Moreover, the map F (Spec k′) → F (Spec k′′) is compatible with Galois actions
via the natural surjection Gal(k′′/k)� Gal(k′/k). Thus,

MF = lim−→
k′∈Σ

F (Spec k′)

has a natural structure of discrete left Gal(ks/k)-set. Furthermore, the natural
map F (Spec k′)→MF is an isomorphism onto M

Gal(ks/k′)
F as Gal(k′/k)-sets. This

constructs the functor considered in the following theorem.

Theorem 1.1.4.3. The functor F  MF from Ét(Spec k) to the category of
discrete left Gal(ks/k)-sets is an equivalence of categories.

Remark 1.1.4.4. This theorem is analogous to the description of local systems
via monodromy representations of fundamental groups (for reasonable topological
spaces); see §??. The choice of ks corresponds to the choice of a base point.

Proof. Using the sheaf axioms and the fact that every finite separable ex-
tension k′/k is covered by a Galois extension of k, we see that if F and G are
two étale sheaves on Spec k, then to give a map F → G is the same as to specify
a map F (Spec k′) → G (Spec k′) for all finite Galois extensions k′ of k with the
requirement that these maps be functorial in k′/k. In particular, these maps are
required to be compatible with the action of Gal(k′/k).

We next claim that such functorial data for all finite Galois extensions of k is
equivalent to specifying maps ϕk′ : F (Spec k′) → G (Spec k′) of Gal(k′/k)-sets for
each k′ ∈ Σ, functorially with respect to inclusions k′ ⊆ k′′ inside of ks. To see
this equivalence, first note that for any finite Galois extension K ′/k we can choose
a k-isomorphism σ′ : K ′ ' k′ for a unique k′ ∈ Σ, with σ′ unique up to σ′  g ◦ σ′

for g ∈ Gal(k′/k), and so the composite

ϕK′ : F (Spec K ′) '
F (σ′) // F (Spec k′)

ϕk′ // G (Spec k′) '
G (σ′)−1

// G (Spec K ′)
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is well-defined (i.e., independent of σ′) since

G (σ′)−1 ◦ G (g)−1 ◦ ϕk′ ◦F (g) ◦F (σ′) = G (σ′)−1 ◦ ϕk′ ◦F (σ′)

by Gal(k′/k)-equivariance of ϕk′ . To check that K ′  ϕK′ is natural on the
category of finite Galois extensions K ′/k, for an arbitrary k-map j : K ′ → K ′′

between finite Galois extensions of k we can find k′, k′′ ∈ Σ and an inclusion ι :
k′ ⊆ k′′ inside of ks and k-isomorphisms σ′ : K ′ ' k′, σ′′ : K ′′ ' k′′ carrying j over
to the inclusion k′ ⊆ k′′. The outside edge of

(1.1.4.3) F (Spec K ′)
F (σ′) //

F (j)

��

F (Spec k′)
ϕk′ //

F (ι)

��

G (Spec k′)

G (ι)

��

G (σ′)−1

// G (Spec K ′)

G (j)

��
F (Spec K ′′)

F (σ′′) // F (Spec k′′)
ϕk′′ // G (Spec k′′)

G (σ′′)−1

// G (Spec K ′′)

therefore commutes, since the outer squares commute (by functoriality of F and
G ) and the inner square commutes (by compatibility of ϕk′ , ϕk′′ with respect to
the inclusion ι within ks). Since the composites along the rows in (1.1.4.3) are ϕK′

and ϕK′′ respectively, we get the desired naturality of ϕ : F → G .
We conclude that to give a map F → G as étale sheaves is the same as to give

a map MF → MG as discrete Gal(ks/k)-sets. That is, the functor F  MF is
fully faithful.

Now let M be a discrete Gal(ks/k)-set. We will construct a sheaf FM on
(Spec k)ét in a manner that is functorial in M , and this provides a functor in the
other direction. For any abstract finite separable extension k′ over k, define

FM (Spec k′) =

{
(mi) ∈

∏
i:k′↪→ks

M | mg(i) = g(mi) for all g ∈ Gal(ks/k)

}
.

Here, i runs through the finitely many k-embeddings of k′ into ks. Note that mi

lies in MGal(ks/i(k′)). For any k′ ∈ Σ, projection to the coordinate labeled by the
inclusion k′ ↪→ ks arising from membership in Σ defines a bijection

FM (Spec k′) 'MGal(ks/k′).

For any k-embedding j : k′ ↪→ k′′ of finite separable extensions of k, the map

(1.1.4.4) FM (j) : FM (Spec k′)→ FM (Spec k′′)

defined by (FM (j)((mi′)))i′′ = mi′′◦j is injective because every i′ : k′ ↪→ ks over k
does have the form i′′◦j for some i′ : k′ ↪→ ks over k. When k′ = k′′ is a finite Galois
extension of k, then the action of Gal(k′/k) on FM (Spec k′) makes the isomorphism
of sets FM (Spec k′) 'MGal(ks/k′) into an isomorphism of Gal(k′/k)-sets. Defining

FM

(∐
Spec ki

)
=

∏
FM (Spec ki),

we have defined a presheaf FM on (Spec k)ét.
The presheaf FM is separated (i.e., FM (X) →

∏
FM (Xi) is injective for

every cover {Xi} of an object X in (Spec k)ét) because the maps (1.1.4.4) are
injective. To check the gluing axiom for the separated FM , it suffices to consider
a cofinal system of covering situations. By connectedness considerations for the
objects in our site, we are reduced to checking the gluing axiom in the case of a
covering Spec k′′ → Spec k′ with k′′/k′ a finite Galois extension inside of ks. We just
need to show that the injection FM (Spec k′) ↪→ FM (Spec k′′) is an isomorphism
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onto the Gal(k′′/k′)-invariants. This is immediate from the way that we defined
FM (Spec k′)→ FM (Spec k′′) and the fact that two k-embeddings k′′ ⇒ ks coincide
on k′ if and only if they are related by the action of some g ∈ Gal(k′′/k′).

We conclude that FM is a sheaf on (Spec k)ét, and we have isomorphisms

FM (Spec k′) 'MGal(ks/k′)

for all k′ ∈ Σ; these isomorphisms are compatible with the action of Gal(k′/k) and
with the inclusions k′ ↪→ ks as subfields of ks. We therefore have a canonical injec-
tion MFM

↪→ M compatible with with Gal(ks/k)-actions. This is an isomorphism
because every element of M is fixed by some Gal(ks/k′) for some finite extension
k′ of k inside of ks.

When M = MF , the above construction yields a Gal(k′/k)-compatible bijection

(1.1.4.5) FMF
(Spec k′) 'M

Gal(ks/k′)
F = F (Spec k′)

for all k′ ∈ Σ. The sheaf axioms ensure that these bijections are compatible with
inclusions inside ks, so (1.1.4.5) uniquely extends to an isomorphism of sheaves
FMF

' F . Thus, our constructions are quasi-inverse to each other. �

The equivalence between Ét(Spec k) and the category of discrete Gal(ks/k)-sets
must carry final objects to final objects: in Ét(Spec k), the final object is the con-
stant sheaf with value {∅} on all objects in (Spec k)ét; in the category of discrete
Gal(ks/k)-sets, the final object is {∅} with a trivial Galois-action. The functors
co-represented by these objects are the global-sections functor and the functor of
Galois-invariants. Restricting to the induced equivalence between the subcategories
of abelian-group objects, we thereby get an equivalence between Ab(Spec k) and
the abelian category of discrete Gal(ks/k)-modules such that the left-exact global-
sections functor goes over to the left-exact functor of Galois-invariants. Since profi-
nite group-cohomology for Gal(ks/k) is the derived functor of the Galois-invariants
functor on the category of discrete Galois-modules (see Remark 1.1.4.2), we get:

Corollary 1.1.4.5. Galois cohomology for ks/k computes the derived functor
of the global-sections functor on Ab(Spec k).

Corollary 1.1.4.6. The functor X  X is an equivalence of categories from
(Spec k)ét to Ét(Spec k); that is, the category of étale k-schemes is equivalent to
the étale topos on Spec k. Moreover, if ks/k is a separable closure then the discrete
Galois-set associated to X is X(ks) equipped with its usual left Galois-action.

Proof. If X is a finite étale k-scheme and ks/k is a separable closure, then
the sheaf X corresponds to a finite discrete Gal(ks/k)-set; this set is X(ks) with its
usual left Galois action. More generally, since any étale k-scheme is a disjoint union
of finite étale k-schemes and the functor X  X takes coproducts to coproducts,
it follows that the discrete Gal(ks/k)-set associated to X for any étale k-scheme X
is X(ks) with its usual left Galois action.

Any discrete Gal(ks/k)-set is a disjoint union of finite orbits, and an orbit with
a chosen element is isomorphic to Gal(ks/k)/Gal(k′/k) for a unique finite extension
k′/k contained in ks. This is the discrete Galois set associated to X = Spec k′, and
so the compatibility of X  X with respect to coproducts implies that every étale
sheaf on Spec k is representable. �
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1.1.5. Sheafification and diagram-limits. For a general scheme S, we wish
to construct operations in the étale topos Ét(S) as if it were the category of sheaves
of sets on an ordinary topological space. For example, we wish to have available
operations such as the image of a morphism, the quotient by an equivalence relation,
and limits (both direct and inverse). Most of these constructions require the use of
sheafification, and so the first issue we need to address is sheafification.

Definition 1.1.5.1. A sheafification of a presheaf F : Sét → Set is a sheaf
F+ in Ét(S) equipped with a natural transformation F → F+ with the universal
property that any natural transformation F → G to a sheaf on Sét factors through
a unique map F+ → G .

The sheafification of a presheaf F on Sét may be constructed as follows. For
any U in Sét and any étale cover U = {Ui} of U , let H0(U,F ) be the set of I-tuples
(si) ∈

∏
F (Ui) such that si|Uij

= sj |Uij
for all i and j, where Uij = Ui ×U Uj . If

U′ is a refinement of U, any choice of refinement map between these covers defines
a map H0(U,F )→ H0(U′,F ) that is independent of the choice of refinement map,
and so by taking U to run over a cofinal set of étale covers of U we may form the
direct limit F0(U) of the H0(U,F )’s. It is clear that U 7→ F0(U) is a separated
presheaf and that any map F → G to a sheaf uniquely factors through the evident
map F → F0. Thus, to construct F+ we may suppose F is separated. In this
case, we apply the same process again, and if F is separated then F0 is a sheaf.

For our purposes, what matters is not the explicit construction process, but the
universal property and the following properties that emerge from the construction:

(1) for any s ∈ F+(U), there exists an étale cover {Ui} of U and an element
si ∈ F (Ui) mapping to s|Ui ∈ F+(Ui);

(2) if s, t ∈ F (U) have the same image in F+(U) then there exists an étale
cover {Ui} of U such that s|Ui

= t|Ui
in F (Ui) for all i.

In particular, if a presheaf map F → G is a monomorphism in the sense that
F (U) → G (U) is injective for all U ∈ Sét, then F+(U) → G +(U) is injective for
all U . More generally, an exact diagram of presheaves of sets

F ⇒ F ′ → F ′′

sheafifies to an exact diagram of sheaves of sets.
In Ét(S), we may use sheafification to construct the image of a map and the

quotient by an equivalence relation: these are defined by sheafifying the evident set-
theoretic presheaf construction, exactly as in ordinary sheaf theory. The expected
universal properties carry over, and a similar technique works in Ab(S) to construct
images and cokernels.

Here is a more subtle construction. Let j : U → S be an étale morphism;
we seek to construct a functor jSet

! : Ét(U) → Ét(S) that is left-adjoint to the
restriction functor j∗ : Ét(S)→ Ét(S′); i.e.,

HomÉt(S)(j
Set
! F ′,F ) ' HomÉt(U)(F

′, j∗F ),

and we also want such an adjoint jAb
! between the categories Ab(U) and Ab(S).

Let us first recall the analogues in ordinary sheaf theory for an open embedding
j : U ↪→ S. The functor jAb

! is the extension-by-zero, and the functor jSet
! is the

extension-by-∅. These are constructed by sheafifying the presheaf that sends V to
F (V ) when V ⊆ U and otherwise sends V to the initial object 0 (resp. ∅) in the
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target category (abelian groups or sets). A uniform description that covers both
cases is to say that we sheafify the presheaf

V  
∐

f∈HomS(V,U)

F (V
f→ U),

since the coproduct is taken over the singleton when V ⊆ U and is taken over the
empty set (and so assigns the initial object to V ) when V 6⊆ U .

The analogous constructions in étale sheaf theory requires slightly more care
than in the classical case; the extra complications are due to the fact that an étale
S-scheme V may factor through j : U → S in more than one way, whereas such a
factorization in ordinary topology for an open embedding j is unique if it exists.

Definition 1.1.5.2. With notation as above, jSet
! : Ét(U) → Ét(S) sends F

to the sheafification of the presheaf

S′  
∐

f∈HomS(S′,U)

F (S′
f→ U).

The functor jAb
! : Ab(U) → Ab(S) is defined by the same categorical operation,

where coproducts are taken in the category of abelian groups (i.e., direct sums).

It is straightforward to check that the functors jSet
! and jAb

! are left-adjoint to
j∗, though note that they are not compatible with the forgetful functors Ab(U)→
Ét(U) and Ab(S) → Ét(S) because coproducts and initial objects in the category
of abelian groups are not the same as in the category of sets. When the context
makes the intended meaning clear, we will simply write j! to denote either functor.

As a consequence of these concrete constructions, arguments as in ordinary
sheaf theory prove several properties in both the étale topos Ét(S) and its subcat-
egory of abelian groups Ab(S):

• the monic maps are precisely the subsheaf inclusions (and so jSet
! and jAb

!

carry monics to monics for any étale j);
• the epic maps are precisely the étale-local surjections;
• the epic monomorphisms are precisely the isomorphisms.

In particular, Ab(S) is an abelian category.
For later purposes, it is convenient to have available various kinds of limits, of

a type more general than limits over directed sets. Such general limits will be used
to formulate important exactness properties for pullback-functors on categories of
sheaves of sets. Here are the limits we wish to consider:

Definition 1.1.5.3. Let C be a category, and let I be a diagram in Set with
objects indexed by a set; consider I as a category. We define an I-indexed diagram
D in C to be a covariant functor D : I → C (this is just a diagram in C with objects
indexed by ob(I) and morphisms arising functorially from those in I). An inverse
limit of D is a final object in the category of pairs (L, {φi : L → D(i)}i∈ob(I))
consisting of an object L in C and maps φi such that

L
φi //

φi′ !!B
BB

BB
BB

B D(i)

D(f)

��
D(i′)
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commutes for all maps f : i→ i′ in I.
A direct limit is an initial object among pairs (L, {φi : D(i) → L}i∈ob(I))

satisfying the commutativity of diagrams

D(i)
φi //

D(f)

��

L

D(i′)

φi′

==||||||||

for all maps f : i→ i′ in I.
If the set of objects and arrows in I is finite, the corresponding inverse limit

(resp. direct limit) is a finite inverse limit (resp. finite direct limit).

Example 1.1.5.4. If the category I is a set with only identity arrows, then
an inverse limit over an I-indexed diagram is a product indexed by ob(I). The
corresponding direct-limit concept is that of coproduct indexed by ob(I).

Suppose I is the category on a partially ordered set (with a single arrow from i
to i′ when i ≤ i′), and require that I be cofiltering (resp. filtering) in the sense that
finite subsets have a common lower bound (resp. upper bound). In this case, the
corresponding concept of inverse limit (resp. direct limit) for I-indexed diagrams
on C is called a filtered inverse limit (resp. filtered direct limit). These are the
limits encountered in basic algebra.

Since any (small) diagram in Set is a rising union of finite diagrams, any inverse
limit (resp. direct limit) can be expressed as a filtered inverse limit of finite inverse
limits (resp. filtered direct limit of finite direct limits), provided finite direct and
inverse limits exist in C. Consequently, considerations with limits generally reduce
to two kinds: finite limits and (co)filtered limits. In general, by inducting on the
size of a diagram, we see that a category admitting finite products and finite fiber
products admits all finite inverse limits, and a category admitting finite coproducts
and finite pushouts (the opposite of a finite fiber product) admits all finite direct
limits. In an abelian category, a finite inverse limit can always be expressed as the
kernel of a morphism, while a finite direct limit can always be expressed as the
cokernel of a morphism.

Example 1.1.5.5. Let S be a scheme. The category Ét(S) admits all direct
limits and all inverse limits. Indeed, the constructions on the set-theoretic level in
ordinary sheaf theory carry over verbatim, using sheafification for direct limits.

Definition 1.1.5.6. Let C be a category admitting finite products and finite
fiber products. Let φ1, φ2 : F ′ → F ′′ be maps in C. A diagram F

ι−→ F ′ ⇒ F ′′

resting on the φj ’s such that φ1 ◦ ι = φ2 ◦ ι is an equalizer diagram (or an equalizer
kernel) if the commutative square

F
ι×ι //

φ

��

F ′ ×F ′

φ1×φ2

��
F ′′

∆
// F ′′ ×F ′′

is cartesian, where φ = φ1 ◦ ι = φ2 ◦ ι.
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Yoneda’s lemma translates this definition as follows: for every object T of C,
the induced diagram of sets

Hom(T,F )→ Hom(T,F ′)⇒ Hom(T,F ′′)

is exact. Equalizer diagrams in general categories play the role of left-exact se-
quences in abelian categories.

The purpose of the preceding general nonsense is to enable us to make the
following definition.

Definition 1.1.5.7. Let F : C → C ′ be a covariant functor between two
categories that admit finite direct limits and finite inverse limits. The functor F is
left exact if it commutes with formation of finite inverse limits, and it is right exact
if it commutes with formation of finite direct limits. It is exact if it is both left and
right exact.

It is straightforward to check that a left exact functor commutes with formation
of equalizer kernels, and if C and C ′ are abelian categories then a covariant additive
functor F : C → C ′ is left (resp. right) exact in the sense of the preceding definition
if and only if it is exact as usually defined in the theory of abelian categories.

Example 1.1.5.8. The functor f∗ : Ét(S′)→ Ét(S) defined by a map f : S′ →
S commutes with the formation of arbitrary inverse limits, since presheaf products
and presheaf fiber-products carry sheaves to sheaves. In particular, f∗ is left exact.
When f is étale, we defined a left adjoint f∗ : Ét(S) → Ét(S′). It follows from
adjointness that f∗ must commute with arbitrary direct limits, and so is right exact.
The construction of f∗ shows that f∗ also commutes with the formation of finite
products and finite fiber products. Thus, f∗ is exact.

1.1.6. Pullback of étale sheaves. Let f : S′ → S be a map of schemes.
Our aim is to prove that f∗ always has a left adjoint f∗, and that this adjoint is
exact. As in our construction of j! for an étale map j, the construction of f∗ is
more delicate than in ordinary sheaf theory because there can be more than one
map between objects in Sét. To construct f∗ and to see that it yields an exact left
adjoint, we proceed in two steps.

Step 1. Consider commutative diagrams of the form

(1.1.6.1) X ′ //

��

X

��

S′
f

// S

with étale right side and fixed étale left side (and of course fixed bottom side).
These diagrams form a category in an evident manner, and this category is co-
filtered in the sense that if X ′ admits maps φ1 and φ2 to étale S-schemes X1 and
X2, then the φj ’s factor through the S-map φ1 × φ2 : X ′ → X1 ×S X2. If κ is
a cardinal that bounds the number of open affines in X ′, then the map X ′ → X
factors through an open subscheme of X that is κ-small in the sense that it can be
covered (in the Zariski topology) by ≤ κ open affines.

Thus, we may form the filtered direct limit of sets

(f−1F )(X ′ → S′) = lim−→ F (X → S)
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by restricting attention to κ-small X, though the choice of κ does not affect this
construction. Note that two diagrams (1.1.6.1) with the same right, bottom, and left
sides (but different top sides) may be compatible via a non-trivial S-automorphism
of X, and so there may be a non-trivial self-map on F (X → S) in the formation
of the above direct limit.

Step 2. Observe that f−1F is defined as a filtered direct limit, and so it is easy
to check that the functor F  f−1F from Ét(S) to presheaves on Sét is compatible
with the formation of finite products and fiber products. The sheafification of the
presheaf f−1F is denoted f∗F , and it follows that f∗ : Ét(S)→ Ét(S′) commutes
with formation of finite products and finite fiber products, and hence commutes
with all finite inverse limits. Thus, f∗ is a left exact functor; it is a left adjoint
to f∗ because in any diagram (1.1.6.1), the map X ′ → X factors uniquely through
X ×S S′ → X over S′ → S. In particular, f∗ is exact. There are obvious concrete
maps f∗f∗F → F and F → f∗f

∗F yielding the bijection

HomÉt(S′)(f
∗F ,F ′) ' HomÉt(S)(F , f∗F

′).

Example 1.1.6.1. The functor Sét → Ét(S) converts base change into pullback.
That is, if X → S is étale then we have an equality f∗(X) = X ×S S′ that is natural
in f and X. This follows from the equality

HomS′(f∗X,F ) = HomS(X, f∗F )

= (f∗F )(X)

= F (X ×S S′)

= HomS′(X ×S S′,F ).

If X is not étale over S then this calculation does not make sense and typically in
such situations f∗X is not easily described in terms of X ×S S′.

Example 1.1.6.2. Let k → k′ be an extension of fields with compatible choices
of separable closures. Let f : Spec k′ → Spec k be the natural map. Under the
equivalence between Galois-sets and étale sheaves of sets, the operation f∗ sends a
discrete Gal(ks/k)-set to a discrete Gal(k′s/k′)-set. via composition of the action-
map with the continuous map Gal(k′s/k′)→ Gal(ks/k).

As in ordinary sheaf theory, we may directly construct natural transformations
f∗ ◦ g∗ → (g ◦ f)∗ that are compatible with triple composites and compatible (via
adjointness) with the evident identification (f ◦ g)∗ ' f∗ ◦ g∗. In particular, the
natural transformation f∗ ◦ g∗ → (g ◦ f)∗ is an isomorphism.

It is an important fact (immediate from the construction) that if F is an
abelian sheaf then f∗F is naturally an abelian sheaf, and that this defines a functor
f∗ : Ab(S) → Ab(S′) that is left adjoint to the left exact f∗ : Ab(S′) → Ab(S).
Moreover, because finite inverse limits of abelian groups coincide with finite inverse
limits on the underlying sets, f∗ retains its left exactness when restricted to a
functor between categories of abelian sheaves. The left exactness of the right-
adjoint f∗ between abelian-sheaf categories therefore implies that f∗ is an exact
functor between abelian-sheaf categories. The exactness of f∗ implies that its left-
adjoint f∗ carries injective abelian sheaves to injective abelian sheaves; this will
underlie the construction of the Leray spectral sequence in étale cohomology.
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Example 1.1.6.3 (Compatibility of extension-by-zero and pullback). Consider
a cartesian diagram of schemes

U ′ f ′ //

j′

��

U

j

��
S′

f
// S

where j and j′ are étale. In both the categories of sheaves of sets and sheaves of
abelian groups, there is a natural adjunction map id → j∗j!, and so we have a
natural transformation

f ′
∗ → f ′

∗
j∗j! ' j′

∗
f∗j!;

by adjointness again, this gives a map ξ : j′!f
′∗ → f∗j!. We claim that ξ is an

isomorphism. The functors j′!f
′∗ and f∗j! are respectively left-adjoint to f ′∗j

′∗ and
j∗f∗, and so the canonical isomorphism between these latter two functors sets up
an isomorphism of their left adjoints. This isomorphism is ξ.

Remark 1.1.6.4 (Topological invariance of the étale site). The étale site (and
hence the étale topos) on a scheme are topological invariants in the following sense.
If f : S′ → S is radicial, integral and surjective (i.e., if it is a universal homeomor-
phism [17, 18.12.11]), then the natural transformations id → f∗f

∗ and f∗f∗ → id
are isomorphisms, and so f∗ and f∗ are inverse equivalences between Ét(S′) and
Ét(S); more generally, the functor X  X ×S S′ is an equivalence between Sét

and S′ét. To establish such an equivalence of étale sites, we may work locally on S,
so we can assume S and S′ are affine; since any integral ring extension is a direct
limit of finite subextensions, consideration with direct limits reduces us to the case
of finite radicial surjections, and this case is treated in [13, Exp. IX, 4.10].

The important special case when S′ is a closed subscheme in S defined by
an ideal sheaf of nilpotent functions is settled in [17, 18.1.2]; this allows us to
harmlessly pass to underlying reduced schemes in many proofs in the étale topology.
For another example, suppose k′ is a purely inseparable field extension of a field k
(e.g., a perfect closure), and let X is a k-scheme. The categories Ét(X) and Ét(X/k′)
are identified via the functors π∗ and π∗, with π : X/k′ → X the projection. In
particular, étale sheaf theory on a scheme X over a field k is identified with étale
sheaf theory on X/kp

, where kp is a perfect closure of k.

1.1.7. Locally-constant and constructible sheaves. For a set Σ, let ΣS

in Ét(S) denote the sheafification of the presheaf U 7→ Σ. Equivalently, as in
ordinary sheaf theory, this is the sheaf represented by the disjoint union of copies
of S indexed by Σ. In particular, if f : S′ → S is a map of schemes then we
naturally have f∗ΣS ' ΣS′ . For this reason, we usually write Σ rather than ΣS .
An object in Ét(S) that is isomorphic to Σ for a set Σ is called a constant sheaf (or
a constant sheaf on the set Σ).

Definition 1.1.7.1. An object F in the étale topos Ét(S) is locally constant
if there exists an étale cover {Si → S}i∈I such that each F |Si is constant. If
in addition the associated set over each Si is finite, then F is locally constant
constructible (abbreviation: lcc).
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The importance of lcc sheaves is due to the fact that the lcc condition is defined
in a manner that is local for the étale topology, yet such sheaves have a simple global
classification:

Theorem 1.1.7.2 (Classification of lcc sheaves). The functor X  X from Sét

to Ét(S) restricts to an equivalence of categories between finite étale S-schemes and
lcc sheaves on Sét.

Proof. We first check that X is lcc if X is finite and étale over S. We may
work over the disjoint open covering {Un} of S such that X|Un

→ Un has constant
degree n ≥ 0, so we may assume X has some constant degree n ≥ 0 over S. We
will induct on n by splitting off pieces of X, the case n = 0 being clear (so we may
assume n > 0). We will imitate the technique in field theory that makes a splitting
field for a separable irreducible polynomial f ∈ k[T ].

Note that for any separated (e.g., finite) étale map Y → Z and any section
s : Z → Y , the map s is both étale and a closed immersion, and so it must be an
open and closed immersion. That is, Y = Y ′∐ s(Z). Hence, if a finite étale map
has constant degree n ≥ 1 and admits a section, then the section splits off and its
complement is finite étale over the base with constant degree n− 1.

To apply this in our situation, we observe that U = X → S is an étale cover, and
the base change of p : X → S by this cover is the degree-n map pr2 : X×S X → X.
This map has a section, namely the diagonal, and so induction on n completes the
proof that there exists an étale cover {Si → S}i∈I such that X ×S Si is isomorphic
to a finite product of copies of Si. That is, X is lcc.

Conversely, suppose that F is an étale sheaf on S and there is an étale covering
{fi : Si → S}i∈I such that there are isomorphisms

F |(Si)ét ' Σi = Σi × Si

for some finite sets Σi of size ni ≥ 0. We want to prove that F is represented by a
finite étale S-schene X.

We may work Zariski-locally over S, due to full faithfulness of the embedding
of Sét into the étale topos Ét(S), and so openness of the fi’s allows us to work
separately over the pairwise-disjoint open unions Un consisting of those fi(Si)’s
such that ni = n. Thus, we may assume ni = n for all i, and so S′ =

∐
Si is an

étale cover of S such that there are isomorphisms ξ′ : F |S′ ' Σ×S′ with Σ a finite
set of size n ≥ 0.

Since S′ → S is open, we may shrink S and replace S′ with a finite disjoint
union of opens so as to assume that S and S′ are both affine. Thus, S′ → S is
faithfully flat and quasi-compact. Let p1, p2 : S′ ×S S′ ⇒ S′ be the projections, so
if the base-change functors Sét → S′ét are denoted p∗j then the étale S′×S S′-scheme
p∗j (Σ× S′) represents the sheaf p∗j (Σ). There is an isomorphism

p∗1(Σ)
p∗1(ξ′)−1

' p∗1(F |S′
ét

) = F |(S′×SS′)ét = p∗2(F |S′
ét

)
p∗2(ξ′)
' p∗2(Σ).

This gives rise to an isomorphism of S′ ×S S′-schemes

ϕ : p∗1(Σ× S′) ' p∗2(Σ× S′)

satisfying the cocycle condition p∗23(ϕ)◦p∗12(ϕ) = p∗13(ϕ) over the triple fiber product
of S′ → S; i.e., ϕ constitutes descent data on Σ× S′ with respect to the fpqc map
S′ → S.
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Since Σ × S′ → S′ is an affine (and even finite) morphism, the effectivity of
fpqc-descent for affine (and even just finite) morphisms [3, 6.1] implies that there
exists an S-scheme X equipped with an S′-isomorphism

Σ× S′ ' X ×S S′

carrying the descent data ϕ on the left over to the canonical descent data on the
right. By [17, 2.7.1], the map X → S must be finite étale with constant degree
n because these properties are acquired after applying the fpqc base change to S′.
Thus, X is an object in Sét, and so ξ′ is an isomorphism

ξ′X : F |S′ ' X|S′

in Ét(S′) such that p∗1(ξ
′
X) = p∗2(ξ

′
X) in Ét(S′ ×S S′). Since ξ′X is a section of

H om(F , X) over S′ and its restrictions under the pullbacks to S′ ×S S′ coincide,
it uniquely descends to ξX ∈ HomÉt(S)(F , X). The same applies to its inverse, so
ξX is an isomorphism. �

As one application of the representability of lcc sheaves, the unramifiedness
property of a Galois representation can be expressed in terms of the associated
étale sheaf:

Corollary 1.1.7.3. Let R be a Dedekind domain and let i : Spec K → Spec R
be the inclusion of the generic point. The functor F  i∗F is a fully faithful
functor from the category of lcc sheaves on (Spec R)ét to the category of lcc sheaves
on (Spec K)ét, with essential image equal to the category of those finite discrete
Gal(Ks/K)-sets that are unramified at all closed points of Spec R.

In particular, if G is an lcc sheaf on (Spec K)ét then its associated continuous
representation of Gal(Ks/K) on a finite set is unramified at all places of R if and
only if G extends to an lcc sheaf over (Spec R)ét.

Proof. By the classification of lcc sheaves, we have to prove that if XK →
Spec K is finite étale and X(Ks) is unramified at all closed points of Spec R, then
there is a finite étale R-scheme X with X ×Spec R Spec K ' XK , and that such an
X is functorial in XK . Since R is normal, it follows that every étale R-scheme is
normal, and so the R-finite and flat X must be the R-finite and flat normalization
X̃K of Spec R in XK . Thus, the problem is to prove that X̃K is étale over Spec R
when XK(Ks) is unramified over all closed points of Spec R.

We may assume that R is a discrete valuation ring and that XK is con-
nected; thus, it remains to prove that for any finite separable extension L/K
with HomK(L,Ks) unramified as a Gal(Ks/K)-set, the finite R-flat integral clo-
sure RL of R in L is étale over R. The unramifiedness hypothesis on the Galois-set
HomK(L,Ks) says that all inertia groups for all maximal ideals of the semi-local RL

act trivially. Since the splitting-field of our Galois-set is a Galois closure of L over K,
this says exactly that RL is everywhere unramified over R in the sense of valuation
theory, or in other words the closed fiber of the finite flat map Spec RL → Spec R is
a finite union of Spec’s of finite separable extensions of the residue field of R. This
says that the finite flat map Spec RL → Spec R is étale, as desired. �

Definition 1.1.7.4. Let S be a noetherian topological space. A stratification
of S is a finite set {Si} of pairwise-disjoint non-empty subsets Si that are locally
closed in S and satisfy ∪Si = S, with the closure of Si equal to a union of Sj ’s.
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The Si’s are called the strata of the stratficiation, and the empty space admits only
the empty stratification.

If S is a noetherian scheme, then a sheaf F on Sét is constructible if there exist
a stratification {Si} of the underlying Zariski topological space of S such that the
restriction of F to each stratum is lcc.

The way stratifications arise in practice is this: we find a dense open U0 ⊆ S
where some property of interest holds, and then find a dense open U1 in Z1 = S−U0

where the same property holds, and then find a dense open U2 in Z2 = Z1 − U1

where this property holds, and so on until (by noetherian induction) we reach the
situation Uj = ∅. Each Ui is open in its closure Zi, and so Ui is locally closed. Note
that Z1, . . . , Zj−1 is a decreasing chain of closed sets in S, with Ui having closure
equal to Zi = Ui ∪ Ui+1 ∪ · · · . The collection {U0, U1, . . . , Uj−1} is a stratification
of S.

When S is a noetherian scheme and a stratification {Si} is given, we may
consider each stratum as a subscheme of S by viewing it as an open subscheme
of a choice of closed-subscheme structure on its closure in S. The choice of such
scheme structure on the strata does not affect the definition of constructibility,
due to the topological invariance of the étale site. Note also that if {Si} and
{S′j} are two stratifications of S, then {Si ∩ S′j} is a stratification (upon removing
any empty overlaps). This fact is implicitly used when carrying out noetherian-
induction arguments with stratifications.

