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THE PRO-ETALE TOPOLOGY FOR SCHEMES
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Abstract. — We give a new definition of the derived category of constructible
Qe—sheaves on a scheme, which is as simple as the geometric intuition behind them.
Moreover, we define a refined fundamental group of schemes, which is large enough
to see all lisse Qz-sheaves, even on non-normal schemes. To accomplish these tasks,
we define and study the pro-étale topology, which is a Grothendieck topology on
schemes that is closely related to the étale topology, and yet better suited for infinite
constructions typically encountered in £-adic cohomology. An essential foundational
result is that this site is locally contractible in a well-defined sense.

Résumé (La topologie pro-étale sur les schémas). — On donne une nouvelle définition
de la catégorie dérivée des az—faisceaux constructibles sur un schéma, qui est aussi
simple que l'intuition géométrique sous-jacente. De plus, on définit sur les schémas
un groupe fondamental raffiné qui est assez grand pour voir tous les Qe-faisceaux
lisses, méme sur les schémas qui ne sont pas normaux. Pour obtenir cela, on définit et
étudie la topologie pro-étale, qui est une topologie de Grothendieck sur les schémas
étroitement liée & la topologie étale mais mieux adaptée aux constructions infinies
typiques de la cohomologie f-adique. Un résultat de base essentiel est que ce site est
localement contractile en un sens bien défini.

1. Introduction

Let X be a variety over an algebraically closed field k. The étale cohomology
groups H'(X¢;, Q,), where £ is a prime different from the characteristic of k, are of
fundamental importance in algebraic geometry. Unfortunately, the standard definition
of these groups is somewhat indirect. Indeed, contrary to what the notation suggests,
these groups are not obtained as the cohomology of a sheaf Q, on the étale site Xg.

2010 Mathematics Subject Classification. — 19F27, 18F10, 14H30.
Key words and phrases. — Etale cohomology, site, pro-étale, constructible sheaf, fundamental
group.

© Astérisque 369, SMF 2015



100 B. BHATT & P. SCHOLZE

The étale site gives the correct answer only with torsion coefficients, so the correct
definition is

Hi(Xéer) = (@Hi(Xétyz/gnz)) @z, Qe :

In this simple situation, this technical point is often unproblematic (). However, even
here, it takes effort to construct a natural commutative differential graded Q,-algebra
giving rise to these cohomology groups. This so-called Q,-homotopy type was con-
structed by Deligne in [Del80], using certain subtle integral aspects of homotopy
theory due independently to Miller [Mil78] and Grothendieck.

For more sophisticated applications, however, it is important to work in a relative
setup (i.e., study constructible sheaves), and keep track of the objects in the de-
rived category, instead of merely the cohomology groups. In other words, one wants
a well-behaved derived category D%(X,Q,) of constructible Q,-sheaves. Deligne,
[Del80], and in greater generality Ekedahl, [Eke90], showed that it is possible to
define such a category along the lines of the definition of H*(X4, Q,). Essentially,
one replaces H'(Xg;, Z/¢"Z) with the derived category D%(X,Z/{"Z) of constructible
Z /0" Z-sheaves, and then performs all operations on the level of categories 2.

DQ(X7Q£> = (HDE(Xv Z/f”Z)) ¥z, QZ .

Needless to say, this presentation is oversimplified, and veils substantial technical
difficulties.

Nonetheless, in daily life, one pretends (without getting into much trouble) that
D’(X,Q,) is simply the full subcategory of some hypothetical derived category
D(X,Q,) of all Q,-sheaves spanned by those bounded complexes whose cohomology
sheaves are locally constant along a stratification. Our goal in this paper to justify
this intuition, by showing that the following definitions recover the classical notions.
To state them, we need the pro-étale site X o¢t, which is introduced below. For
any topological space T', one has a ‘constant’ sheaf on X,.¢ associated with T
in particular, there is a sheaf of (abstract) rings Q, on Xproer associated with the
topological ring Q,.

Definition 1.1. — Let X be a scheme whose underlying topological space is noetherian.
1. A sheaf L of Q,-modules on Xprost s lisse if it is locally free of finite rank.

2. A sheaf C of Q,-modules on Xprost is constructible if there is a finite stratifi-
cation {X; — X} into locally closed subsets X; C X such that C|x, is lisse.

1. It becomes a problem as soon as one relaxes the assumptions on k, though. For example, even
for £ = Q, this definition is not correct: there is no Hochschild-Serre spectral sequence linking these
naively defined cohomology groups of X with those of X%. One must account for the higher derived
functors of inverse limits to get a theory linked to the geometry of X, see [Jan88].

2. In fact, Ekedahl only defines the derived category of constructible Z-sheaves, not performing
the final ®Z£6£—Step.
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THE PRO-ETALE TOPOLOGY FOR SCHEMES 101

3. An object K € D(X 061, Q) is constructible if it is bounded, and all cohomology
sheaves are constructible. Let D%(X,Q,) C D(Xprost, Q) be the corresponding
full triangulated subcategory.

The formalism of the six functors is easily described in this setup. In particular,
in the setup above, with the naive interpretation of the right-hand side, one has

Hi(XémQZ) = Hi<Xproét76€) ;

for general X, one recovers Jannsen’s continuous étale cohomology, [Jan88]. Simi-
larly, the complex RI'(Xproct, Q,) is obtained by literally applying the derived functor
RI'(Xproct, —) to a sheaf of Q-algebras, and hence naturally has the structure of a com-
mutative differential graded algebra by general nonsense (see [Ols11, §2] for example);
this gives a direct construction of the Q,~homotopy type in complete generality.

A version of the pro-étale site was defined in [Sch13] in the context of adic spaces.
The definition given there was somewhat artificial, mostly because non-noetherian
adic spaces are not in general well-behaved. This is not a concern in the world of
schemes, so one can give a very simple and natural definition of X;0¢¢. Until further
notice, X is allowed to be an arbitrary scheme.

Definition 1.2

1. Amap f:Y — X of schemes is weakly étale if f is flat and Ay : Y =Y xx Y
s flat.

2. The pro-étale site Xro6t 15 the site of weakly étale X -schemes, with covers given
by fpgc covers.

Any map between weakly étale X-schemes is itself weakly étale, and the resulting
topos has good categorical properties, like coherence (if X is qcgs) and (hence) exis-
tence of enough points. For this definition to be useful, however, we need to control
the class of weakly étale morphisms. In this regard, we prove the following theorem.

Theorem1.3. — Let f: A— B be a map of rings.
1. f is étale if and only if f is weakly étale and finitely presented.

2. If f is ind-étale, i.e., B is a filtered colimit of étale A-algebras, then f is weakly
étale.

3. If f is weakly étale, then there exists a faithfully flat ind-étale g - B — C' such
that g o f is ind-étale.

In other words, for a ring A, the sites defined by weakly étale A-algebras and by
ind-étale A-algebras are equivalent, which justifies the name pro-étale site for the site
Xpro¢t defined above. We prefer using weakly étale morphisms to define X ,;0¢¢ as the
property of being weakly étale is clearly étale local on the source and target, while
that of being ind-étale is not even Zariski local on the target.
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102 B. BHATT & P. SCHOLZE

One might worry that the pro-étale site is huge in an uncontrolled way (e.g., cov-
ers might be too large, introducing set-theoretic problems). However, this does not
happen. To see this, we need a definition:

Definition 1.4. — An affine scheme U is w-contractible if any faithfully flat weakly
étale map V — U admits a section.

A w-contractible object U € Xj0¢¢ is somewhat analogous to a point in the topos
theoretic sense: the functor I'(U, —) is exact and commutes with all limits, rather than
colimits. In fact, a geometric point of X defines a w-contractible object in X,0¢t via
the strict henselisation. However, there are many more w-contractible objects, which
is the key to the control alluded to above:

Theorem 1.5. — Any scheme X admits a cover in Xprosr by w-contractible affine
schemes.

Despite the analogy between w-contractible objects and points, Theorem 1.5 has
stronger consequences than the mere existence of points. For example, the inverse
limit functor on systems

..—F, —>F, 11— ...—F —F

of sheaves on Xpr04t is well-behaved, the derived category of abelian sheaves on X o¢t
is left-complete and compactly generated, unbounded cohomological descent holds in
the derived category, and Postnikov towers converge in the hypercomplete oo-topos
associated with X ;06 This shows that the pro-étale site is useful even when work-
ing with torsion coefficients, as the derived category of X is left-complete (and
unbounded cohomological descent holds) only under finiteness assumptions on the
cohomological dimension of X, cf. [LOOS|.

We note that one can ‘cut off’ X6 by only allowing weakly étale X-schemes Y
of cardinality < s for some uncountable strong limit cardinal x > |X|, and all results
above, especially the existence of w-contractible covers, remain true. In particular,
the resulting truncated site X;,0¢; forms a set, rather than a proper class, so we can
avoid universes in this paper.

Let us explain the local structure of a scheme in the pro-étale site.

Definition 1.6
1. A ring A is w-local if the subset (SpecA)® C SpecA of closed points is closed,
and any connected component of SpecA has a unique closed point.
2. Amap f: A— B of w-local rings is w-local if Specf : SpecB — SpecA maps

closed points to closed points.

The next result shows that every scheme is covered by w-local affines in the pro-
Zariski topology, and hence in the pro-étale topology. In particular, as noetherian
schemes have finitely many connected components, this shows that non-noetherian
schemes are unavoidable when studying X,ost, even for X noetherian.

ASTERISQUE 369



THE PRO-ETALE TOPOLOGY FOR SCHEMES 103

Theorem 1.7. — The inclusion of the category of w-local rings with w-local maps in
the category of all rings admits a left adjoint A — A%. The unit A — A% of the
adjunction is faithfully flat and an ind-(Zariski localisation), so SpecA? — SpecA is
a cover in Spec(A)prost. Moreover, the subset (SpecAZ)¢ C SpecAZ of closed points
maps homeomorphically to SpecA, equipped with its constructible topology.

In other words, SpecA? is roughly the disjoint union of the local rings of A.
However, the union is not exactly disjoint; rather, the set of connected components
7o(SpecA?) is naturally a profinite set, which is SpecA with its constructible topology.
Thus, the study of w-local rings splits into the study of its local rings at closed points,
and the study of profinite sets. It turns out in practice that these two aspects inter-
act little. In particular, this leads to the following characterization of w-contractible
schemes.

Theorem 1.8. — An affine scheme X = SpecA is w-contractible if and only if A is
w-local, all local rings at closed points are strictly henselian, and 7o(X) is extremally
disconnected.

Recall that a profinite set S is extremally disconnected if the closure of any open
subset U C S is still open. By a theorem of Gleason, S is extremally disconnected if
and only if S is projective in the category of compact Hausdorff spaces, i.e., any sur-
jective map T' — S from a compact Hausdorff space T' admits a section. In particular,
the Stone-Cech compactification of any discrete set is extremally disconnected, which
proves the existence of enough such spaces. Using this construction, if A is w-local, it
is relatively easy to construct a faithfully flat ind-étale A-algebra B satisfying the con-
ditions of the theorem, which proves the existence of enough w-contractible schemes.

As a final topic, we study the fundamental group. In SGA1, a profinite group
7¢%(X,x) is defined for any connected scheme X with a geometric point x. It has
the property that the category of lisse Zy-sheaves on X is equivalent to the category
of continuous representations of 7¢*(X,z) on finite free Zs-modules. However, the
analogue for lisse Qg-sheaves fails (unless X is geometrically unibranch) as Qg-local
systems admit Z,-lattices only étale locally. For example, if X is P! with 0 and oo
identified (over an algebraically closed field), then X admits a cover f : Y — X where
Y is an infinite chain of P!’s. One can descend the trivial Q-local system on Y to
X by identifying the fibres at 0 and oo using any unit in Qg, e.g., £ € Q. However,
representations of 7$¢(X, z) = Z with values in GL;(Q,) will have image in GL1(Z)
by compactness. This suggests that the 'true’ m; of X should be Z C 7= (X, z).
In fact, in SGA3 X6, a prodiscrete group WlsGAB' (X,x) is defined, which gives the
desired answer in this example. Its defining property is that Hom(77943(X, x),T)
is in bijection with I'-torsors trivialized at x, for any discrete group I'. However, in
general, T$943(X, ) is still too small to detect all Q-local systems through its finite
dimensional continuous Qg-representations: the failure is visible already for X a high-
genus curve with two points identified (this example is due to Deligne, and recalled
in Example 7.4.9).
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We circumvent the issues raised above by working with a larger category of “cover-
ings” than the ones used in constructing 7$*(X, #) and 7$%43 (X, x). To recover groups
from such categories, we study some general infinite Galois theory. The formalism
leads to the following kind of groups.

Definition 1.9. — A topological group G is called a Noohi group if G is complete, and
admits a basis of open meighborhoods of 1 given by open subgroups.

The word “complete” above refers to the two-sided uniform structure on GG deter-
mined by its open subgroups. For example, locally profinite groups, such as GL, (Q/),
are Noohi groups. Somewhat more surprisingly, GL, (Q,) is also a Noohi group. The
main result is:

Theorem 1.10. — Let X be a connected scheme whose underlying topological space is
locally noetherian. The following categories are equivalent.

1. The category Locx of sheaves on Xprost which are locally constant.

2. The category Covx of étale X-schemes Y which satisfy the valuative criterion
of properness.

For any geometric point x of X, the infinite Galois theory formalism applies to Locx
equipped with the fibre functor at x, giving rise to a Noohi group W{)mét(X, x). The
pro-finite completion of wfrOét(X, x) is 7$"(X, x), and the pro-discrete completion of
TP (X x) is wSOA3(X, x). Moreover, Qq-local systems on X are equivalent to con-
tinuous representations of meét(X, x) on finite-dimensional Qg-vector spaces, and
similarly for Qg replaced by Q,.

Informally, the difference between ﬂ’rOét (X, x) and the classical fundamental groups
stems from the existence of pro-étale locally constant sheaves that are not étale lo-
cally constant. This difference manifests itself mathematically in the lack of enough
Galois objects, i.e., m™"°“(X, x) does not have enough open normal subgroups (and
thus is not prodiscrete). It is important to note that the construction of W{’mét (X, x)
is not completely formal. Indeed, as with 77%43(X, x), it is not clear a priori that
ﬂ’wét (X, x) contains even a single non-identity element: a cofiltered limit of discrete
groups along surjective transition maps can be the trivial group. Thus, one must di-
rectly construct elements to show WlfrOét(X ,x) is big enough. This is done by choosing
actual paths on X, thus reuniting the classical point of view from topology with the
abstract approach of SGAL.

Finally, let us give a short summary of the different sections. In Section 2, we study
w-local rings and the like. In Section 3, we study a general topos-theoretic notion
(namely, repleteness) which implies left-completeness of the derived category etc. We
also include some discussions on complete sheaves, which are again well-behaved under
the assumption of repleteness. In Section 4, we introduce the pro-étale site, and study
its basic properties. The relation with the étale site is studied in detail in Section 5.
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THE PRO-ETALE TOPOLOGY FOR SCHEMES 105

In Section 6, we introduce constructible sheaves (recalling first the theory for torsion
coefficients on the étale site), showing that for schemes whose underlying topological
space is noetherian, one gets the very simple definition stated above. Finally, in
Section 7, we define the pro-étale fundamental group.

Acknowledgments. — The vague idea that such a formalism should exist was
in the air since the paper [Sch13], and the second-named author received constant
encouragement from Michael Rapoport, Luc Illusie and many others to work this out.
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étale morphisms. Johan de Jong lectured on some parts of this paper in Stockholm,
and provided numerous useful and enlightening comments. Conversations with Brian
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2. Local structure

The goal of this section is to study some algebra relevant to the pro-étale topol-
ogy. Specifically, we show: (a) weakly étale and pro-étale maps define the same
Grothendieck topology on rings in §2.3, and (b) this Grothendieck topology has
enough “weakly contractible” objects in §2.4.

2.1. Spectral spaces. — Let 8 be the category of spectral spaces with spectral
maps, and let 8¢ C § be the full subcategory of finite spectral spaces (= finite Tj
spaces), so 8§ = Pro(8y), cf. [Hoc69]. Our main goal is to show that each X € §
admits a pro-(open cover) X? — X such that XZ admits no further non-split open

SOCIETE MATHEMATIQUE DE FRANCE 2015



106 B. BHATT & P. SCHOLZE

covers. This goal is eventually realized in Lemma 2.1.10. Before constructing X?Z,
however, we introduce and study the subcategory of 8 where spaces of the form X%
live:

Definition 2.1.1. — A spectral space X is w-local if it satisfies:

1. All open covers split, i.e., for every open cover {U; — X}, the map U;U; — X
has a section.

2. The subspace X C X of closed points is closed.
A map f: X =Y of w-local spaces is w-local if f is spectral and f(X¢) C Y. Let

i: 8% < 8 be the subcategory of w-local spaces with w-local maps.

The first condition in Definition 2.1.1 is obviously necessary for the promised appli-
cation. The second condition turns out to be particularly convenient for applications.

Example 2.1.2. — Any profinite set is a w-local space. Any local scheme has a w-
local topological space. The collection of w-local spaces is closed under finite disjoint
unions.

The property of w-locality passes to closed subspaces:

Lemma2.13. — If X € 8, and Z C X is closed, then Z € 8.

Proof. — Open covers of Z split as any open cover of Z extends to one of X (by
extending opens and adding X — Z). Moreover, it is clear that Z¢ = X°N Z, so the
claim follows. O

Recall that the inclusion Pro(Sets) C Pro(8;) = 8 has a left-adjoint X — mo(X),
i.e., the counit X — mo(X) is the universal spectral map from X to a profinite
set. Given a cofiltered presentation X = lim; X; with X; € 8¢, we have my(X) =
lim; 7o (X;). We use this to give an intrinsic description of w-local spaces:

Lemma?2.14. — A spectral space X is w-local if and only if X¢ C X s closed, and ev-
ery connected component of X has a unique closed point. For such X, the composition
X¢— X — mo(X) is a homeomorphism.

Proof. — The second part follows immediately from the first as X ¢ is profinite when
X is w-local. For the first, assume that X is w-local; it suffices to show that each
connected component has a unique closed point. Then Lemma 2.1.3 shows that any
connected component is also w-local, so we may assume X is connected. If X has two
distinct closed points x1, 22 € X¢, then the open cover (X — {z;})U (X —{z2}) = X
has no section, which contradicts w-locality.

Conversely, assume X¢ C X is closed, and that each connected component has
a unique closed point. Then X¢ is profinite, and hence X°¢ — my(X) is a homeo-
morphism. Now fix a finite open cover {U; — X} with U; quasicompact. We must
show that 7 : Y := U;U; — X has a section. As X°¢ is profinite, there is a map
s : X¢ — Y lifting the inclusion X¢ — X. Let Z C m(Y) be the image of the
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composite X¢ 3Y — mo(Y). Then Z is a closed subset of my(Y'), and the canonical
maps X¢ — Z — mo(X) are all homeomorphisms. In particular Z — mo(Y) is a
pro-(open immersion). Let Y/ :=Y Xro(yv) £ < Y be the inverse image. Then Y’ is
a spectral space with 7o(Y’) = Z. The map Y’ — Y is pro-(open immersion), so the
map ¢ : Y’ — X is pro-open. One checks from the construction ¢ induces a home-
omorphism 7 (Y") — mo(X). Moreover, the fibres of Y/ — mo(Y”) identify with the
fibres of Y — mo(Y"). As the image of mo(Y”) — mo(Y") only contains connected com-
ponents of Y that contain a point lifting a closed point of X, it follows that the fibres
of Y — my(Y’) map homeomorphically onto the fibres of X — mo(X). Thus ¢ is a
continuous pro-open bijection of spectral spaces. Any such map is a homeomorphism
by a compactness argument. Indeed, if U C Y’ is a quasicompact open, then ¢(U)
is pro-(quasi-compact open), so ¢(U) = N;V;, where the intersection is indexed by all
quasi-compact opens containing ¢(U). Pulling back to Y’ shows U = N;¢~1(V;). As
Y’ — U is compact in the constructible topology and each ¢~1(V;) is constructible, it
follows that U = ¢~ (V;) for some 4, and hence ¢(U) = V;. O

Remark 2.1.5. — Lemma 2.1.4 shows that each w-local space X comes equipped with
a canonical “specialization” map s : X — X¢ defined as the composition X —
mo(X) ~ X° Concretely, any z € X admits a unique closed specialization s(x) €
X¢ C X; in fact, the connected component spanned by x has s(x) as its unique
closed point. Any map in 8*! preserves specializations and closed points, and is thus
compatible with the specialization maps.

Definition 2.1.6. — Given a closed subspace Z C X of a spectral space X, we say X
is local along Z if X¢ C Z, or equivalently, if every x € X specializes to a point of Z.
The (pro-open) subspace of X comprising all points that specialize to a point of Z is
called the localization of X along Z.

Lemma 2.1.7. — A spectral space X that is local along a w-local closed subspace Z C X
with mo(Z) = mo(X) is also w-local.

Proof. — Tt suffices to show that X¢ C X is closed, and that the composition X¢ —
X — mp(X) is a homeomorphism. Since X¢ = Z¢, the first claim is clear. The second
follows from the w-locality of Z: one has X¢ = Z¢ as before, and 7o(X) = m9(Z) by
assumption. [

We recall the structure of limits in S:

Lemma 2.1.8. — 8 admits all small limits, and the forgetful functor 8 — Set preserves
these limits.

Proof. — Since 8§ = Pro(8), it suffices to show that 8y admits fibre products. Given
maps X — Z < Y in 8¢, one simply checks that a fibre product X xz Y in 8 is
computed by the usual fibre product X x zY in Set; with the topology induced from
the product topology on X xY under the inclusion X X zY C X xY. The second claim

is then clear. Alternatively, observe that there is a factorization § % Pro(Set ) LA Set,
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where a(X) is X with the constructible topology, and b(Y) = Y. Both functors a
and b admit left adjoints « and S respectively: § is the Stone-Cech compactification
functor, while « is the natural inclusion Pro(Set¢) C Pro(8¢) = 8. In particular, the
forgetful functor § — Set preserves limits. O

The category of w-local spaces also admits small limits:

Lemma2.1.9. — 8™ admits all small limits, and the inclusion i : 8*' — § preserves
these limits.

Proof. — We first check 8! admits fibre products. Given maps X — Z « Y in 8%,
the fibre product X xzY in 8 is local along the (profinite) closed subset X ¢ X z. Y¢ C
X xzY: apoint (z,y) € X xz Y specializes to the point (s(x),s(y)) € X¢ X ze
Y¢, where s is the specialization map from Remark 2.1.5. Then X x, Y € 8! by
Lemma 2.1.7. Moreover, this also shows (X Xz Y)¢ = X° Xz Y° and that the
projection maps X < X xzY — Y preserve closed points, which proves that X xzY
is a fibre product on §*!. For cofiltered limits, fix a cofiltered diagram {X;} in §*!,
Let X := lim; X; be the limit (computed in §). We claim that X € 8! and the
maps X — X; are w-local. As any open cover of X can be refined by one pulled back
from some X;, one checks that all open covers of X split. For the rest, it suffices to
show X ¢ = lim; X¢; note that {X¢} is a well-defined diagram as all transition maps
X; — X; are w-local. It is clear that lim; X7 C X¢. Conversely, choose z € X C X
with image z; € X;. Let Y; = m C X;. Then {Y;} forms a cofiltered diagram in §*!
with lim; ¥; C X by Lemma 2.1.3. Moreover, one has lim; Y; = m = {z} C X by the
compatibility of closures and cofiltered limits. Now consider the cofiltered diagram
{Y£}. As each Y¢ C Y] is a subset, we get lim; Y;* C lim; Y; = {z}. Then either
x € lim; Y)¢ or lim; Y;* = &; the latter possibility does not occur as a cofiltered limit
of non-empty compact Hausdorff spaces is non-empty, so € lim; Y;* C lim; X7. O

The adjoint functor theorem and Lemma 2.1.9 show that i : $*! — § admits a left
adjoint; this adjoint is characterized as the unique functor that preserves cofiltered
limits and finite disjoint unions, and carries a connected finite Ty space X to X U {x},
where * is declared to be a specialization of all points of X. This adjoint is not used
in the sequel since it does not lift to the world of schemes. However, it turns out that
i: 8W! < § also has a right adjoint which can be described via open covers, passes to
the world of schemes, and will be quite useful:

Lemma2.1.10. — The inclusion i : ' — 8 admits a right adjoint X — XZ. The
counit X% — X is a pro-(open cover) for all X, and the composite (X?)¢ — X is a
homeomorphism for the constructible topology on X.