The definition of the lcc condition is étale-local, but the definition of con-
structibility is not. Thus, we must prove that locality holds:

Theorem 1.1.7.5 (Local nature of constructibility). Let S be a noetherian
scheme, and {Ui} an étale cover. If F is an object in Ét(S) and F |Ui

∈ Ét(Ui) is
constructible for all i, then F is constructible.

Proof. By noetherian induction, it suffices to work in a Zariski-neighborhood
of each generic point of S. Thus, we may assume that S is irreducible and that there
is a finite étale cover S′ → S such that F |S′ is constructible (a finite étale cover
of a scheme S is an S-scheme whose structure map is finite, étale, and surjective).
A cofinal system of Zariski-opens in S′ containing the generic points is given by
preimages of Zariski-opens in S around the generic point. Thus, since F |S′ is lcc
on some Zariski-dense open in S′, shrinking some more around the generic point of
S allows us assume F |S′ is lcc. The lcc property is local for the étale topology, so
F is lcc. �

We now give some useful examples of constructible sheaves.

Example 1.1.7.6. Let X → S be a quasi-compact étale map to a noetherian
scheme S. We claim that X is constructible. Since the formation of X commutes
with base change on S, noetherian induction reduces us to finding a Zariski-dense
open U ⊆ S such that XU → U is finite. The map X → S is quasi-finite and locally
of finite presentation, and so it is finite over some Zariski-dense open U in S.

Example 1.1.7.7. The technique of noetherian induction enables us to prove
that constructibility is preserved under many functors. For example, consider the
following constructions: pullback, image under a map, and finite limits (such as
equalizer-kernels and quotients by equivalence relations). We claim that the out-
put of these operations is constructible when the input-sheaves are constructible.
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Noetherian induction reduces us to the case when the input-sheaves are lcc, and
since constructibility is local for the étale topology we may assume that these lcc
sheaves are constant. The passage from a finite set to its associated constant-sheaf
commutes with all of the constructions under consideration.

In the subcategory Ab(S) ⊆ Ét(S), some of the basic operations are not the
same as in Ét(S): finite direct limits are not the same (e.g., a finite coproduct of
abelian groups has underlying set equal to the product, not the disjoint union).
However, the same method as above may be applied get the preservation of con-
structibility in Ab(S) under finite direct limits of abelian sheaves.

Example 1.1.7.8. Let j : U → S be a quasi-compact étale map to a noetherian
scheme S, and let F be a constructible sheaf on U in either Ét(U) or Ab(U).
We claim that j!F is constructible on S. Since j! is compatible with pullback,
noetherian induction allows us to work near the generic points on S. Thus, we may
assume j is finite étale.

Working étale-locally on S, we may split the finite étale map j : U → S. That
is, we can assume U = Σ × S for a finite set Σ. Let Fσ be the constructible
restriction of F to the factor S = {σ} × S in U . By adjointness of j! and j∗,

HomS(j!F ,G ) = HomU (F , j∗G ) =
∏
σ∈Σ

HomS(Fσ,G ) = HomS(
∐

Fσ,G ),

where the coproduct is categorical (in the category of abelian groups or the category
of sets). By Yoneda’s lemma, it follows that j!F is the coproduct of the Fσ’s, and
so (treat Ét(S) and Ab(S) separately) it is constructible.

The importance of constructible sheaves in the general theory is due to:

Theorem 1.1.7.9. Let S be a noetherian scheme.
(1) Every F in Ét(S) is the filtered direct limit of its constructible subsheaves,

and subsheaves of constructible sheaves are constructible.
(2) If F is in Ab(S) and each section of F is locally killed by a nonzero

integer, then F is the filtered direct limit of its constructible abelian sub-
sheaves.

(3) An object in Ab(S) is noetherian (i.e., its subobjects satisfy the asecending
chain condition) if and only if it is constructible.

Proof. See [9, Ch. I, §4, pp. 42-3]. �

The noetherian property of constructible abelian sheaves is due to the noe-
therian property of noetherian topological spaces. The category of abelian étale
sheaves on a noetherian scheme S has very few artinian objects (i.e., abelian sheaves
whose subobjects satisfy the descending chain condition); however, all objects in
the abelian category of lcc abelian sheaves on Sét are artinian.

1.1.8. Stalks of étale sheaves. For a map x : Spec k → S and an étale sheaf
of sets F on Sét, we write Fx to denote x∗F in Ét(Spec k(x)). When k is separably
closed, we may identify Fx with a set. The functor F  Fx is exact, since
pullbacks are exact in étale sheaf theory.

Definition 1.1.8.1. A geometric point of Sét (or of S) is a map s : Spec k → S
with k a separably closed field. If f : S → S′ is a map of schemes, then f(s) denotes
the geometric point f ◦s of S′. The functor F  Fs from Ét(S) to Set is the fiber
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functor (or stalk functor) at s. Two geometric points s and s′ of S are equivalent
when their physical image points in S are the same.

Observe that the fiber functors associated to equivalent geometric points are
(non-canonically) isomorphic to each other, and that applying this definition in
ordinary topology does yield the usual notion of the stalk of a sheaf at a point on
a topological space.

To put the preceding definition in perspective, we note that the concept of a
geometric point can be defined more generally. Let us briefly describe how this
goes. For an arbitrary site (category with a Grothendieck topology), with T its
associated category of sheaves of sets (the topos of the site), a geometric point of
T is an exact functor ξ : T → Set such that ξ commutes with arbitrary (not
just finite) direct limits. Two geometric points in this sense are (by definition)
equivalent when they are naturally isomorphic as functors. In two important cases,
Grothendieck classified the geometric points in the sense of this abstract definition
(see [15, Exp. VIII, §7.8ff.] for details):

• Let S be a topological space such that irreducible closed sets have unique
generic points (e.g., a normal Hausdorff space, or the underlying space of
a scheme). Let T be the category of sheaves of sets on this space. Every
geometric point of T is equivalent to the ordinary stalk functor at a unique
point of S.
• Let S be a scheme. Every abstract geometric point of Ét(S) is equivalent

to the stalk functor at a point s : Spec(k) → S, where k is a separable
algebraic closure of the residue field at the image of s in S. Stalk-functors
based at distinct ordinary points of S are not equivalent.

For a geometric point s : Spec k → S, an étale neighborhood of s is an étale map
U → S equipped with a map u : Spec k → U whose composite with U → S is s:

Spec k
u //

s
""FF

FF
FF

FF
F U

��

S

In ordinary topology, stalks may be described as direct limits of sets of sections
over open neighborhoods, and we have an analogue of this in the étale topology:
for s ∈ S and a geometric point s : Spec k → S over s with k a separable closure of
k(s), the natural map

lim−→
(U,u)→(S,s)

F (U)→ Fs = (s∗F )(Spec k)

is a bijection; the direct limit is taken over the category of étale neighborhoods of
s. This description is an immediate consequence of the construction of pullback
functors, together with the observation that the sheafification of a presheaf G on
Spec k has value G (k) on Spec k. In particular, two elements a and b in F (S) are
equal in some étale neighborhood of s if and only if as = bs in Fs. It follows that if
Σ is a set of geometric points s : Spec k → S whose images cover S set-theoretically,
then a map ϕ : F → G in Ét(S) is epic (resp. monic) if and only if ϕs is epic (resp.
monic) for all s ∈ Σ; the same holds for the property of being an isomorphism.
Likewise, maps ϕ1, ϕ2 : F ⇒ G are equal if and only if ϕ1,s = ϕ2,s for all s ∈ Σ.
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1.2. Cohomology basics

1.2.1. The étale fundamental group. For any topological space X, the
degree-1 topological cohomology H1(X, M) with coefficients in an abelian group
M is isomorphic to Hom(H1(X,Z),M), with H1(X,Z) isomorphic to the abelian-
ization of the fundamental group (at any base point). In the development of étale
cohomology, it is important to have an analogue of this fact right at the start, where
the étale fundamental group plays the role of the topological π1. Thus, we shall
now discuss the theory of the étale fundamental group of a connected (pointed)
scheme, and we will establish that it can be used to compute H1

ét with coefficients
in a finite abelian group. The reader may wish to compare some of our arguments
with the topological arguments in Appendix ??.

The avoidance of noetherian conditions forces us to keep in mind at the outset
that the connected components of a general scheme need not be open (example:
Spec

∏∞
n=1 F2). However, this is not a problem for us, because a finite étale cover

of a connected scheme has only finitely many connected components (and so all
such components are open and closed). This finiteness is readily seen by inducting
on the degree of the cover.

Let S be an arbitrary connected scheme, and let s be a geometric point of S.
Let S′ → S be a finite étale map. Connectivity of S forces this map to have constant
degree, say n. We assume that S′ is connected, and we choose a geometric point
s′ of S′ over s. To streamline the exposition, we impose the (harmless) condition
that s and s′ have the same residue field k.

The uniqueness principle for lifting through covering spaces in topology has the
following analogue in the étale topology:

Lemma 1.2.1.1 (Rigidity of pointed étale covers). If f, g : S′ ⇒ S′′ are S-maps
to a separated étale S-scheme S′′, and (S′, s) is a pointed connected scheme such
that f(s′) = g(s′) in S′′(k), then f = g.

Proof. The closed immersion

∆ : S′′ → S′′ ×S S′′

is étale, hence open, so S′′ ×S S′′ can be written as S′′
∐

Y with S′′ equal to
the diagonal. Since S′ is connected and (by assumption) the image of the map
f × g : S′ → S′′ ×S S′′ meets ∆, the image lies in ∆. �

Example 1.2.1.2. As an important application of the rigidity lemma, we may
construct the (strict) henselization of a local ring (R,m); this generalizes the max-
imal unramified extension of a complete discrete valuation ring, and is constructed
as follows.

Let us say that an R-algebra R′ is essentially étale if it is a localization of an
étale R-algebra. Fix a separable closure i0 : R/m → k, and consider pairs (R′, i)
where R → R′ is an essentially étale local map and i is an R/m-embedding of
R′/m′ into k over i0. By the rigidity lemma and denominator-chasing, the category
of such pairs is rigid in the sense that there exists at most one map between any
two objects. This category is also filtered, since for any two objects we may find a
map to a common third object by localizing a tensor product over R.

The strict henselization Rsh
i0

of R is the direct limit of all pairs (R′, i). Any
connected finite étale cover X → Spec Rsh

i0
must arise as the base-change of a

connected finite étale cover X ′ of some Spec R′ as above, but we can pick a point
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x′ in the closed fiber of X ′ and embed it into k over R′/m′, so OX′,x′ occurs in the
direct limit defining Rsh

i0
. This provides a section to the connected finite étale cover

X → Spec Rsh
i0

, and so this cover must have degree 1. That is, Spec Rsh
i0

has no
non-trivial finite étale covers. The henselization Rh is constructed similarly, except
that we require the residue-field extension at the maximal ideals to be trivial. An
argument as above shows that Spec Rh has no non-trivial finite étale covers with
trivial residue field extensions. Both Rh and Rsh

i0
are faithfully flat and local over

R.
When R = Rh, then we say R is a henselian ring, and when R is henselian

with separably closed residue field then it is a strictly henselian ring; for example,
considerations with direct limits imply that Rh is henselian and Rsh

i0
is strictly

henselian. These constructions are characterized by simple universal properties
(so, for example, Rsh

i0
is functorial in (R, i0)), and the theory of local henselian

rings is developed in [23] and [17, §18.5–18.9]; we note the non-obvious fact that
the noetherian property is preserved under both constructions [17, 18.6.6, 18.8.8].

Passage to the (strict) henselization is less drastic than the operation of com-
pletion but has many of the good properties of completions. For example, finite
algebras over a henselian local ring decompose into a product of finite local algebras.
Just as ordinary localization Ap at a prime ideal is constructed as a direct limit
of coordinate rings of Zariski-open neighborhoods of p in Spec A, strict henseliza-
tion plays the role of a local ring (at a geometric point) for the étale topology; see
Example 1.2.6.1 for a precise version of this idea.

Returning to the general setting, let S be a connected scheme and let S′ be a
connected finite étale S-scheme with deg(S′/S) = n. The rigidity lemma implies
# Aut(S′/S) ≤ n since there are exactly n geometric points in the fiber over s. A
generalization of the method of construction of Galois closures [13, Exp. V, §2–4]
shows that we can always find a finite étale map S′′ → S′ with S′′ connected and
# Aut(S′′/S) = deg(S′′/S).

Definition 1.2.1.3. A finite étale map S′ → S between connected non-empty
schemes is Galois (or a (finite) Galois covering) if # Aut(S′/S) = deg(S′/S), and
then the Galois group of S′ over S is the opposite group Gal(S′/S) def= Aut(S′/S)op.

Example 1.2.1.4. Let R be a Dedekind domain with fraction field K, and let
K ′/K be a finite separable extension, with R′ the integral closure of R in K ′. In
general, Spec R′ → Spec R is Galois in the sense of Definition 1.2.1.3 if and only if
K ′/K is Galois and R′ is everywhere unramified over R. In particular, the condition
that K ′/K be Galois is not enough to make R′ Galois over R.

For a more global example, let S′ → S be a finite map between two smooth
proper connected curves over an algebraically closed field k. The scheme S′ is
Galois over S if and only if the map of curves is generically Galois (i.e., k(S′) is
Galois over k(S)) and has no ramification in the sense of valuation theory.

If S′ → S is a finite Galois covering with Galois group G, then G acts on S′ on
the right, and the action map

S′ ×G→ S′ ×S S′

defined by (s′, g) 7→ (s′, s′g) is a map of finite étale S′-schemes if we use pr1 as
the structure map for S′ ×S S′. In particular, the action map is finite étale; a
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calculation on fibers over geometric points of S′ shows that this map must have
degree 1, so it is an isomorphism. This generalizes the isomorphism in field theory

K ⊗k K '
∏
g∈G

K

defined by x⊗ y 7→ (g(y)x)g for a finite Galois extension of fields K/k with Galois
group G.

The generalization of the absolute Galois group of a field (equipped with a
choice of separable closure) is the étale fundamental group of a pointed scheme (S, s).
To construct this, consider two (connected) finite Galois covers (S′, s′)→ (S, s) and
(S′′, s′′) → (S, s) of a connected scheme S. Rigidity implies that there is at most
one S-map (S′′, s′′) → (S′, s′) taking s′′ to s′. When such a map exists, for any
f ′′ ∈ Aut(S′′/S) there exists a unique f ′ ∈ Aut(S′/S) fitting into a commutative
diagram

S′′
f ′′

//

π

��

S′′

π

��

S′
f ′

// S′

Indeed, π ◦f ′′(s′′) ∈ S′s′ has the form f ′(s′) for a unique f ′ ∈ Aut(S′/S), due to the
simple transitivity of Galois-group actions on geometric fibers, and so (f ◦π)(s′′) =
(π ◦ f ′′)(s′′). Thus, f ◦ π = π ◦ f ′′. It is clear that this map

(1.2.1.1) Aut(S′′/S)→ Aut(S′/S)

is a group homomorphism that moreover is surjective. This leads to:

Definition 1.2.1.5. The étale fundamental group of a connected scheme S
(with respect to a geometric point s) is the profinite group

π1(S, s) = lim←−
(S′,s′)

Aut(S′/S)op = lim←−
(S′,s′)

Gal(S′/S),

where the inverse limit is taken over connected finite Galois covers S′ → S endowed
with a geometric point s′ : Spec k(s)→ S′ over s.

The surjectivity of (1.2.1.1) ensures that π1(S, s)→ Gal(S′/S) is surjective for
all pointed connected finite Galois covers (S′, s′)→ (S, s). Let us now explain how
π1(S, s) is covariant in the pair (S, s).

Let f : (T, t) → (S, s) be a morphism of connected pointed schemes. Let
(S′, s′)→ (S, s) be a pointed connected Galois cover of some degree n with k(s′) =
k(s), so S′/T is a degree-n finite étale T -scheme endowed with a canonical point

t
′ = t×s s′ with k(t′) = k(t). Since S′/T is finite étale over the connected scheme T ,

it has only finitely connected components, and so each is therefore open and closed
in T . Let T ′ be the unique such component containing t

′. The group G = Gal(S′/S)
acts simply transitively on geometric fibers of S′ → S, and so it also acts simply
transitively on geometric fibers of S′/T → T . If H ⊆ G is the stabilizer of T ′ in T ,
then H must have order equal to deg(T ′/T ), and so T ′ is a finite Galois cover of T
with Galois group H. The continuous composite

π1(T, t)� Gal(T ′/T ) = H ↪→ G = Gal(S′/S).
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is compatible with (1.2.1.1), and so passing to the inverse limit over (S′, s′)’s defines
a continuous map π1(f) = π1(T, t)→ π1(S, s) that respects composition in f .

This covariance recovers the functoriality of absolute Galois groups of fields
relative to choices of separable closures:

Example 1.2.1.6. Let S = Spec k for a field k, and choose a separable clo-
sure s : Spec ks → Spec k, so we get a canonical isomorphism of profinite groups
π1(S, s) ' Gal(ks/k). If

ks
// k′s

k

OO

// k′

OO

is a commutative diagram, then the diagram

π1(S, s) π1(S′, s′)oo

Gal(ks/k) Gal(k′s/k′)oo

commutes, where the top row is induced by covariant functoriality and the bottom
row is the classical map from algebra.

1.2.2. First applications of π1. In Galois theory, forming a tensor product
of a field extension K/k against arbitrary finite separable extensions k′/k always
yields a field if and only if K and ks are linearly disjoint over k. In topology (for
reasonable spaces), pullback preserves connectivity of arbitrary connected covering
spaces if and only if the induced map on topological π1’s is surjective. These
viewpoints are synthesized in:

Theorem 1.2.2.1 (Connectivity criterion via π1’s). Let f : X → Y be a map
of connected schemes. Pick a geometric point x of X and define y = f(x). The
map π1(f) : π1(X, x) → π1(Y, y) is surjective if and only if X ×Y Y ′ is connected
for all connected finite étale covers Y ′ → Y .

Proof. The map π1(f) has image that is compact and hence closed, so π1(f)
is surjective if and only if it has dense image’ i.e., if and only if the composite

(1.2.2.1) π1(X, x)→ π1(Y, y)� Gal(Y ′/Y )

is surjective for every connected pointed finite étale cover (Y ′, y′) of (Y, y). Since
X ×Y Y ′ is finite étale over the connected X, it has finitely many connected com-
ponents (not more than the degree of Y ′ over Y ). The geometric point x′ = (x, y′)
lies in a unique connected component X ′, and (1.2.2.1) factors through a canonical
surjection π1(X, x) � Gal(X ′/X). Thus, the surjectivity of π1(f) is equivalent to
that of

Gal(X ′/X)→ Gal(Y ′/Y )
for all connected finite étale Y ′ over Y .

In the construction of covariant functoriality of π1, we saw that this map of
finite Galois groups is injective, so it is surjective if and only both groups have the
same size. The order of the Galois group is the degree of the covering, and by
construction [X ′ : X] ≤ [Y ′ : Y ] with equality if and only if X ′ = X ×Y Y ′. Such
equality says exactly that X ×Y Y ′ is connected. �
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Example 1.2.2.2. Building on Example 1.2.1.6, let X be an irreducible normal
scheme (i.e., all local rings are normal domains), and let K be its function field.
The most important case for us is X = Spec R with R an integrally closed domain;
we do not assume X is locally noetherian. Fix a choice of separable closure Ks

of K, and view this as a geometric point x : Spec Ks → X. Consider the natural
continuous map

Gal(Ks/K) = π1(Spec K, x)→ π1(X, x).

We claim that this map is surjective, and that the resulting quotient Gal(K ′/K) =
π1(X, x) of Gal(Ks/K) cuts out the subextension L ⊆ Ks that is the maximal
extension of K inside of Ks such that the normalization of X in each finite subex-
tension of L is finite étale over X (such a property for two finite subextensions is
clearly preserved under formation of composites, so the compositum of all such ex-
tensions is Galois over K). For example, if X is Dedekind then L/K is the maximal
extension that is everywhere unramified over X in the sense of valuation theory.

To prove surjectivity of the π1-map, the connectivity criterion via π1’s reduces
us to checking that for a connected finite étale cover X ′ → X, the finite étale
cover X ′

/K of Spec K is connected. Since X ′ is étale over the normal X, and hence
is normal, its local rings are domains and so distinct irreducible components of
X ′ cannot intersect. By X-flatness, any generic point of X ′ lies over the unique
generic point of X. Thus, there are only finitely many irreducible components of
X ′. The pairwise disjointness of such components, together with the connectedness
of X ′ 6= ∅, forces X ′ to be irreducible (and hence integral). Thus, X ′

/K is clearly
connected. It is likewise clear from this argument that X ′ is the normalization of
X in the function field of X ′, and moreover that the function fields K ′ of such
X ′ are exactly those finite separable extensions of K such that the normalization
of X in K ′ is finite étale over X. This establishes the desired description of the
subextension of Ks/K cut out by the quotient π1(X, x) of Gal(Ks/K).

One consequence is that if X is irreducible and normal then π1(U, x)→ π1(X, x)
is surjective for any Zariski-open U in X containing x. This is false if we remove
normality. For example, the projective plane curve X : y2z = x3 over an alge-
braically closed field has normalization X̃ that is isomorphic to P1, and X̃ → X
a universal homeomorphism, so the topological invariance of the étale site implies
that π1(X) is trivial. However, the complement U of the cusp [0, 0, 1] is identified
with the affine line, and Artin–Schreier theory provides many degree-p connected
finite étale covers of the affine line in characteristic p > 0.

Theorem 1.2.2.3 (Grothendieck). There is a canonical equivalence of cate-
gories between the category of finite étale morphisms S′ → S and the category of
finite discrete left π1(S, s)-sets, given by S′  S′(s), where the connected covers
correspond to the finite sets with transitive π1(S, s)-action.

This equivalence is functorial in (S, s) in the sense that if f : (T, t) → (S, s)
is a map from another pointed connected scheme, then the natural equality of sets
(T ×S S′)(t) = S′(s) respects π1(T, t)-actions, where π1(T, t) acts on S′(s) through
π1(f).

Proof. Since S′ has only finitely many connected components, we can reduce
to the case of a connected S′. Consider a connected Galois cover S′′ → S admitting
a factorization S′′

π−→ S′ → S, so S′′ → S′ is also Galois. Choose a geometric
point s′′ ∈ S′′ over s in order to uniquely define a continuous surjection π1(S, s)�



1.2. COHOMOLOGY BASICS 29

Aut(S′′/S)op. Define a map of sets Aut(S′′/S)op → S′s by sending g to π ◦ g(s′′).
If π ◦ h ◦ g(s′′) = π ◦ g(s′′), then π, π ◦ h : S′′ ⇒ S′ are S-maps that coincide on
g(s′′), and so rigidity forces them to agree. That is, we have a bijection of sets

Aut(S′′/S)op/ Aut(S′′/S′)op ' S′(s).

The induced left π1(S, s)-set structure on S′(s) is independent of the choice of
(S′′, s′′), and any discrete finite left π1(S, s)-set with a transitive action arises in
this way. �

Using the classification of lcc sheaves, we get:

Corollary 1.2.2.4. Let S be a connected scheme and s a geometric point.
The fiber-functor F  Fs sets up an equivalence of categories between lcc sheaves
of sets on Sét and finite discrete left π1(S, s)-sets; this is functorial in (S, s). In
particular, the abelian category of lcc abelian sheaves on Sét is equivalent to the
category of finite discrete left π1(S, s)-modules.

Example 1.2.2.5. Let X be a connected scheme, and choose a point x ∈ X
and a geometric point x : Spec k(x)s → X over x. For any étale sheaf F on X, the
stalk Fx at x is an étale sheaf on (Spec k(x))ét, and thus is a Gal(k(x)/k(x))-set
via the choice of x. If F is an lcc sheaf on X, then the pointed map (x, x) →
(X, x) induces a continuous map of profinite groups Gal

(
k(x)/k(x)

)
= π1(x, x) →

π1(X, x). Thus, the finite discrete π1(x, x)-set (Fx)x is canonically constructed
from the finite discrete π1(X, x)-set Fx via π1(x, x)→ π1(X, x). This is an example
of the functoriality in Theorem 1.2.2.3.

Example 1.2.2.6. In number theory, the following procedure is frequently used:
we consider a discrete module M for the Galois group of a global field, and if this
module is unramified at some non-archimedean place v then we may choose a
decomposition group at v and use this choice to view M as a Galois module for the
residue field at v. We would like to describe this procedure more generally in the
language of fundamental groups, since the π1-language is used when working with
Galois representations via étale cohomology.

Suppose that R is a Dedekind domain with fraction field K, and let x ∈ X =
Spec R be a closed point. Choose a geometric point x over x. We would like to
describe how to identify the x-fiber and the geometric generic fiber of certain étale
sheaves on Spec R. Let Rh

x denote the henselization of the local ring Rx of R at
x. By [17, 18.5.15], every finite étale cover of Spec k(x) uniquely lifts to a finite
étale cover of Spec Rh

x. Equivalently, the map Spec k(x) → Spec Rh
x induces an

isomorphism π1(x, x) ' π1(Spec Rh
x, x).

The map
π1(x, x) ' π1(Spec Rh

x, x)→ π1(Spec Rx, x)
is a description of the procedure of choosing a decomposition group at x in the
maximal quotient π1(Spec Rx, x) of Gal(Ks/K) that is everywhere unramified over
x; here we are using Example 1.2.2.2.

We now apply the preceding generalities. Let M be a finite discrete Gal(Ks/K)-
set and let FK be the associated sheaf on (Spec K)ét. Assume that the Galois-
action is everywhere unramified, and let F be the unique associated lcc sheaf
over (Spec R)ét via Corollary 1.1.7.3. For any closed point x ∈ X = Spec R,
once we choose a strict henselization Rsh

x inside of Ks we may canonically identify
the underlying set of the π1(x, x)-module Fx with the underlying set M of the
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Gal(Ks/K)-set FK that is everywhere unramified at x. This procedure gives us a
compatibility of geometric points on R and K, as in the commutative diagram

Spec Ks

��

// Spec K

��
Spec k(x) // Spec Rsh

x
// Spec R

This comes down to the following. Let G be an lcc sheaf on S = Spec R. By
the classification of lcc sheaves, G is represented by a finite étale S-scheme X. If
S′ = Spec Rsh

x , then X ×S S′ is a finite étale cover of the strictly henselian local
scheme S′, and so it is split. Thus, X ×S S′ is a finite disjoint union of copies
of S′. In particular, there is a canonical bijection between the underlyings sets of
the closed fiber and generic fiber in this split covering over the connected base S′.
However, X(x) = Gx and the choice of injection of Rsh

x into Ks identifies the points
in the generic fiber of X×S S′ → S′ with GKs

. This yields the desired identification
of stalks at closed and generic geometric points, depending on a choice of embedding
of a strict henselization into a geometric generic-fiber field.

1.2.3. Specialization. Example 1.2.2.6 uses a special case of the technique
of specialization. Let us discuss this technique in general, as it leads to a useful
criterion for a constructible sheaf to be lcc. Let S be a scheme, F a sheaf of sets
on Sét, and s and η two geometric points of S. The point s is a specialization of
the point η (and η is a generization of s) if η → S admits a factorization through
Spec Osh

S,s; strictly speaking, such a factorization should be specified when we say
that s specializes η. The openness of étale maps implies that s is a specialization
of η if and only if the underlying physical points s, η ∈ S satisfy s ∈ {η}.

Given a factorization i : η → Spec Osh
S,s, the specialization mapping Fs → Fη

is the composite
Fs ' lim−→

(U,u)→(S,s)

F (U) i∗→ Fη;

this is functorial in F . This generalizes the Zariski-topology fact that sections of a
sheaf over a neighborhood of s admit canonical specializations into stalks any point
η that lies in all such neighborhoods.

Example 1.2.3.1. The specialization map takes on a concrete form for S =
Spec R when R is strictly henselian, with residue field k. In this case, [17, 18.5.11(c)]
and [17, 18.5.15] ensure that for any separated étale neighborhood U of s, there
is a unique decomposition U = X ′∐ S with s factoring through the component
S. (This non-trivial input is the analogue of the elementary topological fact that
a section to a separated local homeomorphism of topological spaces splits off as
an open and closed component of the source.) It follows that the identity map
S → S is a cofinal system of étale neighborhoods of s, and so Fs = F (S). With
this identification, the specialization map is the evident map F (S) → Fη that is
pullback on sections.

Our interest in specialization maps is due to:

Theorem 1.2.3.2 (Specialization criterion for local constancy). Assume S is
noetherian, and let F be a constructible sheaf of sets on S. The sheaf F is lcc if
and only if all specialization maps Fs → Fη are bijective.
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Proof. If F is lcc, then the classification of lcc sheaves implies F = X for a
finite étale S-scheme X. We may assume S is strictly henselian with closed point
s, and so X must be a split cover of S. Hence, F is constant in Ét(S), and so its
specialization maps are clearly isomorphisms.

Conversely, assume all specialization maps are isomorphisms. To prove that
F is lcc, it is enough to verify this in an étale neighborhood of each geometric
point. Pick a geometric point x of X, and let Σ = Fx. By the universal property
of constant sheaves, restricting to an étale neighborhood of x allows us to assume
there is a map ϕ : Σ → F inducing the given equality on x-fibers. Since the
specialization maps for Σ and F are isomorphisms, it follows that ϕx′ is bijective for
any geometric point x′ of X that may be linked to x by finitely many generizations
and specializations. By linking through geometric generic points of irreducible
components, this exhausts all points in the Zariski-open connected component of
X containing x. �

1.2.4. Étale cohomology groups. Let S be a scheme. The category Ab(S)
of abelian-group objects in the étale topos Ét(S) is an abelian category, and that
the global-sections functor Ét(S) → Set is left-exact. Thus, this functor defines a
left-exact functor Ab(S)→ Ab to the category of abelian groups.

Lemma 1.2.4.1. The abelian category Ab(S) has enough injectives.

Proof. A generating object U in an abelian category A is an object with the
property that Hom(U, C ′) → Hom(U, C) is not bijective whenever C ′ → C is
a monic map that is not an isomorphism; i.e., maps from U can detect proper
subobjects. By [11, Thm. 1.10.1], an abelian category has enough injectives if the
following three axioms holds: it has a generating object, admits arbitrary direct
sums, and satisfies the condition

B ∩
(∑

Ai

)
=

∑
(B ∩Ai)

for any monomorphism B ↪→ B′ and any increasing filtered family {Ai} of subob-
jects in B′. The final two axioms are easily verified in Ab(S), and so it suffices
to construct a generating object. Since j! is a left adjoint to j∗ for étale maps
j : U → S, a generating object is given by the sheaf F = ⊕j!Z, where the direct
sum is taken over a cofinal set of étale maps j : U → S (i.e., every étale S-scheme
admits an S-map from one of the U ’s in our chosen collection). �

Definition 1.2.4.2. Étale cohomology H•ét(S, ·) on Ab(S) is the right derived
functor of the left-exact global-sections functor F  F (S). If f : X → S is a map
of schemes, the δ-functor R•f∗ of higher direct images is the right derived functor
of the left-exact functor f∗ : Ab(X)→ Ab(S).

For any map of schemes f : X → S, recall that f∗ : Ab(S) → Ab(X) is an
exact functor between abelian categories. This exactness implies that there is a
unique δ-functorial map H•ét(S, G )→ H•ét(X, f∗G ) extending the canonical map in
degree-0; this cohomological pullback is transitive with respect to composites in f
(as may be checked in degree 0). Since f∗ has exact left-adjoint f∗, pushforward
carries injectives to injectives. Thus, we obtain Leray spectral sequences

Ep,q
2 = Hp(S, Rqf∗(·))⇒ Hp+q(X, ·), Ep,q

2 = Rph∗ ◦ Rqf∗ ⇒ Rp+q(h ◦ f)∗
(where h : S → S′ is any map of schemes).



32 1. ÉTALE COHOMOLOGY

Theorem 1.2.4.3. Let j : U → S be an étale map. If I ∈ Ab(S) is injective,
then so is j∗I ∈ Ab(U).

Proof. We want the functor

HomAb(U)(G , j∗I ) = HomAb(S)(j!G ,I )

to be exact in G , and so it suffices to prove exactness of the left adjoint j! : Ab(U)→
Ab(S). The right exactness is a tautological consequence of the fact that j! is a left
adjoint that is exact (by construction, j! carries monics to monics). �

Corollary 1.2.4.4. Let j : U → S be étale. The δ-functor H•ét(U, j∗(·)) is
erasable, and so it is the derived functor of its degree-0 term F  F (U) on Ab(S).

As in the topological case, we will write H•ét(U,F ) to denote either of the two (a
posteriori isomorphic) δ-functors considered in the corollary. This corollary ensures
that for any map f : X → S and any F in Ab(X), R•f∗F is naturally identified
with the sheafification of V  H•(f−1(V ),F ) on Sét. As an application of this
sheafification process, or by using a universal δ-functor argument (or adjointness),
we can relativize cohomological pullback: for any commutative square

X ′

f ′

��

g′ // X

f

��
S′ g

// S

we have a base change morphism

g∗ ◦ R•f∗ → (R•f ′∗) ◦ g′∗

as δ-functors Ab(X) → Ab(S′), and this enjoys transitivity properties exactly as
in topology.