Proof. — We first construct the functor X + X? and the counit map X% — X.
As the notions of w-local spaces and w-local maps are well-behaved under cofiltered
limits by Lemma 2.1.9, it suffices to construct, for each X € 8¢, a functorial open
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cover XZ — X with XZ w-local such that: (a) the functor X + XZ carries maps to
w-local maps, (b) (X#)¢ — X is a bijection, and (c) (X?)¢ C X is discrete.
Let X be a finite T space. We define

X7 =] x.,
zeX
where X, C X is the subset of generalizations of x, which is an open subset of X.
Then XZ € 8. Moreover, each X, is w-local as the only open of X, containing z is
X, itself. Stability of w-locality under finite disjoint unions shows that X# is w-local.
If f: X =Y is a map of finite Ty spaces, one gets an induced map

fax?=1]Xx. =Y =]y,
rzeX yey
by mapping X, into Y}(,). In particular, this sends the closed point z € X, to the
closed point f(z) € Y}(s), so that this map is w-local. Moreover, there is a natural
map X% — X for any X, by embedding each X, into X. Clearly, this is an open
cover of X. The definition also shows (XZ)¢ = X with the discrete topology (which
is the also the constructible topology for finite Ty spaces).

To show this defines an adjoint, we must check: given X € 8§, Y € 8! and a
spectral map h : Y — X, there exists a unique w-local map b’ : Y — XZ factoring h.
We may assume X € 8¢ as before. As Y — Y is closed, the composite g : Y — Y —
X is a spectral map from a profinite set to a finite T space. One then checks that
g~ 1() is clopen in Y for all z € X (the preimage of any open of X is a quasicompact
open, and thus clopen, in the Hausdorff space Y ¢; one deduces the claim by induction
on #X by excising one closed point at a time). Picking an xz € X with g7 }(z) # @
and replacing Y with the clopen subset s~1(¢71(x)) where s : Y — mo(Y) ~ Y€ is
the specialization map from Remark 2.1.5, we may assume that h(Y°) = {z} C X;
here we use Lemma 2.1.3 to ensure Y remains w-local. As each point of Y specialises
to a point of Y¢, the map h factors through X, C X, which gives the desired w-local
lift A’ : Y — X, C X?; the w-locality requirement forces uniqueness of h'. ]

Remark 2.1.11. — The space XZ can be alternatively described as:
XZ = lim U;X;,
where the limit is indexed by the cofiltered category of constructible stratifications
{X; — X}, and X; denotes the set of all points of X specializing to a point of X;.
One then has a corresponding description of closed subspaces
(X7 = lim UX; C X%,
{Xi—=X}
so it is clear that (X#)¢ — X is a homeomorphism for the constructible topology
on the target. This description and the cofinality of affine stratifications inside
all constructible stratifications show that if X is an affine scheme, then the maps
(X%)e < X7 b X Olift to maps of affine schemes, with a a closed immersion, and b
a pro-(open cover).
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Definition 2.1.12. — A map f: W — V of spectral spaces is a Zariski localization if
W = 1,U; with U; — V' a quasicompact open immersion. A pro-(Zariski localization)
s a cofiltered limit of such maps.

Both these notions are stable under base change. A key example is:

Lemma2.1.13. — Any map f: S — T of profinite sets is a pro-(Zariski localization).
In fact, we can write S = 1im; S; as a cofiltered limit of maps S; — T, each of which
s the base change to T of a map from a profinite set to a finite set.

Proof. — Choose a profinite presentation 7' = lim; T;, and set S; = S X1, T. Then
S; — T is the base change of S — T;, and S ~ lim; S;, which proves the claim. O

We use this notion to split a w-local map into a pro-(Zariski localization), and one
that is entirely “local:”

Lemma2.1.14. — Any map f: X =Y in 8 admits a canonical factorization X —
Z — Y in 8¥ with Z — Y a pro-(Zariski localization) and X — Z inducing a
homeomorphism X¢ ~ Z°€,

Proof. — We have a diagram

Xxe X m0(X) =: S
lfc lf l/ﬂ'o(f)
Ye Y mo(Y)=:T.

Set Z =Y xrS. Then by Lemma 2.1.9, Z is w-local and Z¢ = Y xp § ~ X°.
Moreover, the map S — T is a pro-(Zariski localization), and hence so is Z — Y.
The induced map X — Z sends X¢to Y°x7 S = Z¢, and is thus w-local; as X¢ — Z¢
is a homeomorphism, this proves the claim. U

2.2. Rings. — We now adapt the notions of §2.1 to the world of rings wia the
Zariski topology, and also discuss variants for the étale topology:
Definition 2.2.1. — Fix a ring A.
1. A is w-local if Spec(A) is w-local.
2. A is w-strictly local if A is w-local, and every faithfully flat étale map A — B
has a section.

3. A map f:A— B of w-local rings is w-local if Spec(f) is w-local.

4. A map f: A— B is called a Zariski localization if B = ], A[%] for some
fiy.ooy fn € A, An ind-(Zariski localization) is a filtered colimit of Zariski
localizations.

5 A map f: A— B is called ind-étale if it is a filtered colimit of étale A-algebras.
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Example 2.2.2. — For any ring A, there is an ind-(Zariski localization) A — AZ such
that Spec(A?) = Spec(A4)?, see Lemma 2.2.4. In particular, A% is w-local. Any
strictly henselian local ring A is w-strictly local. Moreover, any cofiltered limit of
w-strictly local rings along w-local maps is w-strictly local.

Our goal in this section is to explain why every ring admits an ind-étale faithfully
flat w-strictly local algebra. The construction of this extension, very roughly, mirrors
the classical construction of the strict henselisations at a geometric point: first one
Zariski localizes at the point, and then one passes up along all étale neighbourhoods
of the point. The first step is accomplished using the functor A — AZ; the next
lemma describes the structure of the resulting ring.

Lemma2.2.3. — If A is w-local, then the Jacobson radical I4 cuts out Spec(A)°¢ C
Spec(A) with its reduced structure. The quotient A/14 is an absolutely flat ring.

Recall that a ring B is called absolutely flat if B is reduced with Krull dimension 0
(or, equivalently, that B is reduced with Spec(B) Hausdorff).

Proof. — Let J C A be the (radical) ideal cutting out Spec(A)¢ C Spec(A) with
the reduced structure. Then J C m for each m € Spec(A)¢, so J C I4. Hence,
Spec(A/14) C Spec(A)€ is a closed subspace; we want the two spaces to coincide. If
they are not equal, then there exists a maximal ideal m such that I4 ¢ m, which is
impossible. U

The study of w-local spectral spaces has a direct bearing on w-local rings:

Lemma 2.2.4. — The inclusion of the category w-local rings and maps inside all rings
admits a left adjoint A — A%. The unit A — A% is a faithfully flat ind-(Zariski
localization), and Spec(A)? = Spec(A?) over Spec(A).

Proof. — This follows from Remark 2.1.11. In more details, let X = SpecA, and
define a ringed space X? — X by equipping (SpecA)? with the pullback of the
structure sheaf from X. Then Remark 2.1.11 presents X Z as an inverse limit of affine
schemes, so that X# = Spec(A?) is itself affine. O

Example 2.2.5. — For a ring A, the map A — AZ /1,7 is the universal map from A
to an absolutely flat ring. Indeed, this follows by the universal property of A%, the
w-locality of absolutely flat rings, and the observation that any w-local map A% — B
with B absolutely flat factors through a map A% /I,z — B.

Lemma2.2.6. — Any w-local map f : A — B of w-local rings admits a canonical

factorization A % C % B with C w-local, a a w-local ind-(Zariski localization), and
b a w-local map inducing mo(Spec(B)) ~ m(Spec(C)).

Proof. — This follows from Lemma 2.1.14 and the observation that any map S —
mo(Spec(A)) of profinite sets is induced by an ind-(Zariski localization) A — C' by
applying mo(Spec(—)) thanks to Lemma 2.1.13. O
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Due to the w-locality of A% and Lemma 2.2.3, absolutely flat rings play an impor-
tant role in this section. The next lemma explains the construction of w-strictly local
ind-étale covers of absolutely flat rings.

Lemma 2.2.7. — For any absolutely flat ring A, there is an ind-étale faithfully flat map
A — A with A w-strictly local and absolutely flat. For a map A — B of absolutely
flat rings, we can choose such maps A — A and B — B together with a map A — B
of A-algebras.

Proof. — The following fact is used without further comment below: any ind-étale al-
gebra over an absolutely flat ring is also absolutely flat. Choose a set I of isomorphism
classes of faithfully flat étale A-algebras B;, and set A; to be their tensor product, i.e.,
Ay := colimjc1 ®;ecsBj, where the (filtered) colimit is indexed by the poset of finite
subsets of I. There is an obvious ind-étale faithfully flat map A — A;, and it is clear
from the construction that any étale faithfully flat A-algebra B admits a map to Ay,
i.e., the map A — B splits after base change to A;. Iterating the construction with Ay
replacing A and proceeding inductively defines a tower A — A1 — Ao — ... A, — ...
of A-algebras with faithfully flat ind-étale transition maps. Set A = colim A4,. As
étale morphisms of rings are finitely presented, one checks that A is absolutely flat,
and that any faithfully flat étale A-algebra has a section, so A is w-strictly local
as Spec(A) is profinite. For the second part, simply set B to be a w-strictly local
faithfully flat ind-étale algebra over A ®4 B. O

To decouple topological problems from algebraic ones, we consistently use:

Lemma2.2.8. — For any ring A and a map T' — 7mo(Spec(A)) of profinite sets, there
is an ind-(Zariski localization) A — B such that Spec(B) — Spec(A) gives rise to the
given map T — mo(Spec(A)) on applying my. Moreover, the association T +— Spec(B)
s a limit-preserving functor.

One may make the following more precise statement: for any affine scheme X, the
functor Y +— mo(Y) from affine X-schemes to profinite 7y(X )-sets has a fully faithful
right adjoint S — S X (x) X, the fibre product in the category of topological spaces
ringed using the pullback of the structure sheaf on X. Moreover, the natural map
S Xro(x) X — X is a pro-(Zariski localisation) and pro-finite.

Proof. — Given T as in the lemma, one may write T' = lim7T; as a cofiltered limit
of profinite mo(Spec(A))-sets T; with T; — mo(Spec(A)) being the base change of
a map of finite sets, see Lemma 2.1.13. For each T;, there is an obvious ring B;
that satisfies the required properties. We then set B := colim B;, and observe that
mo(Spec(B)) = lim 7o (Spec(B;)) = limT; =T as a m(Spec(A))-set. O

One can characterize w-strictly local rings in terms of their topology and local
algebra:

Lemma2.2.9. — A w-local ring A is w-strictly local if and only if all local rings of A
at closed points are strictly henselian.
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Proof. — For the forward direction, fix a w-strictly local ring A and choose a closed
point x € Spec(A)°. Any faithfully flat étale map A, — B’ is the localization at x
of a faithfully flat étale map A[%] — B for some f invertible at x. As z is a closed
point, we may find fi,..., f, € A vanishing at x such that C = B x [[[_; A[f; '] is a
faithfully flat étale A-algebra. This implies that there is a section C' — A, and hence
C®a A, — Ay, As f; vanishes at x, one has C ®4 A, = B, x A’, where A’ has no
point above z. The (algebra) section B, x A" — A, then necessarily factors through
the projection on the first factor, which gives us the desired section. For the converse
direction, assume A is a w-strictly local ring whose local rings at closed points are
strictly henselian. Fix a faithfully flat étale A-algebra B. Then A — B has a section
over each closed point of Spec(A) by the assumption on the local rings. Spreading
out, which is possible by finite presentation constraints, there is a Zariski cover of
Spec(A) over which Spec(B) — Spec(A) has a section; by w-locality of Spec(A), one
finds the desired section B — A. O

To pass from w-strictly local covers of absolutely flat rings to arbitrary rings, we
use henselizations:

Definition 2.2.10. — Given a map of rings A — B, let Hensa(—) : Ind(Bg) —
Ind(Agt) be the functor right adjoint to the base change functor Ind(Ag;) — Ind(Bgt).
Ezplicitly, for By € Ind(Bgt), we have Hensa(Bg) = colim A’, where the colimit is
indexed by diagrams A — A’ — Bq of A-algebras with A — A’ étale.

Remark 2.2.11. — The notation of Definition 2.2.10 is not ambiguous, i.e., for any
map A — B and C € Ind(Bgt), the ring Hens4(C) depends only on the A-algebra C,
and not on B. It follows that if A — A" — C'is a factorization with A — A’ ind-étale,
then Hens4(C) ~ Hensy/ (C).

Henselization is particularly well-behaved for quotient maps:

Lemma2.2.12. — For surjective maps A — A/, the functor Hensa(—) is fully faith-
ful, so Hensa(—) ®a A/I ~id as functors on Ind((A/I)et).

Proof. — Fix some By € Ind((A/I)eé) and set B = Hens4(By). By adjointness, it suf-
fices to check B/IB ~ By. As any étale A/I-algebra C lifts to some étale A-algebra
C', one immediately checks that B — By is surjective. Choose f € ker(B — By).
Then f lifts to some étale A-algebra C along some map C — B. If f € IC, we
are done. If not, f gives an element of the kernel of C/IC — By. Hence, there is
some diagram C/IC — Dy — By in Ind((A/I)e) with C/IC — Dy étale such that
f maps to 0 in Dy. Choose an étale C-algebra D lifting Dg, so f € ID. The map
D — D/ID = Dy — By of A-algebras then gives a factorization C' — D — B, which
shows that f € IB. O

The étale analogue of Lemmas 2.1.3 and 2.1.7 is:

Lemma2.2.13. — Let A be a ring henselian along an ideal I. Then A is w-strictly
local if and only if A/I is so.
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Proof. — First assume A/I is w-strictly local. As A is henselian along I, the space
Spec(A) is local along Spec(A/I), so A is w-local by Lemma 2.1.7. Pick a faith-
fully flat étale A-algebra B. Then A/I — B/IB has a section. By the adjunction
Homy (B, Hensa(A/I)) ~ Homa(B/IB, A/I) and the identification Hens4(A/I) = A,
one finds the desired section B — A. Conversely, assume A is w-strictly local. Then
Spec(A/I)¢ = Spec(A)¢ by the henselian property, so Spec(A/I)¢ C Spec(A/I) is
closed. Moreover, any faithfully flat étale A/I-algebra By is the reduction modulo
of I of a faithfully flat étale A-algebra B, so the w-strict locality of A immediately
implies that for A/I. O

Henselizing along w-strictly local covers of absolutely flat rings gives w-strictly local
covers in general:

Corollary 2.2.14. — Any ring A admits an ind-étale faithfully flat map A — A’ with
A" w-strictly local.

Proof. — Set A’ := Henssz(A?/Iz), where A%/l z is a w-strictly local
ind-étale faithfully flat A% /I,z-algebra; then A’ satisfies the required property
by Lemma 2.2.13. O

We end by noting that the property of w-strictly locality passes to quotients:
Lemma2.2.15. — Let A be a ring with an ideal I. If A is w-strictly local, so is A/I.

Proof. — The space Spec(A/I) is w-local by Lemma 2.1.3. The local rings of A/T at
maximal ideals are quotients of those of A, and hence strictly henselian. The claim

follows from Lemma 2.2.9. O
2.3. Weakly étale versus pro-étale. — In this section, we study the following
notion:

Definition 2.3.1. — A morphism A — B of commutative rings is called weakly étale

if both A — B and the multiplication morphism B ® 4 B — B are flat.

Remark 2.3.2. — Weakly étale morphisms have been studied previously in the liter-
ature under the name of absolutely flat morphisms, see [Oli72]. Here, we follow the
terminology introduced in [GRO03, Definition 3.1.1].

Our goal in this section is to show that weakly étale maps and ind-étale maps
generate the same Grothendieck topology, see Theorem 2.3.4 below. We begin by
recording basic properties of weakly étale maps.

Proposition2.3.3. — Fiz maps f : A— B, g: B—C, and h: A — D of rings.

1. If f is ind-étale, then f is weakly étale.

2. If [ is weakly étale, then the cotangent complex Lp 4 vanishes. In particular,
f is formally étale.

3. If f is weakly étale and finitely presented, then f is étale.

ASTERISQUE 369



THE PRO-ETALE TOPOLOGY FOR SCHEMES 115

4. If f and g are weakly étale (resp. ind-étale), then g o f is weakly étale (resp.
ind-étale). If go f and f are weakly étale (resp. ind-étale), then g is weakly étale
(resp. ind-étale).

5. If h is faithfully flat, then f is weakly étale if and only if f @A D : D — B®a D
s weakly étale.

Proof. — These are well-known, so we mostly give references.

1. As flatness and tensor products are preserved under filtered colimits, one re-
duces to the case of étale morphisms. Clearly, f is flat in that case; moreover,
B ®4 B — B is an open immersion on spectra, and in particular flat.

2. See [GRO03, Theorem 2.5.36] and [GRO03, Proposition 3.2.16].

3. Since f is weakly étale and finitely presented, it is formally étale and finitely
presented by (2), hence étale.

4. The first part is clear. For the second part in the weakly étale case, see [GRO3,
Lemma 3.1.2 (iv)]. For the ind-étale case, observe that the category of ind-étale
algebras is equivalent to the ind-category of étale algebras by finite presentation
constraints.

5. This is clear, as flatness can be checked after a faithfully flat base change. [

The analogue of (5) fails for ind-étale morphisms. Our main result in this section
is:

Theorem2.3.4. — Let f : A — B be weakly étale. Then there exists a faithfully flat
ind-étale morphism g : B — C such that go f : A — C is ind-étale.

The local version of Theorem 2.3.4 follows from the following result of Olivier,

[01i72]:

Theorem 2.3.5 (Olivier). — Let A be a strictly henselian local ring, and let B be a
weakly étale local A-algebra. Then f : A — B is an isomorphism.

Remark 2.3.6. — One might hope to use Theorem 2.3.5 for a direct proof of Theo-
rem 2.3.4: Assume that f : A — B is weakly étale. Let C' = [ Ay-z, where T runs
over a set of representatives for the geometric points of Spec(B), and Af+«z denotes
the strict henselization of A at f*Z. Then Theorem 2.3.5 gives maps B — Bz ~ A3
for each x, which combine to give a map B — C inducing a section of C' - B®4 C.
However, although each Az is ind-étale over A, C' is not even weakly étale over A, as
infinite products do not preserve flatness. In order to make the argument work, one
would have to replace the infinite product by a finite product; however, such a C will
not be faithfully flat. If one could make the sections B — Az factor over a finitely
presented A-subalgebra of Az, one could also make the argument work. However, in
the absence of any finiteness conditions, this is not possible.
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Our proof of Theorem 2.3.4 circumvents the problem raised in Remark 2.3.6 using
the construction of w-strictly local extensions given in §2.2 to eventually reduce to
Olivier’s result. We begin by recording the following relative version of the construc-
tion of such extensions:

Lemma2.3.7. — Let f: A— B be a map of rings. Then there exists a diagram
A——A
oo
B——= P

with A — A’ and B — B’ faithfully flat and ind-étale, A’ and B" w-strictly local, and
A’ — B’ w-local.

Proof. — Choose compatible w-strictly local covers to get a diagram
AZ/IAZ HAZ/IAZ = AO
BZ/IBZ —— BZ/IBZ =: BO

of absolutely flat rings with horizontal maps being faithfully flat and ind-étale, and
Ap and By being w-strictly local. Henselizing then gives a diagram

A A% Hens gz (Ag) =: A’
jf lfz lf/
B BZ Henspz (By) =: B’

Then all horizontal maps are ind-étale faithfully flat. Moreover, both A’ and B’ are
w-strictly local by Lemma 2.2.13. The map f’ is w-local since Spec(A’)¢ = Spec(A4y),
and Spec(B’)¢ = Spec(By), so the claim follows. O

We now explain how to prove an analogue of Olivier’s theorem for w-strictly local
rings:

Lemma2.38. — Let f: A— B be a w-local weakly étale map of w-local rings with A
w-strictly local. Then f is a ind-(Zariski localization).

Proof. — First consider the canonical factorization A — A’ — B provided by
Lemma 2.2.6. As A — A’ is w-local with A’ w-local, Lemma 2.2.9 shows that A’ is
w-strictly local. Replacing A with A’, we may assume f induces a homeomorphism
Spec(B)¢ ~ Spec(A)¢. Then for each maximal ideal m C A, the ring B/mB has a
unique maximal ideal and is absolutely flat (as it is weakly étale over the field A/m).
Then B/mB must be a field, so mB is a maximal ideal. The map Ay, — Bnp is an
isomorphism by Theorem 2.3.5 as Ay, is strictly henselian, so A ~ B. O
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The promised proof is:

Proof of Theorem 2.3.4. — Lemma 2.3.7 gives a diagram
A—— A

if lf’
B——=DPB

with f’ a w-local map of w-strictly local rings, and both horizontal maps being ind-
étale and faithfully flat. The map f’ is also weakly étale since all other maps in the
square are so. Lemma 2.3.8 shows that f’ is a ind-(Zariski localization). Setting
C = B’ then proves the claim. O

2.4. Local contractibility. — In this section, we study the following notion:

Definition 24.1. — A ring A is w-contractible if every faithfully flat ind-étale map
A — B has a section.

The name “w-contractible” is inspired by the connection with the pro-étale topol-
ogy: if A is w-contractible, then Spec(A) admits no non-split pro-étale covers, and is
hence a “weakly contractible” object of the corresponding topos. Our goal is to prove
that every ring admits a w-contractible ind-étale faithfully flat cover. We begin by
observing that w-contractible rings are already w-local:

Lemma2.4.2. — A w-contractible ring A is w-local (and thus w-strictly local).

Proof. — The map 7 : Spec(A?) — Spec(A) has a section s by the assumption on A.
The section s is a closed immersion since 7 is separated, and Spec(A4%) = Spec(A)?
is w-local, so we are done by Lemma 2.1.3. ]

The notion of w-contractibility is local along a henselian ideal:

Lemma24.3. — Let A be a ring henselian along an ideal I. Then A is w-contractible
if and only if A/I is so.

Proof. — This is proven exactly like Lemma 2.2.13 using that Ind(As) —
Ind((A/I)e) is essentially surjective, and preserves and reflects faithfully flat
maps. [

The main difference between w-contractible and w-strictly local rings lies in the
topology. To give meaning to this phrase, recall the following definition:

Definition 2.44. — A compact Hausdorff space is extremally disconnected if the clo-
sure of every open is open.
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One has the following result characterizing such spaces, see [Gle58|:

Theorem 2.4.5 (Gleason). — FExtremally disconnected spaces are exactly the projective
objects in the category of all compact Hausdorff spaces, i.e., those X for which every
continuous surjection Y — X splits.

It is fairly easy to prove the existence of “enough” extremally disconnected spaces:

Example 2.4.6. — For any set X, given the discrete topology, the Stone-Cech com-
pactification 3(X) is extremally disconnected: the universal property shows that 5(X)
is a projective object in the category of compact Hausdorff spaces. If X itself comes
from a compact Hausdorff space, then the counit map 3(X) — X is a continuous
surjection, which shows that all compact Hausdorff spaces can be covered by ex-
tremally disconnected spaces. In fact, the same argument shows that any extremally
disconnected space is a retract of S(X) for some set X.

Extremally disconnected spaces tend to be quite large, as the next example shows:

Example 2.4.7. — An elementary argument due to Gleason shows that any convergent
sequence in an extremally disconnected space is eventually constant. It follows that
standard profinite sets, such as Z, (or the Cantor set) are not extremally disconnected.

The relevance of extremally disconnected spaces for us is:

Lemma2.4.8. — A w-strictly local ring A is w-contractible if and only if mo(Spec(A))
1s extremally disconnected.

Proof. — As Spec(A)¢ — Spec(A) gives a section of Spec(A) — mo(Spec(A)), if A
is w-contractible, then every continuous surjection T' — 7o (Spec(A)) of profinite sets
has a section, so mo(Spec(A)) is extremally disconnected. Conversely, assume A is
w-strictly local and mo(Spec(A)) is extremally disconnected. By Lemma 2.4.3, we
may assume A = A/I4. Thus, we must show: if A is an absolutely flat ring whose
local rings are separably closed fields, and Spec(A) is extremally disconnected, then A
is w-contractible. Pick an ind-étale faithfully flat A-algebra B. Then A — B induces
an isomorphism on local rings. Lemma 2.2.6 gives a factorization A — C' — B with
A — C a ind-(Zariski localization) induced by a map of profinite sets 7' — Spec(A),
and B — C' a w-local map inducing an isomorphism on spectra. Then C' ~ B
as the local rings of C' and B coincide with those of A. As Spec(A) is extremally
disconnected, the map T' — Spec(A) of profinite sets has a section s. The closed
subscheme Spec(C’) C Spec(C) realizing s(Spec(A)) C T maps isomorphically to
Spec(A), which gives the desired section. O

We now show the promised covers exist:

Lemma2.4.9. — For any ring A, there is an ind-étale faithfully flat A-algebra A’ with
A’ w-contractible.
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Proof. — Choose an ind-étale faithfully flat A% /Iz-algebra Ay with Ay w-strictly
local and Spec(Ap) an extremally disconnected profinite set; this is possible by Ex-
ample 2.4.6, Lemma 2.2.7, and Lemma 2.2.8. Let A’ = Hensyz(Ap). Then A’ is
w-contractible by Lemma 2.4.3 and Lemma 2.4.8, and the map A — A’ is faithfully
flat and ind-étale since both A — A% and A% — A’ are so individually. O

Lemma2.4.10. — Let A be a w-contractible ring, and let f : A — B be a finite ring
map of finite presentation. Then B is w-contractible.