1.2.5. Čech theory and applications. An important theoretical tool in the
investigation of étale cohomology is the Čech to derived-functor spectral sequence.
In the topological case, this formalism is summarized in §??, and we now describe
and apply its étale-topology variant. Let U be an étale cover of a scheme X. Using
the same definitions as in the topological case, for any abelian presheaf F on Xét

we may construct the Čech complex C •(U,F ) of presheaves on Xét. Thus, we get
functors Hq

ét(U, ·) on abelian presheaves on Xét. For any q > 0 and any injective I
in Ab(X), we have Hq

ét(U, j∗I ) = 0 for any étale j : U → X. Thus, we may carry
over the universal δ-functor arguments in §?? to construct a Čech to derived-functor
cohomology spectral sequence

Ep,q
2 = Hp

ét(U,Hq
ét(F ))⇒ Hp+q

ét (X, F )

for F in Ab(X).
This spectral sequence is compatible with refinement in U, and this compati-

bility is independent of the choice of refinement maps. Hence, we may pass to the
direct limit over a cofinal system of étale covers of X, obtaining

Ep,q
2 = Ȟp

ét(X, Hq
ét(F ))⇒ Hp+q

ét (X, F ).
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The term E0,q
2 = Ȟ0

ét(X, Hq
ét(F )) is the separated presheaf associated to the presheaf

U  Hq
ét(U,F ) for U ∈ Xét. Since Hq

ét(U,F ) may be computed via injective reso-
lutions of F in Ab(X), for q > 0 it follows that any element of Hq

ét(U,F ) restricts
to 0 when we localize on U . Hence, E0,q

2 = 0 for q > 0. In degree 1, this yields:

Theorem 1.2.5.1. The edge map Ȟ1
ét(X, F )→ H1

ét(X, F ) is an isomorphism
for all F in Ab(X).

The theorem has immediate consequences for the classification of torsors; this
requires a definition:

Definition 1.2.5.2. Let X a scheme and G a group-object in Ét(X). An étale
left G-torsor is an object F in Ét(X) that has non-empty stalks and is equipped
with a left G-action such that the canonical map G × F → F × F defined by
(g, s) 7→ (gs, s) is an isomorphism. The notion of right G-torsor is defined similarly.

The object G is a left G-torsor via left multiplication on itself. This is the
trivial left G-torsor.

Example 1.2.5.3. Let X be connected and X ′ → X a connected Galois cover
with Galois group G (in the sense of Definition 1.2.1.3). The X-scheme X ′ (or the
étale sheaf it represents) is a right torsor for the X-group X ×G; we shall usually
just say that X ′ is a right G-torsor over X.

Let F be a left G-torsor, with G a group in Ét(X). For any U ∈ Xét such
that F (U) is nonempty, a choice of element in F (U) determines an isomorphism
G|U ' F |U in Ét(U) as left G-torsors. Since F has sections étale-locally on X, it
follows that F and G are étale-locally isomorphic. Thus, if G is lcc then F is lcc,
and in such cases we may use the classification of lcc sheaves to conclude that G is
represented by a finite étale X-group scheme (denoted G) and F is represented by
a finite étale X-scheme X ′, with the torsor-structure given by a left G-action on
X ′ over X such that the action-map

G×X X ′ → X ′ ×X X ′

defined by (g, x′) 7→ (gx′, x′) is an isomorphism. The lcc sheaf G is classified by the
left π1(X, x)-group Gx, and (as in [24, Ch. X, §2]) the set of isomorphism classes of
left Gx-torsors in the category of finite discrete left π1(X, x)-modules is in natural
bijection with the pointed set H1(π1(X, x), Gx), where this H1 is taken in the sense
of non-abelian profinite-group cohomology; cf. [24, Ch VII, Appendix].

When G is in Ab(X), we can say more. In this case H1(π1(X, x), Gx) has a
commutative group structure, and the set of isomorphism classes of left G-torsors
has a commutative group structure as follows. For two torsors F and F ′, the
product F ×F ′ is a torsor for the group G×G and the addition map G×G→ G
is a map of groups, so we may pass to the quotient F ′′ of F ×F ′ by the action
of the anti-diagonal subgroup of (g,−g)’s; i.e., we form the unique G-torsor F ′′

equipped with a map F × F ′ → F ′′ that is equivariant for the addition map
G × G → G. The trivial G-torsor serves as an identity for this commutative law
of composition, and the inverse −F of a G-torsor F is given by having G act on
F through the composition of negation on G and the usual action on F (this is an
inverse because a G-torsor with a section is a trivial G-torsor). This group law on
the set of isomorphism classes of left G-torsors clearly goes over to the group law
on H1(π1(X, x), Gx).
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Theorem 1.2.5.4. Let G be an abelian sheaf on Xét. The group H1
ét(X, G) is

isomorphic to the group of isomorphism classes of left G-torsors in Ab(X), and
this identification is bifunctorial in the pair (X, G).

In particular, if X is connected and x is a geometric point, and if G in Ab(X)
is lcc, then there is a bifunctorial isomorphism of groups

H1
ét(X, G) ' H1(π1(X, x), Gx).

Proof. The Čech to derived-functor spectral sequence identifies H1
ét(X, G)

with Ȟ1
ét(X, G) in a bifunctorial manner, and so it remains to identify Ȟ1

ét(X, G)
with the group of isomorphism classes of left G-torsors in Ab(X). The arguments in
§?? carry over verbatim to the étale topology, and in the notation in that discussion
we take D = X and U = ∅. The étale version of Theorem ?? in this special case
provides the desired result. �

The preceding theorem says that, under an lcc hypothesis, we may compute
degree-1 sheaf cohomology as profinite-group cohomology. The finiteness aspect of
the lcc condition is crucial. For example, if we consider degree-1 cohomology for
the constant sheaf attached to an infinite abelian group, then the connection with
group cohomology of π1 is not as straightforward as in the topological case:

Example 1.2.5.5. Consider the nodal plane cubic C1 : y2w = x3 − x2w over
a separably closed field. Let C denote a chain of projective lines indexed by Z,
with 0 on each line joined to ∞ on the next line; there is a natural étale surjection
C → C1 that is equivariant for the evident translation-action of Z on C. For n ≥ 1,
the quotient of this map by nZ is a degree-n connected Galois cover Cn → C1 with
covering group Z/nZ. Using the fact that C1 has normalization P1, and that finite
étale covers of the projective line over a separably closed field are split, it follows
that these Cn’s exhaust the connected finite étale covers of C1 up to isomorphism.
The étale sheaf F in Ét(C1) represented by C is an étale Z-torsor.

For all n ≥ 1,

F (Cn) = HomC1(Cn, C) = ∅.

Thus, the étale torsor F is not split by any finite étale cover of C1. We conclude
that H1

ét(C1,Z) is non-trivial, whereas Homcont(π1(C1, x),Z) = 0.
For normal connected noetherian schemes X, this defect in π1 goes away: every

locally constant étale sheaf on such an X is split by a finite étale covering. This
follows from Example 1.2.2.2.

1.2.6. Comparison of Zariski and étale cohomology. As a further im-
portant application of Čech methods, we shall now compute the étale cohomology
of a quasi-coherent sheaf. We first need to review the passage between Zariski-
sheaves and étale-sheaves. This is a prototype for the comparison isomorphism to
be studied later, and is modelled on the mechanism of comparison of cohomology
for different topologies as in Serre’s GAGA theorems. Let S be a scheme. Since
every Zariski-open in S is étale over S, there is a natural functor

ι∗ : Ét(S)→ Zar(S)

to the category of sheaves of sets for the Zariski topology, namely (ι∗(F ))(U) =
F (U) for Zariski-open U in S. This functor has a right adjoint ι∗ : Zar(S)→ Ét(S);
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explicitly, ι∗(F ) is the sheafification of the presheaf

(h : U → S) lim−→
V⊇h(U)

F (V )

on Sét. It is clear that ι∗ is left-exact, so ι∗ is right-exact, and in fact ι∗ is exact.
The same holds for the restricted functors between categories of abelian sheaves,
and the exactness of ι∗ implies (by a universal δ-functor argument) that there exists
a unique δ-functorial Zariski-étale comparison morphism

H•(S, F )→ H•ét(S, ι∗F )

that extends the evident map in degree 0. This is rarely an isomorphism.
When F is an OS-module, we can make a variant as follows. The additive

group scheme Ga defines an abelian sheaf in Ab(S), also denoted Ga. This may
be viewed as a sheaf of rings, and we write OSét to denote this sheaf of rings;
explicitly, OSét(U) = OU (U). There is a natural map OS → ι∗OSét as sheaves of
rings. Adjointness defines a map ι∗OS → OSét ; this is generally not an isomorphism,
because on stalks at s it is the natural map OS,s → Osh

S,s with s ∈ S the physical
point underlying s. This map of sheaves of rings enables us to define an OSét-module

Fét = OSét ⊗ι∗OS
ι∗F

for any OS-module F on the Zariski topology of S, and the functor F  Fét from
OS-modules to OSét-modules is exact because strict henselization is flat. The sheaf
ι∗F serves as a pullback for F from the Zariski topology to the étale topology,
and Fét is the analogous pullback when we work with the subcategories of module
objects over OS and OSét .

Example 1.2.6.1. If F is a quasi-coherent OS-module and h : U → S is étale,
then the restriction of Fét to the Zariski topology on U is the usual Zariski-pullback
h∗F . This is not a tautology, so let us prove it. Consider the presheaf

F̃ : (h′ : U ′ → S) 7→ Γ(U ′, h′
∗
F )

on Sét. It follows from fpqc-descent for quasi-coherent sheaves [3, 6.1] that this
presheaf is a sheaf. Its stalk at s is Osh

S,s ⊗OS,s
Fs.

By construction, F̃ is an OSét-module; if F = OS then F̃ = OSét . For
example, the stalks of OSét are the strict henselizations of the local rings on the
scheme S. There is an evident map F → ι∗F̃ that is linear over the natural map
OS → ι∗OSét , and so adjointness gives a map

Fét = OSét ⊗ι∗OS
ι∗F → F̃

as OSét-modules. By computing on stalks, we see that this is an isomorphism. This
gives a concrete description of Fét, and returning to our original étale h : U → S
we conclude that the restriction of Fét to the Zariski-topology on U is h∗F .

Since Fét is exact as a functor of the OS-module F , we may compose the
Zariski-étale comparison morphism with the natural map ι∗F → Fét to define a
modified δ-functorial comparison morphism

(1.2.6.1) H•(S, F )→ H•ét(S, Fét).

for OS-modules F on S.
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Theorem 1.2.6.2. The modified comparison morphism (1.2.6.1) is an isomor-
phism when F is quasi-coherent.

Proof. We first use two applications of the technique of the spectral sequence
for an affine cover to reduce to the case of an affine scheme. This goes as follows.
Fix an open affine covering U of S, and so (by exactness of F  Fét) the compar-
ison morphism induces a morphism between the Čech to derived-functor spectral
sequences for F on S and Fét on Sét (with respect to the Zariski and étale covers
induced by U). Our aim is to prove that the map on derived-functor abutments is an
isomorphism, so it is enough to establish that the induced map between Ep,q

2 -terms
is an isomorphism. This reduces the isomorphism problem to the case of a scheme
S that is a finite overlap of affines. In particular, we can assume S is separated.
Running through the spectral sequence again for separated S, the finite overlaps of
open affines are affine, and so we are reduced to the case of affine S.

When S is affine, the situation is clear in degree-0 and we have to prove a
vanishing claim in étale cohomology in positive degrees. Any étale cover of an
affine scheme admits a refinement U by finitely many affines, and the higher étale
overlaps (i.e., fiber products) of these are again affine. Example 1.2.6.1 and fpqc-
descent for quasi-coherent sheaves ensure that the Čech complex C•(U,Fét) built
on a finite affine étale cover of an affine scheme is exact in positive degrees. Thus,
Fét has the property that its Čech complexes with respect to a cofinal system of
covers are exact in positive degrees. In ordinary topology, Cartan’s lemma [11,
§3.8, Cor. 4] says that a sheaf with such a property must have vanishing higher
derived-functor cohomology. The proof of Cartan’s lemma is a spectral-sequence
argument with the Čech to derived-functor cohomology spectral sequence. We have
this spectral sequence for the étale topology, and so the proof of Cartan’s lemma
carries over verbatim. This proves that Fét has vanishing higher étale cohomology
on an affine scheme. �

1.2.7. Kummer and Artin–Schreier sequences. We have seen that H1
ét

with finite constant coefficients may be understood through the theory of the étale
fundamental group. To understand higher cohomology, let alone to prove vanish-
ing results in large degrees, a new idea is needed. This problem is solved via an
étale-topology version of Kummer theory, and in positive characteristic there is an
analogue of Artin–Schreier theory that is used to study p-torsion cohomology in
characteristic p. We now explain both theories.

For any scheme S, define Gm ∈ Ab(S) to be the abelian sheaf of points of the
smooth group scheme Gm: its value on U is H0(U,O×

U ). Likewise, for any nonzero
integer n we define µn to be kernel of x 7→ xn on Gm; this is the sheaf of points
of the finite flat commutative group scheme of nth roots of unity. If the integer n
is a unit on S, then for any affine S-scheme Spec A and any u ∈ A× = Gm(A),
the A-algebra A[X]/(Xn − u) is etale over A. Thus, for such n, the (n-torsion)
Kummer sequence

0→ µn → Gm
xn

−→ Gm → 0

of abelian sheaves on Sét is not only left exact (as is obvious on the level of
presheaves, since µn is a scheme-theoretic kernel), but it is exact for the étale topol-
ogy. Indeed, with notation as above, any u ∈ Gm(A) is an nth power in Gm(A′)
on the étale cover Spec A′ = Spec A[T ]/(Tn − u)� Spec A.
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Example 1.2.7.1. By Theorem 1.2.5.4, H1
ét(X,Gm) classifies étale torsors for

Gm, or equivalently it classifies étale line bundles (i.e., locally free OXét-sheaves of
rank 1). The set of isomorphism classes of étale line bundles is denoted Pic(Xét),
and it has a natural group structure via tensor products; the identification between
Pic(Xét) and H1

ét(X,Gm) is an isomorphism of groups.
Example 1.2.6.1 and fpqc-descent for quasi-coherent sheaves ensure that F  

Fét is an equivalence of categories between quasi-coherent sheaves on X and OXét-
modules that are étale-locally isomorphic to the étale sheaf associated to a quasi-
coherent sheaf (on an étale X-scheme). Thus, the natural map Pic(X)→ Pic(Xét)
induced by L  Lét is an isomorphism of groups.

By following the sign convention in (??) for both X and Xét, we conclude that
the natural composite map

H1(X, O×
X)→ H1

ét(X, ι∗(O×
X))→ H1

ét(X,Gm)

is an isomorphism, where the first step is the Zariski-étale comparison morphism
and the second step is induced by the unit-group map of the map of sheaves of
rings ι∗OX → OXét .

The importance of the Kummer sequence is this: if X is a Z[1/n]-scheme such
that µn is constant over X (e.g., X is a scheme over a separably closed field of char-
acteristic not dividing n), then we may identify Z/n with µn and so the Kummer
sequence allows us to analyze cohomology with Z/n-coefficients by understanding
the higher cohomology of Gm. For example, suppose X is a connected proper
smooth genus-g curve over a separably closed field k whose characteristic does not
divide n. We have H1

ét(X,Gm) = Pic(X), and the nth-power map is surjective on
Gm(X) = k×, so

H1
ét(X, µn) = Pic(X)[n] = Pic0

X/k[n];

by the algebraic theory of the Jacobian, this gives the right answer: (Z/nZ)2g.
From the viewpoint of their applications to cohomology, Kummer theory corre-

sponds to the analytic exponential sequence. The study of torsion that is divisible
by the characteristic rests on Artin–Schreier theory, an analogue of de Rham the-
ory. Suppose p is a prime and p = 0 on S. Since t 7→ tp is additive in characteristic
p, we can define the Artin-Schreier sequence

0→ Z/pZ→ Ga
tp−t−→ Ga → 0

in Ab(S). We claim that this is an exact sequence. The left-exactness is clear since
tp− t =

∏
j∈Fp

(t− j). To prove the exactness on the right, we just have to observe
that tp − t is an étale surjection of group schemes. Explicitly, for any ring A with
characteristic p and any a ∈ A, the equation tp − t = a can be solved in the finite
étale extension A[T ]/(T p − T − a).

It follows from the long-exact cohomology sequence associated to the Artin-
Schreier sequence that the cohomology with Z/pZ-coefficients in characteristic p
is controlled by the étale cohomology of OXét , and this is just Zariski-cohomology
for the quasi-coherent sheaf OX . For example, if X is a proper curve then the
vanishing Hi(X, OX) = 0 for i > 1 implies Hi(X,Z/pZ) = 0 for i > 2. Since
H1(X, OX) is finite-dimensional in the proper case, the additive self-map induced
by tp− t may be viewed as the map on k-points induced by an étale self-map of the
connected additive algebraic k-group underlying the vector space H1(X, OX). Any
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étale self-map of a connected algebraic k-group is surjective on k-points (since k is
separably closed), and so H2(X,Z/pZ) = 0 for such k.

The Artin–Schreier resolution of Z/pZ by coherent sheaves is a characteristic-p
analogue of the holomorphic Poincaré lemma on a complex manifold (a resolution of
C by coherent sheaves Ω•). Likewise, the long exact cohomology sequence that fits
the étale cohomology of Z/pZ between coherent cohomologies is an analogue of the
Hodge to de Rham spectral sequence that computes the topological cohomology of
C on a complex manifold via the Hodge filtration and the spectral sequence whose
E1-terms are cohomology of coherent sheaves.

Definition 1.2.7.2. Let S be a scheme. An abelian étale sheaf F on Sét is a
torsion sheaf if every section of F is locally killed by a non-zero integer; equivalently,
all stalks are torsion abelian groups. If all sections are locally killed by powers of a
prime p, then F is a p-power torsion sheaf.

The following theorem is proved by using the Kummer and Artin–Schreier
sequences on curves:

Theorem 1.2.7.3. Let X be a separated finite-type scheme of dimension ≤ 1
over a separably closed field k. For any torsion sheaf F on X, the groups Hi

ét(X, F )
vanish for i > 2. If F is a constructible sheaf, then Hi

ét(X, F ) is finite for i ≤ 2.
When X is affine, the vanishing of Hi

ét(X, F ) also holds for i = 2 and any
torsion sheaf F with torsion-orders not divisible by the characteristic. When X is
proper then such vanishing holds for i = 2 when k has positive characteristic p and
F is a p-power torsion sheaf.

Proof. See [9, Ch. I, §5] or [15, Exp. IX, §4] for a proof when torsion-orders
are not divisible by the characteristic of k, and see [19, Exp. XXII, §1–§2] for the
extra arguments needed to handle the p-part in characteristic p. �

1.3. Advanced torsion cohomology

We now discuss some deeper foundational theorems in étale cohomology at the
level of torsion sheaves. The `-adic enhancement is given in §1.4.

1.3.1. Quasi-separatedness and limits of schemes. Many proofs of gen-
eral results in étale cohomology involve reduction to the case of cohomology of
constructible sheaves on noetherian schemes. For example, the proof of the general
cohomological vanishing theorem for torsion sheaves on curves (Theorem 1.2.7.3)
uses limit arguments to reduce to the study of the cohomology of constructible
sheaves. The starting point for all such arguments is the fact that any abelian
torsion sheaf on a noetherian scheme is the direct limit of its constructible abelian
subsheaves (Theorem 1.1.7.9). To exploit this, we need to know that direct limits
can be moved through cohomology functors.

There is another kind of limit whose interaction with cohomology must be un-
derstood: we occasionally need to compute cohomology over a direct-limit ring. For
example, we want a Lefschetz principle to affirm that the theory of étale cohomol-
ogy for finite-type schemes over an algebraically closed field k of characteristic zero
should be essentially the same as the theory in the special case k = C. The alge-
braic mechanism that will make such a principle work is the fact that an extension
of algebraically closed fields can always be expressed as a direct limit of smooth
ring extensions, and so it is necessary to understand the behavior of cohomology
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with respect to a direct-limit process in coordinate rings. Geometrically, we must
understand how cohomology behaves as we move in a projective system of schemes.

The basic property we wish to investigate is the behavior of étale cohomology
with respect to limits of both schemes and abelian étale sheaves. On compact Haus-
dorff spaces, topological sheaf cohomology commutes with direct limits of abelian
sheaves (Lemma ??). This suggests that quasi-compact schemes are the ones to
consider for the problem of moving limits through cohomology. However, we will see
that an additional condition (always satisfied in the noetherian case) is necessary:

Definition 1.3.1.1. A scheme morphism f : X → S is quasi-separated if the
diagonal X → X ×S X is quasi-compact, and is finitely presented if it is quasi-
separated and locally of finite presentation. A scheme X is quasi-separated if its
structure morphism to SpecZ is quasi-separated.

Concretely, a scheme is quasi-separated if and only if any two open affines
in X lying over a common open affine in S have quasi-compact overlap in X;
equivalently, any two quasi-compact opens in X have quasi-compact overlap. The
finite presentation condition says that, locally over the base, X is described with a
finite amount of information: finitely many equations in finitely many variables, and
a finite amount of affine gluing data. Two good properties are that any map between
quasi-separated S-schemes is quasi-separated and, more importantly, that any map
between quasi-separated and quasi-compact S-schemes is also quasi-compact. See
[17, §1.2] for a detailed treatment of these conditions.

Example 1.3.1.2. When S and X are locally noetherian, any map f : X → S is
quasi-separated. Any map between noetherian schemes is therefore quasi-compact
and quasi-separated. In general, a quasi-compact and quasi-separated scheme is a
scheme that admits a finite open affine covering with the overlaps also admitting
finite open affine covers. For example, a noetherian scheme is quasi-compact and
quasi-separated, even when it is not separated.

In Example 1.1.3.9, we constructed a quasi-compact scheme S and an étale
cover of S admitting no finite refinement with quasi-compact double overlaps. That
example was constructed by gluing two affines along a non-quasi-compact open, and
so S is not quasi-separated. Schemes that are not quasi-separated are generally
regarded as pathological.

Although quasi-compactness and quasi-separatedness were defined in terms of
the Zariski topology, we can characterize the combined conditions by using the étale
topology:

Lemma 1.3.1.3. A scheme X is quasi-compact and quasi-separated if and only
if every étale cover {Ui} of X admits a finite refinement {Vj} such that all double-
overlaps Vj ×X Vj′ are quasi-compact.

Proof. Assume that X is quasi-compact and quasi-separated. Openness of
étale maps ensures that every étale cover of X admits a finite refinement consisting
of affines whose image in X is contained in an affine open. Maps between affines are
quasi-compact, and quasi-separatedness implies that U ↪→ X is a quasi-compact
map for any open affine U ⊆ X. Thus, a cofinal system of étale covers is given by
covers {Vj}j∈J with J finite, each Vj → X both quasi-compact and quasi-separated
(even separated). Thus, Vj×XVj′ is quasi-compact over X, and so it quasi-compact,
for all j and j′.
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Conversely, assume that all étale covers of X admit finite refinements {Vj}
with quasi-compact double-overlaps. Consider an open affine covering {Ui} of X
for the Zariski topology. Since this admits a finite refinment for the étale topology,
it certainly admits a finite subcover for the Zariski topology. Thus, X is quasi-
compact. To prove quasi-separatedness, let {Ui} be a finite Zariski-cover of X by
open affines; we want each Uii′ = Ui ×X Ui′ to be quasi-compact. Since {Ui} is
an étale cover of X, it admits a finite refinement {Vj} with each Vj ×X Vj′ quasi-
compact. Since each Vj factors through at least one Ui, if we define V (i) to be
the disjoint union of the Vj ’s whose open image in X lies in Ui (so some Vj ’s may
contribute to more than one V (i)) then V (i) surjects onto Ui. Thus, V (i) ×X V (i′)

surjects onto Ui×X Ui′ = Ui ∩Ui′ . However, V (i)×X V (i′) is a finite disjoint union
of quasi-compact products Vj ×X Vj′ . �

Quasi-separatedness and quasi-compactness will turn out to be a sufficient cri-
terion for passing direct limits through étale cohomology on a scheme. However,
we also will need to consider the behavior of cohomology with respect to limits
of geometric objects (such as C considered as a limit of finitely generated exten-
sions of Q). For this purpose we require Grothendieck’s theory of inverse limits for
schemes, so let us summarize how Grothendieck’s theory works. The basic exam-
ple is T = Spec A with A = lim−→Aλ a filtered direct limit of rings Aλ. We define
Tλ = Spec Aλ. There are natural compatible maps T → Tλ, and so there is a map
T → lim←− Tλ as topological spaces. Every ideal in A is the limit of its contractions
to the Aλ’s, and this procedure expresses prime ideals as limits of prime ideals and
respects containments. Thus, in view of the combinatorial definition of the Zariski
topology, we see that the continuous map T → lim←− Tλ is a homeomorphism. More
importantly, for any scheme X the natural map of sets

T (X)→ lim←− Tλ(X)

is a bijection. Indeed, for affine X = Spec B this expresses the universal property
of A as a direct limit of the rings Aλ, and we can globalize to any X by covering X
with open affines Ui (and covering the overlaps Ui ∩ Uj with open affines Uijk) to
reduce to the result in the affine case. By universality, this construction commutes
with restriction over an open affine in any Tλ0 (keeping only those λ ≥ λ0).

In the more general situation of a (cofiltered) inverse system of schemes {Tλ}
such that the transition maps Tλ′ → Tλ are affine morphisms, the functor X  
lim←− Tλ(X) is represented by a scheme T such that the maps T → Tλ are affine and
the topological-space map T → lim←− Tλ is a homeomorphism. Explicitly, we just
choose some λ0 and over any open affine U in Tλ0 the system of Tλ|U ’s for λ ≥ λ0

fits into the affine situation already treated; this gives a solution over U and it is
straightforward to glue these over all U ’s in Tλ0 to make a global solution T with
the desired properties. The scheme T is denoted lim←− Tλ. The theory of such inverse
limits of schemes is exhaustively developed in [17, §8ff].

Let {Tλ} be an inverse system of quasi-compact and quasi-separated schemes
with affine transition maps, and let T be the inverse limit. Since T is affine over
any Tλ0 , it is quasi-compact and quasi-separated. The general principle in the
theory of inverse limits of schemes is that any finitely presented construction over
T should descend over some Tλ, with any two descents becoming isomorphic over
Tλ′ for some λ′ ≥ λ (with any two such isomorphisms becoming equal over Tλ′′ for
some λ′′ ≥ λ′), and that any finitely presented situation over Tλ that acquires a
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reasonable property (flatness, surjectivity, properness, etc.) over T should acquire
that property over Tλ′ for some λ′ ≥ λ.

1.3.2. The direct limit formalism.

Theorem 1.3.2.1 (Compatibility of cohomology and filtered limits I). Let X be
a quasi-compact and quasi-separated scheme, and {Fλ} a directed system of abelian
sheaves on Xét with direct limit F . The map

lim−→
λ

Hi
ét(X, Fλ)→ Hi

ét(X, F )

is an isomorphism for all i.

Proof. We first treat degree-0 by a direct argument. Any étale cover of a
quasi-compact and quasi-separated scheme U admits a finite refinement {Ui} with
each étale map Ui → U quasi-compact and quasi-separated, and so all finite fiber
products among the Ui’s are quasi-compact over U . This is the key point.

Let G be the presheaf G (U) = lim−→Fλ(U) whose sheafification G + is lim−→Fλ.
Since {Fλ} is filtered, we see that if an étale map U → X is quasi-compact and
quasi-separated, and if U = {Ui} is an étale cover of U by finitely many étale
U -schemes Ui that are quasi-compact and quasi-separated over U , then G (U) =
H0(U,G ). Such covers U are cofinal among étale covers of U , so the first step of
the sheafification process for G does not change the values on quasi-compact and
quasi-separated X-schemes U . Hence, the second step of the sheafification process
does not change the values on such objects U . By taking U = X, we get the desired
result in degree 0.

Since filtered direct limits commute with finite products and any étale cover
of X admits a finite refinement U = {Ui} such that all finite products among the
Ui’s are quasi-compact and quasi-separated, it follows from the degree-0 case that
for a cofinal system of covers U, H•ét(U, ·) commutes with filtered direct limits. By
the theorem on exchange of iterated filtered limits, we conclude that Ȟ•ét(X, ·) also
commutes with filtered direct limits. It is not true in general that Čech cohomology
agrees with étale cohomology, but we have a spectral sequence

Ep,q
2 = Ȟp

ét(X, Hq
ét(F ))⇒ Hp+q

ét (X, F ).

Thus, the problem of moving filtered direct limits through Hn
ét(X, F ) is reduced to

that of the Ep,q
2 -terms for p+q = n. Since E0,n

2 = 0, we may suppose q < n. We also
have En,0

2 = Ȟn
ét(X, F ), so we may suppose p > 0. This settles n = 1, and so we

may induct (with an inductive hypothesis that is quantified over all quasi-compact
and quasi-separated étale X-schemes). �

If P is a set of primes, let us define a P -sheaf to be a torsion sheaf whose
torsion-orders are not divisible by primes in P .

Theorem 1.3.2.2 (Noetherian descent). Let S be a quasi-separated and quasi-
compact scheme, and let P be a set of primes.

(1) There exists an inverse system of noetherian schemes {Sλ} with affine
transition maps such that S ' lim←− Sλ, and the Sλ’s may be taken to be
finite type over Z. For any such system {Sλ} and any P -sheaf F on Sét,
F is a direct limit of P -sheaves Fi such that each Fi a pullback of a
constructible P -sheaf on some (Sλ)ét.
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(2) For any quasi-separated finite-type S-scheme X there exists a closed im-
mersion X ↪→ X into a finitely presented S-scheme, and if X is separated
over S then X can be chosen to be separated over S.

(3) In (2), there exists λ0 and a finite type Sλ0-scheme Xλ0 whose base change
to S is X. Defining Xλ = Sλ ×Sλ0

Xλ0 for λ ≥ λ0, the map Xλ → Sλ

is separated for some large λ if and only if X → S is separated; the same
holds for properness.

Proof. The first assertion in (1) is [25, Thm. C9], and it proceeds via a non-
trivial induction on the size of an affine open cover. The existence of Xλ0 in (3) is
[17, 8.8.2], and the descent of the properties of separatedness and properness is a
special case of [17, 8.10.5]. We shall use descent of finitely presented schemes to
settle the second claim in (1), and then we will sketch the proof of (2).

Let F be a P -sheaf on Sét. Consider triples (λ, G , φ) where G is a constructible
P -sheaf on Sλ and φ : π∗λG → F is a map (with πλ : S → Sλ the canonical map).
These triples form a (small) category CF , where a morphism

(λ, G , φ)→ (λ′,G ′, φ′)

for λ′ ≥ λ is a map f : π∗λ′,λG → G ′ that satisfies φ′ ◦ π∗λ′(f) = φ. There is an
evident diagram DF of P -sheaves π∗λG on Sét indexed by the category C, and the
direct limit L (F ) of this diagram is a P -sheaf on Sét equipped with a natural
map L (F ) → F . Since L (F ) is a filtered direct limit of the finite limits over
finite subdiagrams in DF , to prove (1) it is enough to show that L (F )→ F is an
isomorphism.

For surjectivity, we note that any section s of F is locally the image of a map
φ : i!(Z/nZ) → F for some étale map i : U → S with U étale over an open affine
in S. Since i : U → S is finitely presented (it is quasi-separated because of the
hypotheses on S), it descends to an finite-type map iλ : Uλ → Sλ for some λ, and
by [17, 17.7.8] we may increase λ to make this map étale. The pullback of iλ!(Z/nZ)
to S is i!(Z/nZ). Thus, (λ, iλ!(Z/nZ), φ) is an object in CF , and so we see that
F ′ → F is surjective. For injectivity, it suffices to show that for any object (λ, G , φ)
in CF , the kernel of φ : π∗λG → F is killed by the natural map π∗λG → L (F ). A
section in the kernel is locally the image of a map i′!(Z/nZ)→ π∗λG with i′ : U ′ → S
an étale map factoring through an open affine in S. We may increase λ so that
(U ′, i′) descends to i′λ : U ′

λ → Sλ. Thus, we obtain another object (λ, i′λ!(Z/nZ), 0)
in CF equipped with a map to (λ, G , φ), and we want i′!(Z/nZ)→ L (F ) to vanish.
There is an evident morphism

(λ, i′λ!(Z/nZ), 0)→ (λ, 0, 0)

in CF , and this completes the proof of injectivity.
It remains to prove (2). Suppose we can construct a closed immersion of X

into some finitely presented S-scheme X. Since X is quasi-compact and quasi-
separated we may express the quasi-coherent ideal I of X on X as the direct limit
of its finitely generated quasi-coherent subideals Iα [17, 1.7.7]. Thus, the zero-
schemes Xα of the Iα are an inverse system of finitely presented S-schemes with
affine transition maps and inverse limit X. When the limit object X is separated
over S, then we claim that some Xα must be separated over S, and so may be
used in the role of X. This assertion is local on S, so we may assume S is affine,
and then it is [25, Prop. C7]. The construction of X is a tedious exercise with the
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techniques in [25, App. C], so we only describe the basic principle that generalizes
the observation that any finite-type algebra is a direct limit of finitely presented
algebras (express an ideal of relations as a limit of finitely generated subideals):

If X is affine and lies over an open affine U in S, we can take X = An
U ′ for

some n. In general we may cover X by r such open affines, and we induct on
r. This immediately reduces to the following general situation: X is covered by
quasi-compact (and hence finite type) opens U and V such that there exist closed
immersions U ↪→ U and V ↪→ V into finitely presented S-schemes. Since U ∩ V is
quasi-compact, there exist quasi-compact opens U ′ and V ′ in U and V such that
U ′ ∩ U = U ∩ V and V ′ ∩ V = U ∩ V . We express the ideals of U and V as
limits of finitely generated quasi-coherent subideals, and study these ideals to find
finitely presented closed subschemes in U and V containing U and V such that
these finitely presented closed subschemes can be glued along suitable opens that
thicken the quasi-compact U ∩ V , with this gluing providing the desired X (after
appropriate further shrinking around U and V ). �

Theorem 1.3.2.3 (Compatibility of cohomology and filtered limits II). Let
{Tλ} be an inverse system of quasi-compact and quasi-separated schemes, with affine
transition maps πλ,λ′ : Tλ′ → Tλ whenever λ′ ≥ λ. Let T = lim←− Tλ. Let {Fλ} be
a compatible family of abelian étale sheaves the Tλ’s in the sense that we are given
transitive maps π∗λ′,λFλ → Fλ′ for all λ′ ≥ λ. Define F to be the direct limit of the
pullbacks of these sheaves to Tét. The natural map lim−→

λ

Hi
ét(Tλ,Fλ) → Hi

ét(T,F )

is an isomorphism for all i.

The most important instance of this theorem is when the transition maps on
sheaves are isomorphisms, so F is the pullback of each Fλ.

Proof. Since T is quasi-compact and quasi-separated (it is even affine over
any Tλ), considerations with finite presentations imply that any étale cover of T
admits a finite refinement that descends to an étale cover of some Tλ. This fact
enables us to carry over the spectral-sequence argument via Čech cohomology, as
in the proof of Theorem 1.3.2.1, provided the case of degree 0 is settled.

For degree 0, we apply the limit methods in [17, §8ff] as follows. Consider an
étale map U → T that is quasi-compact and quasi-separated. This descends to an
étale map Uλ0 → Tλ0 that is quasi-compact and quasi-separated; moreover, any two
such descents become isomorphic under base change to some Tλ′ with λ′ ≥ λ0, and
two such isomorphisms over Tλ′ become equal over Tλ′′ for some λ′′ ≥ λ′. Thus, if
we define Uλ = Uλ0 ×Tλ0

Tλ for λ ≥ λ0 then the group

G (U) def= lim−→Fλ(Uλ)

is functorially independent of all choices. The strategy is to prove that G uniquely
extends to a sheaf on Tét. This will be done by building up to Tét through two full
subcategories that admit their own étale topologies.

We may view G as a presheaf on the full subcategory T qcqs
ét in Tét whose objects

are étale T -schemes U with quasi-compact and quasi-separated structure map to T .
All morphisms in T qcqs

ét are quasi-compact and quasi-separated (as well as étale),
so T qcqs

ét is stable under finite fiber products in Tét. Thus, T qcqs
ét may be endowed

with an étale topology in the evident manner, and left-exactness considerations
show that G is a sheaf for this topology. Let T qs

ét be the full subcategory in Tét
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consisting of étale T -schemes with quasi-separated structure map. All morphisms
in this category are quasi-separated, so T qs

ét is stable under finite fiber products in
Tét. Thus, T qs

ét admits a natural étale topology. Every T ′ in T qs
ét admits an étale

cover {Ui} by objects in T qcqs
ét , and the T -maps Ui → T ′ are necessarily quasi-

compact and quasi-separated [17, 1.2.2, 1.2.4], so fiber products of the Ui’s over T ′

lie in T qcqs
ét ; roughly speaking, the étale topology on T qs

ét is generated by T qcqs
ét .

Since the T qcqs
ét -covers of any U ∈ T qcqs

ét are cofinal among all étale covers of
U in Tét, we conclude that there is a unique étale sheaf G ′ on T qs

ét restricting to
G on T qcqs

ét . We now wish to repeat the process to uniquely extend G ′ to a sheaf
G ′′ on Tét. This can be done because every T ′ in Tét has a cofinal system of covers
{Ui} with each Ui a separated étale scheme over an open affine in T ′ that lies over
an open affine in T (so all fiber products among Ui’s over T ′ are T -separated and
hence lie in T qs

ét ). In brief, we have proved that the sites T qcqs
ét and Tét give rise to

the same topos.
There is a unique map G ′′ → F extending the evident maps on U -points for U

in T qcqs
ét , and local section-chasing shows that this map of sheaves is an isomorphism.

Thus, F (T ) = G ′′(T ) = G (T ) = lim−→Fλ(Tλ). �

1.3.3. Cohomology as a Galois module. As an application of the compat-
ibility of cohomology and limits, we can analyze some interesting Galois-modules
that arise from étale cohomology on schemes over a field K. Let f : X → Spec K
be a map, let Ks/K be a separable closure, and let F be an abelian étale sheaf
on X. Since higher direct images may be identified with sheafified cohomology, the
compatibility of cohomology and direct limits implies that the geometric stalk of
the étale sheaf (Rif∗F )Ks

on (Spec Ks)ét is

(1.3.3.1) lim−→
K′

Hi
ét

(
X ×Spec K Spec K ′,FK′

)
' Hi

ét

(
X ×Spec K Spec Ks,FKs

)
,

where the limit is taken over finite extensions of K inside of Ks. Note also that we
have a canonical left action of Gal(Ks/K) on (1.3.3.1) via
(1.3.3.2)

Hi
ét

(
X ×Spec K Spec Ks,FKs

) (1×g)∗ // Hi
ét

(
X ×Spec K Spec Ks, (1× g)∗FKs

)
'
��

Hi
ét

(
X ×Spec K Spec Ks,FKs

)
for g ∈ Gal(Ks/K), where the second step uses the commutative diagram

X ×Spec K Spec Ks
1⊗g

//

''OOOOOOOOOOOO
X ×Spec K Spec Ks

wwoooooooooooo

X

Theorem 1.3.3.1. The Gal(Ks/K)-action in (1.3.3.2) is the same as that com-
ing from the structure of Rif∗F as an étale sheaf on Spec K.

Remark 1.3.3.2. This theorem includes the implicit assertion (that can be
checked directly) that the description (1.3.3.2) is continuous with respect to the
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discrete topology. It is useful that we can encode this Gal(Ks/K)-action intrin-
sically in terms of the étale sheaf Rif∗F , without having to mention Ks or work
with Ks-schemes.

Proof. To verify the compatibility between (1.3.3.2) and the Gal(Ks/K)-
action on (Rif∗F )Ks , we consider the canonical group isomorphism

lim−→
K′

Hi
ét

(
X ×Spec K Spec K ′,FK′

)
→ Hi

ét

(
X ×Spec K Spec Ks,FKs

)
= (Rif∗F )Ks

where K ′/K runs over finite Galois extensions inside of Ks. Using functoriality in
Ks, this identifies the abstract Gal(Ks/K)-action on Hi

ét(X ×Spec K Spec Ks,FKs
)

with that induced by the (compatible) actions on Hi
ét(X ×Spec K Spec K ′,FK′) by

Gal(K ′/K) for all K ′. This concrete action on the direct limit is exactly the action
arising on the Galois module associated to the stalk of the étale sheaf Rif∗F ,
since this higher direct image sheaf on (Spec K)ét is naturally identified with the
sheafification of the presheaf

U 7→ Hi
ét(X ×Spec K U,FU )

on (Spec K)ét, where FU denotes the pullback of F to X ×Spec K U . �

1.3.4. Proper base change theorem. One of the most important theorems
in the theory of étale cohomology is the analogue of topological proper base change:

Theorem 1.3.4.1 (Proper base change). Let S be a scheme, let f : X → S be
a proper map, and let F be a torsion abelian étale sheaf on X. For any cartesian
square

X ′ g′
//

f ′

��

X

f

��

S′ g
// S

the natural base-change map g∗Rif∗F → Rif ′∗(g
′∗F ) is an isomorphism.

The first step in the proof uses limit methods and noetherian descent to reduce
to the case when S = Spec R for a strictly henselian local noetherian ring R, the
map g : S′ → S is the inclusion of the closed point {s}, and F is a constructible
Z/nZ-module. The natural map Hi

ét(X, F ) → Hi
ét(Xs,Fs) must be shown to be

an isomorphism in this case. As is explained in [9, Ch. I, 6.1], a combination of
limit techniques and arguments with spectral sequences and fibrations reduces this
general problem to the special case F = Z/nZ and i ≤ 1. This special case is the
heart of the argument, and so we shall now explain how it is proved.

The basic principle is that H0 and H1 with constant coefficients have concrete
meaning in terms of π0 and π1: these low-degree cohomologies measure connectivity
and torsors. It is these explicit interpretations that will be studied in the proof.

Theorem 1.3.4.2. Let X → Spec R be a proper, with R a henselian noetherian
local ring. Let X0 denote the closed fiber. The pullback map

Hi
ét(X,Z/nZ)→ Hi

ét(X0,Z/nZ)

is an isomorphism for all n > 0 and for i = 0, 1.
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Proof. For noetherian S, sections in H0
ét(S,Z/nZ) = HomS(S,

∐
j∈Z/nZ S)

assign elements jα ∈ Z/nZ to each (closed and open) connected component Sα of
S. Thus, for i = 0 the theorem says that X and its closed fiber X0 have the same
number of connected components. To establish this connectivity claim, we may
assume the proper X is non-empty, so X0 6= ∅, and we must show that the primitive
idempotents of H0(X, OX) ' H0(Spec R, f∗OX) and H0(X0,OX0) correspond under
reduction. Since H0(Spec R, f∗OX) is finite over the henselian local R, it is a finite
product of local R-algebras. Such a product decomposition gives rise to a disjoint
open decomposition of X, so upon reducing to the case of connected X we conclude
that A = H0(X, OX) must be local, and we need to prove that X0 is connected.

If R̂ denotes the completion of R, then the finite local R-algebra A has the
property that R̂ ⊗R A = Â is the completion of A and hence is local. By faithful
flatness of R̂ over R we know that Â = H0(X ′,OX′), where X ′ = X⊗RR̂. Thus, the
ring of global functions Â on X ′ is local and hence has no non-trivial idempotents,
and so X ′ is connected. Since X ′ has the same closed fiber as X, we have reduced
our connectedness problem to the case when R is complete. In this case, a separation
of X0 would uniquely lift to compatible separations of each infinitesimal closed fiber
Xm

def= X mod mm+1
R , and so would give rise to compatible non-trivial idempotents

in H0(Xm,OXm
)′s. By the theorem on formal functions, these define a non-trivial

idempotent in H0(X, OX), and hence a separation of X, contrary to hypothesis.
Thus, X0 must be connected. This settles the case i = 0. In particular, to check
the case i = 1 we may assume that X and X0 are both connected. The use of
infinitesimal neighborhoods of X0 in the preceding argument is analogous to the
use of tubular neighborhoods of fibers in the proof of the topological proper base
change theorem.

For i = 1, the computation of constant-coefficient H1 in terms of π1 translates
our problem into showing that every étale Z/nZ-torsor Y0 over X0 is induced by
a unique étale Z/nZ-torsor over X. Such a torsor Y0 is a degree-n finite étale
cover of X0. As a first step we change the base to R̂ and we will construct such a
unique torsor over X⊗R R̂. By [17, 18.3.4], if Z is a proper scheme over a complete
local noetherian ring A then the functor (·)×A A/m is an equivalence of categories
between finite étale covers of Z and finite étale covers of its closed fiber. Since an
étale Z/nZ-torsor over a scheme Z is a finite étale Z-scheme Z ′ equipped with an
action of Z/nZ such that the action map (Z/nZ) × Z ′ → Z ′ ×Z Z ′ of finite étale
Z-schemes is an isomorphism, we conclude that Y0 → X0 uniquely lifts to an étale
Z/nZ-torsor over X ⊗R R̂.

Thus, there is bijectivity on H1
ét’s when we replace X with X ⊗R R̂, and so for

injectivity on H1
ét’s in general it suffices to show that any two étale Z/nZ-torsors

over on X that are isomorphic over X ⊗R R̂ must be isomorphic. Equivalently,

(1.3.4.1) Homcont(π1(X),Z/nZ)→ Homcont(π1(X ⊗R R̂),Z/nZ)

is injective (for compatible choices of base points). Here we are implicitly using the
connectivity of X ⊗R R̂, and this connectivity follows from the case i = 0 applied
over the henselian ring R̂ (and the fact that X ⊗R R̂ has closed fiber X0 that is
connected by assumption).

To see the injectivity of (1.3.4.1), it suffices to show that π1(X⊗R R̂)→ π1(X)
is surjective. The connectivity criterion via π1’s translates this into checking that if
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Y → X is a connected finite étale cover, then the finite étale cover Y ×X (X⊗RR̂) =
Y ⊗R R̂ of X ⊗R R̂, is still connected. For this we may apply the i = 0 case to
Y → Spec R to deduce that Y0 is connected, and then applying the i = 0 case to
Y ⊗R R̂ (whose closed fiber is Y0) we conclude that Y ⊗R R̂ is connected.

Now that we have uniqueness, we need to check the existence of liftings of
torsors; this is a problem if R is not complete. Fix an étale Z/nZ-torsor Y0 over
X0. Write R = lim−→Ri as a direct limit of finite type Z-algebras. Since R is henselian
local, if R′

i is the henselization of the localization of Ri at the contraction of the
maximal ideal of R, then R is also the direct limit of the R′

i’s. The R-scheme
X is proper and finitely presented (since R is noetherian), so we can apply the
extensive direct limit techniques from [17, §8–§11] to ensure that for some i0 there
exists a proper R′

i0
-scheme Xi0 that gives rise to X via base change to R. Let

Xi = Xi0 ×R′
i0

R′
i for i ≥ i0. By viewing X0 as a limit of closed fibers of Xi’s

for i ≥ i0, the same limit techniques applied to Y0 → X0 show that we may bring
down the chosen étale Z/nZ-torsor Y0 to one over the closed fiber of some Xi1 with
i1 ≥ i0. Thus, our initial setup descends to R′

i1
, and so to prove existence over R

it suffices to work over R′
i1

(since we can apply a base change).
In other words, it suffices to assume that R is the henselization of a Z-algebra

essentially of finite type. To summarize, we have a proper map X → Spec R, and we
have an étale Z/nZ-torsor Y0 → X0; we want to lift this to an étale Z/nZ-torsor
on X. We have seen how to make a unique étale Z/nZ-torsor Ŷ over X ⊗R R̂

that lifts Y0 → X0. Thus, given such a cover Ŷ we wish to find an étale Z/nZ-
torsor Y → X with the same closed fiber over R. To find such a Y , express R̂ as
the direct limit of its finitely generated R-subalgebras; the direct limit techniques
from [17, §8–§11] ensure that there exists a finite type R-subalgebra A ⊆ R̂ and
an étale Z/nZ-torsor YA → X ⊗R A whose base change by A → R̂ is Ŷ . Write
A = R[T1, . . . , Tr]/(f1, . . . , fm), so the (inclusion) map g : A → R̂ corresponds to
a set of solutions of the polynomial equations f1 = · · · = fm = 0 in R̂. If we can
find a solution to this system in R that induces the same solution in the residue
field, then we would get a map s : A→ R over R with A→ R→ R̂ and g : A→ R̂
inducing the same composite to the residue field. Clearly YA×Spec A,s Spec R would
be the desired Z/nZ-cover of X, realizing the closed-fiber cover Y0.

Thus, we want to show that for a ring R that is the henselization of an local
ring essentially of finite type over Z, if we are given a solution in R̂ to a finite
system of polynomials over R then there exists a solution in R with the same image
in R/m ' R̂/m. This is a special case of Artin approximation [3, 3.6/16]. �

1.3.5. Smooth base change and vanishing cycles. We now discuss the
étale analogue of the homotopy-invariance of the cohomology of local systems in
topology. Let us first revisit the topological situation to motivate what to prove in
the étale topology.

Consider a cartesian diagram

X ′ g′
//

f ′

��

X

f

��

S′ g
// S
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of topological spaces, and assume that g is smooth in the sense that each s′ ∈ S′

has an neighborhood that is homeomorphic to U ×B with U ⊆ S a neighborhood
of g(s′) and B = [0, 1]n.

Theorem 1.3.5.1 (Topological smooth base change). For any abelian sheaf F
on X, the natural base-change morphisms

g∗Rif∗F → Rif ′∗(g
′∗F )

are isomorphisms when F is a local system on X.

Proof. Working locally on S′ allows us to suppose S′ = S × B, and since
higher direct images are sheafifications of cohomology it is enough to prove that
the pullback Hi(X, F )→ Hi(X ×B, g′

∗F ) is an isomorphism. This pullback map
is a section to any pullback map

Hi(X ×B, g′
∗
F )→ Hi(X, F )

to a fiber X × {b} for any b ∈ B, and these fibral-pullbacks are isomorphisms
because X × {b} is a deformation retract of X × B and the cohomology of local
systems is invariant under deformation retract (Corollary ??). Thus, the topo-
logical smooth base change theorem is a rephrasing of the homotopy-invariance of
topological cohomology. �

Another viewpoint on this homotopy calculation arises in the theory of vanish-
ing cycles. Here is the basic setup. Let p : Y → I = [0, 1] be a continuous map,
and let pη : Yη → Iη be the restriction over Iη = I−{0}. Let us determine whether
the maps H•(Y,Z)→ H•(Yη,Z) are isomorphisms. To analyze these maps, we will
realize them as edge maps in a spectral sequence. Let η : Iη ↪→ I and j : Yη ↪→ Y
be the natural maps. We have a Leray spectral sequence

Er,s
2 = Hr(Y,Rsj∗Z)⇒ Hr+s(Yη,Z).

The relevance of homotopy-invariance, as we will see, is that when p is smooth
along Y0 then the Rsj∗Z’s are easily computed and vanish for s > 0.

For any sheaf F on Y , its qth vanishing-cycles sheaf RqΨη(F ) is defined to be
(Rqj∗F )|Y0 . Since (Rqj∗F )|Yη

= 0 for q > 0, for positive q we see that Rqj∗(F )
is the pushforward of RqΨη(F ) along the closed embedding Y0 ↪→ Y . There is
a natural map Z → R0Ψ∗(Z) on Y0 and we shall assume that this is an isomor-
phism, or equivalently that Z → j∗Z on Y is an isomorphism; intuitively, this
says that the removal of Y0 does not locally disconnect small connected opens
in Y around points in Y0, and it holds if p is smooth near points in Y0. Thus,
Er,0

2 = Hr(Y, j∗Z) = Hr(Y,Z), and so the edge map En,0
2 → Hn(Yη,Z) is the re-

striction map on cohomology. This implies that the obstruction to restriction being
an isomorphism is concentrated in the terms Hr(Y,Rsj∗Z) ' Hr(Y0,RsΨηZ) with
s > 0. For example, if the vanishing-cycles sheaves vanish in positive degrees, then
there is no obstruction.

For any y ∈ Y0, the stalk (RsΨηZ)y = (Rsj∗Z)y is the direct limit of the
cohomologies Hs(U − U0,Z) over small opens U ⊆ Y around y, so these y-stalks
vanish if p is smooth near y. Indeed, if y has a neighborhood of the form [0, t]×B
with B = [0, 1]n then for s > 0 we see via homotopy-invariance that

Hs(U − U0,Z) = Hs((0, t],Z) = 0
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for a cofinal system of U ’s around y; equivalently, we may use topological smooth
base change to identify Rsj∗Z near such a point with p∗Rsη∗Z, and (Rsη∗Z)0 =
lim−→Hs((0, t],Z) = 0 for s > 0. In brief, this says that the cohomology of the total
space of a family p : Y → [0, 1] is unaffected by the removal of Y0 when p is smooth
along Y0, and the reason is that the vanishing-cycles sheaves RsΨηZ for such a
family are Z for s = 0 and zero for s > 0.

Here is the étale analogue of homotopy-invariance for topological cohomology.

Theorem 1.3.5.2 (Smooth base change). Let S be a scheme, f : X → S a
morphism, and F a torsion abelian étale sheaf on X with torsion-orders invertible
on S. Consider a cartesian square

X ′ g′
//

f ′

��

X

f

��

S′ g
// S

with S′ = lim←− Sλ where {Sλ} is an inverse system of smooth S-schemes such
that the transition maps Sλ′ → Sλ are affine. The natural base-change maps
g∗Rif∗F → Rif ′∗(g

′∗F ) are isomorphisms.

Remark 1.3.5.3. An interesting case of a limit of smooth maps is a separable
algebraic extension or a purely transcendental extension K → K ′ of fields. Com-
bining this with the remarks at the end of §1.1.6, we conclude if K/k is an extension
of separably closed fields and X is a k-scheme, then Hi

ét(X, F )→ Hi
ét(XK ,FK) is

an isomorphism for any torsion sheaf F whose torsion orders are relatively prime
to the characteristic. For our purposes, the most important example of such an
extension is Q→ C.

To prove the smooth base change theorem, consider the stalks at a geometric
point s′ of S′ over a geometric point s of S. We may replace S and S′ with their
strict henselizations at these points, and we need to prove that the natural map
Hi

ét(X, F )→ Hi
ét(X

′,F ′) is an isomorphism. The compatibility of cohomology and
limits reduces us to the case when S′ is a strict henselization at a geometric point on
the closed fiber of a smooth affine S-scheme T . The smooth affine pair (S, T ) may
be realized as the base change of a smooth affine pair (S0, T0) with S0 a noetherian
strictly henselian local ring. Thus, we can assume S and S′ are noetherian (and
affine). The spectral sequence for an affine covering reduces the problem to the case
when X = Spec B is affine. By expressing B as a rising union of finitely generated
subalgebras over the coordinate ring of S, noetherian descent allows us to assume
that X is finite type over S and F is constructible. This reduces the general case
to the special case when S′ is S-smooth and F is a Z/nZ-sheaf.

We refer the reader to [6, Arcata, Ch. V] for a proof in this case, based on the
principles of homotopy-invariance; the role of the opens U −U0 for small U around
y ∈ Y0 in our topological analysis is replaced by vanishing-cycles schemes

Ỹ y
η

def= Spec Osh
Y,y ×Spec Osh

S,s
η

where Y → S is a map of schemes, y is a geometric point of Y over a geometric
point s of S, and η is a geometric point of Spec Osh

S,s. The intuition is that the
(strictly henselian) irreducible component in Spec Osh

S,s dominated by η replaces
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[0, t] for small t, and η replaces (0, t]. With this point of view, the analogue of
our local analysis of vanishing cycles in the smooth topological case (that rested
on homotopy-invariance) is the claim that when n is invertible on S and Y is S-
smooth, then for all s, y, and η as above, the cohomology Hq

ét(Ỹ
y
η ,Z/nZ) vanishes

for q > 0 and is equal to Z/nZ (via the canonical map) when q = 0. This local
triviality property for constant-coefficient cohomology on the S-scheme Y is called
local acyclicity, and the local acyclicity of smooth morphisms is the central result
that underlies the smooth base change theorem.

Since we are not saying anything about the development of the theory of lo-
cally acyclic morphisms, let us at least explain easily why it is natural to restrict
to torsion-orders that are invertible on the base. As a first example, if we consider
p-torsion sheaves in characteristic p > 0 then the invariance of cohomology with
respect to an extension between separably closed fields can fail. If K/k is an ex-
tension of fields of characteristic p, then Artin–Scheier theory identifies the natural
map

H1
ét(A

1
k,Z/pZ)→ H1

ét(A
1
K ,Z/pZ)

with the natural map

k[x]/{fp − f | f ∈ k[x]} → K[x]/{fp − f | f ∈ K[x]}

that is obviously not an isomorphism when k 6= K.
The proof of smooth base change breaks down for torsion-orders dividing residue

characteristics because local acyclicity can fail in such situations. To illustrate this,
let R be a strictly henselian discrete valuation ring (e.g., R = k[[t]] for a separa-
bly closed field k), and let Ks be a separable closure of the fraction field K of R.
Consider the origin in the closed fiber on the affine line over Spec R. The scheme
of vanishing-cycles with respect to η : Spec Ks → Spec R is R{x} ⊗R Ks, where
R{x} = Oh

A1
R,0

is the (strictly) henselian local ring at the origin. We claim that this
has non-vanishing H1

ét with Z/pZ-coefficients. In the equicharacteristic case, this
non-vanishing follows (by Artin–Schreier theory) from the fact that the equation
fp − f = x/r cannot be solved in R{x} ⊗R Ks when r is a nonzero element in
the maximal ideal of R (there are no solutions in the extension ring R[[x]] ⊗R Ks

because the solutions in Ks[[x]] have unbounded denominators). In the mixed char-
acteristic case, this non-vanishing follows (by Kummer theory) from the fact that
the equation fp = 1 + x cannot be solved in R{x}⊗R Ks (the pth roots of 1 + x in
Ks[[x]] have unbounded denominators).

1.3.6. Cohomology with proper support. Consider a commutative dia-
gram of topological spaces

(1.3.6.1) X
j //

f   @
@@

@@
@@

@ X

f

��
S

with j : X ↪→ X an open immersion and f : X → S proper. Let F be an abelian
sheaf on Xét. Define the sheaf f!F on S by

(f!F )(U) def= {s ∈ Γ′(f−1(U),F ) | supp(s) proper over S}.
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When f = j, we recover extension-by-zero. It is easy to see that

f! ' f∗ ◦ j!,

since for any closed set Z ↪→ X with Z proper over S, the embedding Z ↪→ X is
proper and hence is a closed embedding.

If X is paracompact Hausdorff, then by [10, Ch. II, Thm. 3.5.5(c)] the functor
j! takes soft (e.g., injective or flabby) abelian sheaves to soft sheaves, and these are
acyclic for cohomology. If S has a base of paracompact Hausdorff opens (e.g., if
S is an analytic space), then the restriction of the proper X over these opens is
paracompact Hausdorff. Thus, universal δ-functor arguments (and the exactness of
j!) yield a δ-functorial isomorphism

(1.3.6.2) R•f∗ ◦ j! ' R•(f∗ ◦ j!) ' R•f!.

The significance of this isomorphism is that the acyclicity property for j! on
injectives does not hold (even for smooth affine curves over algebraically closed
fields), and in fact the equality (1.3.6.2) breaks down in the étale topology. It is
the left side that provides the right definition in algebraic geometry:

Definition 1.3.6.1. Let f : X → S be a separated and finite type map of
schemes, with S quasi-compact and quasi-separated. Let j : X → X be an open
immersion into a proper S-scheme f : X → S. The higher direct images with proper
support are the terms in the δ-functor R•f!

def= R•f∗ ◦ j! on the category of torsion
étale sheaves.

The existence of a j as in Definition 1.3.6.1 is the Nagata compactification
theorem [20] when S is noetherian, and the general case reduces to the noetherian
case via noetherian descent (Theorem 1.3.2.2(1),(2)). The exactness of j! makes
R•f! a δ-functor in the obvious manner. This δ-functor is naturally independent
of the choice of j [9, Ch. I, 8.4–8.6], but the proof rests on the proper base change
theorem and so necessitates the torsion condition in the definition. When S =
Spec k for a separably closed field k, we write H•c,ét to denote the corresponding
groups. That is, for a finite-type separated scheme X over a separably closed field
k and a torsion abelian sheaf F on X, we have

H•c,ét(X, F ) def= H•ét(X, j!F )

where j : X ↪→ X is an open immersion into a proper k-scheme. This is canonically
independent of the choice of j. The general independence of compactification allows
us to use gluing over open affines in the base to define the δ-functor R•f! for any
scheme S (not required to be quasi-compact or quasi-separated).

Remark 1.3.6.2. The δ-functors R•f! admit structures much like in topology.
Let us summarize the essential ones:

• (Leray spectral sequence) Let f ′ : X ′ → X be a second separated map of
finite type. There is a spectral sequence

Ep,q
2 = Rpf ′! ◦ Rqf! ⇒ Rp+q(f ′ ◦ f)!.

• (proper pullback) If h : Y → X is proper, there is a canonical pullback
map R•f! → R•h! ◦ h∗ as δ-functors.
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• (base change) For any cartesian square

X ′ g′ //

f ′

��

X

f

��
S′ g

// S

there is a δ-functorial base change morphism g∗ ◦ R•f! → R•f ′! ◦ g′
∗; in

contrast to the case of higher direct images, we do not have such maps
for general commutative squares because (as in topology) pullback is only
defined with respect to proper maps.
• (excision) Let Z ↪→ X be a closed subscheme with open complement U .

Let fZ : Z → S and fU : U → S be the structure maps. There is a
long-exact excision sequence

(1.3.6.3) · · · δ→ RifU !(F |U )→ Rif!F → RifZ!(F |Z) δ→ . . .

for torsion sheaves F on X; this is compatible with the base-change mor-
phisms.

The general construction-principle in all cases is to first treat the case of quasi-
compact and quasi-separated S by choosing compatible compactifications and car-
rying out a construction with ordinary higher direct images of extension-by-zero
sheaves on compactification. The choice of compactifications is proved to not mat-
ter, and so globalization over general S is obtained by gluing over open affines.

Since R•f! is defined in terms of higher-direct images of an extension-by-zero
on a compactification, it follows from the proper base change theorem and the
compatibility of extension-by-zero with respect to base change that the base-change
maps for higher direct images with proper support are always isomorphisms. This
fact, together with the nature of the excision sequence (with all three terms of
the same type, in contrast to the intervention of cohomology-with-supports in the
excision sequence for ordinary higher direct images), makes the δ-functor R•f! much
better-behaved than ordinary higher direct images.

Theorem 1.3.6.3. [9, Ch. I, 8.8, 8.10] Let f : X → S be a finite type separated
map to a scheme S, and let F be a torsion abelian sheaf on Xét. Then the abelian
sheaf Rif!(F ) on Sét vanishes for i > 2 sups∈S dim Xs, and if S is noetherian then
these sheaves are constructible for all i when F is constructible.

In particular, if S = Spec k with k a separably closed field, then Hi
c,ét(X, F ) is

a finite group and it vanishes for i > 2 dim(X).

For ordinary higher direct images, Deligne proved base-change and finiteness
properties over a dense open in the base (under a mild restriction):

Theorem 1.3.6.4. [6, Th. finitude, 1.1, 1.9] Let f : X → S be a separated
map between schemes of finite type over regular base of dimension ≤ 1. Let F
be a constructible abelian sheaf on Xét whose torsion-orders are invertible on S.
The sheaves Rif∗F are constructible, and they vanish for i > dim S + 2dim X.
Also, there exists a dense open U ⊆ S, depending on F , such that the formation
of Rif∗F |U commutes with arbitrary base change on U for all i.
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1.3.7. Ehresmann’s fibration theorem in the étale topology. We shall
now apply smooth and proper base change to prove the étale version of the fact
(Theorem ??) that if f : X → S is a proper smooth map between analytic spaces,
then R•f∗ carries local systems to local systems (for sheaves of finite modules
over a noetherian ring). Recall that the topological case ultimately reduced to
Ehresmann’s fibration theorem.

Theorem 1.3.7.1. Let f : X → S be smooth and proper, with S an arbitrary
scheme, and let F be an lcc abelian sheaf on Xét whose torsion-orders are invertible
on S. The sheaf Rnf∗F is lcc on S for all n, and its formation commutes with
arbitrary base change on S.

The reader should compare the similarities between the proof we give and the
proof of the analytic analogue. Specialization plays the same role in the proof, and
the role of Ehresmann’s fibration theorem is replaced with smooth base change and
vanishing-cycles. The use of vanishing-cycles clarifies the role of smoothness, and
provides a technique of analysis that is useful in the presence of singularities (see
Theorem ??).

Proof. By properness, Rnf∗F = Rnf!F is constructible and its formation
commutes with base change. Thus, the specialization criterion for local constancy
reduces us to checking that the specialization maps for these sheaves are isomor-
phisms. Observe that F is represented by a finite étale X-scheme X ′. Since X
and X ′ are finitely presented over S, by working over an open affine in S we may
use noetherian descent to realize the given geometric setup as a base-change from
a setup over a noetherian base. Thus, proper base change allows us to assume S is
noetherian.

For any pair of physical points {s, η} on a noetherian scheme S with s in the
closure of η, there is a discrete valuation ring R and a map Spec R → S hitting s
and η. Another application of proper base change allows us to assume S = Spec R,
where R is a strictly henselian discrete valuation ring with fraction field K. In this
case, the specialization mapping is identified with the natural map

Hn
ét(Xs,Fs) ' Hn

ét(X, F )→ Hn
ét(XKs

,FKs
),

where Ks/K is a separable closure. We want this map to be an isomorphism. This
will be proved via the technique of vanishing-cycles. Letting j : XKs

→ X denote
the canonical map, we have FKs

= j∗F and there is a Leray spectral sequence

Ep,q
2 = Hp

ét(X, Rqj∗(j∗F ))⇒ Hp+q
ét (XKs ,FKs).

Applying the proper base change theorem to the (generally non-constructible) tor-
sion sheaves Rqj∗(j∗F ) yields

Ep,q
2 = Hp

ét(Xs, i
∗Rqj∗(j∗F )),

where i : Xs ↪→ X is the inclusion. The sheaves RqΨη(F ) def= i∗Rqj∗(j∗F ) are the
vanishing-cycles sheaves, and the above spectral sequence is the vanishing-cycles
spectral sequence. The vanishing-cycles functors RqΨη : Ab(X)→ Ab(Xs) may be
defined with R replaced by any henselian discrete valuation ring and X replaced
by any finite-type R-scheme.

The specialization mapping is the composite

Hp
ét(Xs,Fs)→ Hp

ét(X, R0Ψη(F )) = Ep,0
2 → Hp

ét(XKs
,FKs

),
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where the first step is the closed-fiber pullback of the natural map F → j∗j
∗F

and the final step is the edge map in the spectral sequence. Thus, specialization is
an isomorphism if:

• the natural map Fs → R0Ψη(F ) is an isomorphism;
• for q > 0, RqΨη(F ) vanishes.

These properties are étale-local on X near Xs, and we claim they hold for any
smooth R-scheme X. Working locally allows us to assume F = Z/nZ, and so for
U = Spec Osh

X,x the claims are

Z/n ' H0
ét(UKs

,Z/nZ), Hq
ét(UKs

,Z/nZ) = 0 for q > 0.