Proof. — We can write A = colim; A; as a filtered colimit of finite type Z-algebras
such that A — B is the base change of a finite ring map Ag — By of some index 0,
assumed to be initial; set B; = By ®4, A, so B = colim; B;. Then Spec(A4) =
lim; Spec(A;) and Spec(B) = lim; Spec(B;) as affine schemes and as spectral spaces,
so mo(Spec(B)) = mo(Spec(Bo)) X ry(Spec(Ag)) To(Spec(A)). As mo(Spec(Ap)) and
mo(Spec(By)) are both finite sets, it follows that my(Spec(B)) is extremally discon-
nected as mo(Spec(A)) is such. Moreover, the local rings of B are strictly henselian as
they are finite over those of A. It remains to check Spec(B) is w-local. By finiteness,
the subspace Spec(B)¢ C Spec(B) is exactly the inverse image of Spec(A4)¢ C Spec(A),
and hence closed. Now pick a connected component Z C Spec(B). The image of Z in
Spec(A) lies in some connected component W C Spec(A). The structure of A shows
that W = Spec(A;) for some closed point x € Spec(A)¢, so W is a strictly henselian
local scheme. Then Z — W is a finite map of schemes with Z connected, so Z is also
a strictly henselian local scheme, and hence must have a unique closed point, which
proves w-locality of Spec(B). O

Remark 24.11. — The finite presentation assumption is necessary. Indeed, there are
extremally disconnected spaces X with a closed subset Z C X such that Z is not
extremally disconnected. As an example, let X be the Stone-Cech compactification
of N, and let Z = X \ N. As any element of N is an open and closed point of X,
Z C X is closed. Consider the following open subset U of X:

U= U{:UEX]J:;_&O mod 2"} .
n>1

Here, we use that the map N — Z/nZ extends to a unique continuous map X —
Z/nZ. Let U = Un Z, which is an open subset of Z. We claim that the closure U
of U in Z is not open. If not, then Z admits a disconnection with one of the terms
being U. It is not hard to see that any disconnection of Z extends to a disconnection
of X, and all of these are given by M LI (X \ M) for some subset M C N. It follows
that U = M N Z for some subset M C N. Thus, U C M, which implies that for all
n = 0, almost all integers not divisible by 2™ are in M. In particular, there is a subset
A C M such that A = {ag,a1, ...} with 2¢|a;. Take any point z € A\ N C Z. Thus,
x € MNZ =U. On the other hand, z lies in the open subset V = AN Z C Z, and
V NU = @: Indeed, for any n > 0,

An{ze X |2#0 mod 2"} C{ag,...,an_1} CN .
This contradicts « € U, finally showing that U is not open.
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3. On replete topoi

A topos is the category of sheaves on a site, up to equivalence, as in [SGAT72a]. We
will study in §3.1 a general property of topoi that implies good behaviour for the lim
and R lim functors, as well as unbounded cohomological descent, as discussed in §3.3.
A special subclass of such topoi with even better completeness properties is isolated
in §3.2; this class is large enough for all applications later in the paper. In §3.4 and
§3.5, with a view towards studying complexes of f-adic sheaves on the pro-étale site,
we study derived completions of rings and modules in a replete topos; the repleteness
ensures no interference from higher derived limits while performing completions, so
the resulting theory is as good as in the punctual case.

3.1. Definition and first consequences. — The key definition is:

Definition 3.1.1. — A topos X is replete if surjections in X are closed under sequential
limits, i.e., if F': N°? — X s a diagram with F,+1 — F,, surjective for all n, then
lim F' — F,, is surjective for each n.

Before giving examples, we mention two recognition mechanisms for replete topoi:
Lemma3.1.2. — If X is a replete topos and X € X, then X, x is replete.

Proof. — This follows from the fact that the forgetful functor X,x — X commutes
with connected limits and preserves surjections. O

Lemma 3.1.3. — A topos X is replete if and only if there exists a surjection X — 1
and X ,x s replete.

Proof. — This follows from two facts: (a) limits commute with limits, and (b) a map
F — G in X is a surjection if and only if it is so after base changing to X. O

Example 3.1.4. — The topos of sets is replete, and hence so is the topos of presheaves
on a small category. As a special case, the classifying topos of a finite group G (which
is simply the category of presheaves on B(G)) is replete.

Example 3.1.5. — Let k be a field with a fixed separable closure k. Then X =
Shv(Spec(k)g;) is replete if and only if % is a finite extension of & (3). One direction is
clear: if k/k is finite, then Spec(k) covers the final object of X and X /Spec(k) = Set, s0
X is replete by Lemma 3.1.3. Conversely, assume that X is replete with k/k infinite.
Then there is a tower k = kg < k1 < ko <> ... of strictly increasing finite separable
extensions of k. The associated diagram --- — Spec(ka) — Spec(k1) — Spec(ko) of
surjections has an empty limit in X, contradicting repleteness.

3. Recall that this happens only if k is algebraically closed or real closed; in the latter case,
k(v/—1) is an algebraic closure of k.
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Remark 3.1.6. — Replacing N°P with an arbitrary small cofiltered category in the
definition of replete topoi leads to an empty theory: there are cofiltered diagrams of
sets with surjective transition maps and empty limits. For example, consider the poset
I of finite subsets of an uncountable set T ordered by inclusion, and F' : I°P — Set
defined by

F(S)={f € Hom(S,Z) | f injective}.

Then F'is a cofiltered diagram of sets with surjective transition maps, and lim F' = @.

Example 3.1.5 shows more generally that the Zariski (or étale, Nisnevich, smooth,
fppf) topoi of most schemes fail repleteness due to “finite presentation” constraints.
Nevertheless, there is an interesting geometric source of examples:

Example 3.1.7. — The topos X of fpqc sheaves on the category of schemes® is re-
plete. Given a diagram --- — F,11 — F, — --- — F1; — Fj of fpqc sheaves with
F,, — F, 1 surjective, we want lim F,, — F to be surjective. For any affine Spec(A)
and a section sg € Fy(Spec(A)), there is a faithfully flat map A — Bj such that s
lifts to an s; € Fy(Spec(By)). Inductively, for each n > 0, there exist faithfully flat
maps A — B, compatible in n and sections s, € F,(Spec(B,)) such that s, lifts
Sn—1. Then B = colim,, B,, is a faithfully flat A-algebra with sy € Fj(Spec(A)) lifting
to an s € lim F),(Spec(B)), which proves repleteness as Spec(B) — Spec(A4) is an fpqc
cover.

The next lemma records a closure property enjoyed by surjections in a replete
topos.

Lemma3.1.8. — Let X be a replete topos, and let F — G be a map in Fun(IN°P X).
Assume that the induced maps F; — G; and Fiy1 — F; Xq, Giy1 are surjective for
each i. Then lim F' — lim G is surjective.

Proof. — Fix an X € X and a map s : X — limG determined by a compatible
sequence {s, : X — G,} of maps. By induction, one can show that there exists a
tower of surjections --- — X, - X,,_1 — -+ = X7 - Xg = X and maps t,, : X,, —
F,, compatible in n such that ¢, lifts s,,. In fact, one may take Xo = X x¢g, Fo, and

Xn+1 - Xn XFnXG,nGnJrl Fn+1-

The map X' := lim; X; — X is surjective by repleteness of X. Moreover, the com-
patibility of the ¢,,’s gives a map ¢ : X’ — lim F' lifting s, which proves the claim. [

We now see some of the benefits of working in a replete topos. First, products
behave well:

Proposition 3.1.9. — Countable products are exact in a replete topos.

4. To avoid set-theoretic problems, one may work with countably generated affine schemes over
a fixed affine base scheme.
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Proof. — Given surjective maps f, : F,, — G, in X for each n € N, we want f :
IL, Fn — I1,, Gn to be surjective. This follows from Lemma 3.1.8 as f = im [, _,, fi;
the condition from the lemma is trivial to check in this case. U

In a similar vein, inverse limits behave like in sets:

Proposition 3.1.10. — If X is a replete topos and F : N°P — Ab(X) is a diagram with
Fo+1 — F, surjective for all n, then lim F,, ~ Rlim F},.

Proof. — By Proposition 3.1.9, the product [ [, F;, € X computes the derived product
in D(X). This gives an exact triangle

Rlim F,, — [ F % [] Fo.

mn
where t : F,,+1 — F), is the transition map. It thus suffices to show that s :=t —id
is surjective. Set G,, = Hign F,, H, = G,41, and let s, : H, — G, be the map
induced by t —id. The surjectivity of ¢t shows that s, is surjective. Moreover, the
surjectivity of ¢ also shows that H, 11 — Gn41 X@, Hy is surjective, where the fibre
product is computed using s, : H, — G, and the projection G,,+1 — G,. In fact,
the fibre product is H,, x F,41 and H,+1 — H, X F,41 is (pr,t —id). By Lemma
3.1.8, it follows that s = lim s,, is also surjective. O

Proposition 3.1.11. — If X is a replete topos, then the functor of N°P-indexed limits
has cohomological dimension 1.

Proof — For a diagram F : N°° — Ab(X), we want RlimF, € DI®U(X). By
definition, there is an exact triangle

Rlim F,, —s HFn — HFn

with the last map being the difference of the identity and transition maps, and the
products being derived. By Proposition 3.1.9, we can work with naive products in-
stead, whence the claim is clear by long exact sequences. U

Question 3.1.12. — Do Postnikov towers converge in the hypercomplete co-topos of
sheaves of spaces (as in [Lur09, §6.5]) on a replete topos?

3.2. Locally weakly contractible topoi. — We briefly study an exceptionally
well-behaved subclass of replete topoi:

Definition 3.2.1. — An object F' of a topos X is called weakly contractible if every
surjection G — F' has a section. We say that X is locally weakly contractible if it
has enough weakly contractible coherent objects, i.e., each X € X admits a surjection
U;Y; — X with Y; a coherent weakly contractible object.
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The pro-étale topology will give rise to such topoi. A more elementary example is:

Example 3.2.2. — The topos X = Set is locally weakly contractible: the singleton set
S is weakly contractible coherent, and every set is covered by a disjoint union of copies

of S.
The main completeness and finiteness properties of such topoi are:

Proposition 3.2.3. — Let X be a locally weakly contractible topos. Then
1. X is replete.
2. The derived category D(X) = D(X,Z) is compactly generated.

3. Postnikov towers converge in the associated hypercomplete co-topos.
(Cf. [Lur09].)

Proof. — For (1), note that a map F' — G in X is surjective if and only if F'(Y) —
G(Y) is so for each weakly contractible Y'; the repleteness condition is then immedi-
ately deduced. For (2), given j : Y — 1x in X with Y weakly contractible coherent,
one checks that Hom(j1Z, —) = H°(Y,—) commutes with arbitrary direct sums in
D(X), so jiZ is compact; as Y varies, this gives a generating set of D(X) by assump-
tion on X, proving the claim. For (3), first note that the functor F' — F(Y) is exact
on sheaves of spaces whenever Y is weakly contractible. Hence, given such an F
and point * € F(Y') with Y weakly contractible, one has m;(F(Y), x) = m;(F, *)(Y).
This shows that F' ~ lim,, 7<, F" on X, which proves hypercompleteness. (Cf. [Lur09,
Proposition 7.2.1.10].) O

3.3. Derived categories, Postnikov towers, and cohomological descent

We first recall the following definition:

Definition 3.3.1. — Given a topos X, we define the left-completion D(X) of D(X) as
the full subcategory of D(XN) spanned by projective systems {K,} satisfying:
1. K, € D>7(X).
2. The map 72> "K, 11 — K, induced by the transition map K1 — K,, and (1)
18 an equivalence.
We say that D(X) is left-complete if the map 7 : D(X) — lA)(f)C) defined by K +—
{r>7"K} is an equivalence.

Left-completeness is extremely useful in accessing an unbounded derived category
as Postnikov towers converge:

Lemma3.3.2. — The functor Rlim : IA)(DC) — D(XN) — D(X) provides a right ad-
joint to T. In particular, if D(X) is left-complete, then K ~ Rlim 7> "K for any
K € D(X).
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Proof. — Fix K € D(X) and {L,} € D(X). Then we claim that
RHom px) (K, Rlim L,,) ~ Rlim RHom p () (K, L, ) ~ RhmRHomD(x)( "K,Ly)
~ RHomp y (7(K), {Ln}).

This clearly suffices to prove the lemma. Moreover, the first two equahtles are formal.
For the last one, recall that if F, G € Ab(XN), then there is an exact sequence

1 — Hom(F,G) — HHom(Fn, Gn) — HHom(FnH, Gn),

where the first map is the obvious one, while the second map is the difference of
the two maps F,+1 — F, — G, and Fj,41 — Gn4+1 — G,. One can check that if
F,G € Ch(XN), and G is chosen to be K-injective, then the above sequence gives an
exact triangle

RHom(F,G) — | [ RHom(F,,, G,) — [ [RHom(F11, Gn).

In the special case where F,G € lA)(DC), one has RHom(F,,+1,G,) = RHom(F,,G,)
by adjointness of truncations, which gives the desired equality. U

Classically studied topoi have left-complete derived categories only under (local)
finite cohomological dimension constraints; see Proposition 3.3.7 for a criterion, and
Example 3.3.5 for a typical example of the failure of left-completeness for the simplest
infinite-dimensional objects. The situation for replete topoi is much better:

Proposition 3.3.3. — If X is a replete topos, then D(X) is left-complete.

Proof. — We repeatedly use the following fact: limits and colimits in the abelian
category Ch(Ab(X)) are computed termwise. First, we show that 7 : D(X) — ﬁ(f)C)
is fully faithful. By the adjunction from Lemma 3.3.2, it suffices to show that K ~
Rlim 72" K for any K € D(X). Choose a complex I € Ch(Ab(X)) lifting K € D(X).
Then [],, 727" € Ch(Ab(X)) lifts the derived product [[, 72 "K € D(X) by Propo-
sition 3.1.9. Since I ~ lim7>~"I € Ch(Ab(X)), it suffices as in Proposition 3.1.10 to
show that
HT>_”I t—1d> rZ ]

is surjective in Ch(Ab(X)), where we write ¢ for the transition maps. Since surjectivity

in Ch(Ab(X)) can be checked termwise, this follows from the proof of Proposition

3.1.10 as 7>~ "2 2= (=D T i termwise surjective.

For essential surjectivity of 7, it suffices to show: given {K,} € lA)(f)C), one has
K, ~727"Rlim K,,. Choose a K-injective complex {I,,} € Ch(Ab(XN)) representing
{K,}. Then [[, I, € Ch(Ab(X)) lifts [[,, K, (the derived product). Moreover, by
K-injectivity, the transition maps I,y1 — I, are (termwise) surjective. Hence, the

HInt_—id>HIn

map
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in Ch(Ab(X)) is surjective by the argument in the proof of Proposition 3.1.10, and its
kernel complex K computes R lim K,,. We must show that H*(K) ~ H*(K;) for each
i € N. Calculating cohomology and using the assumption {K,} € D(X) c D(XN)

shows that
H ([T 5) =TT #' ) = ] #(5) = T ' (K3)
n n nz=i n=t
for each i € N; here we crucially use Proposition 3.1.9 to distribute H® over []. The
map H'(t —id) is then easily seen to be split surjective with kernel lim H*(K,,) =~
lim H'(K;) ~ H*(K;), which proves the claim. O

If repleteness is dropped, it is easy to give examples where D(X) is not left-complete.

Example 3.34. — Let G = Hn>1 Z,,, and let X be the topos associated to the category
B(G) of finite G-sets (topologized in the usual way). We will show that D(X) is not
left-complete. More precisely, we will show that K — K := Rlim7>~"K does not
have a section for K = @,,>1Z/p"[n] € D(X); here Z/p™ is given the trivial G-action.

For each open subgroup H C G, we write Xy € B(G) for the G-set G/H
given the left G-action, and let I°P C B(G) be the (cofiltered) full subcategory
spanned by the Xpg’s. The functor p*(F) = colim; F(Xpgy) commutes with finite
limits and all small colimits, and hence comes from a point p : * — X. Deriving gives
p*L = colim; RI'(X g, L) for any L € D(X), and so H(p*L) = colim; H°(Xy, L). In
particular, if L1 — Lo has a section, so does

colim H(Xy, L)) — colim H( Xy, Ly).

If 7 : X — Set denotes the constant map, then K = 7* K’ where K’ = ©,>1Z/p"[n] €
D(Ab), so

colim H(Xpr, K) = H' (5" K) = H'(p*n"K') = H'(K") = 0.

Since 77T"K =~ ®i<aZ/p'li] =~ [l;c,Z/p'[i]l, commuting limits shows that

K ~ [I,>1%Z/p"[n] (where the product is derived), and so RI'(Xpy,K) =
[I,>1 RU(Xw,Z/p"[n]). In particular, it suffices to show that

H(p*K) = colim || H"(Xx,Z/p"
(p"K) = col nl;[l ( /P")
is not 0. Let e, € H"(Xqg,Z/p") = H"(X,Z/p") be the pullback of a gen-
erator of H"(B([[\—, Z,),Z/p") ~ &I H'(B(Z,),Z/p") under the projection
fn: G — [li,Z,. Then «, has exact order p" as f, has a section, so
a = (an) € [[,5; H"(X,Z/p") has infinite order. Its image o' in HO(p*K) is
0 if and only if there exists an open normal subgroup H C G such that « restricts
to 0 in [[,, H"(Xu,Z/p™). Since Xig — X¢ is a finite cover of degree [G : H], a
transfer argument then implies that « is annihilated by [G : H|, which is impossible,
whence o/ # 0.
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Remark 3.3.5. — The argument of Example 3.3.4 is fairly robust: it also applies to the
étale topos of X = Spec(k) with & a field provided there exist M, € Ab(Xg) for in-
finitely many n > 1 such that H™ (X, M,,) admits a class «,, with limord(a,) = co. In
particular, this shows that D(Spec(k)¢t) is not left-complete for k = C(z1, 22, 23, ... ).

Thanks to left-completeness, cohomological descent in a replete topos is particularly
straightforward:

Proposition 3.3.6. — Let f: Xq — X be a hypercover in a replete topos X. Then
1. The adjunction id — f.f* is an equivalence on D(X).
2. The adjunction fif* — id is an equivalence on D(X).
3. f* induces an equivalence D(X) ~ Dcart(Xe)-

Here we write D(Y) = D(Ab(X,y)) for any Y € X. Then D(X,) is the derived
category of the simplicial topos defined by X, and D, (Xe) is the full subcategory
spanned by complexes K which are Cartesian, i.e., for any map s : [n] — [m] in A,
the transition maps s*(K|x, ) — K|x,, are equivalences. The usual pushforward then
gives fi : D(X,) — D(X) right adjoint to the pullback f* : D(X) — D(X,) given
informally via (f*K)|x, = K|x,. By the adjoint functor theorem, there is a left
adjoint fi : D(Xe) — D(X) as well. When restricted to Dcart(Xe), one may describe
fi informally as follows. For each Cartesian K and any map s : [n] — [m] in A,
the equivalence s*(K|x,) ~ K|x,, has an adjoint map K|x, — s(K|x,). Applying
I-pushforward along each X,, — X then defines a simplicial object in D(X) whose
homotopy-colimit computes fi K.

Proof. — We freely use that homotopy-limits and homotopy-colimits in D(X,) are
computed “termwise.” Moreover, for any map ¢ : ¥ — X in X, the pullback g* is
exact and commutes with such limits and colimits (as it has a left adjoint ¢ and a
right adjoint g.). Hence f* : D(X) — D(X,) also commutes with such limits and
colimits.

1. For any K € Ab(X), one has K ~ f, f*K by the hypercover condition. Passing
to filtered colimits shows the same for K € D' (X). For general K € D(X),
we have K ~ Rlim 72 " K by repleteness. By exactness of f* and repleteness
of each X,,, one has f*K ~ Rlim f*r> " K. Pushing forward then proves the
claim.

2. This follows formally from (1) by adjunction.

3. The functor f* : D(X) — Decart(Xe) is fully faithful by (1) and adjunction.
Hence, it suffices to show that any K € Dca(Xe) comes from D(X). The
claim is well-known for K € D, .(X,) (without assuming repleteness). For
general K, by repleteness, we have K ~ Rlim72 ™K. Since the condition
of being Cartesian on a complex is a condition on cohomology sheaves, the
truncations 72 "K are Cartesian, and hence come from D(X). The claim
follows as D(X) C D(X,) is closed under homotopy-limits. O
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We end by recording a finite dimensionality criterion for left-completeness:

Proposition 3.3.7. — Let X be a topos, and fiz K € D(X).
1. Given U € X with T'(U,—) ezact, one has RI'(U, K) ~ RlimRI'(U, 7>~ "K).

2. If there exists d € N such that 3*(K) has cohomological dimension < d locally
on X for all i, then D(X) is left-complete.

Proof. — For (1), by exactness, RI'(U, K) is computed by I(U) where I € Ch(X)
is any chain complex representing K. Now D(Ab) is left-complete, so I(U) ~
Rlim 7>~ "I(U). As I'(U,—) is exact, it commutes with truncations, so the claim
follows. (2) follows from [Sta, Tag 0719]. O

3.4. Derived completions of f-adic rings in a replete topos. — In this section,
we fix a replete topos X, and a ring R € X with an ideal I C R that is locally finitely
generated, i.e., there exists a cover {U; — 1x} such that I|y, is generated by finitely
many sections of I(U;). Given U € X, x € R(U) and K € D(X,y, R), we write
T(K,z) :=Rlim(... 5 K 5 K 5 K) € D(X ¢, R).

Definition 34.1. — We say that M € Modpg is classically I-complete if M ~
lim M/I™"M ; write Modg,comp C Modg for the full subcategory of such M. We say
that K € D(X,R) is derived I-complete if for each U € X and x € I(U), we have
T(K|y,z) = 0; write Deomp(X, R) C D(X, R) for the full subcategory of such K.

It is easy to see that Deomp(X, R) is a triangulated subcategory of D(X, R). More-
over, for any U € X, the restriction D(X, R) — D(X,y, R) commutes with homotopy-
limits, and likewise for R-modules. Hence, both the above notions of completeness
localise on X. Our goal is to compare these completeness conditions for modules, and
relate completeness of a complex to that of its cohomology groups. The main result
for modules is:

Proposition 3.4.2. — An R-module M € Modpg is classically I-complete if and only if
it 1s I-adically separated and derived I-complete.

Remark 3.4.3. — The conditions of Proposition 3.4.2 are not redundant: there exist
derived I-complete R-modules M which are not I-adically separated, and hence not
classically complete. In fact, there exists a ring R with principal ideals I and J such
that R is classically I-complete while the quotient R/.J is not [-adically separated;
note that R/J = cok(R — R) is derived I-complete by Lemma 3.4.14.

The result for complexes is:

Proposition 3.4.4. — An R-complex K € D(X, R) is derived I-complete if and only if
each H(K) is so.

Remark 3.4.5. — For X = Set, one can find Proposition 3.4.4 in [Lurll].
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Lemma 34.6. — Given x,y € R(X), the sequence

0 —>R[931Ty} HR[m] @R[m} HR[m] —0

18 exact.

Proof. — Using the Mayer-Vietoris sequence for Spec(R(U )[IlTy]) for each U € X,
one finds that the corresponding sequence of presheaves is exact, as (z,y) = (1) €
R(U )[aley]7 the claim follows by exactness of sheafification. O

The main relevant consequence is that R[ﬁ] € D(X, R) is represented by a finite

complex whose terms are direct sums of filtered colimits of free R[%]—modules and
R[%]—modules.

Lemma34.7. — Fix K € D(X,R) and x € R(X). Then T(K,z) = 0 if and only if
RHom (M, K) =0 for M € D(DC,R[%]).

Proof. — The backwards direction follows by setting M = R[1] and using R[2] =
colim(R5R5R — ...). For the forward direction, let € C D(X, R[1]) be the triangu-
lated subcategory of all M for which RHomp (M, K') = 0. Then C is closed under ar-
bitrary direct sums, and R[1] € € by assumption. Since T(K|v,z) = T(K, z)|y = 0,
one also has ji(R[1]|y) € € for any j : U — 1x. The claim now follows: for any ringed
topos (X, A), the smallest triangulated subcategory of D(X, A) closed under arbitrary
direct sums and containing ji(A|y) for j : U — 1y variable is D(X, A) itself. a

Lemma34.8. — Fix K € D(X,R) and x € I(X). Then T(K, z) lies in the essential
image of D(X, R[2]) = D(X, R).