These claims are precisely the local-acyclicity results that are the key facts shown
in the proof of the smooth base change theorem. �

1.3.8. Trace maps and Poincaré duality. If M is an oriented paracompact
Hausdorff topological manifold with pure dimension d, Poincaré-duality defines a
natural trace map

Hd
c(M,Z) ' H0(M,Z)→ Z,

and the resulting cup-product pairing

Hj(M,Q)×Hd−j
c (M,Q)→ Hd

c(M,Q)→ Q

identifies Hj(M,Q) with the linear dual of Hd−j
c (M,Q) (and vice-versa if these

cohomologies are finite-dimensional). If M is a complex manifold with pure complex
dimension n, these constructions can be given without choosing an orientation: the
trace map acquires the form

H2n
c (M,Z(n)) ' H0(M,Z)→ Z

and the cup-product pairing is

Hj(M,Q(n))×H2n−j
c (M,Q)→ H2n

c (M,Q(n))→ Q.

There is an analogous theory of duality for Z/nZ-module sheaves in étale co-
homology, resting on cup products and trace maps. Cup products are constructed
(and uniquely characterized) by a procedure that is formally the same as in ordi-
nary derived-functor sheaf cohomology, and the usual skew-commutativity prop-
erties hold. The unique characterization of cohomological cup products ensures
agreement with Galois-cohomology cup products in the case of étale cohomology
for a field, and the formal nature of the construction ensures that the comparison
isomorphisms with topological cohomology (as in §1.3.10) are compatible with cup
products. We omit further discussion of cup products, and instead address the
construction of trace maps because the agreement of these and topological traces
requires non-formal input.

The construction of étale-cohomology trace maps begins in the quasi-finite case.
For any quasi-finite separated flat map f : X → Y of finite presentation, there is a
trace map for abelian sheaves F on Yét:

(1.3.8.1) trf : f!f
∗F → F .
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This map is uniquely determined on by the formula⊕
x∈f−1(y)

Fy = (f!f
∗F )y

(trf )y−→ Fy(1.3.8.2)

(sx) 7→
∑

nxsx

on stalks, where nx is the length of the artinian local ring Of−1(y),x. The existence
of the map (1.3.8.1) is not obvious; see [15, Exp. XVII, §6.2] for details.

We now address the case of curves before discussing more generalities. Let Z
be a compact Riemann surface, and consider the diagram

(1.3.8.3) Z/nZ H2(Z,Z(1)/nZ(1))'oo

��
coker

(
Pic(Z) n→ Pic(Z)

)deg

OO

'
// H2(Z, µn)

where the top row is the reduction of the canonical isomorphism H2(Z,Z(1)) ' Z
and the bottom row is induced by the analytic Kummer sequence

1→ µn → O×
Z

tn

→ O×
Z → 1.

In §??, it is proved that this diagram commutes. The terms in the bottom and
left sides of this square make sense in algebraic geometry, as does the Kummer
sequence, and this motivates the following construction for algebraic curves.

Consider a proper smooth curve Y over a separably closed field k with charac-
teristic not dividing n. Let us check that the bottom and left sides of (1.3.8.3) do
carry over in étale cohomology. In Example 1.2.7.1, we used the Kummer sequence
to construct an isomorphism

H1
ét(Y,Gm) ' Pic(Y ).

The mod-n reduction of H1
ét(Y,Gm) is identified with H2

ét(Y, µn) via the Kummer
sequence, and so we have a natural isomorphism Pic(Y )/n Pic(Y ) ' H2

ét(Y, µn).
The degree-map Pic(Y ) → Z is surjective, and its kernel Pic0(Y ) = Pic0

Y/k(k) is
the group of rational points on the Picard (or Jacobian) variety Pic0

Y/k over the
separably closed field k. This Picard variety is an abelian variety, and so its group
of k-rational points is n-divisible. Thus, the mod-n reduction of the degree map
deg : Pic(Y )→ Z defines a map

deg : coker
(
Pic(Y ) n→ Pic(Y )

)
→ Z/nZ

that plays the role of the left side of (1.3.8.3); this map is an isomorphism when Y
is connected. We conclude that the composite

(1.3.8.4) H2
ét(Y, µn) ' coker

(
Pic(Y ) n→ Pic(Y )

) deg−→ Z/nZ,

makes sense and provides a good candidate for a Poincaré-duality trace map on Y .
We have proposed reasonable trace maps in low dimensions, and now we turn to

the topological theory as a guide for what to expect in general. For any paracompact
Hausdorff complex manifold Z with pure dimension d, the mod-n reduction on the
trace map over Z is a canonical map

H2d
c (Z, µ⊗d

n ) ' Z(d)⊗H2d
c (Z,Z/nZ)→ Z(d)⊗ (Z/nZ)(−d) = Z/nZ.
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This map does not depend on a choice of orientation, and it is an isomorphism
when Z is connected. The appearance of µ⊗d

n in this intrinsic description on the
topological side motivates the following considerations on the algebraic side.

In étale cohomology over a Z[1/n]-scheme S, the theory of the trace-map aims
to construct a canonical map

(1.3.8.5) trf : R2df!(µ⊗d
n )→ Z/nZ

for any smooth separated finite-type map f : Y → S with pure relative dimension
d, and the following properties are desired:

• compatibility with base change, with étale-localization on Y , and with
reduction modulo a divisor of n;
• transitivity in f (via a Leray-degeneration in top degree);
• trf is an isomorphism when f has geometrically connected fibers;
• when d = 0, trf agrees with (1.3.8.1);
• when d = 1, S = Spec k for a separably closed field k, and Y is a proper

smooth curve, trf equals (1.3.8.4).
There is a unique theory that satisfies these axioms; see [9, Ch. II, §1]. An elegant
generalization is given for finitely presented flat maps in [15, Exp. XVIII, §2], and
the axiom for smooth proper curves may be replaced with the axiom that for any
smooth separated curve Y over an algebraically closed field, the composite map
from local cohomology

H2
{y},ét(Y, µn)→ H2

c,ét(Y, µn) = H2
ét(Y, µn)→ Z/nZ

sends a local Chern class c1(O(y), 1) to 1, exactly in accordance with the analytic
case in §??.

In [26, 4.8], Verdier explains Grothendieck’s proof that this trace map gives
a good duality theory in the smooth case; we only require a special case of the
general result. Let (Λ,m) be a complete discrete valuation ring with finite residue
field of characteristic `, and fraction field of characteristic zero. For n ≥ 0, let
Λn = Λ/mn+1; this is a Z/`n+1-algebra. For any Λn-sheaf G , we define

G (d) = G ⊗Z/`n+1 µ⊗d
`n+1 ;

note that if we consider G as a Λn+1-sheaf, this definition is unaffect (replacing
n + 1 with n + 2).

Theorem 1.3.8.1 (Poincaré duality). Let f : X → S be a smooth separated
map between noetherian Z[1/`]-schemes, and let F and G be constructible sheaves
of Λn-modules on X and S. There is a canonical isomorphism

Exti
X(F , f∗G (d)) ' HomS(R2d−if!(F ),G )

that is compatible with base change on X and étale localization on X.
When S = Spec k is a geometric point and F is lcc with Λn-flat stalks, the

isomorphism in the special case G = Λn is induced by the cup product pairing

Hi
ét

(
X, F∨(d)

)
⊗H2d−i

c,ét

(
X, F

)
// H2d

c,ét

(
X, Λn(d)

) '
tr
// Λn

between finite Λn-modules; in particular, this latter pairing is perfect.

Remark 1.3.8.2. The relevance of the lcc and flatness assumptions on F is to
ensure that H•ét(X, F∨⊗ (·)) and Ext•X(F , ·) are identified as δ-functors. Also, the
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definition of the trace map on top-degree cohomology rests on the right-exactness of
H2d

c,ét to move Λn outside of the cohomology (leaving µ⊗d
`n+1 inside the cohomology).

The proof of Poincaré duality involves two separate aspects: abstract derived-
category arguments are used to reduce the general case to a special case, and a
calculation is necessary in the special case. In [26], Verdier explains Grothendieck’s
abstract methods that reduce the general case to the assertion that if X is a proper
smooth connected curve over an algebraically closed field k, then the pairing

(1.3.8.6) H1
ét(X, Λn(1))⊗Λn

H1
ét(X, Λn) ∪→ H2

ét(X, Λn) ' Λn

is perfect when ` is not the characteristic of k. Strictly speaking, Verdier works
with Λn replaced by Z/nZ, but the arguments carry over verbatim . Unfortunately,
the argument for the special case (1.3.8.6) is not provided in [26].

There are several ways to treat this special case. Let us first briefly sketch the
topological method. Since proper and smooth curves can be deformed into char-
acteristic zero ([13, Exp. III, 7.2], [16, 5.4.5]), the proper and smooth base-change
theorems for étale cohomology reduce the problem to the case of characteristic
zero. Further application of limit methods and the base-change theorems reduce
the problem in characteristic zero to the case k = C (Lefschetz principle, or more
specifically, smooth base change), and so comparison isomorphisms with topologi-
cal cohomology (see §1.3.10) thereby reduce the problem to the known topological
case.

An alternative approach is to express Λn as a finite free module over Z/mZ for
a suitable power m of `, to use this to reduce to the case of Z/mZ-coefficients, and
to then identify the µm-twisted pairing

(1.3.8.7) H1
ét(X, µm)⊗H1

ét(X, µm)→ H2
ét(X, µ⊗2

m ) ' µm

with the m-torsion Weil pairing for the principally polarized Picard variety Pic0
X/k;

here, we use the Kummer-sequence isomorphism

H1
ét(X, µm) ' Pic(X)[m] = Pic0

X/k[m].

By once again using the Lefschetz principle, our work with compact Riemann sur-
faces (see Theorem ??) establishes this compatibility. This gives another topological
proof, and unfortunately I do not know an algebraic method to directly relate Weil
pairings and cup products.

A second approach along these lines that does succeed algebraically is to use
the Albanese property of Pic0

X/k. We may rewrite (1.3.8.6) in the form

Pic0
X/k[m]×Homcont(π1(X, e),Z/mZ)→ Z/mZ,

where e ∈ X is a point. In geometric class field theory for curves, it is proved that
the Jacobian classifies geometrically-connected finite abelian étale covers of curves;
more precisely, the map φe : X → Pic0

X/k defined by x 7→ O(e)⊗O(x)−1 induces an
isomorphism on abelianized π1’s. Since the π1 of an abelian variety over a separably
closed field is identified with its total Tate module (Serre–Lang theorem [22, §18]),
we may express (1.3.8.6) as a pairing

Pic0
X/k[m]×Homcont(Pic0

X/k[m],Z/mZ)→ Z/mZ.

In [6, pp.161-5], Deligne uses local Chern classes and cycle maps in étale cohomology
to prove that this pairing is equal to the visibly perfect evaluation-pairing. Deligne’s
formulation of his result involves the intervention of a bothersome sign, but this is
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ultimately due to Deligne’s decision to carry out a calculation that rests on −φe

and not on φe.

1.3.9. Künneth formula. The computation of cohomology on products re-
quires an analogue of the topological Künneth formula that relates the cohomology
ring of a product with the cohomology rings of the factor spaces. Let us first re-
view the Künneth formula in the simplest topological situation. If M and M ′ are
compact Hausdorff manifolds, then there is a short-exact Künneth sequence

0→
⊕

p+q=n

Hp(M,A)⊗A Hq(M ′, A)→ Hn(M ×M ′, A)→ Tn → 0

where the first map is
∑

cp ⊗ c′q 7→
∑

pr∗M (cp) ∪ pr∗M ′(c′q) and the final term is

Tn =
⊕

p+q=n+1

Tor1A(Hp(M,A),Hq(M ′, A))→ 0,

with A any principal ideal domain. The reason that this relationship between
cohomology of the product and of the factors may be described by a short exact
sequence (rather than a spectral sequence) is because a principal ideal domain is
regular with dimension ≤ 1, and so Tori

A vanishes for i > 1.
In the case of field-coefficients, the Tor1-term vanishes and we get the Künneth

formula that expresses the cohomology ring of a product as a tensor product of
the cohomology rings of the factors. With more general coefficient rings, such as
Z/nZ, it may happen that there are non-vanishing higher Tori’s beyond degree
1; this makes it impossible to formulate an analogue of the Künneth relations as
a short exact sequence. For example, every non-regular local noetherian ring has
non-vanishing Tor-bifunctors in arbitrarily large degrees (by Serre’s characterization
of regular local noetherian rings as those with finite global dimension [21, 19.2]);
this applies to artin local rings such as Z/nZ. The simplest way to state the
Künneth formula with general (or even just artinian) coefficients is in terms of
derived categories, and this is also the case in étale cohomology.

Turning to the étale topology, fix a commutative ring Λ that is killed by a
nonzero integer, so étale sheaves of Λ-modules are torsion. For any separated finite-
type map f : X → S, we may consider the δ-functor R•f! between étale sheaves of
Λ-modules on Xét and on Sét. If f ′ : X ′ → S is a second such map, and F and
F ′ are sheaves of Λ-modules on Xét and X ′

ét, we want to relate the cohomologies
of F and F ′ with the cohomology of π∗F ⊗Λ π′

∗F ′, where π : X ×S X ′ → X and
π′ : X×S X ′ → X ′ are the projections. We cannot define pullback along π or π′ for
compactly-supported cohomology, as these maps might not be proper. However,
we can still define natural maps

(1.3.9.1) Rpf!(F )⊗Λ Rqf ′! (F
′)→ Rp+q(f × f ′)!(π∗F ⊗Λ π′

∗
F ′)

by working locally over S, as follows.
We first assume that S is quasi-compact and quasi-separated (e.g., affine), so

we may choose open immersions j : X ↪→ X and j′ : X ′ ↪→ X
′

into proper S-
schemes f : X → S and f

′
: X

′ → S. Thus, j × j′ compactifies X ×S X ′ over S,
and projection-pullback and cup product on X ×S X

′
yield maps

Rpf∗(j!F )⊗Λ Rqf
′
∗(j

′
!F

′)→ Rp+q(f × f
′
)∗(π∗(j!F )⊗Λ π′

∗(j′!F
′)).
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Since π∗(j!F )⊗Λ π′
∗(j′!F

′) = (j× j′)!(π∗F ⊗Λ π′
∗F ′), we obtain the desired map

in (1.3.9.1); this is independent of the compactifications, and so it globalizes over
an arbitrary base. Forming the direct sum over all (p, q) with p + q = n gives the
bifunctorial degree-n Künneth morphism⊕

p+q=n

Rpf!(F )⊗Λ Rqf ′! (F
′)→ Rn(f × f ′)!(π∗F ⊗Λ π′

∗
F ′).

The key problem is to determine if the Künneth morphism is an isomorphism,
and to measure the obstructions when it is not. The obstructions are located
in many TorΛ-sheaves: there are the higher TorΛ-sheaves for π∗F and π′

∗F ′ on
X ×S X ′, as well as TorΛ’s among the Rpf!F ’s and Rqf ′! F

′’s on S. This wealth
of information is hard to analyze with the language of exact sequences or spectral
sequences, and so it is necessary to work systematically in derived categories of
sheaves of Λ-modules. This additional layer of abstraction and generality has the
remarkable consequence that it yields an easy isomorphism result via the proper
base change theorem. We shall now state this abstract isomorphism, and then
explain how it relates to the Künneth morphism as constructed above.

Using the derived-category formalism and the proper base change theorem in
derived categories of étale sheaves, for any bounded-above complexes of Λ-modules
F • and F ′• on X and X ′ there is a general abstract Künneth isomorphism

Rf!(F •)⊗L Rf ′! (F
′•) ' R(f × f ′)!((π∗F •)⊗L (π′∗F ′•))

relating total compactly-supported higher direct images and total tensor products;
see [9, Ch. I, §8] for an efficient construction of this map and a quick proof that
it is an isomorphism. This isomorphism is compatible with base change on S, and
with natural change-of-coefficients functors from derived categories of Λ-sheaves to
derived categories of Λ′-sheaves for any map Λ→ Λ′ between torsion rings.

If we take F • = F [0] and F ′• = F ′[0] to be complexes concentrated in
degree 0, and we use spectral sequences that compute homologies of ⊗L’s in terms
of ordinary TorΛ-sheaves, then we may define a composite map⊕

p+q=n Rpf!(F )⊗Λ Rqf ′! (F
′) α // Hn(Rf!(F [0])⊗L Rf ′! (F

′[0]))

'κ

��
Rn(f × f ′)!((π∗F •)⊗ (π′∗F ′•)) Hn(R(f × f ′)!((π∗F [0])⊗L (π′∗F ′[0])))

β
oo

where α is the edge map from E0,n
2 in the hyper-Tor spectral sequence

Er,s
2 =

⊕
a+a′=s

T orr
Λ(Raf!F ,Ra′f ′! F

′)⇒ Hr+s(Rf!(F [0])⊗L Rf ′! (F
′[0])),

β is the canonical map, and the isomorphism κ linking them is the degree-n ho-
mology map induced by the abstract Künneth isomorphism. The map β is an
isomorphism if either F or F ′ has Λ-flat stalks, for then the higher sheaf-Tor’s
between π∗F and π′

∗F ′ vanish.
The crucial fact that relates this abstract nonsense to concrete sheaf-theoretic

constructions is:

Lemma 1.3.9.1. The composite map β ◦κ ◦α agrees with the degree-n Künneth
morphism that is defined via cup products.
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Proof. We may use base change to reduce to the case when S is a geometric
point. In this case, the abstract construction produces bifunctorial maps

Hp
c,ét(X, F )⊗Λ Hq

c,ét(X
′,F ′)→ Hp+q

c,ét (X ×X ′, π∗F ⊗Λ π′
∗
F ′)

that must be proved to agree with the cup-product construction. This problem may
be reduced to the proper case with ordinary cup products. Since cup products in
ordinary cohomology (with a fixed coefficient-ring Λ) are uniquely characterized as
a family of bifunctors satisfying a short list of exactness and skew-commutativity
properties, it suffices to check that these conditions are satisfied by the abstract
construction. The verification is a tedious exercise that rests solely on general
properties of derived tensor products (such as their signed-commutativity). �

The concrete conclusion from these considerations is:

Theorem 1.3.9.2 (Künneth formula). Let F and F ′ be sheaves of Λ-modules
with flat stalks. The Künneth morphism is the edge map from E0,n

2 in a bifunctorial
spectral sequence⊕

a+a′=s

T orr
Λ(Raf!F ,Ra′f ′! F

′)⇒ Rr+s(f × f ′)!(π∗F ⊗Λ π′
∗
F ′).

For any extension of scalars Λ → Λ′, this identification is compatible with the
natural change-of-coefficients maps on Tor-sheaves.

1.3.10. Comparison with topological cohomology. Let X be an algebraic
C-scheme. In §1.1.1 we defined the topological étale site on X(C) and we noted
that X(C)ét is equivalent to the category (Xan)ét of analytic spaces equipped with
a local isomorphism to Xan; thus, we may likewise define the analytic étale site
on Xan. Lemma 1.1.2.2 implies that the associated topos Ét(Xan) is equivalent
to the category Top(X(C)) of sheaves of sets on X(C), and so the category of
abelian sheaves on the analytic étale site is equivalent to the category of abelian
sheaves on X(C). Thus, topological cohomology functors on X(C) are identified
with cohomology functors on the analytic étale site.

The comparison isomorphisms between étale and topological cohomology shall
be formulated as a comparison between cohomology functors for abelian sheaves
on Xét and (Xan)ét, so the equivalence between Ét(Xan) and Top(X(C)) will pro-
vide the identification with cohomology on X(C). In §1.2.4, we constructed a
δ-functorial Zariski-étale comparison morphism

H•(S, F )→ H•ét(S, ι∗F )

for abelian sheaves F on the Zariski topology of a scheme S. We saw that
these maps are rarely isomorphisms, though in the case of OS-modules F we
defined a refined OSét-module Fét equipped with a map ι∗F → Fét, and we
proved (Theorem 1.2.6.2) that composition with this map yields an isomorphism
H•(S, F ) ' H•ét(S, Fét) when F is quasi-coherent. The comparison between étale
and topological cohomologies works out more nicely, as we now explain.

The first step is to define a pair of adjoint functors

iX∗ : Ét(Xan)→ Ét(X), i∗X : Ét(X)→ Ét(Xan)

that will define maps between cohomology on the analytic and algebraic étale sites.
Analytification defines a functor Xét → (Xan)ét that is compatible with fiber prod-
ucts. Thus, given a sheaf of sets G on (Xan)ét we get a sheaf of sets iX∗G on Xét
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by the formula U ′  G (U ′an). There is a left adjoint i∗X : Ét(X) → Ét(Xan), the
analytification functor on sheaves; it is denoted F  F an. The construction of
i∗X goes exactly as for étale-sheaf pullbacks induced by maps between schemes: for
any analytic étale map U → Xan, we first form a direct limit of F (U ′ → X)’s over
commutative diagrams of analytic spaces

U

��

// U ′

��
Xan

iX

// X

This defines a presheaf on (Xan)ét whose sheafification is called F an. The verifica-
tion of adjointness between iX∗ and i∗X is straightforward, and we thereby see that
the analytification functor Ét(X) → Ét(Xan) is exact. Similar exactness holds for
the induced functor between the subcategories of abelian-group objects.

Example 1.3.10.1. To avoid confusion, we address a compatibility with an-
other analytification procedure for sheaves. Let F be an abelian sheaf for the
Zariski topology on an algebraic C-scheme X. In §1.2.7, we defined an associated
sheaf i∗F on Xét. We can analytify this sheaf to get a sheaf (i∗F )an on the ana-
lytic étale site of Xan. On the other hand, by using the map of topological spaces
Xan → X, we can form the ordinary topological pullback of F to get a sheaf F an

on the topological space X(C). It is a simple exercise with adjointness to check
that F an corresponds to (i∗F )an under the equivalence between sheaf theory on
the topological space X(C) and on the analytic étale site.

We now turn to the interaction among these functors and maps between alge-
braic C-schemes and analytic spaces. The idea is that the pair (iX∗, i∗X) is to be
considered as a morphism iX : Xan → Xét (in fact, a morphism of sites is defined
to be a pair of adjoint functors, with an exact left-adjoint term and a left-exact
right-adjoint term), and for any map f : X → S between algebraic C-schemes we
want to have a commutative diagram

Xan
iX //

fan

��

X

f

��
San

iS

// S

To make precise sense of this idea without digressing into the generality of mor-
phisms of sites, we will work with pairs of adjoint functors between sheaf-categories.

For sheaves of sets F on Xét, the definition of F an provides an evident natural
map F (V )→ F an(V an) for V in Xét, and so taking V = f−1(U) for étale U → S
defines a natural map f∗F → ιX∗(fan

∗ F an) on Sét. Adjointness thereby yields a
degree-0 comparison morphism

(f∗F )an → fan
∗ (F an).

Restricting attention to the case of abelian F , the exactness of analytification
enables us to use a universal δ-functor argument to uniquely extend the degree-0
comparison morphism to a comparison morphism of δ-functors

(R•f∗(F ))an → R•fan
∗ (F an).
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When f is separated and finite type, a similar construction using the comparison
morphism for extension-by-zero sheaves on compactifications (over quasi-compact
opens in S) defines a δ-functorial comparison morphism

(R•f!(F ))an → R•fan
! (F an).

Example 1.3.10.2. If X is an algebraic C-scheme, there is a natural map
Gm/X → iX∗Gm/Xan whose adjoint defines a natural map ξX : Gan

m/X → Gm/Xan .
This yields Hi

ét(X,Gm/X) → Hi(Xan,Gan
m/X) → Hi(Xan,Gm/Xan). The first step

is the comparison morphism and the second step is ξX . In the special case i = 1,
this composite is identified with the natural map Pic(X) → Pic(Xan) that sends
the isomorphism class of a line bundle L on X to the isomorphism class of the
analytic line bundle L an defined by analytification for coherent sheaves.

The comparison morphisms may also be defined for cohomology with supports
along a closed subset of X, and are compatible with base-change morphisms, Leray
spectral sequences, excision, and cup products. An important additional com-
patibility is that the comparison morphism for higher direct images with proper
support is compatible with Poincaré-duality trace maps in the smooth case. In
concrete terms, this says that if X is a smooth d-dimensional separated C-scheme
of finite type, then the comparison morphism

H2d
c,ét(X, µ⊗d

n )→ H2d
c (Xan,Z(d)/nZ(d))

is compatible with trace maps to Z/nZ.
When d = 1, this compatibility is an immediate consequence of the fact that

mod-n traces for proper smooth algebraic curves are computed with the Kummer
sequence whereas mod-n topological traces for compact Riemann surfaces may be
computed with the analytic Kummer sequence (as is proved in §??ff.). In our earlier
discussion of the algebraic trace, we listed four axioms that uniquely characterize
it. The strategy to prove the compatibility between the comparison morphism
and traces is to show that composing the topological trace with the comparison
morphism provides a trace-theory for algebraic C-schemes that satisfies the four
axioms. We omit the details, but note that the key calculation in this analysis is
the agreement for proper smooth curves.

Here is the main comparison theorem, due to Artin.

Theorem 1.3.10.3. [15, Exp. XVI, §4], [9, Ch. I, 11.6] Let f : X → S be a
separated finite-type map between algebraic C-schemes. On the category of torsion
abelian étale sheaves on X, the comparison morphism for R•f!’s is an isomor-
phism. On the category of constructible abelian étale sheaves on X, the comparison
morphism for R•f∗’s is an isomorphism.

In the deeper case of ordinary higher direct images, the original proof by Artin
used resolution of singularities for varieties of dimension at most dim X. An ele-
gant resolution-free proof in all dimensions is given by Berkovich in [2, 7.5.1] in
the context of analytification for algebraic schemes over non-archimedean fields.
Berkovich’s proof carries over essentially verbatim to the case of analytification for
algebraic C-schemes, and so gives a resolution-free proof of the comparison iso-
morphism over C; Berkovich’s “elementary fibrations of pure dimension 1” have
to be interpreted to mean “locally a product of the base with a unit disc” in
the complex-analytic case. The only point requiring some care is that the argu-
ment uses a consequence [2, 7.4.9] of Berkovich’s general Poincaré duality [2, 7.3.1]
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for non-archimedean analytic spaces, but fortunately Berkovich’s proof of analytic
Poincaré duality adapts with essentially no change to the complex analytic case
(using sheaves of Z/nZ-modules or F -vector spaces for a field F ), with the same
re-interpretation of “elementary fibration of pure codimension 1”.

1.4. The adic formalism

The work of Deuring, Weil, and Tate showed that in the study of abelian
varieties over fields, `-adic homology is a good subsitute for the integral homology
that is used in the analytic theory over C. In general, an inverse-limit mechanism
on étale cohomology with torsion coefficients will yield an étale cohomology theory
with values in vector spaces over `-adic fields.

We proceed in three stages. In §1.4.1–§1.4.2, we focus on the case of modules.
For a noetherian ring A that is separated and complete for the topology defined
by an ideal I, there is a very elementary way to describe the category of finite A-
modules in terms of projective systems of A/In+1-modules for n ≥ 0. We explain
why this description is insufficient to define `-adic étale sheaves, and then we de-
velop the Artin–Rees formalism that provides a more useful category of projective
systems for describing finite A-modules. In §1.4.3–§1.4.4 we sheafify what has gone
before so as to define `-adic sheaves. These are the étale analogue of local systems
of finite Z`-modules in topology. For clarity, we allow the coefficient-ring Λ to be
any complete local noetherian ring with finite residue field. In §1.4.5–§1.4.6 we de-
fine Q`-sheaves and cohomology for `-adic sheaves, and we extend the Artin–Rees
formalism to cohomology functors so as to develop a theory of three cohomological
operations (f∗, Rif∗, Rif!) for `-adic sheaves. Finally, in §1.4.7–§1.4.8 we study
the analytification functor for `-adic sheaves and discuss the proof of the compar-
ison isomorphisms relating topological and étale cohomology for `-adic sheaves on
algebraic C-schemes.

1.4.1. Artin–Rees categories. For a compact C∞-manifold X and r ≥ 0,
considerations with Čech theory for a finite geodesically-convex open cover of X
yield isomorphisms

Hr(X,Z`) ' Z` ⊗Hr(X,Z) ' lim←− Hr(X,Z)/`nHr(X,Z) ' lim←− Hr(X,Z/`n).

This motivates the expectation that inverse limits of torsion-sheaf cohomology are
a reasonable way to construct the correct cohomology with characteristic-zero co-
efficients.

As a warm-up, let us consider the special case r = 1 and X = A a complex
torus. We have H1(A,Z/m) ' H1(A,Z/m)∨, and the universal connected abelian
covering of A with m-torsion covering group is the multiplication-map m : A→ A
whose kernel is denoted A[m]. Thus, we get H1(A,Z/m) ' A[m], and so

(1.4.1.1) H1(A, Ẑ) ' lim←− A[m]∨ = TbZ(A)∨,

where the transition maps in the inverse limit are dual to the inclusion maps
A[m] ↪→ A[m′] when m|m′; the `-component H1(A,Z`) is similarly described as
the dual to the `-adic Tate module.

The right side of (1.4.1.1) makes sense in algebraic geometry, and its `-part
inspires the expectation that the `-adic cohomology of an abelian variety A over
an algebraically closed field k should be the linear dual of its `-adic Tate module
(and hence should be free of rank 2 dim A when ` 6= char(k)). Since the Serre-Lang
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theorem [22, §18] identifies the étale fundamental group π1(A, 0) with the total
Tate module TbZ(A), Theorem 1.2.5.4 yields

lim←− H1
ét(A,Z/`nZ) = lim←− A[`n]∨ = T`(A)∨

for any prime `, recovering that H1
ét(A,Z`) should agree with this inverse limit.

We must now develop a formalism for working with projective systems without
passing to an inverse-limit object. It is instructive to first consider a simpler task:
if R is a complete discrete valuation ring with fraction field K, can we describe the
categories of finite R-modules and finite-dimensional K-vector spaces in terms of
some categories of projective systems of finite-length R-modules?

Let us consider the category of finite modules over any noetherian ring A that
is I-adically separated and complete for some ideal I. For each finite A-module M
we get a projective system (Mn)n≥0 with Mn = M/In+1M a finite module over
An = A/In+1. This projective system enjoys a special property: the natural maps
An⊗An+1Mn+1 →Mn induced by the projective-system structure are isomorphisms
for all n.

Definition 1.4.1.1. A projective system (Mn) of finite modules over the An’s
is strictly I-adic if An ⊗An+1 Mn+1 →Mn is an isomorphism for all n ≥ 0.

It is clear that replacing I with any ideal lying between some In and Im (with
m ≥ n > 0) yields a concept that is functorially equivalent, and so it is the topology
of A and not the choice of ideal I that is the relevant structure. It is a basic fact
[18, 0I, 7.2.9] that the functors M  (M/In+1M) and (Mn)  lim←− Mn define a
categorical equivalence between the category of finite A-modules and the category
of strictly I-adic projective systems (Mn).

Remark 1.4.1.2. Our terminology conflicts with Jouanolou’s in [14, Exp. V].
What we are calling strictly I-adic is called I-adic by Jouanolou, and Jouanolou
uses the terminology strict to indicate the weaker condition that transition maps
are epimorphisms.

Example 1.4.1.3. Let us illustrate some deficiencies with the equivalence be-
tween finite A-modules and strict I-adic systems. Consider module operations on
finite A-modules, such as formation of HomA(M,N) and M ⊗A N , or kerT and
cokerT for a linear map T : M → N . How do these operations translate into the
language of projective systems introduced above?

If we wish to replace M and N with (Mn) and (Nn), we need to directly
describe module operations in terms of projective systems without forming inverse
limits as an intermediate step. The isomorphisms (M ⊗A N)n 'Mn ⊗An Nn, and
coker(T )n ' coker(Tn) show that the operations ⊗ and coker present no surprises.
In contrast, HomA(M,N)→ lim←− HomAn

(Mn, Nn) is an isomorphism [18, 0I, 7.8.2]
but (HomAn

(Mn, Nn)) is usually not strictly I-adic, and likewise the ker(Tn)’s
usually do not form a strictly I-adic projective system.

To give a counterexample for kernels, suppose (A, I) = (R,m) with R a discrete
valuation ring, and assume T : M → N is surjective (or equivalently, Tn is surjective
for all n). When does it happen that (ker(Tn)) is strictly I-adic, even just in
large degrees? It is a pleasant exercise with Tor’s to check that this is exactly the
condition that the torsion submodule of M surjects onto that of N .
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We must modify the category of projective systems if we are to translate basic
module operations into term-by-term operations on projective systems. For exam-
ple, we want a dictionary such that the abelian-category structure on the category
of finite A-modules can be detected at the projective-system level; Example 1.4.1.3
shows that this is hopeless if we use the naive category of strictly I-adic projective
systems. The solution is suggested by:

Example 1.4.1.4. Suppose T : M → N is a map of finite modules over an
I-adically separated and complete noetherian ring A. Consider the natural maps

(1.4.1.2) fn : ker(T )n → ker(Tn).

We claim that the resulting map f• of projective systems is nearly an isomorphism
in the sense that the kernels and cokernels of the fn’s are null systems: projective
systems such that ν-fold composites of successive transition maps vanish, with
ν some large integer. The that reason such a property makes f• look like an
isomorphism is that it yields canonical maps hn : ker(Tn) → ker(T )n−ν (for n ≥
ν − 1) that collectively serve as an inverse to f• in the sense that the composites
fn ◦ hn+ν and hn ◦ fn for n � 0 are each just the ν-fold composites of transition
maps (that induce the identity on inverse limits).

To see what is going on, we decompose T : M → N into two exact sequences

0→ K →M →M ′ → 0, 0→M ′ → N →M ′′ → 0.

We get exact sequences

Tor1A(M ′, An)→ Kn →Mn →M ′
n → 0

and
Tor1A(M ′′, An)→M ′

n → Nn →M ′′
n → 0.

Let us assume for a moment that both projective systems of Tor1’s are null systems,
say with vanishing e′-fold and e′′-fold composites for successive transition maps.

For any mn ∈ ker(Tn), its image m′
n ∈M ′

n comes from Tor1A(M ′′, An). Hence,
projecting m′

n down into M ′
n−e′′ must give zero. Thus, the image of mn in Mn−e′′

must come from Kn−e′′ = ker(T )n−e′′ . However, such a lift into Kn−e′′ is only well-
defined modulo the image of Tor1A(M ′, An−e′′) in Kn−e′′ . Thus, if we push down
e′ steps further then the ambiguity is killed. We thereby get well-defined maps
hn : ker(Tn) → ker(T )n−e′−e′′ that are A-linear and enjoy the desired properties
with respect to f•.

To prove the Tor1’s form null systems, we claim more generally that for any
finite A-module M , the Torp

A(M,An)’s form a null system for any p ≥ 0. The case
p = 0 is clear. For p = 1, use a presentation M ' F/M ′ with F finite free over
A to get Tor1A(M,An) ' (In+1F ∩M ′)/In+1M ′ compatibly with change in n. By
the Artin–Rees Lemma, there is a positive integer e such that for m > e,

ImF ∩M ′ = Im−e(IeF ∩M ′) ⊆ Im−eM ′.

Thus, the e-fold composites of transition maps on Tor1’s vanish in degrees > e.
Using dimension shifting when p > 1 completes the proof.

We are now inspired to incorporate a shifting mechanism on projective systems
so that, in the notation of the preceding example, h• really is an inverse to f•.

Consider the category of projective systems M• = (Mn)n∈Z of A-modules in-
dexed by Z such that Mn = 0 if n � 0. We do not assume the Mn’s are A/In+1-
modules (when n ≥ 0), or even that they are A-finite. We define the (functorial)
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shift M•[d] def= (Mn+d) for d ∈ Z. For d ≥ 0, define the map iM•,d : M•[d]→M• to
be the d-fold composite of successive transition maps. This induces an isomorphism
on inverse limits, and so the map iM•,d should be promoted to an isomorphism. We
create an inverse i−1

M•,d by changing the morphism groups:

Definition 1.4.1.5. The Artin–Rees category of A-modules has objects M• =
(Mn)n∈Z that are projective systems of A-modules with Mn = 0 for n � 0, and
the Artin–Rees morphism groups are

HomA−R(M•, N•) = lim−→Hom(M•[d], N•),

where Hom(M•[d], N•) is the A-module of maps of projective systems, and the
transition maps in the direct limit are composition with iM•[d],1 : M•[d+1]→M•[d].
Composition of Artin–Rees morphisms is defined in the evident manner via shifts.

Example 1.4.1.6. The map iM•,d for d ≥ 0 is an isomorphism in the Artin–Rees
category, with the inverse jM•,d : M• → M•[d] represented by the term-by-term
identity map on M•[d], since iM•,d ◦ jM•,d = idM• and jM•,d ◦ iM•,d = idM•[d].

The Artin–Rees category is also abelian, and operations such as image and
kernel may be formed termwise after applying a shift on the source. To see this,
consider an Artin–Rees morphism f• : M• → N•. Pick d ≥ 0 so that F• = f•◦iM•,d

is induced by a map of projective systems. The projective systems of ker Fn’s and
cokerFn’s enjoy the universal properties to be ker f• and coker f• in the Artin–Rees
category.

1.4.2. Artin–Rees adic objects. The Artin–Rees category is visibly an A-
linear category, and up to canonical equivalence it is unaffected by replacing I with
any open and topologically nilpotent ideal. We emphasize that a morphism M• →
N• in the Artin–Rees category is usually not given by a term-by-term collection
of maps Mn → Nn. Instead, we have to compose back to some shift M•[d] with
d ≥ 0 and define compatible maps Mn+d → Nn for all n, and we identify two such
systems of maps that coincide upon composition back to some M•[d′] with large
d′. Working in the Artin–Rees category amounts to systematically invoking the
Artin–Rees lemma; the shifting mechanism corresponds to the uniform constant
that appears in the Artin–Rees lemma, as in Example 1.4.1.4.

An object M• in the Artin–Rees category is called a null system if there exists
d ≥ 0 such that the map Mn+d → Mn vanishes for all n. This implies that
iM•,d vanishes as an Artin–Rees morphism, and conversely if iM•,d vanishes as an
Artin–Rees morphism then Mn+d+d′ → Mn vanishes for all n with some large d′.
Since iM•,d is an isomorphism for all d ≥ 0, it vanishes if and only if M• is a zero
object. Thus, the zero objects in the Artin–Rees category are precisely the null
systems. This has an important consequence: to check if a map f : M• → N• in
the abelian Artin–Rees category is a monomorphism (resp. epimorphism), we may
compose with an isomorphism iM•,d such that f ◦iM•,d is represented by compatible
termwise maps Mn+d → Nn, and then the resulting projective system of kernels
(resp. cokernels) is a null system if and only if f is monic (resp. epic).

Definition 1.4.2.1. Assume A/I is artinian. An object M• in the Artin–Rees
category Artin–Rees I-adic if it is Artin–Rees isomorphic to M ′

• with M ′
n = 0 for

n < 0, M ′
n finite over An = A/In+1 for all n ≥ 0, and An ⊗An+1 M ′

n+1 → M ′
n an

isomorphism for all n ≥ 0. Such projective systems M ′
• are strictly I-adic.
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The reason we impose the artinian property on A/I is to force the terms M ′
n in

a strictly I-adic object to be of finite length. We could have defined strict I-adicness
without a finiteness condition, but such a notion is not useful.

Example 1.4.2.2. Artin–Rees I-adics need not be strictly I-adic, even in large
degrees. For an example, let M be a finite A-module with A/I artinian and pick
d > 1. Define M• = (M/In+1M). Define M ′

n = A
⊕(n−d)
n−d ⊕M/In−dM for n > d and

M ′
n = 0 for n ≤ d, with transition maps given by 0 on the A

⊕(n−d)
n−d ’s and projection

on the M/In−dM ’s. The object M ′
• is not strictly I-adic, but it is Artin–Rees

I-adic: compose the Artin–Rees isomorphism M ′
• →M•[−d] with i−1

M•[−d],d.

Example 1.4.2.3. Consider the category whose objects are the strictly I-
adics and whose morphisms are morphisms of projective systems (i.e., compati-
ble termwise maps in all degrees). The evident functor from this category to the
Artin–Rees category is fully faithful onto the full subcategory of strict I-adics. This
amounts to the fact that if M• and M ′

• are strict I-adics, then any ordinary map of
projective systems M•[d] → M ′

• with d ≥ 0 uniquely factors through iM•,d in the
category of ordinary (Z-indexed) projective systems. To prove this, we just have
to observe that (for n ≥ 0) any map from Mn+d to an An-module uniquely factors
through projection to An ⊗An+d

Mn+d 'Mn.

Although the Artin–Rees category does not depend on I, the property of being
Artin–Rees I-adic does depend on I. For example, we claim that the projective
system (A/I2n)n∈Z is not Artin–Rees I-adic when I 6= 0 (define A/I2n = 0 for
n ≤ 0). This is an immediate consequence of the following lemma that serves to
motivate a hypothesis in Theorem 1.4.2.5. We omit the easy proof.

Lemma 1.4.2.4. If M• is Artin–Rees I-adic, then there exist e, ν ∈ Z with e ≥ 0
so that for n� 0, the image of In+1+νMn in Mn−e vanishes.

Theorem 1.4.2.5 (Stability properties of adic systems). Assume A/I is ar-
tinian. The full subcategory of Artin–Rees I-adic objects is stable under formation
of kernels and cokernels, and hence forms an abelian subcategory. The functor
N•  lim←− Nn is an equivalence of categories from the category of Artin–Rees I-
adics to the category of finite A-modules.

If 0 → M ′
• → M• → M ′′

• → 0 is a short exact sequence in the Artin–Rees
category with Artin–Rees I-adic outer terms and In+1+νMn has vanishing image
in Mn−e for all n� 0 and some e, ν ∈ Z with e ≥ 0, then M• is Artin–Rees I-adic.

The hypothesis on the Mn’s in the second part of the theorem is certainly
satisfied if In+1+νMn = 0 for n� 0 and some ν ∈ Z, a condition that is essentially
always satisfied in practice.

Proof. Suppose f• : N• → N ′
• is an Artin–Rees morphism of Artin–Rees I-

adic objects. To show ker f• and coker f• are Artin–Rees I-adic, we may compose
with isomorphisms on the source and target so that N ′

• and N• are strictly I-
adic. By Example 1.4.2.3, f• is induced by an ordinary map of projective systems.
This nearly translates the first part of the theorem into the known equivalence of
categories between strictly I-adic projective systems and finite A-modules. The
only subtle aspect was handled by Example 1.4.1.4 via the Artin–Rees lemma:
kernels formed in the category of strict I-adic objects (i.e., finite A-modules) are
kernels in the Artin–Rees category. Thus, N•  lim←− Nn is an equivalence.
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It remains to show that if 0→M ′
• →M• →M ′′

• → 0 is Artin–Rees short exact
with M ′

• and M ′′
• both Artin–Rees I-adic and In+1+νMn has vanishing image in

Mn−e for n � 0, then M• is Artin–Rees I-adic. If we define Ir = A for r ≤ 0,
the hypothesis on M• implies that the natural map M• → (Mn/In+1+νMn) has
null kernel and cokernel systems, so by shifting and composing with Artin–Rees
isomorphisms we may assume that M ′′

• is a strictly I-adic projective system, that
In+1+dMn = 0 for all n and some d ≥ 0, and that M ′

• is strictly I-adic. Thus, we
can assume that the short exact sequence

0→M ′
• →M• →M ′′

• → 0

is represented by maps of projective systems f• : M ′
•[d]→ M• and h• : M• → M ′′

•
such that h• ◦ f• = 0 and both (ker fn) and (coker hn) are null. The exactness
hypothesis implies that the kernel and cokernel systems for the map M ′

• → (ker hn)
are null systems.

Define M ′ = lim←− M ′
n, M = lim←− Mn, M ′′ = lim←− M ′′

n . By strictness, M ′ and
M ′′ are finite A-modules. Consider the complex

(1.4.2.1) 0→M ′ f→M
h→M ′′ → 0.

We claim this is a short exact sequence, so in particular M is a finite A-module.
The system of short exact sequences

(1.4.2.2) 0→ im(hn)→M ′′
n → coker(hn)→ 0

has left terms of finite length since each M ′′
n is of finite length. Recall the general

Mittag-Leffler criterion that an inverse limit of short exact sequences of modules is
short exact if the left term (N ′

n) has the property that for each n, the decreasing
system of images N ′

n+ν → N ′
n stabilizes for large ν (perhaps depending on n); this

criterion is always satisfied when the N ′
n’s have finite length, and so passage to the

inverse limit on (1.4.2.2) preserves short-exactness.
We claim that passing to the inverse limit on the system of short exact sequences

0→ ker(hn)→Mn → im(hn)→ 0

also yields a short exact. It suffices to check that the ker(hn)’s satisfy the Mittag-
Leffler criterion. Since the maps M ′

n → ker(hn) have null kernel and cokernel sys-
tems and the M ′

n’s have surjective transition maps (and so satisfy the Mittag-Leffler
criterion), the Mittag-Leffler criterion is inherited by the ker(hn)’s, as desired.

We also need to prove that lim←− M ′
n → lim←− ker(hn) is an isomorphism. This

follows from:

Lemma 1.4.2.6. Let X• = (Xn) and Y• = (Yn) be projective systems of modules
over a ring A, with Xn = Yn = 0 for n � 0, and let f• : X• → Y• be a map of
projective systems with (ker fn) and (coker fn) null systems. The induced map on
inverse limits is an isomorphism of A-modules.

Proof. Suppose e > 0 is a positive integer such that all e-fold composites of
successive transition maps on kernels vanish, and let e′ > 0 serve a similar role
for cokernels. It suffices to construct compatible A-linear maps Yn → Xn−e−e′ for
n ≥ e + e′ such that the composites

X•[e + e′]→ Y•[e + e′]→ X•, Y•[e + e′]→ X• → Y•

are the natural maps (that induce isomorphisms on inverse limits). Since each
yn ∈ Yn projects to an element in coker(fn) that vanishes in coker(fn−e′), we can
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find xn−e′ ∈ Xn−e′ whose image in Yn−e′ is that of yn, but xn−e′ is ambiguous
up to ker fn−e′ . Pushing xn−e′ into Xn−e−e′ kills the ambiguity since ker fn−e′ →
ker fn−e−e′ is zero. This provides well-defined maps Yn → Xn−e−e′ that are readily
checked to satisfy the desired properties. �

Returning to the proof, we may combine our inverse-limit constructions to
recover (1.4.2.1) as a short exact sequence. Since f• : M ′

•[d]→M• and h• : M• →
M ′′
• are maps of projective systems such that the nth term is an An-module for all

n ≥ 0, we arrive at a commutative diagram in the Artin–Rees category

0 // (M ′/In+1+d)

��

// (M/In+1+d)

��

// (M ′′/In+1+d) //

��

0

0 // M ′
•[d]

f•

// M•
h•

// M ′′
•

// 0

with outer vertical maps that are Artin–Rees isomorphisms. The bottom row is
short exact in the Artin–Rees category by hypothesis, and the top row is short exact
in the Artin–Rees category since it corresponds (under the equivalence between the
strict I-adics and finite A-modules) to a short exact sequence of finite A-modules.
Thus, the snake lemma in the abelian Artin–Rees category ensures that the middle
vertical arrow in the above diagram is an Artin–Rees isomorphism; this proves that
M• is Artin–Rees I-adic. �

Example 1.4.2.7. Suppose A is local noetherian with maximal ideal m, and
consider an Artin–Rees m-adic (Mn) with Mn a finite An-module for all n ≥ 0
and Mn = 0 for n < 0. It is an instructive exercise to construct the maximal m-
primary submodule (i.e., finite-length submodule) in the associated finite A-module
M = lim←− Mn by working directly with the projective system (Mn) and not using
the crutch of passage to inverse limits.

When A/I is artinian, we have now realized our goal of finding a useful categor-
ical description of finite A-modules in terms of projective systems of finite-length
modules equipped with a suitably enhanced notion of morphism. The utility of
this description is due to the fact that kernels and cokernels can be formed in a
termwise manner (up making suitable shifts).

Now assume A is a domain with fraction field K (retaining the condition that
A/I is artinian, so A must be local). If we can describe the category of finite-
dimensional K-vector spaces in terms of the category of finite A-modules, then
we will get a description of the category of finite-dimensional K-vector spaces in
terms of the category of Artin–Rees I-adic projective systems. Observe that every
finite-dimensional K-vector space V has the form V = K ⊗A L for a finite (free)
A-module L, and

(1.4.2.3) K ⊗A HomA(L,L′)→ HomK(K ⊗A L,K ⊗A L′)

is an isomorphism for finite A-modules L and L′. This is formally analogous to the
isogeny category of complex tori, and it motivates:

Definition 1.4.2.8. The Artin–Rees category of K-vector spaces consists of
the Artin–Rees I-adics with HomA−R,K(M•, N•)

def=K ⊗A HomA−R(M•, N•).
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For clarity, if M• is an Artin–Rees I-adic object then K ⊗ M• denotes the
same object viewed in the Artin–Rees category of K-vector spaces. Using the
isomorphism (1.4.2.3), we see via Theorem 1.4.2.5 that the Artin–Rees category
of K-vector spaces admits a fully faithful and essentially surjective functor to the
category of finite-dimensional K-vector spaces, namely K ⊗M•  K ⊗A lim←− Mn.
In Theorem 1.4.2.5 we had a natural functor from finite modules into the Artin–
Rees category, namely M  (M/In+1M), but in the vector-space situation there
is no natural functor analogous to this (i.e., carrying vector spaces to projective
systems) since K-vector spaces are not spanned by natural finite A-submodules.

1.4.3. `-adic sheaves. Let Λ be a complete local noetherian ring with maxi-
mal ideal m. Define Λn = Λ/mn+1 for n ≥ 0. Our aim in this section is to study the
étale analogues of the local systems of Λ-modules in ordinary topology. For finite
rings Λ (such as Z/`nZ), the correct étale notion is that of an lcc Λ-module on the
étale site of a scheme. For more general Λ we must leave the category of ordinary
étale sheaves and develop a systematic framework for using projective systems of
sheaves. We will be guided by our success in carrying out such a program for the
category of finite Λ-modules.

Definition 1.4.1.5 makes sense in any abelian category whatsoever, and in such
generality always yields an abelian category with kernels and cokernels formed in
the evident termwise manner (upon applying a suitable shift). Since we have only
discussed constructible sheaves on noetherian schemes, and the direct limit in the
definition of Hom groups in the Artin–Rees category is not a good notion for sheaf
categories over non-quasi-compact topologies, for the remainder of this chapter we
shall require X to be noetherian. We use Definition 1.4.1.5 to define the Artin–Rees
category of Λ-sheaves on Xét. The adic objects are defined as follows:

Definition 1.4.3.1. Let X be a noetherian scheme. A strictly m-adic sheaf on
Xét is an object F• = (Fn)n∈Z in the Artin–Rees category of Λ-sheaves on Xét

such that Fn = 0 for n < 0, Fn is a Λn-module for all n ≥ 0, and the natural
map Fn+1/mn+1Fn+1 → Fn is an isomorphism for all n ≥ 0. If these Fn’s are all
constructible, we say F• is a constructible strictly m-adic sheaf. An m-adic sheaf
on Xét is an Artin–Rees Λ-module F• on Xét that is Artin–Rees isomorphic to a
strictly m-adic sheaf F ′

•. If F ′
• can be chosen with each F ′

n constructible, then F•
is a constructible m-adic sheaf.

Applying additive functors termwise extends ordinary sheaf constructions to
these Artin–Rees categories. An elementary example is the tensor product (over
Λ): form sheaf tensor-products termwise. We likewise define extension-of-scalars
relative to a local map Λ → Λ′, as well as the bifunctor H om•(F•,G•) when F•
is constructible m-adic and Gn is a Λn+d-sheaf for all n ≥ 0 and some d ≥ 0.

We must not forget that a constructible m-adic sheaf is rarely strict: most
cohomological functors of interest will (by non-trivial theorems) carry constructible
m-adic sheaves to constructible m-adic sheaves, but the strictness property will
nearly always be destroyed. From now on, we require Λ to have finite residue
field Λ0, since we are generally interested in constructible m-adic sheaves and such
nonzero objects can only exist when Λ0 is finite.

Remark 1.4.3.2. In the literature, what we are calling a constructible m-adic
sheaf is often called a constructible Λ-sheaf.
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Example 1.4.3.3. The category of constructible Λ-modules on Xét (i.e., con-
structible abelian sheaves endowed with an action of Λ) fully faithfully embeds into
the category of constructible m-adic sheaves on Xét. More specifically, if F is a
constructible Λ-module then F is a Λν-module for some ν ≥ 0. The associated
strict Artin–Rees object has nth term F/mn+1F for all n ≥ 0 (so this is F for
n ≥ ν).

This functor is an equivalence of categories onto the full subcategory of con-
structible m-adic sheaves F• such that F•[mν+1] → F• is an Artin–Rees isomor-
phism for some large ν, with (·)[mν+1] denoting mν+1-torsion. Indeed, for any F•
enjoying this latter property we may pass to an isomorphic object so that F• is
strictly m-adic; in this case, the isomorphism condition says that Fn is a Λν-module
for all n, and so strictness implies Fn = Fν for all n ≥ ν.

For Λ = Z` with ` a unit on X, an important example of a constructible `-adic
sheaf is Z`(1), the strict object whose nth term is µ`n+1 for n ≥ 0. Its dual sheaf
H omZ`

(Z`(1),Z`) is denoted Z`(−1). More generally, we can form tensor powers
Z`(r) for all r ∈ Z. Extension of scalars defines the m-adic sheaves Λ(r) when Λ
has residue characteristic `.

Example 1.4.3.4. As an illustration of the difference between working in the
Artin–Rees category and working with inverse-limit sheaves on the étale site, con-
sider the inverse-limit sheaf F = lim←− µ`n+1 on (SpecQ)ét. Since any number field
has only finitely many roots of unity, and a finite abelian group has trivial maximal
`-divisible subgroup, clearly F (Spec K) = {1} for every number field K. That is,
F vanishes. In constrast, the constructible `-adic sheaf Z`(1) is non-zero.

Let us say that G• in the Artin–Rees category has stable images if there is a
d0 ≥ 0 so that for each n the image of Gn+d in Gn is the same for all d ≥ d0 (this
is called the Mittag-Leffler Artin–Rees condition in [14, Exp. V, 2.1.1]). Although
the operation G  Gn is not a functor on the Artin–Rees category (think about
the inverse of iG•,d for d > 0), the property of having stable images is invariant
under passage from G• to G•[d] for any d, and hence if G• and G ′

• are Artin–Rees
isomorphic then G• has stable images if and only if G ′

• does.
The formation of the stable image in a fixed degree is not functorial in G• unless

we restrict attention to strictly m-adic objects; the problem is caused by shifting.
However, in one case the shifting does not cause difficulties: if G• has stable images,
say G n in degree n, then the condition that the natural maps G n+1 → G n be
isomorphisms for all n� 0 is invariant under Artin–Rees isomorphisms. Let us say
that such a G• has terminal stable images (and the common G n for large n is called
the terminal stable image of G•). On the full subcategory of G•’s with terminal
stable images, the terminal stable image of G• is functorial in G•.

The inclusion of the (ordinary) constructible Λ-modules into the Artin–Rees
category is an equivalence onto the full subcategory of those Artin–Rees objects
with terminal stables images such that the terminal stable image is constructible.
Formation of the terminal stable image provides a quasi-inverse to this inclusion
functor.

1.4.4. Properties of constructible m-adic sheaves.

Theorem 1.4.4.1 (Local nature of constructibility). Let {Si} be a stratification
of X, and let {Uj} be an étale cover. If F• is an object in the Artin–Rees category
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of Λ-modules on Xét, then F• is constructible m-adic if and only if all F•|Si
or all

F•|Ui are constructible m-adic.

Proof. We can assume the Ui’s are quasi-compact. For n ≥ 0, define F̃n
• =

F•/mn+1F•. Assume that restricting F• to either all the Si’s or to all the Uj ’s
gives a constructible m-adic sheaf. We claim that F̃n

• has terminal stable images
and its terminal stable image is a constructible Λn-module. These properties are
obvious when F• is a constructible strictly m-adic sheaf, and it suffices to check
these properties for the restriction of F• to all Ui’s or all Sj ’s; invariance under
passage to an isomorphic object in the Artin–Rees category thereby settles the
claim.

Now let F ′
n denote the functorial terminal stable image of F̃n

• ; functoriality
provides us with maps F ′

n+1 → F ′
n over Λn+1 → Λn, and the induced maps

F ′
n+1/mn+1F ′

n+1 → F ′
n are isomorphisms: this may be checked either étale-locally

or over a stratification. Thus, if we define F ′
n = 0 for n < 0 then F ′

• = (F ′
n)

is a constructible strictly m-adic object. It remains to construct an Artin–Rees
isomorphism F ′

• ' F•. The key point is that there is a large integer e independent
of n so that the terminal stable image in F•/mn+1F• is achieved in degree n + e.
The existence of such an integer (though not its value) is unaffected by replacing
F• with an Artin–Rees isomorphic object, and so to prove existence we may work
étale-locally on X or over the strata of a stratification of X. Thus, the existence
problem is reduced to the trivial constructible strict case.

With the integer e in hand, we get a morphism F•[e]→ F ′
• that we claim is an

isomorphism. To prove this, it is harmless to pass to a larger e. We can then work
either étale-locally or on the strata of a stratification to reduce to the case when
F• is Artin–Rees isomorphic to a strict object. Since the problem is unaffected by
enlarging e, and the construction of F ′

• is functorial in F•, we reduce to the trivial
case when F• is a constructible strictly m-adic sheaf. �

Remark 1.4.4.2. An important consequence of the preceding proof is that if F•
is a constructible m-adic sheaf, the (constructible) strict object F ′

• constructed via
terminal-images is functorial in F•. This provides a quasi-inverse to the inclusion
functor from the category of constructible strict m-adic projective systems to the
category of constructible m-adic sheaves.

Definition 1.4.4.3. Let F• be a constructible m-adic sheaf on Xét. The stalk
of F• at a geometric point x is the finite Λ-module lim←− (Fn)x.

By Lemma 1.4.2.6, formation of the stalk at a geometric point is a functor. An
alternative definition of the stalk that makes this obvious is to pull back to a geo-
metric point and apply Theorem 1.4.2.5 to the Artin–Rees category of constructible
m-adic sheaves on a geometric point.

Definition 1.4.4.4. A constructible m-adic sheaf F• on Xét is a lisse m-adic
sheaf if it is Artin–Rees isomorphic to a strictly m-adic sheaf F ′

• with F ′
n an lcc

Λn-module for all n ≥ 0.

By Theorem 1.4.4.1 and Remark 1.4.4.2, this definition is a local property for
the étale topology on X. In general, the property of being lisse m-adic is preserved
under formation of tensor products and H om’s. The sheaves Λ(r) are lisse m-adic
when char(Λ0) is a unit on X. As in Example 1.4.3.3, lisse m-adic sheaves rarely
become constant over an étale cover.
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Example 1.4.4.5. Let F• be a lisse m-adic sheaf on Xét. Consider the stalk
(F•)x at a geometric point x of X. By Remark 1.4.4.2, we can functorially find a
strict object F ′

• with lcc F ′
n’s and an Artin–Rees isomorphism F• ' F ′

•.
Assume that X is connected. By Grothendieck’s equivalence between lcc

sheaves and finite monodromy representations (Theorem 1.2.2.3), the stalk (F•)x

is a finite Λ-module equipped with a continuous linear action of π1(X, x), and this
construction is functorial in F•. Since any finite Λ-module M with a continuous
linear action of π1(X, x) can be canonically expressed as lim←− Mn where the mod-
ules Mn = M/mn+1M are endowed with compatible continuous linear actions of π1,
the stalk functor at x is an equivalence of categories between lisse m-adic sheaves
and continuous linear representations of π1(X, x) on finite Λ-modules. This is an
analogue of the dictionary in §?? between local systems and π1-representations for
reasonable connected topological spaces.

One important consequence of this description is that, without connectivity
requirements, the category of lisse m-adic sheaves on Xét is an abelian category
and the inclusion of this category into the abelian Artin–Rees category of m-adic
sheaves is compatible with the formation of kernels and cokernels. To prove this
claim we may assume X is connected, and then the equivalence with continuous
linear representations of π1(X, x) on finite Λ-modules shows that the category of
lisse m-adic sheaves on Xét is abelian. The torsion-level description of module
operations in the Artin–Rees theory for ordinary modules immediately implies that
the kernels and cokernels formed in the category of lisse m-adic sheaves agree with
kernels and cokernels formed in the category of Artin–Rees m-adic sheaves.

Example 1.4.4.6. There is a specialization criterion for constructible m-adic
sheaves F• to be lisse m-adic: it is necessary and sufficient that the natural
specializaton map F•,s → F•,η is an isomorphism whenever η generizes s. In-
deed, we may assume F• is a strict m-adic system with constructible Fn’s, so
Fn,s = F•,s/mn+1F•,s, and similarly for η. It follows that the specialization maps
for the constructible Fn’s are isomorphisms, so each Fn is lcc.

Ordinary constructible sheaves on a noetherian scheme X become lcc upon
restriction to the strata of a stratification of X. This result also has an m-adic
analogue in terms of lisse m-adic sheaves as defined above. We now prove this
result and record some of its consequences:

Theorem 1.4.4.7. Let F• be a constructible m-adic sheaf on Xét. There exists
a stratification of X such that the restriction of F• to each stratum is lisse. In
particular, F• has vanishing stalks at all geometric points if and only if F• = 0,
and a complex of constructible m-adic sheaves is exact if and only if it is exact on
all stalks.

Proof. It is harmless to pass to Artin–Rees isomorphic objects, so we may
assume F• is a constructible strictly m-adic sheaf. Our module work proved that
inverse limits set up an equivalence between the Artin–Rees category of m-adic
Λ-modules and the category of finite Λ-modules. The zero objects are the null
systems, so the stratification claim implies the stalk claims.

By noetherian induction, we just have to find a Zariski-dense open U in X
such that the constructible restrictions Fn|U are lcc. The finite filtration of Fn

by mmFn’s for 0 ≤ m ≤ n + 1 has successive quotients mmFm due to strictness.
By the specialization criterion a constructible sheaf to be lcc, the middle term in
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a short exact sequence of constructible abelian sheaves on Xét is lcc if the outer
terms are lcc. Thus, it suffices to find a dense open U such that mmFm|U is lcc for
all m ≥ 0.

Let B = grmΛ def= ⊕m≥0m
m/mm+1; this is an N0-graded finitely generated Λ0-

algebra (N0 = N ∪ {0}). We may view G = ⊕m≥0m
mFm as an N0-graded sheaf

of B-modules, and as such we have a surjection

π : B ⊗Λ0 F0 =
⊕
m≥0

(mm/mm+1)⊗Λ0 F0 � G .

If we let K = ⊕Kj denote the N0-graded kernel of this B-linear surjection, then
all Kj ’s are constructible. The isomorphism

((mm/mm+1)⊗Λ0 F0)/Km ' mmFm

implies that mmFm|U is lcc if Km|U and F0|U are lcc (U ⊆ X open).
The key claim (proof below) is that B⊗Λ0 F0 is a graded-noetherian B-module

in the sense that rising chains of B-stable N0-graded subsheaves terminate. This
implies that any N0-graded B-submodule of B ⊗Λ0 F0 is generated over B by
its graded components in degrees j ≤ m0 for some (variable) m0. Apply this to
K . For m > m0, the subsheaf Km in (mm/mm+1) ⊗Λ0 F0 is the image of the
multiplication map

φm :
m0⊕
j=0

(mm−j/mm+1−j)⊗Λ0 Kj → (mm/mm+1)⊗Λ0 F0.

Thus, if we pick a dense open U such that Kj |U is lcc for all 0 ≤ j ≤ m0 and F0|U
is lcc, then φm|U is a map between lcc sheaves for all m > m0. Hence, its image
Km|U is lcc for all m, as desired.

To prove that B⊗Λ0 F0 is a graded-noetherian B-module, we must use the fact
that constructible sheaves on a noetherian scheme are (precisely the) noetherian
objects in the category of abelian étale sheaves on any noetherian scheme. Applying
this to F0 and recalling that B is a finitely generated N0-graded Λ0-algebra, we
reduce to the following sheafified Hilbert basis theorem: if A is any commutative
ring, B is an N0-graded finite-type A-algebra, and F is a noetherian A-module,
then B ⊗A F is a graded-noetherian B-module. Such a result can be proved in
any A-linear abelian category admitting tensor products [14, Exp. V, 5.1.4], but
in our special case the argument goes as follows. We may reduce to the case
B = A[t1, . . . , tr] with the tj ’s assigned various degrees, and so

B ⊗A F =
⊕

e1,...,er≥0

F te1
1 · · · ter

r .

Using multiplication by monomials, a graded B-submodule M of B ⊗A F is a
direct sum of A-submodules Me ⊆ F ' F · te for each multi-index e, with the
requirement that Me ⊆ Me′ inside F whenever ei ≤ e′i for all 1 ≤ i ≤ r (this

inclusion corresponds to multiplication by
∏

t
e′i−ei

i on M ).
We claim that the set of distinct Me’s (as subobjects of F ) is finite, so finitely

many Me’s generate M over B. Granting this, suppose M (1) ⊆ M (2) ⊆ . . . is a
rising sequence of graded B-submodules of B⊗A F , with M (α) having component
M

(α)
e for the monomial te. If we define M = lim−→M (α) then we want M (α′) = M

for some α′. Clearly M is a graded B-submodule of B ⊗A F with eth component
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lim−→M
(α)
e , so by the noetherian property of F we get Me = M

(αe)
e for some αe.

By hypothesis there exist only finitely many distinct Me’s, say associated to multi-
indices e(1), . . . e(µ), and these generate M over B. We may take α′ = maxαe(j) .

To establish in general that there are only finitely many distinct Me’s, consider
the more general situation of a map of partially ordered sets φ : Nr

0 → P, where
r ≥ 1 and Nr

0 is partially ordered by the condition e ≤ e′ whenever ei ≤ e′i for all i.
Assume P is noetherian in the sense that any monotonically increasing sequence
in P terminates. For example, P could be the set of subobjects Me (partially
ordered by inclusion) inside of the noetherian object F . We claim that any such
φ has finite image. If not, then by selecting φ-preimages of an infinite sequence of
distinct points, we get an infinite sequence σ of distinct points in Nr

0 such that (by
the noetherian property of P) there is no subsequence that is strictly increasing
relative to the partial ordering on Nr

0. A simple pigeonhole argument via induction
on r shows that no such sequence can exist. �

Corollary 1.4.4.8. Assume Λ is a discrete valuation ring, and let F• be a
constructible m-adic sheaf. There is a unique ordinary constructible Λ-subsheaf F
contained in F• such that F•/F has Λ-flat stalks.