Proof. — We may represent K by a K-injective complex of R-modules. Then
T(K,z) ~ RHomp (R[], K) ~ Homp(R[1], K) is a complex of R[1]-modules, which

proves the claim. ]

Lemma3.4.9. — The inclusion Deomp(X, R) = D(X, R) admits a left adjoint K K.
The natural map K — K is an equivalence.

Proof. — The second part is a formal consequence of the first part as the inclusion
Deomp(X, R) C D(X,R) is fully faithful. For the first part, we first assume I is
generated by global sections z1,...,z, € I(X). For 0 < i < 7, define functors
F;: D(X,R) — D(X, R) with maps F; — F;1; as follows: set Fy = id, and

Fiy1(K) = cok(T(F(K), zi41) — F;(K)) ~ Rlim (F;(K) i, Fi(K))
~ Rlim (FZ(K) ®é[$i+1} Z[$i+1]/($?+1))a
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i z?
where the transition maps (F;(K) ar, Fi(K)) = (Fi(K) ifrlFi(K)) are given by
xi+1 on the source, and the identity on the target. One then checks using induction
and lemmas 3.4.7 and 3.4.8 that F;(K) is derived (z1,...,x;)-complete, and that

RHom(Fiy1(K),L) = RHom(F;(K), L)

if Lis (x1,...,2;41)-complete. It follows that K — F.(K) provides the desired left ad-
joint; we rewrite K= F,.(K) and call it the completion of K. The construction shows
that completion commutes with restriction. In general, this argument shows that there
is a hypercover f : X*® — 1y such that the inclusion Domp(X™, R) — D(X", R)
admits a left adjoint, also called completion. As completion commutes with restric-
tion, the inclusion Deart comp(X®, R) C Deart(X®, R) of derived I-complete carte-
sian complexes inside all cartesian complexes admits a left-adjoint Deay(X®, R) —
Dcart,comp(X®, R). The cohomological descent equivalence f*: D(X,R) — D(X°*, R)
restricts to an equivalence Deomp (X, R) — Deart,comp (X, R), so the claim follows. O

Lemma 3.4.9 leads to a tensor structure on Deomp(X, R):

Definition 3.4.10. — For K,L € D(X,R), we define the completed tensor product

—

via K&rL := K ®% L € Deomp(X, R).
The completed tensor product satisfies the expected adjointness:

Lemma34.11. — For K € D(X,R) and L € D¢omp(X, R), we have RHomp (K, L) €
Decomp(X, R). Moreover, there is an adjunction

Hom(K', RHom (K, L)) ~ Hom(K'®rK, L)
for any K" € Deomp(X, R).

Proof. — For any x € I(X), we have T(RHom (K, L), z) ~ RHom (K, T (L, z)) ~ 0.
Repeating this argument for a slice topos X,y then proves the first part. The second
part is a formal consequence of the adjunction between ® and RHom in D(X, R),
together with the completeness of L. O

Lemma3.4.12. — Fix K € D(X,R). The following are equivalent

n

1. For each U € X and x € I(U), the natural map K — Rlim (K = K) is an
1somorphism.

2. K is derived I-complete.

3. There exists a cover {U; — 1x} and generators z1,...,x, € I(U;) such that
4. There ezists a cover {U; — 1x} and generators x1,...,x, € I(U;) such that

K|y, ~ Rlim (K]Ui ®é[th’wr] Zzq,...,x.]/ (2], ... ,xf))

via the natural map.
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Proof. — The equivalence of (1) and (2) follows from the observation that the tran-
sition map o §
(K “— K) — (K = K)

is given by x on the first factor, and the identity on the second factor. Also, (2) clearly
implies (3). For the converse, fix a U € X and = € I(U). To show T(K|y,z) = 0,
we are free to replace U with a cover. Hence, we may assume z = ). a;x; with
T(K|y,x;) = 0. Lemma 3.4.7 shows T (K |y, a;z;) = 0, and Lemma 3.4.6 does the rest.
Finally, since each z; acts nilpotently on K Ui®é[x17...7xr]Z[m1, coome) /(2o 2,
it is clear that (4) implies (3). Conversely, assume (3) holds. Replacing X with a
suitable U;, we may assume [ is generated by global sections x1,...,z, € I(X).
Consider the sequence of functors Fy,...,F, : D(X,R) — D(X, R) defined in the
proof of Lemma 3.4.9. As each Z[z;]/(z') is a perfect Z[z;]-module, the functor
— ®é[zi] Z[z;]/(x}) commutes with homotopy-limits. Hence, we can write

K ~ F(K) ~ Rlim (K ®@7,,) Z[x1]/(27]) ®F,,) Zlza]/(23) © -+ @7, ) Zlz,]/ (2}))),
which implies (4). O

Lemma34.13. — If M € Modgr is classically I-complete, then M is derived
I-complete.

Proof. — Commuting limits shows that the collection of all derived I-complete
objects K € D(X,R) is closed under homotopy-limits. Hence, writing M =
HImM/I"M ~ RlmM/I"M (where the second isomorphism uses repleteness), it
suffices to show that M is derived I-complete if /"M = 0. For such M, any local
section x € I(U) for some U € X acts nilpotently on M|y, so T'(M|y,z) = 0. O

The cokernel of a map of classically I-complete R-modules need not be I-complete,
and one can even show that Modg comp is not an abelian category in general. In
contrast, derived I-complete modules behave much better:

Lemma 3.4.14. — The collection of all derived I-complete M € Modpg is an abelian
Serre subcategory of Modg.

Proof. — Fixamap f: M — N of derived I-complete R-modules. Then there is an
exact triangle
ker(f)[1] — (M — N) — cok(f)

For any = € I(X), there is an exact triangle
T(ker(f)[1],z) — 0 — T'(cok(f), x)

where we use the assumption on M and N to get the middle term to be 0. The right
hand side lies in DZ°(X, R), while the left hand side lies in DS(X, R) as Rlim has
cohomological dimension < 1 (as X is replete). Chasing sequences shows that the
left and right terms are also 0. Repeating the argument for a slice topos X,y (and

ASTERISQUE 369



THE PRO-ETALE TOPOLOGY FOR SCHEMES 131

varying x € I(U)) proves that ker(f) and cok(f) are derived I-complete. It is then
immediate that im(f) = M /ker(f) is also derived I-complete. Since closure of derived
I-completeness under extensions is clear, the claim follows. [

Proof of Proposition 3.4.4. — Assume first that each H*(K) is derived I-complete.
Then each finite truncation 7S"72™K is derived I-complete. Hence, 7SMK ~
Rlim 72 "7S™K is also derived I-complete for each m; here we use that D(X) is
left-complete since X is replete. For any = € I(X), applying T'(—, z) to

TSMK — K — 77K,

shows that T'(K,z) ~ T(r?™H1K,z) € D>™TY(X, R). Since this is true for all m,
one has T'(K,z) = 0. Repeating the argument for x € I(U) for U € X then proves
the claim.

Conversely, assume that K is derived I-complete. By shifting, it suffices to show
that H°(K) is derived I-complete. Assume first that K € DSO(X, R). Then there is
an exact triangle

TST'K — K — HY(K).
Fixing an x € I(X) and applying 7'(—, z) gives
T(rS'K,z) — T(K,z) — T(H°(K), z).
The left term lives in DS°(X, R), the middle term vanishes by assumption on K, and

the right term lives in DZ%(X, R), so the claim follows by chasing sequences (and
replacing X with X,;7). Now applying the same argument to the triangle

TNK — K — 77K

shows that each 7SVK and 72! K are derived I-complete. Replacing K by 7S°K then
proves the claim. O

Proof of Proposition 3.4.2. — The forward direction follows from Lemma 3.4.13.
Conversely, assume M is derived I-complete and [-adically separated. To show M is
classically I-complete, we may pass to slice topoi and assume that I is generated by
global sections x1,..., 2z, € I(X). Then derived I-completeness of M gives

M ~Rlim (M ®z,, .1 Z[z1,..., 2]/ (2])).

7

Calculating H(M) ~ M wia the Milnor exact sequence (which exists by repleteness)
gives

1 — R'Um H Y (M ®gzp,, 1 Zlzy ..., 2,]/(2])

..... i

— M — lIimM/(2},...,20 )M — 1.

By I-adic separatedness, the last map is injective, and hence an isomorphism. ]
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3.5. Derived completions of noetherian rings in a replete topos. — In this
section, we specialize the discussion of §3.4 to the noetherian constant case. More
precisely, we fix a replete topos X, a noetherian ring R, and an ideal m C R. We also
write m C R for the corresponding constant sheaves on X. Our goal is to understand
m-adic completeness for R-complexes on X.

Proposition3.5.1. — Fix K € D(X, R). Then
1. K is derived m-complete if and only if K ~ Rlim(K ®% R/m™) via the natural
map.
2. Rlim(K ®% R/m™) is derived m-complete.

3. The functor K + Rlim(K ®% R/m") defines a left adjoint D(X,R) —
Deomp(X, R) to the inclusion.

Proof. — (2) is clear as each K ®% R/m™ is derived m-complete. For the rest, fix
generators fi,.., fr C m. Set P = Z[xy,...,2,], and J = (z1,...,2,) C P. Consider
the map P — R defined via x; — f; (both in Set and X). By Lemma 3.4.12, K
is derived m-complete precisely when K ~ Rlim(K ®% P/J") via the natural map.
For (1), it thus suffices to check that

a:{P/J"®5 R} — {R/m"}
is a strict pro-isomorphism. There is an evident identification
{P/J" ©p R} = {P/J" ©F (P ®z R) ®pg,r R},

where P ®z R is viewed as a P-algebra via the first factor. As P/J"™ and P ®z R are
Tor-independent over P, we reduce to checking that

{R[z1,...,5,)/(%1,...,z0)" ®IL%[x1,...,xr] R} — {R/m"}

is a strict pro-isomorphism. This follows from the Artin-Rees lemma. Finally, (3)
follows from a being a pro-isomorphism as the construction of Lemma 3.4.9 realises
the m-adic completion of K as Rlim(K ®% P/J"). O

Proposition 3.5.1 gives a good description of the category Dcomp(X, R) of derived
m-complete complexes. Using this description, one can check that R itself is not
derived m-complete in X in general. To rectify this, we study the m-adic completion
R of R on X, and some related categories.

Definition 3.5.2. — Define R : hmR/m € X. In particular, R is an R- algebra
equipped with R-algebra maps R — R/m™.  An object K € D(X, R) 18 called
m-adically complete if the natural map K — Rlim(K ®L R/m™) is an equivalence.
Let i : Deomp (X, R) — D(X, R) be the full subcategory of such complexes.

Our immediate goal is to describe m-adically complete complexes in terms of their
truncations. To this end, we introduce the following category of compatible systems:
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Definition 3.5.3. — Let C = Fun(IN°P, X) be the topos of N°P-indexed projective sys-
tems {F,} in X. Let Re = {R/m"} € C be the displayed sheaf of rings, and let
Decomp(C, Re) C D(C, R,) be the full subcategory spanned by complexes {K,} such
that the induced maps K, ®é/mn R/m"~ 1 — K,,_1 are equivalences for all n.

Lemma3.54. — For {K,} € D™ (C,R.), one has an identification of pro-objects
{K, ®% R/m} ~ {K, ®é/m" R/m}, and hence a limiting isomorphism Rlim(K, @k
R/m) ~ Rlim(K, ®IL-Z/m" R/m). If m is regular, this extends to unbounded complexes.

Proof. — Change of rings gives {K,, ®% R/m} ~ {K, ®é/mn R/m" @k R/m}. The
Artin-Rees lemma shows that {R/m" ®% R/m} — {R/m} is a pro-isomorphism.
Since {K,} is bounded above, the spectral sequence for Tor has only finitely many
contributing terms to a given E..-term, and hence

{Kn @k Rjm} = {Ky ®F e R/m" @ R/m} — {K, ®F pn R/m}

is also a pro-isomorphism. Applying Rlim and using repleteness then gives the
claim. Finally, if m is generated by a regular sequence (f1,..., f.), then {R/m"}
is pro-isomorphic to {R/(f{’,..., f")}. Each quotient R/(fT,..., ") is R-perfect,
and hence the Tor-spectral sequence calculating H'(K @% R/(f7,..., f)) has only
finitely many non-zero terms even when K is unbounded, so the preceding argument
applies. O

Lemma3.5.5. — For {K,} € Dg,.(C R,), the natural map gives (Rlim K,,) ®%

comp

R/mF ~ K}, for k > 0. If m is reqular, this extends to unbounded complezes.

Proof. — By devissage and the completeness of {K,}, we may assume k = 1. By
shifting, we can also assume {K,} € DS°(Q), i.e., K,, € DS°(X) for all n. Fix an
integer i > 0, and an R-perfect complex P; with a map P, — R/m whose cone lies in
DS™H(R). Then there is a commutative diagram

a

(Rlim K,,) ®% P; Rlim(K, ®g P;)

i ld

(Rlim K,,) % R/m —— Rlim(K, ®r R/m) ~ K;.

The isomorphism on the bottom right is due to Lemma 3.5.4. As P; is perfect, a is an
isomorphism. Moreover, cok(b) € DS™HL(X) as Rlim K,, € DS!(X) by repleteness.
A similar argument also shows cok(d) € DS™i1(X). Hence, cok(c) € DS™#L(X).
Then ¢ must be an isomorphism as this is true for all 7. ]

We can now show that the two notions of completeness coincide:

Lemma3.5.6. — For each m, the natural map induces R ©% R/m™ ~ R/m™. In
particular, Deomp(X, R) 2~ Deomp(X, R).

Proof. — The first part follows from Lemma 3.5.5. The second part follows formally
from this and Proposition 3.5.1. O
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We now show that an m-adically complete complex is determined by its reductions
modulo powers of m; this will be used later to compare complexes on the pro-étale
site to Ekedahl’s category of adic complexes.

Lemma 3.5.7. — With notation as above, we have:

1. There is a map 7 : (C, Re) — (X, ﬁ) of ringed topoi given by m.({F,}) = lim F,
with m™ 'R — Re the natural map.

~

2. Pullback under m induces a fully faithful functor 7 : Deomp(X,R) —
Deomp (€, Re).

3. Pushforward under m induces a fully faithful functor mw, : D;mp(G,R.) —
D(;)mp(xaR)'
X,R)~ Dz (G R,).

4. m induces an equivalence D comp

comp

5. If m is regular, then (3) and (4) extend to the unbounded case.

Proof. — (1) is clear. The functor 7* : D(X,R) — D(C,R,) is given by K
(K ®5 R/m"}, while 7, : D(€, Re) — D(X, R) is given by 7, ({K,}) ~ Rlim K,,. Tt
is then clear that 7* carries complete complexes to complete ones. Given {K,} €
Decomp(€, Rs), each K, € D(X, R/m") is derived m-complete, and hence 7, preserves
completeness as well (since m,.{K,} := Rlim K, is m-adically complete). For (2), it
then suffices to check that K ~ R lim (K ®% R/m™) for any K € Dcomp(X, E), which
is true by Proposition 3.5.1. Lemma 3.5.5 and (2) immediately give (3), and hence
(4). Finally, (5) follows by the same argument as (3) as all the ingredients in the
proof of the latter extend to the unbounded setting if m is regular. O

4. The pro-étale topology

We define the pro-étale site of a scheme in §4.1, and study the associated topos
in §4.2. In §4.3, we use these ideas to construct a variant of Tate’s continuous coho-
mology of profinite groups that behaves better in some functorial respects.

4.1. The site

Definition4.1.1. — A map f:Y — X of schemes is called weakly étale if f is flat and
Ar:Y =Y xxY is flat. Write Xp,106¢ for the category of weakly étale X -schemes,
which we give the structure of a site by declaring a cover to be one that is a cover in
the fpgc topology, i.e., a family {Y; — Y} of maps in Xprostr is a covering family if
any open affine in' Y is mapped onto by an open affine in L;Y;.

Remark 4.1.2. — To avoid set-theoretic issues, it suffices for our purposes to define
the site Xproer using weakly étale maps Y — X with |Y| < &, where & is a fixed
uncountable strong limit cardinal larger than | X| (). The choice of & is dictated by

5. Recall that a cardinal  is a strong limit cardinal if for any v < &, 27 < k.
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the desire to have Shv(Xp.0st) be locally weakly contractible. Increasing x results
in a different topos, but cohomology remains the same, as it can be calculated by a
simplicial covering with w-contractible schemes.

Remark 4.1.3. — We do not directly work with pro-étale morphisms of schemes to
define X0t as the property of being pro-étale is not geometric: Example 4.1.12
shows its failure to localise on the target. Nonetheless, we call X;04t the pro-étale
site, as by Theorem 2.3.4 any weakly étale map f : Y — X is Zariski locally on X
and locally in Y},06 of the form SpecB — SpecA with A — B ind-étale.

Some elementary examples of weakly étale maps:

Example 4.1.4. — For a field k, a map Spec(R) — Spec(k) is weakly étale if and only
if K — R is ind-étale. Indeed, R embeds into some ind-étale k-algebra S; but one
checks easily that as k is a field, any subalgebra of an ind-étale k-algebra is again
ind-étale.

Example 4.1.5. — For a scheme X and a geometric point x, the map Spec((‘)i’f,x) — X
from the strict henselization is weakly étale; similarly, the henselization and Zariski
localizations are also weakly étale.

We begin by recording some basic generalities on pro-étale maps.

Lemma 4.1.6. — Compositions and base changes of weakly étale maps are weakly
étale.

Proof. — Clear. O
Lemma4.1.7. — Any map in Xprost 15 weakly étale.

Proof. — This follows from Proposition 2.3.3 (iv). O

The previous observations give good categorical properties for X o¢t:

Lemma4.1.8. — The category Xprost has finite limits, while the full subcategory
spanned by affine weakly étale maps Y — X has all small limits. All limits in
question agree with those in Sch,x.

Proof. — For the first part, it suffices to show that X,.¢ has a final object and
arbitrary fibre products. Clearly X is a final object. Moreover, if Y7 — Y5 < Y3 is
a diagram in X4, then both maps in the composition Y7 xy, Y5 = Y; — X are
weakly étale for any i € {1,2,3} by the previous lemmas, proving the claim. For the
second part, the same argument as above shows finite limits exist. Hence, it suffices
to check that small cofiltered limits exist, but this is clear: the limit of a cofiltered
diagram of affine weakly étale X-schemes is an affine X-scheme that is weakly étale
over X as flatness is preserved under filtered colimits of rings. O
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We record an example of a typical “new” object in Xprost:

Example 4.1.9. — The category X,,o¢t is “tensored over” profinite sets, ¢.e., given a
profinite set S and Y € X4, one can define ¥ ® § € X,0¢¢ as follows. Given
S = lim; S; as a cofiltered limit of finite sets, we obtain constant X-schemes S; €
Xst C Xproey with value S;. Set S =lim; S;, and Y ® § :=Y xx S. If X is qcgs, then
for any finitely presented X-scheme U, one has Homx (Y ® S, U) = colim; Homx (Y ®
Si, U) = colim; [[g Homx (Y,U). The association S ~ S defines a limit preserving
functor from profinite sets to Xprost-

Using these objects, we can describe the pro-étale site of a field explicitly:

Example 4.1.10. — Fix a field k. If k is a separable closure, then the qcgs objects

in Spec(k)prost identify with the category of profinite sets via the functor Y — Y (k)
with inverse S — S (in the notation of Example 4.1.9). The map Spec(k) — Spec(k)
is a weakly étale G-torsor, so the qcgs objects in Spec(k)pro¢t identify with pro-objects
in the category of finite discrete G-sets, i.e., with the category of profinite continuous
G-sets. Under this identification, a family {S; — S} of continuous G-equivariant map
of such sets is a covering family if there exists a finite subset J of the indices such
that UjesS; — S is surjective. To see this, we may assume k = k. Given such a
family {S; — S}, the corresponding map Ujc;S; — S is a surjective weakly étale
map of affines, so {S; — S} is a covering family ESpeC(E)proét; the converse is clear.
Evaluation on S is exact precisely when S is extremally disconnected; note that this
functor is not a topos-theoretic point as it does not commute with finite coproducts

(though it does commute with filtered colimits and all limits).

Remark 4.1.11. — The site X104t introduced in this paper differs from the one in
[Sch13], temporarily denoted X . More precisely, there is a natural map ux :
Shv(Xprost) — Shv(X}’)roét) of topoi, but ux is not an equivalence: px . is fully
faithful, but there are more objects in Shv (X[ ). This is evident from the definition,
and can be seen directly in Example 4.1.10 when X = Spec(k) with k an algebraically

closed field. Indeed, both the categories Xproet and X! .. are identified with the

proé
category of profinite sets, but Xproct has more covers than X[ . all objects of X

are weakly contractible, while the weakly contractible ones in X,,.¢; are exactly the
ones corresponding to extremally disconnected profinite sets.

The following example (due to de Jong) shows that the property of being pro-étale
is not Zariski local on the target, and hence explains why weakly étale maps give a
more geometric notion:

Example 4.1.12. — Let S’ be an infinite set with an automorphism 77 : §" — S’
which does not stabilize any finite subset; for example, S" = Z, and T'(n) = n + 1.
Write (S,0) for the one point compactification of S” and T': S — S for the induced
automorphism (which has a unique fixed point at 0); note that S is profinite, and the
unique non-empty clopen subset of S stable under T is S itself. Let X C A% be the
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union of two irreducible smooth curves X; and X, meeting transversely at points p
and ¢; note that X is connected. Glueing S® X1 € X1 proet to S® Xo € X proé using
the identity at p and T" at g gives Y € X,;0¢t. We claim that Y is not pro-étale over
X. Assume otherwise that Y = lim; Y; — X with f; : Y; — X étale. Let 0: X — Y
be the zero section, defined using 0 € S. Then the assumption on Y shows that
0(X) = NU; with U; C Y a clopen subset (pulled back from a clopen of Y;). Now any
clopen subset U C Y defines a clopen subset U,, C S that is stable under 1", so U, = S
is the only possibility by choice of S and T'; this gives {0} = 0(X), = N;S = 5, which
is absurd.

We end by giving examples of covers in Xpro4¢-

Example 4.1.13. — Given a scheme X and closed geometric points z1,...,2,, the
map
(U Spec((‘)ﬁ?’aji)) U(X —A{z1,...,2zn}) — X

is a weakly étale cover. However, one cannot add infinitely points. For example, the
map

I_IpSpec(ZSg)) — Spec(Z)
is not a weakly étale cover as the target is not covered by a quasicompact open in the
source.

4.2. The topos. — To effectively study Shv(Xpr0st), we single out a special class
of weakly étale morphisms to serve as generators:

Definition 4.2.1. — Fiz a scheme X. An object U € Xy10¢t 15 called a pro-étale affine
if we can write U = lim; U; for a small cofiltered diagram i — U; of affine schemes in
X, the expression U = lim; U; is called a presentation for U, and we often implicitly
assume that the indexing category has a final object 0. The full subcategory of Xproét
spanned by pro-étale affines is denoted X%

proét *

We remark that each U e Xaff

proét 18, In particular, an affine scheme pro-étale

over X.

Lemma4.2.2. — Any map in X2

proét

is pro-(affine étale).

Proof. — Fix amap h: U — V in ngf)ét, and presentations U = lim; U; and V =
lim; V; as pro-étale affines. Then, after changing the presentation for U, we may
assume that X = V{ is an affine scheme Spec(A). The claim now follows from the

observation that a map between ind-étale A-algebras is also ind-étale. ]

Remark 4.2.3. — By Lemma 4.2.2, the category ngoét admits limits indexed by a
connected diagram, and these agree with those in Sch,x. However, this category
does not have a final object (unless X is affine) or non-empty finite products (unless

X has an affine diagonal).
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The reason to introduce pro-étale affines is:

Lemma4.24. — The site Xproet is subcanonical, and the topos Shv(Xprost) is gener-
F

ated by X7 e -

Proof. — The first part comes from fpqc descent. The second assertion means that

any Y € Xpros admits a surjection L;U; — Y in X0 with U; € ngf)ét, which

follows from Theorem 2.3.4. ]

We record some consequences of the above observations on pro-étale maps for the
pro-étale site:

Remark 4.2.5. — Assume X is an affine scheme. Then ngfoét is simply the category
of all affine schemes pro-étale over X; this category admits all small limits, and
becomes a site with covers defined to be fpqc covers. Lemma 4.2.4 then shows that
Shv(Xprost) =~ Shv(X2H ).

proét
Lemma4.2.6. — A presheaf F' on Xpro¢t 15 a sheaf if and only if:
1. For any surjection V. — U in X% . the sequence F(U)— F(V) == F(V xy V)

proét’
18 exact.