Proof. Let F•(n) be the mn+1-torsion subobject in F•. This is a con-
structible m-adic sheaf that is killed by a power of m, and so it is an ordinary
constructible Λn-sheaf. The F•(n)’s are a rising chain of subobjects of F• whose
stalks are the corresponding m-power torsion-levels in stalks of F• (due to exact-
ness of stalk functors). Thus, it suffices to show that this chain terminates. By
using a suitable stratification of X, we may assume F• is lisse. In this case, we
can assume X is connected, and then we can inspect the associated finite Λ-module
with continuous π1-action to see the termination property. �

Theorem 1.4.4.9 (Stability properties of adic systems). The full subcategory of
constructible m-adic sheaves is stable under the formation of kernels and cokernels
within the larger Artin–Rees category of Λ-modules on Xét.

Moreover, if
0→ F ′

• → F• → F ′′
• → 0

is a short exact sequence in the Artin–Rees category of Λ-modules such that F ′
•

and F ′′
• are constructible m-adic, and mn+1+νFn has vanishing image in Fn−e for

n� 0 and some e, ν ∈ Z with e ≥ 0, then F• is a constructible m-adic sheaf.

The hypothesis on F• is satisfied if mn+1+νFn = 0 for n� 0 and some ν ∈ Z.

Proof. To establish the first part, let φ : G ′
• → G• be a map between con-

structible m-adic sheaves. We can find a stratification of X such that G ′
• and G•

have lisse restriction on the strata. To prove that kerφ and cokerφ are constructible
m-adic, it suffices to work on these strata, and so we may assume G ′

• and G• are
lisse. This case was settled in Example 1.4.4.5.

Now consider a short exact sequence

0→ F ′
• → F• → F ′′

• → 0

in the Artin–Rees category of Λ-modules on Xét such that the outer terms are
constructible m-adic and mn+1+νFn has vanishing image in Fn−e for n � 0 and
some e, ν ∈ Z with e ≥ 0. We want to prove that F• is constructible m-adic. We
may assume that the given short exact sequence is short-exact in the category of
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projective systems. Let φ′′ : F̃ ′′
• [d′′] → F• be a map of projective systems that

is an Artin–Rees isomorphism with F̃ ′′
• a strictly m-adic system whose terms are

constructible. We may form the φ′′-pullback of the given short exact sequence to
reduce to the case when F ′′

• is a shift on a constructible stricly m-adic projective
system, and the shift can be eliminated by applying an auxiliary shift: in the
Artin–Rees category, this procedure only changes terms up to isomorphism.

There is likewise a map φ′ : F ′
•[d

′] → F̃ ′
• to a constructible strictly m-adic

system with φ′ an Artin–Rees isomorphism, and forming a φ′[−d′]-pushout on our
short exact sequence of projective systems yields F ′′

• [−d′] as the kernel term. Thus,
may assume that our short exact sequence is short-exact as a diagram of projective
systems and that the outer terms are constructible strictly m-adic. Each abelian
sheaf Fn is therefore an extension of one noetherian object by another, and so Fn is
a noetherian object in Ab(X). Thus, all Fn’s are constructible. Passing to a strat-
ification allows us to assume that outer terms F ′

n and F ′′
n are all lcc. Thus, each

constructible Fn satisfies the specialization criterion for local constancy. We may
assume X is connected, say with x a geometric point, so all of the sheaf-theoretic
information can be transferred into the category of finite Λ-modules equipped with
a continuous linear action of π1(X, x). The proof of Theorem 1.4.2.5 may now be
carried over with the additional data of π1-actions carried along in the construc-
tions. �

1.4.5. Q`-sheaves. To make a theory with coefficients in a field, we employ
the same localization device on Hom-groups as near the end of §1.4.2:

Definition 1.4.5.1. Let (Λ,m) be a complete local noetherian domain with
finite residue field; let K be its fraction field. The category of constructible K-
sheaves on a noetherian scheme X is the localization of the category of constructible
m-adic sheaves at the action of nonzero elements of Λ. That is, its objects are the
same as those of the category of constructible m-adic sheaves, but we apply K⊗Λ (·)
to the Hom-modules. If F• is a constructible m-adic sheaf, then K ⊗F• denotes
the same object viewed in the category of constructible K-sheaves.

As an example, K(1) = K ⊗ Λ(1) denotes the Tate object when the residue
characteristic of Λ is a unit on X. In general, the category of constructible K-
sheaves is an abelian category and the functor F•  K ⊗F• from constructible
m-adic sheaves to constructible K-sheaves is exact.

If (Λ′,m′) is a finite extension of Λ, the functor Λ′⊗Λ (·) from constructible m-
adic sheaves to constructible m′-adic sheaves defines the extension-of-scalars functor
K ′ ⊗K (·) from constructible K-sheaves to constructible K ′-sheaves.

Example 1.4.5.2. In the special case when Λ is a discrete valuation ring, every
constructible K-sheaf is isomorphic to K ⊗F• where F• is a constructible m-adic
sheaf that has Λ-flat stalks. Indeed, F• contains a constructible Λr-subsheaf F
such that F•/F has Λ-flat stalks (Theorem 1.4.4.8), so the vanishing of K ⊗F
gives the result.

The stalk of a constructible K-sheaf K ⊗ F• at a geometric point x is the
finite-dimensional K-vector space K ⊗Λ F•,x. A constructible K-sheaf vanishes if
and only if its stalks (in the K-sense) all vanish: this ultimately comes down to
the fact that K ⊗F• = 0 if and only if some nonzero element in Λ kills F• in the
Artin–Rees category, and fact is an obvious result on the module side that transfers
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to the constructible m-adic sheaf side because we can find a stratification of X such
that F• has lisse restrictions on the strata. Similarly, exactness of a complex of
constructible K-sheaves can be checked on K-vector space stalks.

Definition 1.4.5.3. A lisse K-sheaf on Xét is a constructible K-sheaf that is
isomorphic to K ⊗F• for a lisse m-adic sheaf F•.

Theorem 1.4.5.4. Let X be a connected noetherian scheme with geometric
point x. The stalk at x defines a fully faithful and essentially surjective functor
from lisse K-sheaves on Xét to continuous K-linear representations of π1(X, x) on
finite-dimensional K vector spaces.

Proof. The key is to reduce to the integral case in Example 1.4.4.5. To make
this work, we just need to know that any continuous linear representation of π1 on
a finite-dimensional K-vector space V stabilizes some Λ-submodule that spans V
over K. Pick any finite Λ-submodule L0 in V that spans V over K. Since L0 is
open in V and π1 is compact, some finite-index open subgroup H in π1 carries L0

into itself. Replacing L0 with the slightly larger lattice L =
∑

g(L0) as g runs over
representatives of π1/H, we get a π1-stable submodule as desired. �

Remark 1.4.5.5. Let us mention some interesting applications of Theorem
1.4.5.4, though we will not use them and so we omit the proofs. Assume that X is
normal and noetherian. Theorem 1.4.5.4 can be used to prove that the property of
a K-sheaf being lisse is local for the étale topology on X, and that a constructible
K-sheaf F• on Xét is lisse if and only if for any pair of geometric points s, η on
X with s specializing η, the specialization map (F•)s → (F•)η is an isomorphism.
The role of normality in the proofs is the surjectivity aspect in Example 1.2.2.2.

Étale descent also works for lisse K-sheaves on normal noetherian schemes X.
To make this precise, let f : X ′ → X be an étale surjection with X ′ noetherian, and
let F ′ be a lisse K-sheaf on X ′. Decent data on F ′ relative to f is an isomorphism
ϕ : p∗2F

′ ' p∗1F
′ on X ′ ×X X ′ that satisfies the cocycle condition with respect to

pullbacks on the triple product. If F ′ = f∗F for a lisse K-sheaf F on X, then
there is obvious descent data ϕ on F ′ relative to f , and the theorem that can
be proved via Theorem 1.4.5.4 is that the functor F  (F ′, ϕ) is an equivalence
of categories from the category of lisse K-sheaves on X to the category of lisse
K-sheaves on X ′ equipped with descent data relative to f .

Definition 1.4.5.6. Let X be a noetherian scheme, and fix a prime ` and an
algebraic closure Q` of Q`. The category of constructible Q`-sheaves on Xét is the
Q`-linear category whose objects are triples (F ,K, i) where i : K ↪→ Q` is an
embedding of a finite extension of Q` into Q` and F is a constructible K-sheaf,
and the morphism-groups are

Hom((F ,K, i), (F ′,K ′, i′)) def= Q` ⊗K′′ Hom(K ′′ ⊗K F ,K ′′ ⊗K′ F ′),

where K ′′ is any finite extension of Q` inside of Q` containing both i(K) and i′(K ′).
A constructible Q`-sheaf is lisse if it is Q`-isomorphic to a triple (F ,K, i) with F
a lisse K-sheaf for some K ⊆ Q` of finite degree over Q`.

It is mechanical to carry over the K-sheaf results to the case of Q`-sheaves;
this ultimately comes down to the fact that the constructible adic theory is com-
patible with the extension-of-scalars functors Λ → Λ′ induced by finite extensions
on discrete valuation rings.
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Theorem 1.4.5.7. If X is a connected noetherian scheme with geometric point
x, then the stalk functor at x defines a fully faithful and essentially surjective functor
from the category of lisse Q`-sheaves to the category of continuous linear represen-
tations of π1(X, x) on finite-dimensional Q`-vector spaces.

Proof. Since any map of finite-dimensional Q`-vector spaces may be defined
over a finite extension of any specified subfield of definition of the two vector spaces,
the only non-obvious fact we have to prove is that for any affine algebraic group
G over a finite extension K of Q` (e.g., G = GLn), any continuous representation
ρ : π1(X, x) → G(Q`) factors through G(K ′) for K ′ some subfield of Q` that is
finite over K; this is false if Q` is replaced with its completion. The group G(Q`) is
Hausdorff since G is separated, and the image of ρ is a compact subgroup Γ. Thus,
it suffices to prove that any compact subgroup Γ in G(Q`) = ∪G(K ′) is contained
in some G(K ′). By chasing coset representatives, there is no harm in replacing
Γ with a (finite index) open subgroup. Hence, it suffices to show that one of the
closed subgroups Γ ∩G(K ′) has non-empty interior in Γ. These subgroups form a
countable directed system of closed subsets of the compact space Γ and their union
is Γ, so the Baire category theorem would solve our problem if Γ is metrizable.
Since G is affine, G(Q`) is metrizable and hence so is the subset Γ. �

1.4.6. `-adic cohomology. As usual, fix Λ to be a complete local noetherian
ring with finite residue field and maximal ideal m. The cohomological functors
are defined on Artin–Rees categories of m-adic sheaves by applying the functors
termwise in projective systems. For example, if f : X → S is a map between noe-
therian schemes then we define Rif∗(F•) to be the projective system (Rif∗(Fn)),
and similarly for Rif! when f is separated and finite type (and all Fn’s are torsion
sheaves). The Leray spectral sequences, excision, and cup products carry over.
The cohomological functors carry null systems to null systems, and so it is readily
checked that a short exact sequence of Artin–Rees m-adic sheaves gives rise to a
long exact cohomology sequence of Artin–Rees sheaves. The proper and smooth
base change theorems likewise carry over.

Theorem 1.4.6.1. Let f : X → S be a separated finite-type morphism between
noetherian schemes. Let F• be a constructible m-adic sheaf on Xét. The projective
system Rif!(F•) is a constructible m-adic sheaf for all i. If S is of finite type over
a regular base of dimension ≤ 1 and the residue characteristic of Λ is invertible on
S, then the projective system Rif∗(F•) is a constructible m-adic sheaf for all i.

Proof. Observe that in our definition of the Artin–Rees category of projective
systems of Λ-modules, we could have uses an arbitrary Λ-linear abelian category
A in the role of the category of sheaves of Λ-modules. In the special case when A
is the category of of sheaves of Λ-modules, note that an object killed by mn+1 for
some n ≥ 0 is a noetherian object in A if and only if its underlying abelian sheaf is
constructible. Thus, we can generalize the concept of a constructible m-adic sheaf
as follows: for any Λ-linear abelian category A , a projective system F• in A with
Fn = 0 for n � 0 is AR-m-adic noetherian if it is Artin–Rees isomorphic to a
strictly m-adic system F ′

• such that F ′
n is a noetherian object in A for all n.

In [14, Exp. V], a theory of Artin–Rees projective systems is developed for any
Λ-linear abelian category A , with Λ any commutative ring. A key result in the
theory [14, Exp. V, 5.3.1] is that if F = (F i) : A → A ′ is a (Λ-linear) δ-functor
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between such categories then the analgous termwise functors F i on categories of
projective systems preserve the subcategory of AR-m-adic noetherian objects if:

(1) F i(F ) is noetherian for any noetherian F that is killed by m;
(2) F i = 0 for sufficiently large i.

Strictly speaking, the criterion in [14, Exp. V, 5.3.1] replaces (2) with a condition
involving graded sheaves of modules over finite-type graded Λ-algebras, but it can
be proved in an elementary manner that this condition is implied by (1) and (2).

It remains to verify (1) and (2) for the δ-functors R•f! and R•f∗ on categories
of Λ-sheaves. Theorems 1.3.6.3 and 1.3.6.4 provide these properties. �

Example 1.4.6.2. If X is separated of finite type over a separably closed field
and F• is a constructible m-adic sheaf on Xét, we conclude that the projective
system of cohomologies Hi

c,ét(X, Fn) with fixed i is Artin–Rees isomorphic to the
strict object on the (not obviously) finite Λ-module Hi = lim←− Hi

c,ét(X, Fn). That
is, if we fix i then the maps Hi/mn+1Hi → Hi

c,ét(X, Fn) have cokernels and kernels
that form null systems. There is no claim made about kernels or cokernels being
of bounded length as n→∞.

Let us now assume that Λ be a discrete valuation ring (with fraction field K).
This restriction is needed to prove most of the interesting cohomology theorems,
partly due to the simple nature of Λ-flatness and partly due to the simple nature of
duality theory for Λn-modules (e.g., Λn is injective over itself). Here is an m-adic
version of the generic base-change theorem (Theorem 1.3.6.4):

Theorem 1.4.6.3. Let f : X → S be a separated map between schemes of
finite type over regular base of dimension ≤ 1. Let F• be a constructible m-adic
sheaf on X and assume that Λ/m has characteristic that is invertible on S. There
exists a dense open U ⊆ S, depending on F•, such that the formation of Rif∗F |U
commutes with arbitrary base change on U .

Proof. In principle, the result at finite level only produces a dense open Un

such that higher direct images of Fn commute with base change over Un, and Un

depends on Fn. Thus, we need an additional argument to find a U that works for
F•. For a short exact sequence of constructible m-adic sheaves

0→ G ′
• → G• → G ′′

• → 0,

the long exact cohomology sequence shows that a dense open that works for two
of these also works for the third. Thus, we may reduce to the case where F• is a
constructible Λn-sheaf for some n or is a strict m-adic sheaf whose terms Fn are
constructible and Λn-flat for all n.

The constructible Λn-sheaf case is already known, and if F• is a strict m-adic
sheaf with each Fn constructible and Λn-flat, then we claim that U1 works for each
Fn, and so U1 works for F•. Indeed, we have short exact sequences

0→ F1 → Fn+1 → Fn → 0

due to the hypotheses on F•, so induction on n follows readily via the long exact
cohomology sequence. �

For constructible K-sheaves, we define cohomology (and higher direct images
with and without proper supports) by carrying out constructions in the Artin–
Rees m-adic categories and then embedding the (constructible m-adic) result into
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the corresponding K-sheaf categories. The stalks of such higher direct images (with
and without proper supports) are K-vector spaces of finite dimension. The same
goes for constructible K-sheaves. The preceding results all immediately carry over
to the categories of constructible K-sheaves and constructible K-sheaves.

Theorem 1.4.6.4 (Künneth formula revisited). Let S be a noetherian scheme
and f : X → S and f ′ : X ′ → S′ separated maps of finite type. For constructible
K-sheaves F and F ′ on X and X ′, the natural cup-product pairing⊕

p+q=r

Rpf!F ⊗K Rqf!F
′ → Rr(f × f ′)!(π∗F ⊗K π′

∗
F ′)

is an isomorphism, where π and π′ are the projections for X ×S X ′.

Proof. We may assume S is a geometric point. As in the previous argument,
we may find strict m-adic sheaves G = (Gn) and G ′ = (G ′

n) on X and X ′ with
F ' K ⊗ G and F ′ ' K ⊗ G ′ such that Gn and G ′

n are Λn-flat for all n. The
map of interest is the extension-of-scalars to K on the inverse limit of the Künneth
morphisms⊕

p+q=r

Hp
c,ét(X, Gn)⊗Λn

Hq
c,ét(X

′,G ′
n)→ Hr

c,ét(X ×X ′, π∗Gn ⊗Λn
π′
∗
G ′

n);

the Künneth formula in the form of Theorem 1.3.9.2 says that this is a degree-r
edge map in a spectral sequence with terms

Ep,q
2 =

⊕
a+a′=q

Torp
Λn

(Ha
c,ét(X, Gn),Ha′

c,ét(X
′,G ′

n)),

and that this identification is compatible with reduction maps Λm+1 → Λm and
change-of-coefficients maps on Tor’s.

Since the E2-terms at finite level have finite length, we may pass to the inverse
limit on n to get a similar spectral sequence at the m-adic level, where the E2-terms
are the inverse limits of the finite-level E2-terms. Thus, it suffices to show that for
fixed p and q with p > 0, the inverse limit of the finite-level Ep,q

2 ’s is a torsion
Λ-module (as then tensoring with K kills such terms and leaves us with the desired
map as an isomorphism). Taking into account the Artin–Rees formalism, we are
reduced to the general claim that if M and M ′ are finite Λ-modules, then

lim←− Torp
Λn

(M/mn+1,M ′/mn+1)

is a torsion Λ-module for p > 0. The structure theorem for finite Λ-modules reduces
us to the cases when each module is either Λ or some Λm. The case when either is
Λ is trivial, and so we may assume M = Λm and M ′ = Λm′ for some m,m′ ≥ 0.
In this case, any Λ-bilinear bifunctor of M and M ′ is killed by mmax(m,m′)+1. �

Theorem 1.4.6.5 (Poincaré duality revisited). Let k be a separably closed field
with characteristic not divisible by the residue characteristic of Λ. Let F be a lisse
K-sheaf on X. Assume X is smooth with dimension d. The pairing

Hi
ét(X, F∨(d))⊗H2d−i

c,ét (X, F ) // H2d
c (X, K(d)) '

tr
// K

is a perfect duality between finite-dimensional K-vector spaces.
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Proof. We may write F = K⊗G for a strictly m-adic sheaf G = (Gn), where
each Gn is lcc and Λn-flat. It suffices to prove that the pairing of finite Λ-modules

Hi
ét(X, G ∨(d))×H2d−i

c,ét (X, G )→ Λ(d)

is a non-degenerate modulo torsion (and so it is perfect upon extending scalars to
K). The mod-mn+1-reduction of this pairing factors as

Hi
ét(X, G ∨(d))n ×H2d−i

c,ét (X, G )n → Hi
ét(X, G ∨

n (d))×H2d−i
c,ét (X, Gn)→ Λn

where the final step is a perfect pairing by Poincaré duality at finite level (Theorem
1.3.8.1). The maps in the first step are isomorphisms up to kernel and cokernel
terms that are killed by a uniform power mN , and so failure of non-degeneracy in
the Λ-adic pairing is entirely due to torsion elements in the inverse limit. �

1.4.7. Analytification of `-adic sheaves. Let (Λ,m) be a complete local
noetherian ring with finite residue field. Let X be a finite type C-scheme. If F• is
a constructible m-adic sheaf on Xét, its analytification is the abelian sheaf

F an
•

def= lim←− F an
n

on Xan = X(C). This is a functor because shifting induces an isomorphism on
inverse limits.

Theorem 1.4.7.1. The functor F•  F an
• is exact. It also commutes with

formation of stalks, with extension by zero from an open subset, and with pushfor-
ward from a closed set. Moreover, the analytification of a lisse m-adic sheaf on Xét

is a local system of finite Λ-modules on Xan.

Proof. The compatibility of analytification with pushforward under closed
immersions has been verified at the level of constructible abelian sheaves, and so it
holds in the m-adic case because pushforward commutes with formation of inverse
limits of sheaves on ordinary topological spaces.

Assume the compatibility of analytification and stalks; this will be checked
shortly. Exactness of analytification now follows immediately, as does compatibility
with extension by zero (this comes down to proving vanishing of certain stalks of
an analytified extension by zero). To prove that if F• is lisse m-adic then F an

•
is a local system on Xan, we may assume F• is strict with the Fn’s lcc, and we
can assume X is connected. In particular, all stalks of F• at geometric points are
abstractly isomorphic as finite Λ-modules. The same therefore holds for the stalks
of F an

• , due to the assumed stalk-compatibility of analytification. Pick x ∈ X(C).
The isomorphism (F an

• )x ' lim←− Fn,x and the strictly m-adic property of (Fn,x)
yield an isomorphism

(F an
• )x/mn+1(F an

• )x ' Fn,x

compatibly with change in n. Thus, we may choose local sections s1, . . . , sr of F an
•

near x with the sj ’s projecting to a Λ0-basis of F an
0,x.

Since F an
0 is locally constant, the sj ’s project to a basis of F an

0 near x, and since
F an
•,y is a finite Λ-module with mod-m reduction F an

0,y we deduce by Nakayama’s
lemma that the sj ’s generate F an

• near x. Finitely many generating relations on the
sj ’s in F an

•,x also kill the image of the sj ’s in F an
•,y for y near x. We therefore arrive

at a surjection π : M → F an
• |U over some open U around x, where M is a finite

Λ-module and πx an isomorphism. All stalks of F an
• are abstractly isomorphic as
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Λ-modules, so the surjective πy is an isomorphism for all y near x. Hence, π is an
isomorphism near x, and so F an

• is a local system of finite Λ-modules.
Now we turn to the essential part: for a constructible m-adic F• on Xét and

any x ∈ X(C), we want to prove that the map (lim←− F an
n )x → lim←− F an

n,x is an
isomorphism. We shall use an elegant argument due to Deligne. The problem is
local, so we may assume X is separated and finite-type, and F• is strict.

Consider a decreasing sequence of closed sets X = Z0 ⊇ Z1 ⊇ · · · ⊇ Zν = ∅
such that each Fn|Zj−Zj−1 is lcc. We shall write S to denote the collection of
locally closed sets Uj = Zj − Zj−1. A sheaf of sets on X(C) is compatible with
S if its restriction to each Uj(C) is locally constant. On the topological side, the
sheaves F an

n on X(C) restrict to local systems (of finite abelian groups) on the
locally closed subsets Uj(C) that disjointly cover X(C).

Lemma 1.4.7.2. Let Y be a Zariski-closed set in X. For any open U ⊆ X(C)
around Y (C), there exists an open V ⊆ U around Y (C) such that image(G (U) →
G (V )) → Γ(Y (C),G ) is injective for all sheaves of sets G on X(C) that are com-
patible with S .

Proof. To prepare for what we will prove, write Y = Y1 ∪ Y2 where Y1 is the
union of the irreducible components of Y that are irreducible components of X,
and Y2 is the union of the other irreducible components of Y (that are nowhere
dense in X). For each generic point η of X, there is some least j > 0 such that
η 6∈ Zj . Let Uη be an irreducible dense open in {η}, so Uη is contained in Uj−1.
The Uη’s are pairwise-disjoint opens in X with dense union U , and it is clear that
any G compatible with S has locally constant restriction to U . We may therefore
replace Zj with Zj ∩ (X − U) for all j > 0 to reduce to the case with Z1 nowhere
dense in X. If the nowhere-dense Y2 is not contained in Z1, then we replace Z1

with Z1 ∪ Y2 and replace Zj+1 with Zj for all j > 1. This brings us to the case
when Z1 contains Y2 and Z1 is nowhere-dense in X.

Let X̃ be the normalization of Xred, and let Ỹ (resp. Ỹj) be the preimage
of Y (resp. Yj) in Ỹ . Clearly Ỹ1 is a union of connected components of X̃, and
Ỹ2 is nowhere-dense in the other connected components. Let X ′ → X̃ denote the
blow-up along Ỹ2 (say with its reduced structure), and write Y ′ and Y ′

j to denote
the preimages of Y and Yj in X ′. Let Z ′

j be the preimage of Zj in X ′.
The connected components of X ′ are irreducible, and Y ′ = Y ′

1 ∪ Y ′
2 with Y ′

1 a
union of connected components of X ′ and Y ′

2 a closed set of pure codimension 1
in the other connected components of X ′; keep in mind that these other connected
components are irreducible. These properties are preserved under pullback to any
disjoint union of blow-ups along proper closed subsets of irreducible components of
X ′. Thus, if we next blow-up along Z ′

1, and then blow-up along the preimage of
Z ′

2 in this new blow-up, etc., and rename the final result as X ′, we lose none of the
preceding properties but we gain the condition that each non-empty Zj for j > 0
has preimage Z ′

j in X ′ of pure codimension 1. That is, the Z ′
j ’s are a decreasing

sequence of hypersurfaces in X ′. Let S ′ be the collection of locally closed sets
U ′

j = Z ′
j − Z ′

j+1 in X ′.
Applying de Jong’s alterations theorem [5, Thm. 4.1] to each connected (i.e.,

irreducible) component of X ′ and the locus where this component meets Z ′
1, we

get a smooth quasi-projective C-scheme X0 and a generically-finite proper map
f : X0 → X such that f−1(Z ′

1) is a strict normal crossings divisor D0 (i.e., a union



1.4. THE ADIC FORMALISM 83

of smooth hypersurfaces that are mutually transverse at all C-points where they
meet). The preimage Y0 = f−1(Y ) contains some connected components of X0

and meets the others in a pure codimension-1 subset that lies in D0. Thus, Y0 is a
union of some connected components of X0 and of some irreducible components of
D0 in the other connected components of X0. Likewise, for codimension reasons,
the preimage Zj,0 of each Zj in X0 (for j > 0) is a union of irreducible components
of D0, and these form a decreasing sequence. Let S0 be the collection of locally
closed sets Uj,0 = Zj,0 − Zj+1,0 in X0.

Applying Theorem 1.4.7.4 to the manifold X0(C), the collection S0, and the
part of Y0(C) lying over Y2(C) (i.e., ignoring connected components of X0(C) that
are contained in Y0(C)), there exists a fundamental system of opens W in X0(C)
around Y0(C) such that G0(W )→ G0(Y0(C)) is an isomorphism for all sheaves G0

on X0(C) that are compatible with S0 (the situation on connected components of
X0(C) that are contained in Y0(C) is trivial). We pick such an open, call it V0, and
may assume V0 ⊆ f−1(U). Since f is proper and V0 contains f−1(Y (C)) = Y0(C),
there exists an open V around Y (C) with f−1(V ) ⊆ V0. Surjectivity of f therefore
implies V ⊆ U . It remains to check that two sections in G (U) that are equal
along Y (C) must be equal over V . By surjectivity of f , it suffices to show that
two sections in G0(f−1(U)) that are equal along Y0(C) must coincide over f−1(V ).
Since f−1(V ) ⊆ V0 and G0(V0) injects into G0(Y0(C)), we get the desired result. �

Lemma 1.4.7.3. There exists an open V ′ around Y (C) such that for G com-
patible with S , G (V ′) surjects onto G (Y (C)).

Proof. Let f : X0 → X be an alteration as in the proof of the preceding
lemma (with S = {Zj} modified as in that proof so that Z1 is nowhere-dense and
Y2 ⊆ Z1, without loss of generality). Define Y0 = f−1(Y ), X00 = X0 ×X X0, and
Y00 = Y0×X X0 = X0×X Y0. Let S0 and S00 denote the pullbacks of S to X0 and
X00, so S0 is a decreasing chain of hypersurfaces in X0. Note that the irreducible
components of Y0 that are not connected components of X0 are contained in Z1.
Pick V0 in X0(C) around Y0(C) as in Theorem 1.4.7.4 so that G0(V0)→ G0(Y0(C))
is an isomorphism for all G0 on X0(C) compatible with S0 (this is trivial on the
connected components of X0 that are contained in Y0).

Apply the preceding lemma to the nonempty closed set Y00 in X00 and the
open U00

def= pr−1
1 (V0)∩pr−1

2 (V0) around Y00(C). We get an open V00 ⊆ U00 around
Y00(C) such that the map

(1.4.7.1) image(G00(U00)→ G00(V00))→ G00(Y00(C))

is injective. By properness we may find V ′ in X(C) around Y (C) such that the
preimage V ′

00 of V ′ in X00(C) is contained in V00, so the preimage V ′
0 of V ′ in X0(C)

lies in V0. Since G0(V0) → G0(Y0(C)) is an isomorphism, every s ∈ G (Y (C)) has
pullback to Y0(C) that uniquely extends to an s̃0 ∈ G0(V0).

We just need s̃0|V ′
0

to descend to V0. The two pullbacks of s̃0|V ′
0

to sections over
V ′

00 coincide, as these are both restrictions from sections of G00(U00) that have the
same restriction s00 on Y00(C) and hence coincide (by the injectivity in (1.4.7.1)).
Since V ′

00 = V ′
0 ×V ′ V ′

0 , it suffices to show that if T ′ → T is a proper surjection
of topological spaces and G is a sheaf on T with pullbacks G ′ and G ′′ to T ′ and
T ′′ = T ′ ×T T ′, then G (T ) is the equalizer kernel of G ′(T ′) ⇒ G ′′(T ′′). Sections
of G may be functorially identified with continuous T -maps to a topological space
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G̃ over T (using the pre-Grothendieck viewpoint of sheaves as topological spaces),
and a continuous map T ′ → G̃ that is constant on fibers over T uniquely factors
continuously through the quotient map T ′ → T , so we are done. �

We can now apply the two lemmas to conclude that for sufficiently small open
U in X(C) around Y (C), there exists an open V ⊆ U around Y (C) such that
image(G (U)→ G (V ))→ Γ(Y (C),G ) is an isomorphism for all G compatible with
the stratification S . This general result will now be applied to the sheaves F an

n on
X(C) and Y = {x}. We conclude that for any sufficiently small open U in X(C)
around x, there exists a smaller open V around x so that

(1.4.7.2) image(F an
n (U)→ F an

n (V ))→ (F an
n )x ' Fn,x

is an isomorphism for all n.
Choose a sequence of pairs Um ⊇ Vm as above (for m = 1, 2, . . . ), with the

Um’s a base of opens around x and Um+1 ⊆ Vm. Letting In,m denote the image of
F an

n (Um) in F an
n (Vm), for fixed m the In,m’s form a compatible system of subgroups

of the F an
n (Vm)’s with In,m mapping isomorphically to Fn,x, so the In,m’s are

compatible with change in n. Hence, for each fixed m ≥ 1, any element in F•,x
arises from an element in lim←− In,m ⊆ F an

• (Vm). This shows that ιx : F an
•,x → F•,x

is surjective. For injectivity of ιx, pick an element sx in the kernel and represent it
by s ∈ F an

• (Um) for some large m. For each n ≥ 0, the kernel of F an
n (Um)→ Fn,x

vanishes under restriction to F an
n (Vm). Thus, s|Vm = 0, so sx = 0. This completes

the proof of Theorem 1.4.7.1, conditional on Theorem 1.4.7.4. �

Let X be a paracompact Hausdorff complex manifold and D a non-empty
analytic set in X that is a normal crossings divisor (i.e., the reduced analytic
structure on D is locally described by the vanishing of a product of local coordinate
functions). Consider a decreasing chain Z1 ⊇ Z2 ⊇ . . . of analytic sets in D = Z1

with each Zj a union of intersections of irreducible components of D. Let S be
the collection of locally closed sets Uj = Zj −Zj+1, where Z0 = X. A sheaf of sets
G on X is compatible with S if G |Uj is locally constant for all j.

Theorem 1.4.7.4. Let Y be a non-empty union of irreducible components of
D. There exists a base of opens V in X around Y such that G (V ) → G (Y ) is an
isomorphism for all G that are compatible with S .

Proof. By choosing an open around Y and renaming it as X, it suffices to
produce one V . We can assume X is connected, hence of finite dimension, and so
we may induct on the dimension of X. The case dim X ≤ 1 is clear, since D is a
discrete closed subset in this case, so we now assume dim X > 1.

Step 1. We shall reduce to the case Y = D with Y connected. Since the
paracompact Hausdorff manifold X is connected, it is a normal topological space
with a countable base of opens. The set {Yi} of connected components of the
analytic set Y is therefore countable, and since it is locally finite we see that any
union of Yi’s is closed in X. By enumerating the Yi’s and using normality of X,
we can find disjoint opens U and U ′ in X around Y1 and Y ′ = ∪i>1Yi respectively,
with U connected. Repeating the same for Y ′ in the space U ′, and so on, we are
reduced to the case of connected Y . Removing the connected components of D not
containing Y does not disconnect X, by the Riemann extension theorem (see the
proof of Theorem ??). Thus, it can be assumed that D is connected.
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With D connected, hence path-connected, we claim that G (D) → G (Y ) is
injective. To see this, choose a path σ : [0, 1] → D joining a chosen d ∈ D to Y ,
with σ(t) lying in an overlap of irreducible components of D for only finitely many
t. Pullback to [0, 1] thereby reduces us to the claim that if H is a sheaf of sets on
[0, 1] that is locally constant on (0, 1], then H ([0, 1])→H0 is injective. This claim
is easy to prove, since a locally constant sheaf on an interval is constant.