2. The presheaf F' is a Zariski sheaf.

Proof. — The forward direction is clear. Conversely, assume F' is a presheaf satisfying
(1) and (2), and fix a cover Z — Y in X},;06;. Using (1) and (2), one readily checks the
sheaf axiom in the special case where Y € ngf)ét, and Z = L;W; with W; € X;ffoét.
In the case of a general cover, Lemma 4.2.4 shows that we can find a diagram

d
UierVi ——Y

where d is a Zariski cover, a and b are covers in X6, and U;,V; € ngf)ét with
b determined by a map h : J — I of index sets together with maps U; — Vj,(;) in
X;g)ét. The previous reduction and (2) give the sheaf axiom for b and d, and hence
dob as well. It formally follows that F'(Y) — F(Z) is injective, and hence that
F(Z) — 11, F(U;) is also injective by (2) as a is a cover. A diagram chase then shows

that the sheaf axiom for ¢ follows from that for co a. O]

Lemma4.2.7. — For anyY € Xprost, pullback induces an identification Shv(Xproet) Y
~ ShV(Yproét) .

Proof. — A composition of weakly étale maps is weakly étale, and any map between
weakly étale maps is weakly étale. O

The pro-étale topos is locally weakly contractible in the sense of Definition 3.2.1.
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Proposition 4.2.8. — For any scheme X, the topos Shv(Xprost) s locally weakly con-
tractible.

Proof. — This follows immediately from Lemma 2.4.9 since any affine U € Xj0¢¢ is
coherent. O
Remark 4.2.9. — Proposition 4.2.8 gives a recipe for calculating the pro-étale homo-

topy type | X| of a qcgs scheme X. Namely, if f : X* — X is a hypercover in Xpo6t
with each X" being w-contractible, then |X| = |mo(X*®)|; any two such choices of f
are homotopic, and hence | X| is well-defined in the category of simplicial profinite
sets up to continuous homotopy.

We give an example illustrating the behaviour of constant sheaves on the pro-étale
site:

Example 4.2.10. — Fix a connected affine scheme X, and a profinite set S = lim; S;
with S; finite. By the formula in Example 4.1.9, the constant sheaf A € Shv(Xpr06t)
associated to a set A satisfies

A(X ® S) = colim (ASZ').
In particular, the functor A — A is not compatible with inverse limits.

The following example shows classical points do not detect non-triviality in
ShV(Xproét).

Example 4.2.11. — Fix an algebraically closed field k, and set X = Spec(k). Then
Shv(Xprost) identifies with the topos of sheaves on the category of profinite sets S
as explained in Example 4.1.10. Consider the presheaf G (resp. F') which associates
to such an S the group of all locally constant (resp. all) functions S — A for some
abelian group A. Then both F' and G are sheaves: this is obvious for G, and follows
from the compatibility of limits in profinite sets and sets for F. Moreover, G C F,
and Q := F/G € Ab(Xprost) satisfies Q(X) = 0, but Q(S) # 0 for S not discrete.

In fact, more generally, one can define 'constant sheaves’ associated with topological
spaces. Indeed, let X be any scheme, and let T' be some topological space.

Lemma4.2.12. — The association mapping any U € Xproer to Map.o (U, T) is a
sheaf Fr on Xproer. If T is totally disconnected and U is qcgs, then Fp(U) =
Map o (m0(U),T). In particular, if T is discrete, then Fr is the constant sheaf
associated with T'.

Proof. — To show that Fp is a sheaf, one reduces to proving that if f : A — B
is a faithfully flat ind-étale morphism of rings, then M C SpecA is open if and
only if (Specf)™1(M) C SpecB is open. Only the converse is nontrivial, so assume
(Specf)~ (M) C SpecB is open. First, we claim that M is open in the constructible
topology. Indeed, the map Specf : SpecB — SpecA is a continuous map of compact
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Hausdorff spaces when considering the constructible topologies. In particular, it is
closed, so
SpecA\ M = (Specf)(SpecB \ (Specf) !(M))

is closed, and thus M is open (in the constructible topology). To check that M is
actually open, it is enough to verify that M is closed under generalizations. This
is clear, as Specf is generalizing, and (Specf)~!(M) is open (and thus closed under
generalizations).

If T is totally disconnected and U is qcgs, then any continuous map U — T
will necessarily factor through the projection U — mo(U), so that Fp(U) =
Ma’pcont(ﬂ-o(U)? T) O

We relate sheaves on X with sheaves on its space mp(X) of connected compo-
nents. Recall that if X is a qcgs scheme, then 7 (X) is a profinite set. If 7o (X)prost
denotes the site of profinite 7o (X )-sets as in Example 4.1.10, then the construction of
Lemma 2.2.8 defines a limit-preserving functor 7! : 70(X ) proet — Xprost which re-
spects coverings. Hence, one has an induced map 7 : Shv(Xprost) — Shv(mo(X)prost)
of topoi. This map satisfies:

Lemma4.2.13. — Assume X is qcgs, and let m : Shv(Xproet) — Shv(mo (X )proct) be
as above. Then

1. m*F(U) = F(mo(U)) for any qcqgs U € Xprost and F' € Shv(mo(X)proct)-
2. ™ commutes with limits.

3. 7 s fully faithful, so m.m* ~ id.

4

. identifies Shv(mo (X )prost) with the full subcategory of those G € Shv(Xproet)
such that G(U) = G(V') for any map U — V of qgegs objects in Xproer inducing
an isomorphism on .

Proof. — All schemes appearing in this proof are assumed qcgs. (2) is automatic
from (1). For (1), fix some F' € Shv(mo(X)prost). As any continuous 7o(X)-map
U — S with U € Xprosr and S € mo(X)prost factors canonically through mo(U), the
sheaf 7*F' is the sheafification of the presheaf U — F(mo(U)) on U € Xprost- As F'is
itself a sheaf on 7o (X )pro¢t, it is enough to check: for a surjection U — V in X061,
the map mo(U) — mo(V') is the coequalizer of the two maps mo(U Xy U) — 7mo(U)
in the category of profinite sets (induced by the two projection maps U xy U — U).
For any profinite set S, one has (S ® X )(U) = Map,,,,; (70 (U), S) with notation as in
Example 4.1.9, so the claim follows from the representability of S® X and fpqc descent.
For (3), it suffices to check that m,n*F ~ F for any F' € Shv(m(X)prost), which is
immediate from Lemma 2.2.8 and (2). For (4), by (2), it remains to check that any G
with the property of (4) satisfies G ~ 7*m,G. Given U € Xp,04t, We have a canonical
factorization U — 7~ (mo(U)) — X, where 7~ 1(mo(U)) — X is a pro-(finite étale)
map inducing m(U) — 7o(X) on connected components, while U — 7~ (m(U)) is
an isomorphism on my. Then G(U) = G(n~!(m(U))) by assumption on G, which
proves G = 7*m,.G by (2). O
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Remark 4.2.14. — The conclusion of Lemma 4.2.13 fails for 7 : Shv(Xg) —
Shv(mo(X)et). Indeed, if X is connected, then Shv(mo(X )s¢t) = Set, and 7* coincides
with the “constant sheaf” functor, which is not always limit-preserving.

4.3. The case of a point. — Fix a profinite group G. We indicate how the
definition of the pro-étale site can be adapted to give a site BGpros; of profinite
G-sets. In particular, each topological G-module M defines a sheaf Fy; on BGprost,
and the resulting functor from topological G-modules to abelian sheaves on BGypro¢t
is an embedding with dense image (in the sense of colimits). We use this construction
to study the cohomology theory M +— RI'(BGpro¢t, Far) on G-modules: this theory
is equal to continuous cohomology in many cases of interest, and yet better behaved
in some functorial respects. The definition is:

Definition 4.3.1. — Let BG 06t be the pro-étale site of G, defined as the site of profi-
nite continuous G-sets with covers given by continuous surjections.

For S € BGproet, we use hg € Shv(BGproet) to denote the associated sheaf. Let
G-Spc be the category of topological spaces with a continuous G-action; recall that
G-Spc admits limits and colimits, and the formation of these commutes with passage
to the underlying spaces (and thus the underlying sets). Let G-Spc,, C G-Spc be
the full subcategory of X € G-Spc whose underlying space may be written as a quo-
tient of a disjoint union of compact Hausdorff spaces; we call these spaces compactly
generated. There is a tight connection between these categories and Shv(BGyprost):

Lemma 4.3.2. — Let notation be as above.

1. The association X + Mapeo, g(—, X) gives a functor F_y : G-Spc —
Shv(BGprost ) -

The functor F_y is limit-preserving and faithful.
F =y admats left adjoint L.
F(-y is fully faithful on G-Spec,,.

The essential image of G-Spc,., generates Shv(BGproet) under colimits.

Proof. — The argument of Lemma 4.2.12 shows that any continuous surjection of
profinite sets is a quotient map, which gives the sheaf property required in (1). It
is clear that the resulting functor F_) is limit-preserving. For any X € G-Spc,
one has Fx(G) = X where G € BGproet is the group itself, viewed as a left G-set
via translation; this immediately gives (2). The adjoint functor theorem gives the
existence of L as in (3), but one can also construct it explicitly: the functor hg —
S extends to a unique colimit preserving functor Shv(BGproet) — G-Spc by the
universal property of the presheaf category (as a free cocompletion of BGp,ost) and
the fact that covers in BGpro¢t give quotient maps. In particular, if F' € Shv(BGprost ),
then F' = colimy, hg, where Ir is the category of pairs (S5,s) with S € BGprost
and s € F(S), which gives L(F') = colimz, S. For (4), it is enough to show that
L(Fx) ~ X for any compactly generated X. By the previous construction, one has
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L(TFx) = colimr, S, so we must check that there exists a set I of spaces S; € BGproct
and G-maps s; : S; — X such that L;S; — X is a quotient map. Choose a set [
of compact Hausdorff spaces T; and a quotient map U;7; — X. Then the map
U;T; x G — X induced by the G-action is also a quotient, so we reduce to the case
where X is a compact Hausdorff G-space. Now consider YV := G x 3(X) € BGproét,
where the G-action is defined via g - (h,n) = (gh,n). There is an induced continuous
map f:Y — X via G x B(X) - G x X — X, where the last map is the action.
One checks that f is G-equivariant and surjective. As Y is profinite, this proves (4).
Lastly, (5) is formal as Fg = hg for S € BGprocs- O

Let G-Mod denote the category of continuous G-modules, i.e., topological abelian
groups equipped with a continuous G-action, and let G-Mod., C G-Mod be the full
subcategory of topological G-modules whose underlying space is compactly gener-
ated. The functor F_y restricts to a functor F(_y : G-Mod — Ab(BGpost), and
Lemma 4.3.2 (1)—(4) apply formally to this functor as well. The main non-formal
statement is:

Proposition 4.3.3. — With notation as above, one has:

1. The essential image of F(_y : G-Modcy — Ab(BGproet) generates the target
under colimits.

2. Every N € Ab(BGproet) has a resolution whose terms come from G-Mod.,.

To prove Proposition 4.3.3, we review some topological group theory. For a topo-
logical space X, write AX for the free topological abelian group on X, defined by
the obvious universal property. One may show that AX is abstractly isomorphic to
the free abelian group on the set X, see [AT08, Theorem 7.1.7]. In particular, one
has a reduced length associated to each f € AX, defined as the sum of the absolute
values of the coefficients. Let A<y X C AX be the subset of words of length < N;
one checks that this is a closed subspace, see [AT08, Theorem 7.1.13]. Moreover:

Theorem 4.3.4 (Graev). — If X is a compact topological space, then AX =
colim A¢ny X as spaces.

Proof. — See Theorem [ATO08, Theorem 7.4.1]. O
We use this to prove.

Lemma 4.3.5. — Fix a compact Hausdorff space S, an extremally disconnected profi-
nite set T, and a continuous map f: T — AS. Then there exists a clopen decompo-
sition T = U;T; such that f|r, is a Z-linear combination of continuous maps T; — S.

Proof. — Lemma 4.3.7 and Theorem 4.3.4 imply that f factors through some A¢nS.
Now consider the profinite set S=5u {0} |_| S and the induced map ¢ : SN Acn
defined by viewing S as the subspace (1-S)u{o}tu(-=1-95) c AS and using the
group law. This map is continuous and surjective, and all spaces in sight are compact
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Hausdorff. By extremal disconnectedness, there is a lift T — SN ; one checks that
this implies the desired claim. ]

We can now identify the free abelian sheaf Z; ¢ for any S € BGprost:
Lemma4.3.6. — If S € BGprost, then Zp, ~ Fag.

Proof. — One clearly has Fg = hg, so there is a natural map ¢ : Zp, — Fag of
abelian sheaves induced by Fs — Fas. We will check ¢(T") is an isomorphism for T’
covering BGproet- Let F' @ xpr06r — BGproér be a left adjoint to the forgetful functor
BGpro¢t — *pro¢t- Then it is enough to check ¢(F(T')) is an isomorphism for T
extremally disconnected. Unwinding definitions, this is exactly Lemma 4.3.5. O

Proposition 4.3.3 falls out quickly:

Proof of Proposition 4.3.3. — Theorem 4.3.4 shows that AS is compactly generated
for any S € BGprost- Now Lemma 4.3.6 gives (1) as the collection {Zj,,} generates
Ab(BGypro¢t) under colimits. Finally, (2) is formal from (1). O

The next lemma was used above, and will be useful later.

Lemma 4.3.7. — Fix a countable tower X1 C Xo C --- C X, C ... of closed immer-
sions of Hausdorff topological spaces, and let X = colim; X;. Then Map_, (S, X) =
colim Map,.. (S, X;).

Proof. — We must show each f : S — X factors through some X;. Towards con-
tradiction, assume there exists a map f : S — X with f(S) ¢ X; for all 4. After
reindexing, we may assume that there exist x; € S such that f(x;) € X; — X;_1.
These points give a map « : SN — S via i — x;. After replacing f with f o,
we may assume S = ON; set T = {f(i)|i € N}. Now pick any z € X —T. Then
x € X, for some j. For i > j, we may inductively construct open neighourhoods
x € U; C X; such that U; NT = &, and U;11 N X; = U;; here we use that X; N'T
is finite. The union U = U;U; C X is an open neighbourhood of x € X that misses
T. Hence, f~Y(U)NN = @, so f~1(U) = @ by density of N C S. Varying over all
x € X — T then shows that f(S) =T. Now one checks that 7' C X is discrete: any
open neighbourhood 1 € U; C X; can be inductively extended to open neighbour-
hoods 1 € U; C X, such that U;11 N X; = U; and x; ¢ U;. Then T must be finite as
S is compact, which is a contradiction. O

We now study the cohomology theory M +— RI'(BGprost, Far) on G-Mod. There
is a natural transformation connecting it to continuous cohomology:

Lemma4.3.8. — For any M € G-Mod, there is a natural map ®p; : Rl cont (G, M) —
I{F([))(;proéta3:'1\4)-
Proof. — By [Sch13, Proposition 3.7], one has RI'cont (G, M) = RI'(BG!. weFnr),

proét?

where BGIDroét is defined as in Remark 4.1.11, and p : Shv(BGprost) — Shv(BG.

proét)
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the natural map; one then defines ¢ps via pullback as p*p, ~ id on D(BGproet)
(simply because BGypyogt is finer topology than BG4 on the same category). [

The map ®ps is an isomorphism for a fairly large collection of modules:

Lemma 4.3.9. — Let C C G-Mod be the full subcategory of all M € G-Mod for which
R'u,Fn = 0 for all i > 0, where p : Shv(BGprost) — Shv(BG),,o4) is the natural
map.
1. For all M € @, the map ®as : Rl cont (G, M) — RI'(BGproet, Far) is an isomor-
phism.
2. If M € G-Mod is discrete, then M € C.

3. If M = colim M; is a sequential colimit of Hausdorff M; € C along closed
immersions, then M € C.

4. If M = lim M; is a sequential limit of M; € € along profinitely split M;1 1 — M;,
then M € C.

5. If M = lim M; is a sequential limit of M; € C along B-epimorphisms M;+1 — M;
with kernel K; = ker(M;+1 — M;) € C, then M € C.

Here a quotient map M — N of topological spaces is said to be profinitely split
if it admits sections over any map K — N with K profinite. It is said to be a
B-epimorphism if for every map g : K — N with K compact Hausdorff, there is a
surjection K/ — K with K’ compact Hausdorff, and a lift K’ — M equivalently, for
any map [(X) — N where X is discrete, there is a lift 5(X) — M. This property is
automatic if M — N is a quotient map, and the kernel is compact Hausdorff.

Proof. — Parts (1) and (2) are clear. For (3), note that Fy; = colim Fy;, by Lemma
4.3.7, so the result follows as Ry, commutes with filtered colimits. For parts (4) and
(5), note that if M;y1 — M; is a S-epimorphism, then Fpy, , — Ty, is surjective on
BGprost- By repleteness, we get Iy = lim Fyy, = Rlim Fyy,. Applying Ry, and using
repleteness of BG;rOét, we have to show that R lim(u.Fpy,) = 0. If all My — M;
are profinitely split, then all p.Fnr,,, — pu«Fr, are surjective, so the result follows
from repleteness of BG|, 4. If K; = ker(M;41 — M;) € C, then on applying Ru. to
the sequence

0—F K, — F M1
we find that p.Fps,,, — pF ), is surjective, so again the result follows from replete-
ness of BG! O

proét-

— Iy, — 0,

Remark 4.3.10. — The category C of Lemma 4.3.9 includes many standard Galois
modules occurring in arithmetic geometry obtained by iterations of completions and

localisations applied to discrete modules. For example, when G = Gal(Qp /Qp), the
G-module Bgg is such an object.

We now indicate one respect in which RI'(BGprost 97(_)) behaves better than con-
tinuous cohomology: one gets long exact sequences in cohomology with fewer con-
straints.
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Lemma4.3.11. — Fiz an algebraically short exact sequence 0 — M’ % M LNy VN
in G-Mod. Assume b is a 3-epimorphism, and a realises M’ as a subspace of M. Then
there is an induced long exact sequence on applying H*(BGproct, ”J"(_)).

Proof. — 1t is enough to show that
0—)?]\4/ —)?M—>3FM// — 0

is exact. Exactness on the right results from the assumption on b, exactness on the
left is obvious from the injectivity of M’ < M, and exactness in the middle comes
from the assumption on a. ]

Remark 4.3.12. — Considerations of the discrete topology show that some hypothesis
must be imposed in Lemma 4.3.11. The assumption used above is fairly weak: it is
automatic if M’ is compact Hausdorfl. In contrast, in continuous cohomology, one
demands existence of sections after base change to all profinite sets over M.

5. Relations with the étale topology

Fix a scheme X. Since an étale map is also a weakly étale map, we obtain a

morphism of topoi
v Shv(Xprost) — Shv(Xet).

The main goal of this section is to describe its behaviour at the level of derived cate-
gories. The pullback and pushforward along v, together with the resulting semiorthog-
onal decompositions of complexes on X 04, are discussed in §5.1 and §5.2. This is
used to describe the left-completion of D(X¢;) in terms of D(Xprost) in §5.3. Some
elementary remarks on the functoriality of v in X are recorded in §5.4. Finally, we
describe Ekedahl’s category of “adic” complexes [Eke90] in terms of D(Xproet) in §5.5.
We rigorously adhere to the derived convention: the functors v* and v, , when applied
to complexes, are understood to be derived.

5.1. The pullback. — We begin with the pullback at the level of sheaves of sets:

Lemma5.1.1. — For F € Shv(Xg) and U € X;ﬁ)ét with a presentation U = lim; U;,
one has v*F(U) = colim; F(U;).

Proof. — The problem is local on X, so we may assume that X = Spec(A) is affine.
In that case, by Remark 4.2.5, the site X046t is equivalent to the site S given by ind-
étale A-algebras B = colim B;, with covers given by faithfully flat maps. The pullback
F' of F to S as a presheaf is given by F’(B) = colim F'(B;). It thus suffices to check
that F” is a sheaf; we will do this using Lemma 4.2.6. First, note that F’ is a Zariski
sheaf since any finite collection of quasicompact open subschemes of SpecB come via
pullback from some SpecB;. It remains to show that F’ satisfies the sheaf axiom for
every faithfully flat ind-étale map B — C of ind-étale A-algebras. If B — C'is actually
étale, then it arises via base change from some faithfully flat étale map B; — C}, so
the claim follows as F'is a sheaf. In general, write C' = colim C; as a filtered colimit
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of étale B-algebras C, necessarily faithfully flat. Then F'(C) = colim; F'(C;). The
sheaf axiom for B — C now follows by taking filtered colimits. O

A first consequence of the above formula is that v* is fully faithful. In fact, we
have:

Lemma5.1.2. — The pullback v* : Shv(X¢) — Shv(Xproet) @s fully faithful. Its es-
sential image consists exactly of those sheaves F with F(U) = colim; F(U;) for any
U e X with presentation U = lim; Uj;.

proét

Proof. — Lemma 5.1.1 shows that F' ~ v, v*F for any F' € Shv(Xg), which formally
implies that v* is fully faithful. For the second part, fix some G € Shv(Xprost)
satisfying the condition of the lemma. Then Lemma 5.1.1 (together with Lemma 4.2.4)
shows that v*v,G — G is an isomorphism, which proves the claim. ]

Definition 5.1.3. — A sheaf F' € Shv(Xproet) 15 called classical if it lies in the essential
image of v* : Shv(X¢t) — Shv(Xproet)-

In particular, F' is classical if and only if v*v, F — F' is an isomorphism. We need
a simple lemma on recognizing classical sheaves.

Lemma5.14. — Let F be a sheaf on Xproer. Assume that for some pro-étale cover
{Yi - X}, F

y, 1§ classical. Then F' s classical.

Proof. — We may assume that X = SpecA is affine, that there is only one Y =
Y; = SpecB, with A — B ind-étale, B = colim; B;, with A — B; étale. We need to
check that for any ind-étale A-algebra C' = colim; C;, we have F'(C) = colim; F(C}).
Now consider the following diagram, expressing the sheaf property for C — B ® C,
resp. C; — B ® C}.

F(CO) F(C®B) ——=F(C® B® B)

l | |

colim F'(Cj) — colim; F'(C; ® B) —— colim; F(C; ® B ® B)

The second and third vertical arrows are isomorphisms as F|gpecp is classical. Thus,
the first vertical arrow is an isomorphism as well, as desired. O

As an example, let us show how this implies that the category of local systems does
not change under passage from X¢; to Xproet-

Corollary 5.1.5. — Let R be a discrete ring. Let Locx, (R) be the category of
R-modules Lgy on Xey which are locally free of finite rank. Similarly, let Locx,,, ., (R)
be the category of R-modules Lprost 0n Xprost which are locally free of finite rank.

Then v* defines an equivalence of categories Locx,, (R) = Locx,,.., (R).

In the following, we denote either category by Locx (R).

ASTERISQUE 369



THE PRO-ETALE TOPOLOGY FOR SCHEMES 147

Proof. — If L& € Locx,, (R), then clearly Lpose = v*Lg € Locx,,., (R);
as v* is fully faithful, it remains to verify essential surjectivity. Thus, take
Lprost € Locx,. .. (R). As Lppos is locally free of finite rank, it is in particu-

proét

lar locally classical, thus classical by Lemma 5.1.4. Thus, Lp¢t = v*Lg for
some sheaf Lg of R-modules on X¢;. Assume that U € ngf)ét with presentation

U = limU; is such that Lyest|r = R™|y. The isomorphism is given by n elements of
(Lprost)(U) = colim; Leg(U;). This shows that the isomorphism Lpyost|v = R™|v is
already defined over some U;, thus Lg € Locx,, (R), as desired. O

Next, we pass to derived categories.

Corollary 5.1.6. — For any K € D%V (Xg), the adjunction map K — v.w*K is
an equivalence. Moreover, if U € ngf)ét with presentation U = lim; U;, then
RI'(U,v*K) = colim; RI'(U;, K).

Proof. — The first part follows from the second part by checking it on sections using
Lemma 4.2.4, i.e., by applying RI'(V,—) to the map K — v, v*K for each affine
V € Xg. For the second part, the collection of all K € Dt (X¢;) for which the claim
is true forms a triangulated category stable under filtered colimits. Hence, it suffices
to prove the claim for K € Ab(Xg;,) C DT (Xg). For such K, since we already know
the result on H° by Lemma 5.1.1, it suffices to prove: HP(U,v*I) = 0 for I € Ab(Xet)
injective, p > 0,and U € ngfoét. By [SGAT72b, Proposition V.4.3], it suffices to prove
that HP(U,v*I) = 0 for the same data. Choose a presentation U = lim; U; for some
cofiltered category I. By Theorem 2.3.4, a cofinal collection of covers of U in Xpo¢t
is obtained by taking cofiltered limits of affine étale covers obtained via base change
from some U;. Using Lemma 5.1.1 again, we can write

0P (U, F) = colime<I(V) —= I(V %, V) ZE I(V x0, V xp, V) =£ )

where the colimit is computed over (the opposite of) the category of pairs (i, V') where
i € I, and V — U, is an affine étale cover. For a fixed i, the corresponding colimit
has vanishing higher cohomology since I|y, is injective in Ab(Uj ¢;), and hence has
trivial higher Cech cohomology. The claim follows as filtered colimits are exact. [

Again, we will refer to objects in the essential image of v* as classical, and
Lemma 5.1.4 extends to bounded-below derived categories with the same proof.

Remark 5.1.7. — The argument used to prove Corollary 5.1.6 also shows: if U &
nggét is w-strictly local, then HP(U,v*F) = 0 for all ' € Ab(Xg4) and p > 0.
Indeed, for such U, any affine étale cover V' — U has a section, so the corresponding

Cech nerve is homotopy-equivalent to U as a simplicial scheme.

Remark5.1.8. — If K € D(Xg) is an unbounded complex, then the formula in
Corollary 5.1.6 is not true. Instead, to describe v*K, first observe that v*K ~

Rlimv*727"K as Shv(Xproet) is replete and v* commutes with Postnikov trunca-
tions. Hence, R['(Y,v*K) ~ Rlim colim; RT(Y;, 72 "K) for any Y € X% = with a

proét
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presentation Y = lim Y;. Moreover, since v, commutes with arbitrary limits, we also
see that v,v*K ~ Rlim72> K. For an explicit example, we remark that Exam-
ple 3.3.4 can be adapted to exhibit the failure of id — v,* being an equivalence.

An abelian consequence is:

Corollary 5.1.9. — The pullback v* : Ab(X¢) — Ab(Xproet) tnduces an equivalence
on Ext" for all i. In particular, v*(Ab(Xe)) C Ab(Xprost) s a Serre subcategory.

Proof. — Let € C Ab(Xs) be the full subcategory of sheaves F' for which
Ext'(F, —) ~ Ext'(v*(F),v*(—)) for all i. Then € contains all direct sums of sheaves
of the form Zy for U € X by Corollary 5.1.6. Since any F' € Ab(X¢) admits a
surjection from such a direct sum, the claim follows by dimension shifting,. O

5.2. The pushforward. — Our goal is to describe the pushforward v,
D(Xproet) — D(Xg) and the resulting decomposition of D(Xprest). To do so,
it is convenient to isolate the kernel of v,:

Definition 5.2.1. — A complex L € D(Xproet) is parasitic if RC(v~=1U,L) = 0 for
any U € Xg. Write Dp(Xprost) C D(Xprost) for the full subcategory of parasitic
complezxes, D; (Xprost) for bounded below parasitics, etc.

The key example is:

Example5.2.2. — Let {F,} € Fun(IN°®°, Ab(Xs)) be a projective system of
sheaves with surjective transition maps. Set K = RlimF,, € D(Xeg), and
K" = Rlimv*(F,) € D(Xproet). Then K’ ~ limv*(F,) as Xyt 1S replete.
The natural map v*K — K’ has a parasitic cone since v,v*K ~ K = Rlim F,, ~
Rlimv,v*F,, ~ v,K’'. For example, when X = Spec(Q), the cone of the map
v*(Rlim pp,) — lim gy, is non-zero and parasitic.

The basic structural properties of D, (Xproet) are:

Lemma 5.2.3. — The following are true:
1. Dp(Xprost) is the kernel of vy : D(Xproet) — D(Xat)-
2. Dp(Xprost) 15 a thick triangulated subcategory of D(Xproet)-
3. The inclusion i : Dp(Xproet) = D(Xproet) has a left adjoint L.

4. The adjunction L ot — id is an equivalence.

Sketches of proof

1. This follows from the adjunction between r* and v, together with the fact
that D(X¢) is generated under homotopy-colimits by sheaves of the form Zg
for U € Xét.

2. Clear.
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3. Consider the functor M : D(Xprost) — D(Xprost) defined via M(K) =
cok(v*v, K — K). There is a map id — M, and hence a tower id — M —
M? — M3 — ... , where M" is the n-fold composition of M with itself. We
set L @ D(Xproet) = D(Xproet) to be the (filtered) colimit of this tower, i.e.,
L(K) = M*(K) := colim, M™(K). We will show that L(K) is parasitic for
any K, and that the induced functor L : D(Xproet) — Dp(Xprogt) is a left
adjoint to i. Choose any U € Xg. As U is qcqs, we have
RI(v~'U, L(K)) ~ RI'(v~'U, colim M™(K)) = colim RI'(v~'U, M™(K)).
Hence, to show that L takes on parasitic values, it suffices to show that

RI(v'U,K) — RI'(v U, M(K))

is the 0 map for any K € D(Xpr06t). Since v is a map of a topoi, we have a
factorisation
-1
RI(v™'U,K) ~RT(U,v. K) Y= RI' (v U, v*v, K) — RT(v™'U, K)
of the identity map on RI'(v~!U,K). The composition RI'(v~'U,K) —
RI(v~'U, M(K)) is then 0 by definition of M (K), which proves that L(K) is
parasitic. To show that the induced functor L : D(Xprost) — Dp(Xproet) is a
left adjoint to the inclusion, note first that for any K, P € D(Xproet) with P
parasitic, one has Hom(v*v,. K, P) = Hom(v.K,v.P) = 0 by (1). The exact
triangle defining M (K') shows
Hom(K, P) ~ Hom(M (K), P) ~ Hom(M?(K), P) ~ --- ~ Hom(M™(K), P)
for any n > 0. Taking limits then shows

Hom(K, P) = limHom(M"(K), P) = Hom(collim M"(K),P)=Hom(L(K), P),

which is the desired adjointness.

4. This follows from (1) and the construction of L given in (3): for any parasitic

P € D(Xprost), one has P >~ M(P) ~ M"™(P) ~ colim,, M"(P) ~ L(P) since

v, P =0. O

Remark 5.2.4. — In Lemma 5.2.3, it is important to work at the derived level: the full

subcategory Ab,(Xprost) of all F' € Ab(Xprest) with F(v~1U) = 0 for any U € X

is not a Serre subcategory of Ab(Xp,0st). For example, let X = Spec(Q) and set
2@(1) = lim ptyn € Ab(Xpro¢t). Then there is an exact sequence

1— Zo(1) =5 Zp(1) —> g — 1
in Ab(Xproct). One easily checks that Zy(1) € Ab,(Xproct ), while 1 & Aby,(Xprost)-

Remark 5.2.5. — The localisation functor L : D(Xproet) — Dp(Xprost) from
Lemma 5.2.3 admits a particularly simple description when restricted to bounded
below complexes: L(K) ~ cok(v*v, K — K) for any K € D" (Xpr06t). Indeed, by
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the proof of Lemma 5.2.3 (3), it suffices to show that M(K) ~ M?(K) for such a
complex K; this follows from the formula v*v,v*v, K ~ v*v, K, which comes from
Corollary 5.1.6.

We can now show that D (Xg;) and D;’ (Xprost) give a semiorthogonal decompo-
sition for DT (X proet)-

Proposition 5.2.6
v L
Consider the adjoints DV (Xproet) = Dt (Xg) and D (Xprost) = DT (Xproct) -

1.
2.
3.

*

7

v* is fully faithful.

The adjunction id — v,

* 4s an equivalence.

The essential image of v* is exactly those K € DV (Xprost) whose cohomology
sheaves are in v*(Ab(Xet)).

The pushforward v, realises DT (X¢) as the Verdier quotient of DT (Xprost) by
D (Xprost)-

The map L realises D;(Xproét) as the Verdier quotient of DV (Xprost) by
v* (D1 (Xet))-

Sketches of proof

1.
2.
3.

This follows formally from Corollary 5.1.6.
This follows from (1) by Yoneda.

Let C C D" (Xprost) be the full subcategory of complexes whose cohomology
sheaves lie in v*(Ab(X¢)); by Corollary 5.1.9, this is a triangulated subcat-
egory of DT (Xprost) closed under filtered colimits. Moreover, chasing trian-
gles and truncations characterises € as the smallest triangulated subcategory
of DT (Xproet) closed under filtered colimits that contains v*(Ab(Xs;)). Now
v*(D1(Xgt)) C € as v* is exact. Moreover, by (1) and left-adjointness of v*, we
see that v*(DT(Xg)) is a triangulated subcategory of DV (Xp0et) closed under
filtered colimits. Since v*(D* (X)) clearly contains v*(Ab(Xg)), the claim
follows.

By Lemma 5.2.7, we want v, to admit a fully faithful left adjoint; this is what (1)
says.

. This follows from Lemma 5.2.3 and Lemma 5.2.7 provided v* (D™ (X)) is the

kernel of L. By Remark 5.2.5, the kernel of L is exactly those K with v*v, K ~
K, so the claim follows using Corollary 5.1.6. O

The following observation was used above:

Lemma5.2.7. — Let L : C1 — G2 be a triangulated functor between triangulated cate-
gories. If L admits a fully faithful left or right adjoint i, then L is a Verdier quotient
of C1 by ker(L).
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Proof. — By symmetry, we may assume L is a left adjoint. Given a triangulated
functor F' : €; — D which carries ker(L) to 0, we will show that the natural map
F — FoiolL is an equivalence. First, adjunction shows Loé ~ id via the natural map
as ¢ is fully faithful. Hence, for each K € C;, we get a triangle K/ — K — (io L)(K)
such that L(K’) = 0. This shows that F/(K) ~ (F oio L)(K) for all such F, proving
the claim. ]

Remark 5.2.8. — If we assume that Xg; is locally of finite cohomological dimension,
then D(Xg) is left-complete. Since D(X 06t ) is also left-complete, one can show that
v* : D(Xst) = D(Xprogt) is fully faithful by reduction to the bounded below case. In
fact, every statement in Proposition 5.2.6 extends to the unbounded setting in this
case.

At the unbounded level, the pullback v* : D(X¢) = D(Xprost) is not fully faith-
ful in general, as explained in Remark 5.1.8, so none of the arguments in Proposi-
tion 5.2.6 apply. Nevertheless, we can still prove a semiorthogonal decomposition as in
Proposition 5.2.6 at the expense of replacing D(X¢;) with the smallest triangulated
subcategory D’ C D(Xprost) that contains v*(D(X¢)) and is closed under filtered
colimits:

Proposition 5.2.9. — Let D' C D(Xpr06t) be as above. Then
1. If v* is fully faithful, then v* induces an equivalence D(Xe¢) ~ D’.
2. Gwen K € D(Xprost), one has K € D' if and only if Hom(K, K") = 0 for any
K' € Dp(Xprost)-
3. The inclusion i : D' — D admits a right adjoint N : D(Xprost) — D' such that
N oi~id.
4. The localisation L realises Dp(Xprost) as the Verdier quotient of D(Xprost)
by D'.
5. The map N realises D' as the Verdier quotient of D(Xprost) by Dp(Xprost)-
Sketches of proof

1. If v* is fully faithful, then K ~ v,v*K ~ Rlim72 "K (where the last iso-
morphism is from Remark 5.1.8). The claim now follows by reduction to the
bounded case, as in Remark 5.2.8.

2. Since v*(D(Xs;)) is left-orthogonal to Dp(Xprost), so is D'. For the converse
direction, consider the functors N; : D(Xprost) — D(Xprost) defined wvia
Ni(K) = ker(K — M*(K)) where M (K) = cok(v*v. K — K) (as in the proof
of Lemma 5.2.3). The tower id — M — M? — M3 — ... gives rise to a tower
Ny — Ny — N3 — --- — id with N;;; being an extension of v*v,M® by Nj;
set N = colim; N;. The description in terms of extensions shows N;(K) € D’
for all 7, and hence N € D’ as D’ is closed under filtered colimits. Moreover,
setting L = colim; M* gives an exact triangle N — id — L of functors. As
in Lemma 5.2.3, L realises the parasitic localisation D(Xproet) — Dp(Xproét)-
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Hence, if Hom(K, K') = 0 for every parasitic K’, then K ~ N(K) € D’ by the
previous triangle.

3. One checks that the functor N : D(Xproet) — D’ constructed in (2) does the
job (using the exact triangle N — id — L and the fact that Hom(D’, L(K)) =0
for all K by (2)).

4. This follows from Lemma 5.2.7 if we could show that D’ is the kernel of L. For
this, one simply uses the exact triangle N — id — L as in (2).

5. This is proven exactly like (4). O

5.3. Realising the left-completion of D(Xg;) via the pro-étale site. — Our
goal is to identify the left-completion B(Xét) with a certain subcategory of D(Xprost)
using the analysis of the previous sections. The starting point is the following obser-
vation: by Proposition 3.3.3, the pullback v* : D(X¢) — D(Xprost) factors through
7 : D(Xe) — D(Xe). To go further, we isolate a subcategory of D(Xprost) that
contains the image of v*:

Definition 5.3.1. — Let D..(Xproet) be the full subcategory of D(Xprost) spanned by
complezes whose cohomology sheaves lie in v*(Ab(Xest)); we write DY, (Xproet) for the
bounded below objects, etc.

Since v* : D(X¢t) = D(Xprost) 1s exact, it factors through D..(Xproet), and hence
we get a functor D(X¢;) — Dee(Xprost). Our main observation is that this functor is
an equivalence. More precisely:

Proposition 5.3.2. — There is an adjunction De.(Xproet) V<_C—C> D(Xet) induced by v,
and v*. This adjunction is isomorphic to the left—completiocﬁ’*adjunction D(X¢t) <1_—>
D(Xg). In particular, Dee(Xproet) =~ D(Xest). R lim

Proof. — The existence of the adjunction is formal from the following: (a) v*
carries D(Xe¢t) t0 Dee(Xprost), and (b) Dee(Xprost) < D(Xprost) is fully faithful.
Proposition 5.2.6 immediately implies that v*, induces an equivalence DT (Xg;) =~
D (Xproet). To extend to the unbounded setting, observe that K € Do(Xproct)
if and only if 72 "K € D..(Xprost) by the left-completeness of D(Xppost) and
the exactness of v*. This lets us define functors u : E(Xé ) = Dee(Xprost) and
v ¢ Dee(Xprost) — E(Xét) vie p({K,}) = Rlimv*(K,) and v(K) = {v.7>"K};
one can check that y and v realise the desired mutually inverse equivalences. U

Since D’ is the smallest subcategory of D(Xproet) that contains v*D(Xe;) and is
closed under filtered colimits, one has D’ C Dec(Xpro¢t). It is natural to ask how close
this functor is to being an equivalence. One can show that if D(X) is left-complete,
then D(X¢;) >~ D' =~ Dec(Xprost); we expect that D' ~ De.(Xprost) fails without
left-completeness, but do not have an example.
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5.4. Functoriality. — We study the variation of v : Shv(Xproet) — Shv(Xe;) with
X. For notational clarity, we often write vx instead of v.

Lemma54.1. — A morphism f : X — Y of schemes induces a map fprost
Shv(Xprost) — Shv(Yprest) of topoi with f* given by pullback on representable objects.
The induced diagram

ShV(Xproét) % Shv Xet

l fproét l/ f

ShV( proet) H ShV( et

commutes. In particular, for F' either in Shv(Ye) or D(Yet), there is an isomorphism
fproét © VY(F) — VX o ét(F)'

Proof. — Since all maps in sight are induced by morphisms of sites, this follows simply
by the definition of pullback. O

Lemma54.2. — Let f : X — Y be a universal homeomorphism of schemes, i.e.,
f is universally bijective and integral. Then f. : Shv(Xproet) — Shv(Yproet) is an
equivalence.

Proof. — The claim is local on Y, so we may Y and X are affine. By Theorem 2.3.4,
we can identify Shv(Y},0¢t) with the topos of sheaves on the site opposite to the cat-
egory of ind-étale O(Y)-algebras with covers generated by faithfully flat maps and
Zariski covers, and likewise for X. Since f~! identifies X4 with Yz while preserv-
ing affine objects (by integrality) and covers, the claim follows from the topological
invariance of the usual étale site. O

Lemma54.3. — Fix a qgeqgs map f:Y — X of schemes and F either in Shv(Yz) or
D+ (Yg). Then the natural map

Vy © fet,« (F') — forost,s o Vx (F)
s an equivalence.

Proof. — We first handle F' € Shv(Yz;). The claim is local on X, so we may assume
X is affine. First, consider the case where Y is also affine. Choose some U & Ypiﬂoet
with presentation U = lim; U;. Then Lemma 5.1.1 shows

vy o far«(F)(U) = colim F(f~1U5;).

As f7U e Yyt oroét with presentation f~!U = lim; f ~'U;, one concludes by reapplying
Lemma 5.1.1. For not necessarily affine but separated and quasicompact Y, the same
argument shows that the claim is true for all F' € Shv(Y;) obtained as pushforwards
from an affine open of Y. Since the collection of all F' satisfying the above conclusion
is stable under finite limits, a Mayer-Vietoris argument shows that the claim is true
for all F' € Shv(Y) with Y quasicompact and separated. Repeating the argument
(and using the separated case) then gives the claim for all qeqs Y. For F' € DT (Xg),
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the same argument applies using Corollary 5.1.6 instead of Lemma 5.1.1 (with finite
limits replaced by finite homotopy-limits). O

Remark 54.4. — Lemma 5.4.3 does not apply to unbounded complexes. Any scheme
X' with D(X/,) not left-complete (see Remark 3.3.5) gives a counterexample as fol-
lows. Choose K € D(X},) for which K % Rlim72 "K. Then there is an X € X},
for which RT'(X, K) % RI'(X,Rlim 72 "K) ~ RI'(Xprest, v*K) (here we use Re-
mark 5.1.8). The map X — Spec(Z) with F' = K|x gives the desired counterexample.

Remark 54.5. — One reason to prefer the pro-étale topology to the fpqc topology
is that the analogue of Lemma 5.4.3 fails for the latter: étale pushforwards do not
commute with arbitrary base change.

Lemma 5.4.3 and the repleteness of the pro-étale topology let us access pushfor-
wards of unbounded complexes quite easily; as pointed out by Brian Conrad, a similar
statement can also be shown for D(Xg;) using Hartshorne’s formalism of “way-out”
functors.

Lemma54.6. — Let f : X — Y be a map of qcqs schemes. Assume f,
Mod(Xet, F') — Mod(Yat, F') has cohomological dimension < d for a ring F. Then
fe : D(Xproets F) = D(Yprost, F) carries DSF(Xprost, F) to DSFFIHY(Virost, F).

Proof. — Fix K € DSF (Xprost). Then K =~ Rlim 727 "K by repleteness, so
f+K ~ Rlim f,72""K. Lemma 5.4.3 and the assumption on f show f,7> "K €
DR 4(Yr06t). As Rlim has cohomological dimension < 1 by repleteness, half of the
claim follows. It remains to check that H'(f.K) € v*Ab(Yg). For this, observe that,
for fixed i, the projective system {H(f.7> " K)} is essentially constant: for n > 0,
the map f, 72~ ("TDK — f,72~"K induces an isomorphism on H’ by assumption
on f. By repleteness, this proves H!(f.K) ~ H(f,7>""K) for n > 0, which is
enough by Lemma 5.4.3. O

5.5. Relation with Ekedahl’s theory. — In this section, we fix a noetherian ring
R complete for the topology defined by an ideal m C R. For this data, we follow the
notation of §3.4 with X = Shv(Xpr0¢t). We use here the following (slight variations
on) assumptions introduced by Ekedahl, [Eke90].

Definition 5.5.1

(A) There is an integer N and a set of generators Y;, Y; € X, of Xet, such that
for all R/m-modules M on X¢, H"(Y;, M) =0 forn > N.

(B) The ideal m is reqular, and the R/m-module m™/m"™*! has finite flat dimension
bounded independently of n.

Here, condition (A) agrees with Ekedahl’s condition (A), but condition (B) may be
slightly stronger than Ekedahl’s condition (B). By Proposition 3.3.7 (2), condition (A)
ensures that D(Xg;, R/m) is left-complete, as are all D(X¢, R/m™). Ekedahl considers
the following category.
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Definition 5.5.2. — If condition (A) is fulfilled, let x = —, if condition (B) is fulfilled,
let x = +, and if condition (A) and (B) are fulfilled, let * be empty. Define D}, (X, R)
as the full subcategory of D*(XY", Re) spanned by projective systems {M,} whose
transition maps My, Qg jmn R/m"~1 — M, 1 are isomorphisms for all n.

In the pro-étale world, limits behave better, so we can define the following analogue:

~

De‘ﬁniﬁon 553 — D@ﬁne DEk(Xproét, R) C Dcomp(Xproét7 ﬁ) as the full SUbCCUf@gOT’y
of complexes K satisfying K@z R/m € Dee(Xprogt), 1., H (K ®zR/m) € v*Ab(Xet)

foralli. If x € {+, —, b}, let D} (Xprosts R) C DEr(Xprost, R) be the full subcategory
with corresponding boundedness assumptions.

The main comparison is:

Proposition 5.54. — If condition (A) is fulfilled, let x = —, if condition (B) is fulfilled,
let x = +, and if condition (A) and (B) are fulfilled, let x be empty. There is a natural
equivalence D7y (Xproet, R) ~ Dy (Xat, R).

Proof. — Assume first that condition (A) is satisfied. By Lemma 3.5.7 (iv), we

~

have D_ .. (Xproet, B) ~ D_, (XNOp R,). The full subcategory Dy, (Xprost, R)

comp comp proét’ — e
consists of those {K,} € Dc_omp(XSZZth-) for which K,, € D_ (Xprost, R/m™)
for all n, as follows easily by induction on n. Under condition (A), D(X¢, R/m™)
is left-complete, so D™ (X¢t, R/m™) =2 D (Xproet, R/m™). This gives the result.

Now assume condition (B). Thus, there exists N € N such that if K €
DiZ(Xproét, R) for some k, then K ®7 R/m" € DZF=N (X 06t) for all n. Hence, by
Lemma 3.5.7, we may view ng_(Xproét,ﬁ) as the full subcategory of
D p (XD 0si, Re) spanned by those {K,} with K, € Df.(Xpwost). Moreover, by
Proposition 5.2.6, v* induces an equivalence DT (X¢) ~ DJ.(Xprost). The desired
equivalence is then induced by {M,,} — {v*M,} and {K,,} — {v.K,}.

If condition (A) and (B) are satisfied, simply combine the two arguments. O

5.6. Relation with Jannsen’s theory. — Fix a scheme X. In [Jan88, §3], one
finds the following definition:

tont (X, {Fn}) of X with co-
efficients in a pro-system { F,,} of abelian sheaves on Xg is the value of the i-th derived
functor of the functor Ab(Xe)N — Ab given by {F,} — H°(Xg, lim F),).

In general, the groups HY . (Xst, {Fn}) and H'(Xg,lim F,,) are distinct, even for
the projective system {Z/¢"}; the difference is explained by the derivatives of the

inverse limit functor. As inverse limits are well-behaved in the pro-étale world, this
problem disappears, and we obtain:

Definition 5.6.1. — The continuous étale cohomology H!

Proposition 5.6.2. — Let {F,} is a pro-system of abelian sheaves on Xg with surjec-
tive transition maps. Then there is a canonical identification

H! (Xs, {Fn}) ~ Hi(XprOét,].im V*Ey,).

cont
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Proof. — Write RT cont (Xet, {Fn}) := RI'(X¢t, Rlim F},), so HY(RT cont (Xet, {Fn})) =~
Hclont
sition of derived functors. We then have

RT cont (Xet, {Fr}) ~ Rlim RI'( Xy, Fp)
~ RUIm RI'(Xprost, v* Fn) o R (Xprogt, RIim v* F,);

here the first and last equality use the commutation of RI' and Rlim, while the
second equality comes from the boundedness of F,, € D(Xg). The assumption on
{F,} ensures that Rlim F;, ~ lim F}, by the repleteness of X .¢;, which proves the
claim. O

(Xe¢t, {Fn}) as defined above by the Grothendieck spectral sequence for compo-

6. Constructible sheaves

This long section studies constructible sheaves, with the ultimate goal of giving
a different perspective on the notion of a Q,-sheaf. We begin by studying in §6.1
and §6.2 the basic functoriality of pushforward and pullback along locally closed im-
mersions; the main novelty here is that pullback along a closed immersion is limit-
and colimit-preserving, contrary to the classical story. Next, we recall the theory of
constructible complexes in the étale topology in §6.3. We alert the reader that our
definition of constructibility is more natural from the derived perspective, but not the
usual one: a constructible complex on a geometric point is the same thing as a perfect
complex, see Remark 6.3.2. In particular, the truncation operators 7>, 7<, do not
in general preserve constructibility. As a globalisation of this remark, we detour in
§6.4 to prove that constructible complexes are the same as compact objects under a
suitable finiteness constraint; this material is surely standard, but not easy to find in
the literature. We then introduce constructible complexes in the pro-étale world in
§6.5 with coefficients in a complete noetherian local ring (R, m) as those R-complexes
on Xpr0st which are complete (in the sense of §3.4), and classically constructible mod-
ulo m. This definition is well-suited for comparison with the classical picture, but, as
we explain in §6.6, also coincides with the more intuitive definition on a noetherian
scheme: a constructible complex is simply an R-complex that is locally constant and
perfect along a stratification. This perspective leads in §6.8 to a direct construction of
the category of constructible complexes over coefficient rings that do not satisfy the
above constraints, like Z, and Q,. Along the way, we establish that the formalism of
the 6 functors “works” in this setting in §6.7.