If Y 6= D, pick an irreducible component H of D that meets Y but is not
contained in Y . The restriction G |H is compatible with the decomposition SH

induced by S on H. Since dim H = dim X − 1 and H ∩ Y is non-empty of
pure codimension 1 in H, by induction on dimension (applied to the connected
manifold H and the decomposition SH) there is an open W in H around H ∩ Y
such that G ′(W ) → G ′(H ∩ Y ) is an isomorphism for G ′ on H compatible with
SH . Since H ∩ Y = W ∩ Y , by taking G ′ = Z we see that each connected
component of W meets Y . Thus, Y ∪W is connected. Discard H −W from X,
and if this operation disconnects D then discard the connected components of D
not containing Y . Rename Y ∪W as Y . If Y 6= D, the process can be repeated.
The set of irreducible components of D is countable and locally finite in X, so this
recursive process reduces us to the case Y = D (so G |X−Y is locally constant).

Step 2. For non-empty connected open V in X, the complement V − (Y ∩ V )
is connected. Thus, G (V ) → G (Y ∩ V ) is injective for all such V since G |X−Y is
locally constant. It is therefore enough to find one connected open V0 around Y
such that G (V0)→ G (Y ) is surjective for all G . We will first give an explicit V0 for
a local version of the problem, and then (in Step 3) we globalize the solution. The
local problem is this: X is the open unit polydisc in Cn, j : Y ↪→ X is cut out in X
by z1 · · · zr = 0 for some r ≤ n, and we claim G (X) ↪→ G (Y ) is an isomorphism for
any sheaf of sets G on X that is locally constant on a fixed stratification defined
by unions of intersections of irreducible components of Y .

The case n = 1 is clear, and we shall induct on n. The inductive hypothesis
applies to the unit polydisc in the coordinate hyperplanes zj = 0 for r < j ≤ n,
so we may assume r = n. Exhausting the open unit polydisc by closed polydiscs
of polyradius ρ → 1−, we reduce ourselves to considering the situation when we
replace X with the closed unit polydisc B and replace Y with the locus Z that is
the union of the coordinate hyperplanes in B; we consider sheaves of sets on B that
are locally constant on B − Z. For each 0 < ε ≤ 1, define Kε = ∪1≤j≤n{|zj | ≤ ε}
in B. By compactness, the Kε’s are a base of neighborhoods in B around Z. Thus,
lim−→G (Kε) → G (Z) is an isomorphism [10, II, 3.3.1], so it suffices to prove that
G (K1)→ G (Kε) is an isomorphism for all ε. This holds if G (K1−Z)→ G (Kε−Z)
is an isomorphism for all ε.

Since G is locally constant on K1−Z, it is enough to show that K1−Z admits
a deformation retract onto Kε − Z. We will construct a deformation retract of K1

onto Kε. The family of maps φε
t : [0, 1]→ [0, ε] defined by u 7→ min(u, tε+(1− t)u)

is a deformation retract onto [0, ε], so (z1, . . . , zn) 7→ φε
t (min |zj |)(z1, . . . , zn) defines

a deformation retract of K1 onto Kε. This solves the local problem.
Step 3. For each y ∈ Y , choose a small connected open neighborhood Uy ⊆ X

solving the local problem as in Step 2, so G (Uy) ' G (Y ∩ Uy) for all G . Thus,
given s ∈ G (Y ) we may uniquely extend s|Y ∩Uy

to s(y) ∈ G (Uy). If the s(y)’s
agree on overlaps then V0 = ∪Uy would be a connected open around Y such that
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G (V0) → G (Y ) is an isomorphism. However, there may be monodromy obstruc-
tions to overlap compatibility; more concretely, the Uy’s might have disconnected
overlaps. In order to get around this problem, we pick a Riemannian metric ρ on
X and consider small open metric balls Bry

(y) ⊆ Uy centered around each y ∈ Y .
Provided ry is small enough (depending on y), these balls are geodesically convex.
Thus, the overlaps B(y, y′) = Bry

(y) ∩ Bry′ (y
′) are geodesically convex and hence

connected (even contractible) when non-empty. For any s ∈ G (Y ), we would like
to glue the restrictions s̃(y) = s(y)|Bry (y).

For each non-empty B(y, y′), the sections s̃(y)|B(y,y′) and s̃(y′)|B(y,y′) must be
shown to coincide as sections of the local system GB(y,y′)∩(X−Y ) on the connected
B(y, y′) ∩ (X − Y ). Since this latter connected set meets any neighborhood of any
point in B(y, y′), it is enough that s̃(y) and s̃(y′) agree at some point of B(y, y′)
when B(y, y′) is non-empty. Take ry so small that B3ry (y) ⊆ Uy and B3ry (y) is
geodesically convex. Now suppose the open Bry (y) ∩ Bry′ (y

′) contains a point x.
Since Y has empty interior, we may take x 6∈ Y . By symmetry, we may assume
ry′ ≤ ry. Thus, Bry′ (y

′) ⊆ B3ry (y). Using the local structure of Y near y and y′,
together with the fact that deleting Y does not disconnect any connected open in
X, we may construct an embedded path σ (resp. σ′) from y (resp. y′) to x inside
Bry (y) (resp. Bry′ (y

′)) such that the path lies in X − Y past time t = 0. There
is a unique continuation for a section of G along such an embedded path because
any sheaf H on [0, 1] that is locally constant on (0, 1] enjoys the property that the
natural map H ([0, 1])→H0 is an isomorphism.

The stalk s̃(y′)x ∈ Gx is a continuation of sy′ ∈ Gy′ along σ′, and the stalk
s̃(y)x is a continuation of sy along σ. Since s(y) ∈ G (Uy) restricts to s|Y ∩Uy , so
s(y)|B3ry (y) ∈ G (B3ry (y)) has y′-stalk sy′ and y-stalk sy, s(y)|σ′ and s(y)|σ provide
the unique continuations of sy′ and sy along the respective paths σ′ and σ. This
proves s̃(y′)x = s(y)x = s̃(y)x, so we may glue over the union V0 of the Bry

(y)’s. �

1.4.8. Comparison isomorphism for adic sheaves. We now state the m-
adic comparison isomorphism for both cohomology and compactly-supported co-
homology, assuming Λ to be a complete discrete valuation ring with finite residue
field and characteristic-zero fraction field.

Theorem 1.4.8.1 (adic comparison isomorphism). Let f : X → S be a sepa-
rated map between finite type C-schemes. Let F• be a constructible m-adic sheaf
on X. The natural maps

(Rif!F•)an → lim←− Rifan
! (F an

n )← Rifan
! (F an

• )

and
(Rif∗F•)an → lim←− Rifan

∗ (F an
n )← Rifan

∗ (F an
• )

are isomorphisms for all i.

Proof. In contrast to ordinary constructible sheaves, when studying con-
structible m-adic sheaves we cannot reduce to the case of constant sheaves and
hence cannot assume our sheaves extend across a compactification (a technique
used when proving the comparison isomorphism for ordinary constructible sheaves).
This is the reason we cannot easily make proofs in the torsion case adapt to the
m-adic case.

We may assume F• is strictly m-adic, and then Artin’s comparison theorem
(Theorem 1.3.10.3) implies that the first map in each row is an isomorphism. Thus,
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it remains to solve the problem of moving an inverse limit through a derived functor
on the topological side.

The case of higher direct images with proper supports will be treated first, as
it is easier. The analysis of this case requires several properties: compatibility of
analytification with stalks and extension by zero, as well as exactness of analytifi-
cation and the basic fact (Mittag-Leffler criterion) that inverse limits of short exact
sequences of finite-length modules are short exact. These properties (the first three
are in Theorem 1.4.7.1) allow us to use the same reduction arguments as in the
case of torsion coefficients (via Leray, excision, etc.) to reduce to the case when X
is a smooth curve and F• is lisse m-adic. The only delicate point in the reduction
to curves is to systematically use the Mittag-Leffler criterion and the comparison
isomorphism at finite levels to ensure that the inverse limits are compatible with
formation of homologies in (Leray) spectral sequences.

We are now in the situation where Xan is the complement of finitely many
points on a compact connected Riemann surface and F• is lisse m-adic. Theorem
1.4.7.1 ensures F an

• is a local system of finite Λ-modules on Xan. Since we can
always use excision to remove a point in case X happened to be proper, we are
left with a problem for an open Riemann surface Z and a local system F of finite
Λ-modules on Z: prove that

Hi
c(Z,F )→ lim←− Hi

c(Z,Fn)

is an isomorphism, where Fn = F/mn+1F .
If ∆ is a union of small punctured discs around the points missing from Z, then

H•c(Z, ·) = lim−→H•Z−∆(Z, ·) as δ-functors, where the limit is over shrinking ∆ (i.e.,
increasing compacts Z −∆). The excision sequence

· · · → Hi
Z−∆(Z, ·)→ Hi(Z, ·)→ Hi(∆, ·)→ . . .

shows that the transition maps in the direct limit are isomorphisms when computing
on a local system, as the same holds for cohomology of a local system on a shrinking
family of punctured discs (by Corollary ??). This reduces us to proving

Hi(Z,F )→ lim←− Hi(Z,Fn), Hi(∆,F )→ lim←− Hi(∆,Fn)

are isomorphisms for all i, with the terms in the inverse limit of finite-length over Λ.
Since Z and ∆ admit deformation retracts onto bouquets of circles, using Corollary
?? and Mayer-Vietoris reduces us to the analogous problem for a local system
F of finite Λ-modules on a circle C. We compute sheaf cohomology for local
systems on C using the acyclic covering U = {C − {x}, C − {y}} for two distinct
points x and y. All terms in the C̆ech complex C•(U,Fn) are Λn-finite. Clearly
C•(U,F ) = lim←− C•(U,Fn), so by Mittag-Leffler we are done.

The m-adic comparison isomorphism for ordinary direct images is much more
difficult. As with the torsion case, the basic strategy of the proof is to reduce to the
proper case. Artin’s technique for doing this rests on the use of constant sheaves,
and so it appears to encounter serious obstacles in the m-adic setting. Berkovich’s
resolution-free proof of the comparison isomorphism for higher direct images of
sheaves of Z/nZ-modules in the non-archimedean case [2, Prop. 7.5.1] does not
make crucial use of reduction to constant sheaves, and with some work it adapts
to yield the desired result at the m-adic level. There is one serious complication,
due to the essential use of derived categories in Berkovich’s inductive method. The
problem is that we cannot form inverse limits in derived categories. More precisely,
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we need a machinery of derived categories for m-adic sheaves. Quite recently, a
completely general formalism for arbitrary noetherian schemes has been developed
by Behrend [1] (earlier theories were developed by Deligne, and later by Ekedahl,
imposing finiteness conditions on Galois cohomology of residue fields); the basic
idea in Berhend’s approach is to build a theory in which projective systems are
equipped with a specified stratification on which all terms are lcc. The resulting
derived category of m-adic sheaves admits a well-behaved cohomological formalism
that is closely connected to the formalism at finite level. Using this formalism, the
arguments of Berkovich can be pushed through at the m-adic level. �

The adic comparison isomorphism carries over to the category of constructible
K-sheaves (resp. constructible K-sheaves), where the topological side becomes co-
homology of sheaves of finite-dimensional K-vector spaces (resp. K-vector spaces).
The only subtle point in the proof is to verify that we may move a tensor prod-
uct K ⊗Λ (·) or K ⊗Λ (·) through a cohomological functor on the topological side.
For higher direct images with proper supports, we may use extension by zero to
reduce to the proper case and then (by topological proper base change) we can
reduce to the case of ordinary cohomology on a compact Hausdorff space. We then
express K (resp. K) as a direct limit of finite free Λ-modules and invoke the fact
that cohomology on a compact Hausdorff space commutes with direct limits [10,
II, 4.12.1].

For ordinary higher direct images, the situation is once again much harder.
Fortunately, the adaptation of Berkovich’s technique in the proof of Theorem 1.4.8.1
for higher direct images does carry over to the case of constructible K-sheaves
and constructible K-sheaves, provided that we use Behrend’s formalism of derived
categories of K-sheaves and K-sheaves. Thus, we have a very satisfactory theory
of comparison isomorphisms over C.

1.5. Finite fields and Deligne’s theorem

Schemes over finite fields admit natural Frobenius operators on their `-adic co-
homology. These operators can be constructed geometrically and algebraically. The
algebraic approach is closely related to the role of Frbobenius elements as they arise
in the study of Galois representations, whereas the geometric approach is sometimes
easier to use in geometric arguments. We address both points of view in §1.5.1, and
explain their agreement. The Frobenius-actions on the cohomology of constructible
`-adic sheaves satisfy remarkable properties with respect to compactly-supported
cohomology functors. These properties are discussed in §1.5.2, where we define
L-functions and formulate the Lefschetz trace formula. We conclude in §1.5.3 by
defining purity and mixedness for `-adic sheaves, and stating Deligne’s generalized
purity theorem concerning weights of Frobenius-eigenvalues in the cohomology of
constructible Q`-sheaves.

1.5.1. Frobenius actions on sheaves. For any Fp-scheme X, the absolute
Frobenius morphism FX : X → X is the identity map on the underlying space
and is the pth-power map on the structure sheaf. Observe that for any morphism
f : X → Y of Fp-schemes, the maps FY ◦ f and f ◦ FX coincide. On the level of
sheaves of rings, this is simply the fact that the p-th power map on Fp-algebras
commutes with all ring homomorphisms. The r-fold iterate of FX is the absolute
q-Frobenius morphism, with q = pr.



1.5. FINITE FIELDS AND DELIGNE’S THEOREM 89

Let X be an arbitrary scheme over a finite field κ of size q = pr and let
φr : X → X be the absolute q-Frobenius morphism. Let κ be an algebraic closure
of κ and X = X ×κ κ. Let φr = φr × 1; this is a κ-endomorphism of X and is
not the intrinsic r-fold absolute Frobenius endomorphism of X as a κ-scheme. The
map φr is geometric in the sense that it corresponds to raising coordinates to the
qth power if X is given to us inside of some projective space over κ.

Let Frobκ denote the κ-automorphism a 7→ aq of κ, so 1 × Frobκ is a κ-
endomorphism X. This endomorphism commutes with φr and its composite with
φr is the r-fold absolute Frobenius endomorphism of the κ-scheme X. The map
Frob−1

κ is called a geometric Frobenius element; let us explain the origin of this
terminology. Let M be an abelian group. The endomorphism ring of the scheme
X acts contravariantly on the cohomology group Hi

ét(X,M) by pullback, so the
operations of pullback by φr = φr × 1 and pullback by 1 × Frobκ commute with
each other. The composite of these commuting endomorphisms is pullback along
the r-fold absolute Frobenius endomorphism of X.

As we shall see in Example 1.5.1.1, for an arbitrary Fp-scheme Z and an
arbitrary constant sheaf M on Z, the pullback-action of absolute Frobenius on
Hi

ét(Z,M) is the identity map. Thus, for Z = X we conclude that the geometric
endomorphism φr of X induces a pullback action on Hi

ét(X,M) that is equal to
the pullback action of 1 × Frob−1

κ . That is Frob−1
κ ∈ Gal(κ/κ) induces a pullback

action on cohomology that agrees with the action of the map φr. More generally,
for κ-scheme f : X → Spec κ, the action of Frob−1

κ on the Galois module attached
to the étale sheaf Rif∗(M) is the same as the pullback-action by the geometric map
φr.

For technical flexibility in our later considerations, we now generalize these
constructions to define Frobenius-actions on the cohomology of étale sheaves that
are not necessarily constant. For any étale sheaf of sets F on an Fp-scheme X,
there is a natural isomorphism

(1.5.1.1) F ' (FX)∗F

in Ét(X) that is defined as follows. For any X-scheme U , the (relative Frobenius)
map FU/X : U → F−1

X (U) over X sits in the diagram

U //

##FF
FF

FF
FF

FF

FU

((
F−1

X (U) //

��

U

��

X
FX

// X

so FU/X is a radicial surjection (since FU and FX are). When U is étale over X
then the radicial X-map FU/X is a map between étale X-schemes and thus it is an
étale radicial surjection. By [17, 17.9.1], FU/X is therefore an isomorphism for U in
Xét. In the special case X = Spec k, this is the fact that if K/k is a finite separable
extension of fields of positive characteristic p then K = k ·Kp. The isomorphism
FU/X yields an isomorphism F (FU/X) : F (F−1

X (U)) ' F (U), and the inverse of
this defines (1.5.1.1).

The sheaf map that is adjoint to (1.5.1.1) is denoted

(1.5.1.2) FrF : F ∗
XF → F ;
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for sheaves of modules, this is compatible with tensor constructions (e.g., symmetric
powers). This is an isomorphism because it is a composite

F ∗
XF ' F ∗

X(FX)∗F → F ,

with the first step defined via (1.5.1.1) and the second step equal to the adjunction
(that is an isomorphism because FX is a universal homeomorphism; see Remark
1.1.6.4). Note that when F = Σ is the constant sheaf on a set Σ, the map FrΣ is
an inverse to the canonical isomorphism Σ ' F ∗

X(Σ); this is easily proved by using
the fact that Σ is representable. The special case when Σ is an abelian group is the
degree-0 case in the following calculation:

Example 1.5.1.1. For any Fp-scheme Z and any abelian group M , the map

Hi
ét(Z,M)

F∗
Z→ Hi

ét(Z,F ∗
ZM) FrM→ Hi

ét(Z,M)

is the identity. To verify this, it suffices to prove more generally that if F is any
abelian étale sheaf on Z, then the composite

Hi
ét(Z,F )

F∗
Z→ Hi

ét(Z,F ∗
ZF ) FrF→ Hi

ét(Z,F )

is the identity. By a universal δ-functor argument, we reduce to the case i = 0.
Functoriality reduces us to the trivial constant case F = Z.

The isomorphism FrF is compatible with higher direct images in the sense that
if f : X → S is a map of Fp-schemes, so the diagram

X
FX //

f

��

X

f

��

S
FS

// S

commutes (but is generally not cartesian), then the composite

(1.5.1.3) F ∗
SRif∗F // Rif∗(F ∗

XF )
Rif∗(FrF )

'
// Rif∗F

is equal to the isomorphism FrRif∗F ; thus, the first step of (1.5.1.3) is also an iso-
morphism. Briefly, the method of proof is to use universal δ-functor arguments to
reduce to the case i = 0, and this case is handled by adjointness and the commu-
tativity of the diagram

f∗G
' //

'
$$IIIIIIIII FS∗f∗G

f∗FS∗G

Everything we have said goes through the same way with r-fold iterates FX,r

if we work in the category of κ-schemes for a finite field κ of size pr. Note also that
when S = Spec κ, and so FS,r is the identity, the operation FrF ,r : F ∗

S,rF → F
for an étale sheaf of sets F on S may be viewed as an endomorphism of F . This
endomorphism is usually not the identity, for it is the inverse of the isomorphism
F (U) → F (U) induced by pullback along FU . That is, in terms of discrete left
Gal(κ/κ)-sets, FrF ,r is the action of geometric Frobenius under the dictionary be-
tween étale sheaves over a field and discrete Galois-sets. A variant on this is pro-
vided by the next lemma (if we specialize to the case S = Spec κ).
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Lemma 1.5.1.2. For any κ-scheme S and finite-type separated map f : X → S,
and for any torsion abelian sheaf F on Xét, the morphism

F ∗
S,rR

if!F → Rif!(F ∗
X,rF )

FrF,r−→ Rif!F

of étale sheaves on Sét is equal to FrRif!F ,r.

Proof. Working locally on the base, we may assume S is affine (or at least
quasi-compact and quasi-separated). Let j : X → X be an open immersion into a
proper S-scheme with structure map f : X → S. The diagram

j!F
∗
X,rF

j! FrF,r
//

'
��

j!F

F ∗
X,r

(j!F )
Frj!F,r

::uuuuuuuuu

commutes because FrF ,r respects Zariski-localization and the stalks are 0 away
from X. Replacing f by f and F by j!F therefore reduces us to the case of higher
direct images. This case is treated by universal δ-functor arguments, as in our
analysis of (1.5.1.3). �

Example 1.5.1.3. The Galois-compatibility that was checked after Theorem
1.3.5.2 implies, in the setup of the preceding lemma with S = Spec κ (so FS,r is the
identity), that the Frobenius endomorphism of the étale sheaf Rif!F corresponds to
the endomorphism of Hi

c,ét(X/κ,F/κ) induced by pullback along geometric Frobe-
nius in Gal(κ/κ). It is these actions that arise in Deligne’s purity theorems, as we
will now explain.

1.5.2. L-functions and Lefschetz trace formula. Let X be a scheme of
finite type over a finite field κ with characteristic p and size q. Fix a complete
discrete valuation ring (Λ,m) with finite residue field of characteristic ` 6= p and
fraction field K of characteristic zero. Let F be a constructible m-adic sheaf on
Xét. Since everything we do will be relative to κ, all Frobenius operations will
now be understood to rest on q-Frobenius maps rather than absolute Frobenius
maps. As in §1.5.1, the q-Frobenius FX : X → X induces a natural Frobenius
morphism FrF : F ∗

XF → F that is pullback-functorial in X. Strictly speaking,
we only gave the construction functorially on ordinary sheaves, but applying these
operations termwise on a projective system gives a similar functorial construction
on the Artin-Rees category.

For each x in the set |X| of closed points on X, say with dx
def= [κ(x) : κ] (so

N(x) def= |κ(x)| = qdx), the dx-fold iterate F dx∗
X F → F of FrF ,x has pullback along

x that is an endomorphism FrFx
: Fx → Fx as a constructible m-adic sheaf on

(Spec κ(x))ét. The intervention of a dx-fold iteration is necessary because it is the
N(x)-Frobenius that acts trivially on κ(x), and N(x) = qdx .

Upon choosing a separable closure κ(x) of κ(x), we can identity Fx with a finite
Λ-module endowed with a continuous linear action of the Galois group π1(x, x), so in
particular we get an action of the geometric Frobenius element φx ∈ Gal(κ(x)/κ(x))
on Fx. This action agrees with the abstract endomorphism FrFx that was con-
structed above by using FrF . The description in terms of φx has the advantage of
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being concrete, but the description in terms of FrF is better-suited for some global
theoretical arguments.

These considerations all adapt in an obvious way when we use a constructible
K-sheaf (or constructible Q`-sheaf) rather than a constructible m-adic sheaf.

Definition 1.5.2.1. The L-function of a constructible K-sheaf F on Xét is
the formal power series

L(F , t) = L(X, F , t) =
∏

x∈|X|

det(1− φxtdx |Fx)−1 ∈ 1 + tΛ[[t]].

The Lefschetz trace formula expresses an invariance property of L-functions
with respect to higher direct images with proper supports:

Theorem 1.5.2.2 (Lefschetz trace formula). Let f : X → S be a separated map
between finite-type κ-schemes. For any constructible K-sheaf F on X,

L(X, F , t) =
∏
n≥0

L(S, Rnf!F , t)(−1)n

.

The reader is referred to [12, Exp. III] and [14, Exp. XII] for the proof by
Grothendieck–Verdier, or either [6, Rapport] or [9, Ch. II, §2–§4] for another proof
resting on a method of Neilsen–Wecken. We shall only explain how to put this
formula in a more concrete form that resembles the Lefschetz trace formula in
topology (and is the assertion that is the main focus of the proof in all approaches).

Consider the special case S = Spec κ. In this case, the Lefschetz trace formula
says that for any separated finite-type κ-scheme X and any constructible K-sheaf
F on X, there is an Euler-characteristic formula
(1.5.2.1)
L(X, F , t) =

∏
n≥0

L(Spec κ, Rnf!F , t)(−1)n

=
∏
n≥0

det(1−φt |Hn
c,ét(X/κ,F ))(−1)n+1

,

where φ ∈ Gal(κ/κ) is a geometric Frobenius element and it acts on geometric
cohomology via pullback along FrF . In particular, L(X, F , t) is a rational function
in t whose zeros and poles are eigenvalues for Frobenius-actions on the compactly-
supported cohomology of F .

Let us rewrite this formula in a manner that explains why it is called a trace
formula. For any endomorphism F of a finite-dimensional vector space V over a
field k, there is a general identity

(1.5.2.2) det(1− Ft |V )−1 = exp

∑
i≥1

Tr(F i)
ti

i

 ;

indeed, we may put F in upper-triangular form after extending scalars on k, and
then the formula is obtained by multiplying the elementary formulas

(1− λt)−1 = exp(− log(1− λt)) = exp

∑
i≥1

λi · t
i

i


for the eigenvalues. This enables us to rewrite the right side of (1.5.2.1) as

exp

∑
i≥1

(∑
n

(−1)n · Tr(φi |Hn
c,ét(X/κ,F ))

)
· t

i

i

 .
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Equivalently, the log-derivative of the L-function is

L′(X, F , t)
L(X, F , t)

=
∑
i≥1

χ(φi |H•c,ét(X/κ,F ))ti−1,

where the χ-term is the alternating sum of traces on compactly-supported coho-
mology. However, the exponential formula (1.5.2.2) may also be inserted into the
infinite-product definition of L(X, F , t) to yield

L(X, F , t) = exp

∑
m≥1

∑
x∈|X|

Tr(φm
x |Fx) · t

dxm

m


= exp

∑
i≥1

∑
x∈|X|,dx|i

dx · Tr(φi
x |Fx) · t

i

i

 ,

so by taking log-derivatives of this identity and comparing coefficients of ti−1 in
the two formulas for L′/L, we arrive at the following reformulation of the Lefschetz
trace formula for S = Spec κ:

χ(φi |H•c,ét(X/κ,F )) =
∑

x∈X(κi)

Tr(φx |Fx),

where κi ⊆ κ is the degree-i extension of κ and φx is understood to be the qi-
Frobenius for x ∈ X(κi); the multiplier dx (for x ∈ |X|) in the previous formula is
absorbed by the fact that if d|i then there are exactly d points in X(κi) over each
x ∈ |X| with dx = d.

Upon renaming κi as κ, the final formula may be written

χ(φ |H•c,ét(X/κ,F )) =
∑

x∈X(κ)

Tr(φx |Fx).

This expresses the alternating sum of traces for the Frobenius-action on cohomology
as a sum of local traces at fixed-points for the Frobenius-action on X, and this is
the essential content of the Lefschetz trace formula. In the special case F = Q`,
this literally is the étale-topology version of the Lefschetz trace formula for the
self-map FX : X → X whose graph in X × X is transverse to the diagonal: it
counts the number of fixed points of FX as the alternating sum of traces of FX on
the compactly-supported cohomology of X/κ.

Let us next show that the special case S = Spec κ implies the general case, and
so the general case is reduced to a trace-formula identity. We first reduce ourselves
to the case of separated S by excision: if S contains an open subscheme U with
closed complement Z then the infinite-product formula for L(X, F , t) provides a
decomposition L(X, F , t) = L(XU ,FU , t)L(XZ ,FZ , t), and determinantal Euler-
characteristics in the relative excision sequence for F with respect to {XU , XZ}
yield the identity∏
n≥0

L(S, Rnf!F , t)(−1)n

=
∏
n≥0

L(U,RnfU !FU , t)(−1)n

·
∏
n≥0

L(Z,RnfZ!FZ , t)(−1)n

.

Thus, it suffices to work separately over U and Z, and so we may assume S (and
hence X) is separated over κ.
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If we define

∆(φ,G ) =
∏
w≥0

det(1− tφ |Hw
c,ét(X/κ,G ))(−1)w+1

for a constructible K-sheaf G on Xét, then by using the special case of the base
Spec κ we can restate the general formula (for separated S) as the identity

∆(φ,F ) =
∏
n≥0

∆(φ,Rnf!F )(−1)n

.

This latter formula is easily proved by taking determinantal Euler characteristics
in the Frobenius-equivariant Leray spectral sequence

Em,n
2 = Hm

c,ét(S/κ,Rnf!F )⇒ Hn+m
c,ét (X/κ,F );

the Frobenius-equivariance is Lemma 1.5.1.2.

1.5.3. Purity and Deligne’s theorem. Weil conjectured that if X is smooth
and projective over a finite field κ with size q, then the Frobenius-eigenvalues on
Hw

ét(X/κ,Q`) are algebraic numbers whose embeddings into C have common abso-
lute value qw/2. It is a very strong condition on an algebraic number that it have
the same absolute value under all embeddings into C, and this class of numbers is
given a special name:

Definition 1.5.3.1. Let E be a field of characteristic 0, and choose q, w ∈ R
with q > 0. An element λ ∈ E is a q-Weil number of weight w if λ is algebraic over
Q and all C-roots of its minimal polynomial over Q have absolute value qw/2.

Definition 1.5.3.2. Let F be a constructible Q`-sheaf on the κ-scheme X.
The sheaf F is pure of weight w if, for every closed point x ∈ X, the Q`-eigenvalues
of FrF ,x on Fx are N(x)-Weil numbers with weight w. If F is admits a finite
increasing filtration by constructible Q`-subsheaves with successive quotients that
are pure of weights w1, . . . , then F is mixed, and the wj ’s are the weights of F .

If ι : Q` ' C is a choice of isomorphism, then F is ι-pure of weight w if,
for every x ∈ |X|, we have |ι(λ)| = N(x)w/2 for each Q`-eigenvalue λ of FrF ,x on
Fx. Likewise, F is ι-mixed if it admits an increasing filtration by constructible
Q`-sheaves with successive quotients that are ι-pure of weights w1, . . . .

Example 1.5.3.3. The sheaf Q`(r) on X is pure of weight −2r. Indeed, on the
stalk at x ∈ |X| with qx = |κ(x)|, the action of geometric qx-Frobenius on `-power
roots of unity in κ(x) is given by raising to the power q−1

x , so the action on Q`(1)x

is given by multiplication by q
−2/2
x . Now pass to rth tensor powers.

Example 1.5.3.4. Weil’s Riemann hypothesis asserts that if f : X → S is
smooth and projective, then Rwf∗Q` is pure with weight w.

It is trivial to follow purity through operations such as tensor products, sym-
metric powers, and linear duals. For example, if F is lisse and pure of weight w,
then the twisted linear dual F∨(r) is pure of weight −w−2r since the natural geo-
metric Frobenius action on F∨

x goes via the linear dual of the action of the inverse
of geometric Frobenius on Fx. Likewise, passing to the dual carries mixed sheaves
to mixed sheaves, and it converts upper bounds on weights into lower bounds on
weights (through negation).



1.5. FINITE FIELDS AND DELIGNE’S THEOREM 95

Example 1.5.3.5. If ι1, ι2 : Q` ' C are two isomorphisms, it can happen that a
constructible Q`-sheaf is ι1-pure but not ι2-pure. For example, consider the scheme
SpecFp and the rank-2 lisse sheaf such that geometric Frobenius acts by a matrix
in GL2(Z`) with distinct algebraically independent non-algebraic eigenvalues in
1 + `Z`. Choose ι1 to send these eigenvalues to distinct points on the unit circle
and ι2 to send them to elements of C with distinct absolute values.

It is obvious that if F is ι-pure of weight w for all isomorphisms ι : Q` ' C,
then F is pure of weight w. Indeed, the hypothesis forces each eigenvalue on a
stalk to have all of its Aut(C)-conjugates with the same absolute value; note that
this condition immediately rules out the possibility of transcendental eigenvalues.

Here is the main result in the theory [7, 3.3.1]:

Theorem 1.5.3.6 (Deligne’s purity theorem). Let f : X → S be a separated
map between finite-type κ-schemes. Let F be a constructible Q`-sheaf on X. Let
w be a real number. Fix an isomorphism ι : Q` ' C. If F is ι-mixed (resp. mixed)
of weights ≤ w, then Rjf!F is ι-mixed (resp. mixed) of weights ≤ w + j for all j,
with each weight congruent mod Z to a weight of F .

For our purposes, Deligne’s theorem is relevant due to:

Corollary 1.5.3.7. Let X be a smooth separated scheme of finite type over κ,
and let F be a lisse Q`-sheaf that is pure of weight w ∈ Z. The image H̃i

ét(X/κ,F )
of Hi

c,ét(X/κ,F ) in Hi
ét(X/κ,F ) is pure of weight w + i.

In the special case when X is proper and smooth, and F = Q`, the hypotheses
are satisfied for w = 0. The conclusion in this case is exactly Weil’s Riemann hy-
pothesis, with projectivity relaxed to properness. From this perspective, Deligne’s
purity theorem generalizes Weil’s original conjecture in two directions: it allows
non-properness and non-constant sheaves.

Proof. (of Corollary). We may assume that the κ-smooth X has some pure
dimension d. By Deligne’s purity theorem, Hi

c,ét(X/κ,F ) is mixed of weights ≤
w + i. Since F is lisse and X is smooth and separated of pure dimension d, there
is a perfect Poincaré-duality pairing

Hi
ét(X/κ,F )⊗H2d−i

c,ét (X/κ,F∨(d))→ H2d
c,ét(X/κ,Q`(d))→ Q`.

This is Galois equivariant, and in particular we can identify Hi
ét(X/κ,F ) with the

linear dual of H2d−i
c,ét (X/κ,F∨(d)), where the action of geometric q-Frobenius φ on

Hi
ét goes over to the linear dual of φ−1 acting on H2d−i

c,ét .
Since F∨(d) is pure of weight −2d − w, Deligne’s theorem implies that the

action of φ on H2d−i
c,ét (X/κ,F∨(d)) is mixed of weights ≤ −w− i. Hence, passing to

the linear dual endowed with the dual action of the inverse of geometric q-Frobenius,
we conclude that Hi

ét(X/κ,F ) is mixed of weights ≥ w + i. The map

Hi
c,ét(X/κ,F )→ Hi

ét(X/κ,F )

is equivariant for the action of geometric q-Frobenius, so the image is mixed of
weights ≥ w + i (due to the mixedness with lower bound on the target) and is
mixed of weights ≤ w + i (due to mixedness with upper bound on the source).
Hence, this image is pure of weight w + i. �
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