6.1. Functoriality for closed immersions. — Fix a qcgs scheme X, and a qcgs
open j : U — X with closed complement ¢ : Z — X. We use the subscript “0”
to indicate passage from X to Z. First, we show “henselizations” can be realised as
pro-étale maps.

Lemma6.1.1. — Assume X is affine. Then i~' : ngiét — Zggjét admits a fully
faithful left adjoint V V. In particular, we have i_l(‘~/) ~ V.
Proof. — See Definition 2.2.10 and Lemma 2.2.12. O
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Henselization defines a limit-preserving functor between sites:

Lemma 6.1.2. — Assume X is affine. Then the functor V — 1% from Lemma 6.1.1
preserves surjections.

Proof. — Fix V = Spec(Ap) with V = Spec(A) for a ring A that is henselian along
I = ker(A — Ap). It suffices to show that any étale map W — V whose image
contains V C V is surjective. The complement of the image gives a closed subset of
V that misses V', but such sets are empty as I lies in the Jacobson radical of A by
assumption. O

Contrary to the étale topology, we can realise ¢* simply by evaluation in the pro-
étale world:

Lemma 6.1.3. — If X is affine, then *F(V) = F(V) for any w-contractible V €
ngfoét and F' € Shv(Xproet)-

Proof. — Clearly, i* F is the sheafification of V + F(V) on Z* . . On w-contractible

proét-
objects, sheafification is trivial, giving the result. O

Remark 6.1.4. — Tt follows from the affine analogue of proper base change, [Gab94],

[Hub93|, that for classical torsion sheaves F, i*F(V) = F(V) for all V € Zgg)ét; in
fact, the affine analogue of proper base change says precisely that

RI(V,i*F) = RI(V,F) .

As i* is realised by evaluation, it commutes with limits (which fails for X, see
Example 6.1.6):

Corollary 6.1.5. — The pullback i* : Shv(Xprost) — Shv(Zprost) commutes with all
small limits and colimits.

Proof. — The claim about colimits is clear by adjunction. For limits, we must show
that the natural map ¢* lim; F; — lim; ¢* F; is an isomorphism for any small diagram
F : I — Shv(Xproet). As this is a local statement, we may assume X is affine.
The claim now follows from Lemma 6.1.3 by evaluating either side on w-contractible
objects in Z2f O

proét*
The next example illustrates how ¢* fails to be limit-preserving on the étale site:

Example 6.1.6. — Consider X = Spec(k[z]) with k an algebraically closed field, and
set i : Z — X to be the closed immersion defined by I = (z). Let R = k[z], and
set S to be the strict henselisation of R at I, so .S = colim; S; where the colimit runs
over all étale neighbourhoods R — S; — k of Z — X. Now consider the projective
system {Ox/I™} in Shv(Xg¢;). Then i*(Ox/I™) = S/IS™, so limi*(Ox/I™) is the
I-adic completion of S. On the other hand, i*(lim Ox /I™) = colim; lim S; /I™ is the
colimit of the I-adic completions of each S;; one can check that this colimit is not
I-adically complete.
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Remark 6.1.7. — Corollary 6.1.5 shows that i* has a right adjoint i, as well as a left-
adjoint ix. The latter is described as the unique colimit-preserving functor sending
Ve Z;f;et to Ve X afl;et Note that i4 is not left-exact in general, so there is no

casy formula computing RT'(V,i*F) in terms of RI'(V, F) for V € Zprost (except in
the torsion case, as in Remark 6.1.4).

Lemma 6.1.8. — The pushforward i, : Shv(Zprost) — Shv(Xprost) is exact.

Proof. — Fix a surjection F' — G in Shv(Zpr0¢t). We must show ¢, F — i,G is

surjective. As the claim is local, we may work with affines. Fix ¥V € X;ff)et and

g € 1.G(Y) = G(Yp). Then there is a cover W — Y} in Zp¢¢ and a section f € F (W)
lifting g. The map WU Y|y — Y is then a cover by Lemma 6.1.1; here we use that
U C X is quasicompact, so Y|y is also quasicompact. One has i, F(Y|y) = F(2) = *,
and 1 F(W) F(Wg) F(W), so f gives a section in ¢ F(W UY|y) lifting g. O

We can now show that ¢, and j behave in the expected way.

Lemma 6.1.9. — For any pointed sheaf F' € Shv(Xproet), the adjunction map F —
1.1 F is surjective.

Proof. — Since the statement is local, we may assume X is affine. Fix V' € Xproet
Then i, *F(V) = i*F(Vp) = F(Vg) Now observe that Vj LI Vi — V is a pro-
étale cover. Since F'(V|y) # @ (as I is pointed), one easily checks that any section
in i,.i*F (V) lifts to a section of F' over Vj U V|y, which proves surjectivity. O

Remark 6.1.10. — Lemma 6.1.9 needs F' to be pointed. For a counterexample without
this hypothesis, take: X = ULl Z a disjoint union of two non-empty schemes U and Z,
and F' = 1)/Z, where ¢ : Z — X is the clopen immersion with complement j : U — X.

Lemma 6.1.11. — For any pointed sheaf F € Shv(Xproet), we have jij*F o~
ker(F — i,i*F).

Proof. — We may assume X is affine. For any V' € Xproet, we first observe that the

sheaf axiom for the cover Vo UV |y — V gives a fibre square of pointed sets

F(V)——F(V|v)

L

F(Vo) — F(Volv).-

In particular, ker(F(V) — F(Vp)) ~ ker(F(V|y) — F(Voly)). Now i,i*F(V) =
F(%), so we must show that jij*F(U) = ker(F(V) — F(%)) ~ ker(F(V]y) —
F(%\U)) By definition, 77*F is the sheaf associated to the presheaf F’ defined via:
F'(V)=F(V) if V — X factors through U, and F'(V) = 0 otherwise. The sheaf
axiom for the cover /VE U V|y — V then shows that j5*F is also the sheaf associated
to the presheaf F” given by F”(V) = ker(F(V|y) — F(Vo|y)), which proves the
claim. O
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Lemma 6.1.12. — One has the following identification of functors at the level of un-
bounded derived categories:

1. %, >~ id and j* 5 ~ 775, ~id.
2. 7% ~0, and 1" 5 ~ 0.

Proof. — By deriving Lemma 6.1.11, there is an exact triangle j;j* — id — i.i* of
endofunctors on D(Xpre¢t). Then (2) follows from (1) by applying ¢* and j* to this
triangle. The second part of (1) is a general fact about monomorphisms U < X in
a topos. For i*i, ~ id, we use that both functors are exact to reduce to the claim at

the level of abelian categories, where it follows from Vg ~ V for any V € ngf)ét. O

Lemma 6.1.13. — The pushforward ji : D(Uprost) — D(Xprost) commutes with
homotopy-limats.

Proof. — By Lemma 6.1.11, for any K € D(Upro¢t), we have the following exact
triangle:
WK — j K — 1,07 j. K.

*

Since j., i* and i, all commute with homotopy-limits, the same is true for j. U

Remark 6.1.14. — One can show a more precise result than Lemma 6.1.13. Namely,
the pushforward ji : D(Upro¢t) = D(Xprost) admits a left-adjoint G* D(Xprost) —
D(Uprost) which is defined at the level of free abelian sheaves as follows: given V' €
Xprost, we have J(Zy) = COk(Zf/’EIU — Ly, ) ~ Cok(Z% — Zy).

We record some special cases of the proper base change theorem:

Lemma 6.1.15. — Consider the diagram
fz ey N

TR

77— s X<—U
J

For any K € D(Uprost) and L € D(Zproet), we have

isf*L~ fYi.L and jif*K ~ f*jiK.
Proof. — Note that * f*i, L ~ f*i*i, [ ~ f*L. Hence, using the sequence j;j* —
id — i,4* of functors, to prove the claim for L, it suffices to show j* f*i,L ~ 0; this

is clear as j*f*i, ~ f*j*i, ~ 0, since j*i, >~ 0. The second claim follows by an
analogous argument using ¢*j; ~ 0. O

We end by noting that 7, also admits a right adjoint:
Lemma 6.1.16. — The functor i, : D(Zpoet) — D(Xproet) admits a right adjoint

-1

i D(Xprost) = D(Zprost). For any K € D(Xprost), there is an exact triangle
Wi K — K — j,j°K.
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Proof. — The functor iy : D(Zproet) — D(Xprost) commutes with arbitrary direct
sums. As all triangulated categories in sight are compactly generated, one formally
deduces the existence of i'. For the exact triangle, write L for the homotopy-kernel of
K — j,j*K. One has a natural map 7 : i,i'K — L since RHom(i,i'K, j.j*K) = 0.
We first show 7 is an isomorphism through its functor of points. For this, note that
for any M € D(Zproct), one has

RHom (i, M, i.i' K) = RHom(M, i' K) = RHom(i, M, K) = RHom(i, M, L),

where the first equality uses the full faithfulness of i,, the second comes from the
definition of ', and the last one uses RHom(i, M, j,j*K) = 0. This proves that n
is an isomorphism. One also has L = i,¢*L as j*L = 0, so the claim follows by full
faithfulness of i,. O

Finite morphisms are acyclic under finite presentation constraints:

Lemmaé6.1.17. — If f : X — Y s finitely presented and finite, then f,
Ab(Xprost) = Ab(Yprost) is exact.

Proof. — This follows from Lemma 2.4.10. O

6.2. Functoriality for locally closed immersions. — We fix a qcgs scheme X,
a locally closed constructible subset k : W — X. We write Dy (Xproet) for the full
subcategory spanned by K € D(Xprost) With K|x_w =~ 0; we refer to such objects as
“complexes supported on W.”

Lemma6.2.1. — Fix i : Z — X a constructible closed immersion with complement
j:U — X. Then one has:

1. The functor ji establishes an equivalence D(Uproet) =~ Duy(Xprost) with
mverse j*.

2. The functor i, establishes an equivalence D(Zprost) =~ Dz(Xprost) with
nverse 1.

3. The functor k* establishes an equivalence Dy (Xprost) = D(Wprost)-

Proof. — For (1), we know that j*ji ~ id, so 7 is fully faithful. Also, an object K €
D(Xprost) is supported on U if and only if *K =~ 0 if and only if jj*K ~ K, which
proves (1). The proof of (2) is analogous. For (3), fix a factorization W5 W 5 X
with f an open immersion, and g a constructible closed immersion. Then g, induces

an equivalence D(W pro6t) ~ Dyr(Xproet) with inverse g* by (2), and hence restricts

to an equivalence Dy (Wprost) = Dw (Xproet). Similarly, fi induces an equivalence

D(Whproet) =2 Dy (W prost) with inverse f* by (1). Hence, the composition ki := g, o fi
induces an equivalence D(Wpyro¢t) = Dw (Xprost) With inverse k*. O

Definition 6.2.2. — The functor ki @ D(Wprost) — D(Xproet) s defined as the
composition D(Wiprost) N Dw (Xprost) LN D(Xproet), where a is the equivalence of
Lemma 6.2.1 (inverse to k*), and b is the defining inclusion.
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Lemma 6.2.3. — One has:

1. The functor ki is fully faithful, preserves homotopy-limits, and has a left inverse
given by k*.

2. For any map f:Y — X of qcqs schemes, one has kyo f* ~ f* ok as functors
D(Wproét) — D(Yproét)~

3. For any K € D(Wpyoet) and L € D(Xprost), we have kK @ L ~ k(K ® i*L).

4. One has kyov* >~ v* ok as functors D(We) = D(Xprost)-

5. The functor ki admits a right adjoint k' D(Xprost) = D(Wprost)-

Proof. — (1) follows from the proof of Lemma 6.2.1 as both fi and g, have the same
properties. (2) follows by two applications of Lemma 6.1.15. For (3), it suffices to
separately handle the cases where k is an open immersion and k is a closed immersion.
The case of an open immersion (or, more generally, any weakly étale map k : W — X)
follows by general topos theory and adjunction. Hence, we may assume k is a closed
immersion with open complement j : U — X, so ki ~ k,. For any K’ € D(Xpro6t),
we have the triangle
iK' — K' — k"K',

Tensoring this triangle with L and using the projection formula for j shows k.k* K’ ®
L ~ k,(k*K' ® k*L). Setting K’ = k,K then proves the claim as k*k, ~ id. For
(4), assume first that k£ is an open immersion. Then v, o k* ~ k* o v, as functors
D(Xprost) = D(Ugt) (which is true for any U — X in X¢;). Passing to adjoints then
proves ki o v* >~ v* o k). Now assume k is a constructible closed immersion with open
complement j : U < X. Then for any K € D(Xgt), there is a triangle

WK — K — i, i"K

in D(X¢t). Applying v* and using the commutativity of v* with ji, 7* and ¢* then
proves the claim. (5) follows by considering the case of open and constructible closed
immersions separately, and using Lemma 6.1.16. O

All the results in this section, except the continuity of ki, are also valid in the étale
topology.

6.3. Constructible complexes in the étale topology. — The material of this
section is standard, but we include it for completeness. We fix a qcgs scheme X, and
a ring F. Given an F-complex L € D(F'), we write L for the associated constant
complex, i.e., its image under the pullback D(F) — D(Xg, F).

Definition 6.3.1. — A complex K € D(Xg, F') is called constructible if there exists a
finite stratification {X; — X} by constructible locally closed X; C X such that K|x,
is locally constant with perfect values on Xg;.

Remark 6.3.2. — One classically replaces the perfectness hypothesis in Defini-
tion 6.3.1 with a weaker finiteness constraint. However, imposing perfectness is more
natural from the derived point of view: under mild conditions on X, our definition
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picks out the compact objects of D(Xgt, F') (see Proposition 6.4.8), and is stable
under the six operations. Moreover, the two approaches coincide when F is a field.

Lemma 6.3.3. — Any K € Deons(Xet, F) admits a finite filtration with graded pieces of
the form /L with i :Y — X ranging through a stratification of X, and L € D(Yg, F)
locally constant with perfect values.

Proof. — Same as in the classical case, see [SGAT3, Proposition 1X.2.5]. ]
Lemma 6.34. — Each K € Deons(Xet, F') has finite flat dimension.

Proof. — By Lemma 6.3.3, we may assume K = 4L for ¢ : ¥ — X locally closed
constructible, and L € D(Ye, F') locally constant with perfect values. By the projec-
tion formula, it suffices to show L has finite flat dimension. As we are free to localize,
we may assume L = K’ with K’ € Dyer¢(F), whence the claim is clear. O

Lemma 6.3.5. — D ons(Xest, F)) C D(Xet, F') is closed under tensor products.
Proof. — Clear. O

Lemma 6.3.6. — Given K € D(R) and s € H°(X¢, K), there exists an étale cover
{U; — X} such that s|y, comes from s; € HY(K).

Proof. — Fix a geometric point = : Spec(k) — X, and consider the cofiltered cat-
egory I of factorizations Spec(k) — U — X of z with U — X étale. Then K ~
colim RI'(Ugt, K) where the colimit is indexed by I°P: the exact functor z*(F) =
colim; F(U) gives a point « : Set — Xy, and the composition (Set, F) 5 (X4, F) <
(Set, F) is the identity. This gives a section s; € HY(K) by passage to the limit. As
filtered colimits are exact, one checks that s agrees with the pullback of s; over some
neighbourhood U — X in I. Performing this construction for each geometric point

then gives the desired étale cover. U

Lemma 6.3.7. — If K € D%(X¢, F) has locally constant cohomology sheaves, then
there is an étale cover {U; — X} such that K|y, is constant.

Proof. — We may assume all cohomology sheaves of K are constant. If K has only one
non-zero cohomology sheaf, there is nothing to prove. Otherwise, choose the maximal
i such that H'(K) # 0. Then K ~ ker(H'(K)[—i] > 7<'K[1]). By induction,
both H!(K) and 7<K can be assumed to be constant. The claim now follows by
Lemma 6.3.6 applied to RHom(H!(K)[—i], 7<!K[1]) with global section s; here we
use that the pullback G : D(F) — D(Xg, F) preserves RHom between A, B € D(F)
since G(R1lim C;) = Rlim G(C;) if {C; < C} is the stupid filtration on C' € DT (R)
(with C = RHom(A, B) calculated by a projective resolution of A). d

Lemma 6.3.8. — A complex K € D(Xe, F) is constructible if and only if for any
finite stratification {Y; — X}, the restriction K|y, is constructible.
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Proof. — The forward direction is clear as constructible sheaves are closed under
pullback. For the reverse, it suffices to observe ki preserves constructibility for & :
W — X locally closed constructible as k identifies constructible subsets of W with
those of X contained in W. O

Lemma 6.3.9. — D ons(Xest, F') is a triangulated idempotent complete subcategory of
D (X, F). It can be characterized as the minimal such subcategory that contains all
objects of the form kiL with k : Y — X locally closed constructible, and L € D(Yg, F)
locally constant with perfect values.

Proof. — To show De¢ons(Xet, F') is closed under triangles, by refining stratifications,
it suffices to check: if K, L € D(Xg, F') are locally constant with perfect values, then
the cone of any map K — L has the same property. Replacing X by a cover, we
may assume K = K’ and L = L' with K', L' € Dpes(R). The claim now follows
from Lemma 6.3.6 applied to RHom(K’, L"). The idempotent completeness is proven
similarly. The last part follows from Lemma 6.3.3 and the observation that each kL
(as in the statement) is indeed constructible. O

Lemma 6.3.10. — Constructibility is local on Xet, i.e., given K € D(Xe, F), if there
exists a cover {f; : X; — X} in Xe with fFK constructible, then K is constructible.

Proof. — We may assume f : Y — X is a surjective étale map, and f*K is con-
structible. First assume that f is a finite étale cover. Passing to Galois closures (and
a clopen cover of X if necessary), we may assume f is finite Galois with group G.
By refining strata, we can assume f*K is locally constant along a G-invariant strat-
ification of Y. Such a stratification is pulled back from X, so the claim is clear. In
general, there is a stratification of X over which f is finite étale, so one simply applies
the previous argument to the strata. O

Lemma6.3.11. — If j : U — X is qcgs étale, then j1 : D(Ug, F) — D(Xe, F)
preserves constructibility.

Proof. — If j is finite étale, then the claim follows by Lemma 6.3.10 as any finite
étale cover of X is, locally on X, of the form U ;X — X. In general, there is a
stratification of X over which this argument applies. O

Lemma 6.3.12. — If K € D(X¢, F), and I C F is a nilpotent ideal such that K Qp
F/I € Deons(Xet, F/I), then K € Deons(Xet, F).

Proof. — We may assume I? = 0. By devissage, we may assume K1 = K @ F/I is
locally constant with perfect value Ly € Dyer¢(F/I). By passage to an étale cover, we
may assume K; ~ L;. After further coverings, Lemma 6.3.7 shows K ~ L for some
L € D(F). Since L®p F/I ~ L, is perfect, so is L (by the characterization of perfect
complexes as compact objects of D(F') and the 5 lemma). O
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Lemma 6.3.13. — Constructibility is local in the pro-étale topology on X, i.e., given
K € D(Xg, F), if there exists a cover {f; : X; = X} in Xprosr with f K constructible,
then K is constructible.

Proof. — We may assume X is affine, and that there exists a pro-étale affine f : Y =
lim; Y; — X covering X with f*K constructible. The stratification on Y witnessing
the constructibility of f*K is defined over some Y;. Hence, after replacing X by an
étale cover, we may assume that there exists a stratification {X; < X} such that f*K
is constant with perfect values over f~!(X;). Replacing X by X;, we may assume
f*K ~ f*L with L € Dpe¢(F). Then the isomorphism f*L — f*K is defined over
some Y; (since L is perfect), so K|y, is constant. O

Lemma 6.3.14. — If K € Deons(Xet, F'), then RHom (K, —) commutes with all direct
sums with terms in DZ% (X, F).

Proof. — Let Cx C D%(X¢, F) denote the full (triangulated) subcategory spanned
by those M for which RHom (M, —) commutes with all direct sums in DZ%(Xg, F).
Then one checks:

1. For any M € Dper¢(F'), one has M € Cx.

2. For any qcqs étale map j : U — X, the functor j; carries Cy to Cx.
3. The property of lying in Cx can be detected locally on Xg;.
4

. M € D(Xg, F) lies in Cx if and only if RHom(M |y, —) commutes with direct
sums in DZ0(Ug, F) for each qeqs U € Xg.

By (4), it suffices to show that a constructible complex K lies in Cx. By Lemma 6.3.3,
we may assume K = kL with k£ : Y — X locally closed constructible, and L €
D(Yg, F') locally constant with perfect values. Choose a qcqs open j : U — X with
i:Y < U a constructible closed subset. Then K = kiL ~ (ji10i,)L. By (2), it suffices
to show that ¢, K € Cy, i.e., we reduce to the case where k is a constructible closed
immersion with open complement h : V — X. The assumption on K gives a qcgs
étale cover g : Y’ — Y with ¢g*L ~ M for M € Dyes(F). By passing to a cover of X
refining g over Y, using (3), we may assume that L = M. Then the exact triangle

WM — M — K

and (1) and (2) above show that K € Cx, as wanted. O

Remark 6.3.15. — 1t is crucial to impose the boundedness condition in Lemma 6.3.14:
if the cohomological dimension of X is unbounded, then RHom(F, —) ~ RI'(X¢, —)
does not commute with arbitrary direct sums in D (X, F).

Lemma 6.3.16. — For K € Dcons(Xst, F) and L € DV (X4, F), one has
v*RHom(K, L) ~ RHom(v*K,v*L) .
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Proof. — Fix U = lim; U; € X2 and write j : U — X and j; : U; — X

proét?
for the structure maps. By evaluating on pro-étale affines, it suffices to check

RHom(j* K, j*L) ~ colim; RHom(j; K, jL). By adjunction, this is equivalent to
requiring RHom (K, j,5*L) ~ colim; RHom(K, j; .j;fL). If L € D?*(Xg), then
Jixji L € D?*(X¢;) for all 4, so the claim follows from Lemma 6.3.14. O

6.4. Constructible complexes as compact objects. — The material of this
section is not used in the sequel. However, these results do not seem to be recorded
in the literature, so we include them here. We fix a qcgs scheme X, and a ring F'. We
assume that all affine U € X¢ have F-cohomological dimension < d for some fixed
d € N. The main source of examples is:

Example 6.4.1. — 1f X is a variety over a separably closed field k£ and F' is torsion,
then it satisfies the above assumption. Indeed, Artin proved that H®(Ug, F) = 0 for
i > dim(U) if U is an affine k-variety.

Recall that K € D(Xg, F') is compact if RHom(K, —) commutes with arbitrary
direct sums. Let D.(Xgt, F)) C D(Xst, F') be the full subcategory of compact objects.
Our goal is to identify D.(Xgt, F') with the category of constructible complexes. We
start by recording a completeness property of D(Xg, F):

Lemma 64.2. — For any qcgs U € X, the functor RI'(Ug,—) has finite F-
cohomological dimension.

Proof. — Assume first that U = V3 U V5 with V; C U open affines, and W := V; NV,
affine. Then one has an exact triangle

RI'(Ust, —) — RI(Vi g, —) @ R (Va e, —) —> R (W, —)

which gives the desired finiteness. The general case is handled by induction using a
similar argument, by passing through the separated case first. O

Lemma 6.4.3. — The category D(Xe, F') is left-complete.
Proof. — This follows from Proposition 3.3.7. O

Lemma64.4. — For any j : U — X in Xg, the pushforward ji : D(Ug, F) —
D(Xgt, F) preserves compact objects.

Proof. — Formal by adjunction since j* preserves all direct sums. O

Lemma 6.4.5. — For each qcgs j : U — X in Xg, we have:
1. The object jiF € D(Xgt, F') is compact.
2. The functor ji : D(Ug, F') — D(Xet, F') commutes with all direct sums.
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Proof. — For (1), by Lemma 6.4.4, we may assume j = id, so we want RI'(X, —) to
preserve all direct sums. We first observe that the finiteness assumption on X and
the corresponding left-completeness of D(Xgi, F) give: for any K € D(Xg, F'), one
has HY(X,K) ~ HY(X,7>""K) for n > Nx — i, where Nx is the F-cohomological
dimension of X. One then immediately reduces to the bounded below case, which is
true for any qcqs scheme. For (2), fix some qeqs V € Xg, and let W = U xx V.
Then (1) shows that RI'(Vz, —) commutes with direct sums. Hence, given any set
{K} of objects in D(Ug, F'), we have

RF(V;Et; @s]*Ks) = @SRF(‘/;t»]*Ks) =~ @SRF(Wét; Ks’W)
~ RF(We’t, (®SKS)’W) ~ RF(%t,j* @s Ks)
As this is true for all V, the claim follows. O

Lemma 6.4.6. — Fiz a closed constructible subset i : Z — X and K € D(Zs, F)
that is locally constant with perfect value L € Dpeye(F'). Then i, K € D(Xg, F) is
compact.

Proof. — By Lemma 6.4.5 (2), it suffices to show the following statement: the functor
RHom(i. K, —) : D(Xe, F) — D(Xgt, F') commutes with direct sums. To check this,
we may freely replace X with an étale cover. By passing to a suitable cover (see the
proof of Lemma 6.3.14), we may assume K = L for L € Dpere(F). If j : U — X
denotes the qcgs open complement of ¢, then the exact triangle

L — L — i L

finishes the proof by Lemma 6.4.5 (1) O

Remark 6.4.7. — The constructibility of Z in Lemma 6.4.6 is necessary. For a coun-
terexample without this hypothesis, choose an infinite profinite set S and a closed
point i : {s} < S. Then S — {s} is not quasi-compact, so Z is not constructible.
Using stalks, one checks that i, F ~ colim j, F', where the colimit is indexed by clopen
neighbourhoods j : U < S of s € S. For such j, one has H°(S, j.F) = H°(U,F) =
Map (U, F). As any continuous map f : U — F is locally constant, each non-zero
section of HY(S, j.F) is supported on some clopen V. C U. As 1 € HY(S,i,.F) is
supported only at s, all maps i,/ — j.F are constant, so i, is not compact in
D(S, F). To get an example with schemes, one simply tensors this example with a
geometric point, in the sense of Example 4.1.9.

Proposition 6.4.8. — D(Xg, F) is compactly generated and D.(Xet, F') = Deons(Xet, F).

Proof. — We temporarily use the word “coherent” to refer to objects of the form
JiF for qcqs maps 7 : U — X in Xg. Lemma 6.4.5 shows that coherent ob-
jects are compact. General topos theory shows that all objects in D(Xg, F)) can
be represented by complexes whose terms are direct sums of coherent objects, so it
follows that D(Xg, F') is compactly generated. Furthermore, one formally checks
that the subcategory D.(Xet, F) C D(Xe, F') of compact objects is the smallest
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idempotent complete triangulated subcategory that contains the coherent objects.
Then Lemma 6.3.11 shows D.(Xet, F') C Deons(Xet, F'). For the reverse inclusion
Deons(Xet, F') C Deo(Xet, F'), it suffices to show: for any k : W — X locally closed
constructible and L € D(Wg, F') locally constant with perfect values, the pushforward
K := kL is compact. Choose W U %X with f a constructible closed immersion,
and g a qcgs open immersion. Then f,K is compact in D(Ug, F') by Lemma 6.4.6,
so kK ~ g1 f. K is compact by Lemma 6.4.4. U

6.5. Constructible complexes in the pro-étale topology. — Fix a qcgs scheme
X, and a noetherian ring R complete for the topology deﬁned by an ideal m C R.
Set RX := lim R/m™ € Shv( proet)' we often simply write R for RX In fact, in
the notation of Lemma 4.2.12, R = RX is the sheaf Fr on X,,o¢t associated with
the topological ring R. We write L for the image of L € D(R) under the pullback
D(R) — D(Xproct, R), and E € D(Xprost, ﬁ) for the m-adic completion of L. When
L =R or R/m™ we drop the underline. The key definition is:

Definition 6.5.1. — We say that K € D(Xproct, J/-'E) is constructible if K is m-adically
complete, and K ®1L§ R/m is obtained via pullback of a constructible R/m-complex
under v @ Xprost — Xet. Write

Dcons (Xproéta E) C D(Xproéta ﬁ)

for the full subcategory spanned by constructible complezes.
It is immediate that Deons(Xproct, E) is a triangulated subcategory of D(Xprost )
Applying the same definition to (R/m™ m), we get Dcons(Xprost, B/m") =~
)

Deons(Xet, R/m™) via v; note that the two evident definitions of Deons(Xet, R/m”
coincide by Lemma 6.3.12.

Example 6.5.2. — When X is a geometric point, pullback induces an equivalence
Dperf(R) =~ Dcons(Xproéta R)

Lemma 6.5.3. — Each K € Deons(Xproct, R) is bounded.

Proof. — Completeness gives K ~ Rlim(K ®% R/m™). As Rlim has cohomological
dimension < 1 by repleteness, it suffices to show K,, :== K ®§ R/m™ has amplitude
bounded independent of n. This follows from standard sequences as K7 has finite flat
dimension. O

Lemma6.54. — If K € Dcons(Xproét,ﬁ), then K ®p R/m™ € Decons(Xprost, R/m™)
for each n.

Proof. — This is immediate from K ® 5 R/m" Qg/un R/m ~ K @5 R/m. O

Lemma 6.5.5. — Dcons(Xproét,E) C Dcomp(Xproét,§> is closed under tensor prod-
ucts. In fact, if K,L € Deons(Xprost, R), then K @5 L is already complete.
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Proof. — The assertion is local on X,;4¢. By filtering K and L, and replacing X by a
cover, we may assume: X is w-contractible and henselian along a constructible closed
subset i : Z < X, and K = z*ﬂ and L = z*& for M, N € Dpye,¢(R). By realising M
and N as direct summands of finite free R-complexes, we reduce to M = N = R. Let
j : U — X be the open complement of 7. We claim the more precise statement that
z*}A% ®n z*}/i ~ z*}AE For this, using the sequence

~

iR — R —i.R,
we are reduced to checking that jlﬁ ®pn iR = 0, which is automatic by adjunction:
for any K € D(Uproct, }/3\5) and L € D(Zprost, ﬁ), one has

RHom(jiK ®p i«L,—) = RHom(ji K, RHom(i. L, —))
= RHom(K,RHom(j*i,.L,j*(—))) =0,
where the last equality uses j*¢, = 0. [

Lemma 6.5.6. — Fix K € Dcons(Xproct, }A%) with K @5 R/m constant locally on Xg;.
Then K ®pn R/m™ is also constant locally on Xt .

Proof. — Since the question concerns only complexes pulled back from X, we can
étale localize to assume that (X, z) is a local strictly henselian scheme. Then the as-
sumption implies K® 5 R/m is constant. Moreover, one easily checks that D(R/m") —
D (X, R/m™) is fully faithful (as RI'(Xet, —) ~ 2*). Chasing triangles shows that
each K ®z R/m" is in the essential image of D(R/m") — D(X¢;, R/m"), as wanted.

d
Corollary 6.5.7. — Assume X is a strictly henselian local scheme. Then pullback
Dperf(R) — Dcons(Xproéta R5)
is fully faithful with essential image those K with K @5 R/m locally constant.
Proof. — The full faithfulness is automatic since RI'(X, }A%) ~ RImRI'(X, R/m™) ~
Rlim R/m™ ~ R. The rest follows by Lemma 6.5.6. O

Lemma 6.5.8. — Fix a locally closed constructible subset k: W — X.
1. One has k*(Rx) = Rw .
2. The functor k* : D(Xproét, ﬁx) — D(Wproét,ﬁw) preserves constructible com-
plexes.

3. The functor ky : D(meét,ﬁw) — D(Xproét,ﬁx) preserves constructible com-
plexes.

Proof. — (1) follows from the fact that k* : Shv(Xprest) — Shv(Wproet) commutes
with limits (as this is true for constructible open and closed immersions). This also
implies k*<K®1§x R/m) ~ k*K@gW R/m for any K € D(Xproet, EX), which gives (2).
The projection formula for ky shows kK ®p R/m >~ k(K ®gz R/m), which gives (3).

O
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Lemma6.59. — Let f : X — Y be a map of qcgs schemes, and let f,

-~ -~

D(Xproet, R) = D(Yproct, R) be the pushforward. Then we have:

1. For K € D(Xproét,]/%), we have an identification {f.K ®p5 R/m"} o~
{f«(K®z R/m™)} of pro-objects.

2. For K € D(Xproét,ﬁ), we have f*IA( ~ f/*?( In particular, f. preserves
m-adically cmﬁplete complexes, and hence induces fi : Deomp(Xproct, R) —
Dcomp(Yproétv R) .

3. For any perfect complex L € D(R), we have f.K @5 L~ [+(K ®p z)

4. Pullback folloAU}ed by completion gives Deomp(Xprost; ) —

Deomp(Yproct, R) left adjoint to f..

. .
5. feomp Preserves constructible complexes, and hence defines

f:ornp

~

f:omp : DCOHS(YprOét7 R) — Dcons (Xproét7 j%) .

Proof. — (1) would be clear if each R/m"™ is R-perfect. To get around this, choose
P and J as in the proof of Proposition 3.5.1. Then {R ®p P/J"} ~ {R/m"} is a
strict pro-isomorphism, so {K ®p R/m"} ~ {K ®p P/J"} as pro-objects as well,
and similarly for f,K. The claim now follows as P/J™ is P-perfect. (2) immediately
follows from (1) (or simply because T(f.K,z) ~ f,T(K,z) ~ 0 for x € m and K is
complete as f, commutes with R1lim). (3) immediately follows from the case L = R
by devissage, while (4) follows from (2) by adjointness of completion. For (5), as f*
commutes with tensor products, we have fZ,,,,(K) ®5 R/m~ f*(K ®p R/m), so

the claim follows from preservation of constructibility under pullbacks in the classical
sense. O

Remark 6.5.10. — When f : X — Y is a finite composition of qcgs weakly étale maps
and constructible closed immersion, we have fi,,,, = f*, i.e., that f*K is complete
if K is so; this follows from Lemma 6.5.8.

Lemma 6.5.9 shows that pushforwards in the pro-étale topology commute with
taking m-adic truncations in the sense of pro-objects. To get strict commutation, we
need a further assumption:

Lemma6.5.11. — Let f : X — Y be a map of gcgs schemes. Assume that f, :
Mod(Xet, R/m) — Mod(Yes, R/m) has cohomological dimension < d for some inte-
ger d. Then:
1L If P e DN(R) and K € DS(Xproer, R), then f.(K ®5P) €
D<k+m+d+2<yproét’ ﬁ)
2. If K € Deons(Xprost, R) and M € D™(R), then f.(K&zM) ~ f.K&; M.

~

3. If K € Deons(Xprost, R), then fiK @5 R/m™ ~ f.(K @z R/m™) for all n.
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Proof. — For (1), observe that
fo(K&:P) =~ f,RIm(K, ©p/mn Py)
~ Rlim f, (K, ©@p/qn Pa) € DSFFHR2(Y o R),

where the last inclusion follows from Lemma 5.4.6 and repleteness. For (2), we may
assume by shifting that K € Dcons(Xproét,}A%). First observe that if M is a free
R-module, then the claim is clear. For general M, fix an integer ¢ and choose an
i-close approximation P; — M in D(R) with P; a finite complex of free R-modules,
i.e., the homotopy—kernel L; lies in DS~ Z(R) Then ]3 - ﬁ is an i-close approxima-
tion in D(Xprost, R) Moreover, f*(K®R ) f*K®RPZ as Pl is a finite complex of
free R-modules. We then get a commutative diagram

f*K®§E — f*K@)ﬁﬂ

£ |
FA(K®5P) —L (KB M).

Then b is an equivalence as explained above. The homotopy-kernel [ (K& RL ) of d is
(—i+d+ 2)-connected by (1), and the homotopy-kernel f*K®RL of ais (—i+d+2)-

connected since f, K ~ Rlim f. K, € DSL(Y,¢). Thus, the homotopy-kernel of ¢
is also (—i+ d + 2)-connected. Letting i — oo shows ¢ is an isomorphism. (3) follows
from (2) by setting M = R/m™ observing that R/m" is already derived m-complete,

and using —®zR/m ~ — ®5 R/m as any R/m-complex is automatically derived
m-complete. ]

Remark 6.5.12. — Unlike pullbacks, the pushforward along a map of qcgs schemes
does not preserve constructibility: if it did, then H°(X,Z/2) would be finite dimen-
sional for any qcgs scheme X over an algebraically closed field k, which is false for
X = Spec([];2, k). We will see later that there is no finite type counterexample.

6.6. Constructible complexes on noetherian schemes. — Fix X and R as in
§6.5. Our goal in this section is to prove that the notion of a constructible complexes on
X coincides with the classical one from topology if X is noetherian: K € D(Xproet, ]/%)
is constructible if and only if it is locally constant along a stratification, see Proposi-
tion 6.6.11. In fact, it will be enough to assume that the topological space underlying
X is noetherian. The proof uses the notion of w-strictly local spaces, though a direct
proof can be given for varieties, see Remark 6.6.13.

For any affine scheme Y, there is a natural morphism 7 : Yz — 7o(Y") of sites. Our
first observation is that 7 is relatively contractible when Y is w-strictly local.

Lemma 6.6.1. — If Y is a w-strictly local affine scheme, then pullback D(mo(Y)) —
D(Yz) is fully faithful.
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Proof. — Fix K € D(mo(Y),F). Choose a point y € mo(Y), and let § € Y be
its unique preimage that is closed. Then the projective system {7~'U} of open
neighbourhoods of § obtained via pullback of open neighbourhoods y € U in mp(Y) is
cofinal in the projective system {V'} of all open neighbourhoods 7 € V in Y. Hence,
colim RI(U, 77" K) =~ colim RI'(7 7' U, 7* K) ~ colimRI'(V, 7* K) =~ (7" K )3 =~ K.
yeU yelU yev
Here the penultimate isomorphism uses that the Zariski and étale localizations of Y
at 7 coincide. This shows that K — m,7n*K induces an isomorphism on stalks, so
must be an isomorphism. The rest follows by adjunction. U

For a profinite set S, we define Sprost 1= ﬁproét, with * some fixed geometric point,
and S € Shv(*proet) the corresponding scheme. Alternatively, it is the site defined
by profinite sets over S with covers determined by finite families of continuous and
jointly surjective maps, see Example 4.1.10. Using repleteness of Shv(Sproét), we show
that a compatible system of constant perfect R/m”-complexes L,, on S has a constant
perfect limit L in Sprost; the non-trivial point is that we do not a priori require the

transition maps be compatible with trivializations.

Lemma 6.6.2. — Let S be a profinite set. Fiz L € Domp(Sprost ﬁ) with L ®p R/m"
constant with perfect value C,, € D(R/m™) for all n. Then L is constant with perfect
values.

Proof. — Fix a point s € S. Passing to the stalks at s shows that there exists C' €
Dypert(R) with C @ R/m™ =~ C,,. Write C € D(Sprost, R) and Cy, € D(Sproct, R/m™)
for the corresponding constant complexes. We will show Isomﬁ(L,Q) # . First
observe that Exty un(Cn,Cn) ~ Mapens(S, Exty/nn (Cr, Cpn)). By Lemma 6.6.3
and Lemma 6.6.6, the system {Ext /0 (Cn, Cn )} satisfies ML. Asamap f : C,, — Cy,
is an automorphism if and only if it is so modulo m, it follows that {Autg /= (Cy)} also
satisfies ML. Lemma 6.6.4 and the assumption on L,, shows that {Isomp/un (Ln, Cn)}
satisﬁes ML. As the evident map Isomp/mn(Ln,Cn) X ' Ext%/mn (Cn,Crn) —
Ext jmn (Ln, Cn) is surjective, Lemma 6.6.5 shows that {Exty qun(Ly, Cn)} satisfies
ML. On the other hand, completeness gives

RHomp(L, Q) ~ Rlim RHompg /mn (Ln, Cn),
SO

Homp(L, C) ~ lim Hom /g (Ln; Cn)-

By completer}\ess, amap f: L — Q is an isomorphism if and only f ®z R/m is one,
so Isomg(L,C) ~ lim, Isomp jqn (L, Cn). As {Isompg/mn (Ln,Cn)} satisfies ML with
non-empty terms, the limit is non-empty. ]

The next few lemmas record elementary facts about projective systems {X,} of
sets; for such a system, we write X = Ngim(X, 41 — X,) C X,, for the stable
image.
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Lemma 6.6.3. — Fix a topological space S and a projective system {X,} of sets sat-
isfying the ML condition. Then {Map,q,:s(S, Xn)} also satisfies the ML condition.

Proof. — Fix n and N such that X7 = im(Xy — X,). Fix a continuous map
f S — X, that lifts to Xx. Then f factors through a continuous map S — X;. As
{X,} has surjective transition maps, the claim follows. O

Lemma 6.6.4. — Let {G,} be a projective system of groups, and let {X,} be a com-
patible projective system of transitive G-sets. Assume {Gy} satisfies ML and X,, # &
for all n. Then {X,} satisfies ML, and lim X,, # &.

Proof. — Note that any N°P-indexed system of non-empty sets satisfying the ML
condition has a non-empty inverse limit: the associated stable system has non-empty
terms and surjective transition maps. Hence, it suffices to show {X,} satisfies ML.
Write h;; + G; — G, and f;; : X; — X for the transition maps. Fix n and N
such that GO = im(Gy — G,,). Fix some z,, € X,, that lifts to an xy € Xy. For
m > N, choose some z,, € X,,, and gy € Gy with gy - frun(Zm) = xn; this is
possible by transitivity. Then there exists a g, € Gy, With Ry (gm) = hnn(gn), so
T = gt xy € X, lifts 2, € X,,, which proves the ML property. O

Lemma 6.6.5. — Let [ : {W,,} = {Y,} be a map of projective systems. Assume that
{W,} satisfies ML, and that f, : Wy, — Y., is surjective. Then {Y,} satisfies ML.

Proof. — Fix n, and choose N such that W = im(Wxy — W,,). Then any y, € Y,
that lifts to some yx € Y further lifts to some wy € Wy with image w,, € W, lifting
Yn. By choice of N, there is a wy,+r € Wy for all k lifting w,, € W,,. The images
Yntk = frtk(Wnik) € Yoy then lift y,, € Y, for all k, which proves the claim. O

A version of the Artin-Rees lemma shows:

Lemma6.6.6. — For K € Dye(R), the natural map gives pro-isomorphisms
{H'(K)/m"} ~{H(K ®g R/m™)}.

Proof. — Let € be the category of pro-(R-modules), and consider the functor F :
Modé — @ given by M +— {M/m"M}. Then F is exact by the Artin-Rees lemma,
so for any finite complex K of finitely generated R-modules, one has F(H(K)) ~
HY(F(K)). Applying this to a perfect K then proves the claim. O

Lemma 6.6.7. — Let Y be a w-strictly local affine scheme. Then any M € D(Ye)
that is locally constant on Yg is constant over a finite clopen cover, and hence comes
from D(mo(Y)) via pullback.

Proof. — For the first part, we may assume that there exist finitely many qcqgs étale
maps f; : Uy — Y with f : L;U; — Y surjective such that f*M ~ A; for some
A; € D(Ab). By w-strict locality, there is a section s : Y — U;U; of f. Then
{V; := s7!U,} is a finite clopen cover of Y with M|y, ~ A; € D(V;¢). Now any finite
clopen cover of Y is the pullback of a finite clopen cover of 7y(Y), so the second part
follows. O
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Lemma 6.6.8. — Let X = Spec(A) be connected. Fix K € Dcons(Xproét,ﬁ) with
K ®g R/m locally constant on Xe¢ with perfect values. Then there exists a pro-étale
cover f:Y — X with f*K ~ C with C' € Dperi(R).

Proof. — First observe that, by connectedness and examination of stalks in X, each
K, :=K®g R/m" is locally constant on X¢; with the same perfect value C,,. Now
choose a pro-étale cover f:Y — X with Y w-strictly local, and let 7 : Y — 7o (Y") be
the natural map. Then Lemma 6.6.7 and Lemma 6.6.1 show f*K, ~ 7*L, ~ 7*C,,
where L,, = m.f*K, € D(m(Y),R/m"), and the isomorphism L, ~ C,, is non-
canonical. Lemma 6.6.1 shows that

Lt OR/mn+1 R/m” ~ Tt (Ln+1 OR/mn+1 R/m”)
™~ Ty (f*KrnJr]_ ®R/mn+1 R/m”) ~ W*f*Kn =L,

via the natural map L,+1 — L,. Applying Lemma 3.5.5 to {L,} shows that L :=
. ~ Rlim L, € D(mo(Y )proct, R) satisfies L ® 5 R/m™ ~ L,,. Lemma 6.6.2 then
shows L ~ C € D(mo(Y )prost; R), where C := Rlim C,, € Dyere(R) is a stalk of K. [

To state our result, we need the following definition.

Definition 6.6.9. — A scheme X is said to be topologically noetherian if its underly-
ing topological space is noetherian, i.e., any descending sequence of closed subsets is
eventually constant.

Lemma 6.6.10. — Let T be a topological space.

1. If T is noetherian, then T is qcgs and has only finitely many connected compo-
nents. Moreover, any locally closed subset of T is constructible, and noetherian
itself.

2. If T admits a finite stratification with noetherian strata, then T is noetherian.

3. Assume that X is a topologically noetherian scheme, and Y — X étale. Then
Y is topologically noetherian.

Proof

1. Quasicompacity of T is clear. Also, the property of being noetherian passes to
closed subsets, as well as to open subsets. Thus, all open subsets are quasicom-
pact; this implies that all locally closed subsets are constructible, and that T
is quasiseparated. Every connected component is an intersection of open and
closed subsets; this intersection has to be eventually constant, so that every
connected component is open and closed. By quasicompacity, there are only
finitely many.

2. Under this assumption, any descending sequence of closed subsets becomes even-
tually constant on any stratum, and thus constant itself.
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3. There is a stratification of X over which Y — X is finite étale. By (2), we
may assume that Y — X is finite étale. Any closed Z C Y gives rise to a
function fz : X — N, mapping any x € X to the cardinality of the fibre of Z
above a geometric point above x. As Z — X is finite, the function f is upper
semicontinuous, i.e., for all n, {z | fz(z) > n} C X is closed. Moreover, all fz
are bounded independently of Z (by the degree of Y — X). Given a descending
sequence of Z’s, one gets a descending sequence of fz’s. Thus, for any n,
{z | fz(x) > n} forms a descending sequence of closed subsets of X, which
becomes eventually constant. As there are only finitely many n of interest,
all these subsets are eventually constant. This implies that fz is eventually
constant, which shows that Z is eventually constant, as desired. O

Here is the promised result.

Proposition 6.6.11. — Let X be a topologically noetherian scheme. A compler K €

D(Xprost, R) is constructible if and only if there exists a finite stratification {X; — X}
with K|x, locally constant with perfect values on X; progt -

The phrase “locally constant with perfect values” means locally isomorphic to i o~
L ®p R for some L € Dper(R).

Proof. — For the forward direction, fix K € Dcons(Xproét,_ﬁ). By noetherian in-
duction, it suffices to find a dense open U C X such that K|y is locally constant
with perfect values in D(Uproét,ﬁ). By assumption, there exists a U C X such
that K|y ®p R/m € D(Us, R/m) is locally constant with perfect values. Any
topologically noetherian scheme has only finitely many (clopen) connected compo-
nents. Thus, by passing to connected components, we may assume U is connected.
Lemma 6.6.8 then proves the claim. For the reverse, fix K € D(Xprost, ]/%)7 and assume
there exists a finite stratification {X; — X} such that K|x, is, locally on X; proét,
the constant }A%—Complex associated to a perfect R-complex. Then K is complete by
Lemmas 6.5.8 and standard sequences (as completeness is a pro-étale local property).
For the rest, by similar reasoning, we may assume that X is affine and there exists a
pro-étale cover f : Y — X such that K|y ~ z for a perfect R-complex L. Then K; is
locally constant with perfect value L; on X046t Lemma 6.3.13 then shows that K
is étale locally constant with perfect value L, as wanted. ]

The next example shows the necessity of the noetherian hypothesis in Proposi-
tion 6.6.11:

Example 6.6.12. — Fix an algebraically closed field k, a prime number . Set X, =

Z/0", and X = lim X,, = Zy € Spec(k)prost following the notation of Example 4.1.9,
so X is qcgs. Consider the sheaf of rings R = limZ/¢" € Shv(Spec(k)prost);
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X represents ﬁ, but we ignore this. We will construct a complex K € D(Xproét, fx’)
satisfying:
1. K ®% Z/¢ is constant with perfect values over a finite clopen cover of X, so
K ¢ DCOHS(XprOét7 R)
2. K is constant on the connected components of X with perfect values.

3. There does not exist a finite stratification {X; < X} with K|x, locally constant
on Xi,proét-

For each n, let K| € D(X,, pro¢t, Z/¢™) be the locally constant complex whose value
over the connected component of X, determined by a € Z/¢" is (Z/("SZ/07).
Set K,, € D(Xproet, Z/¢™) to be its pullback to X. Then there is a coherent sys-
tem of quasi-isomorphisms K, 1 ®é Jen+1 Z/0™ ~ K,. Patching along these isomor-
phisms gives a complex K := RlimK,, € D(Xproét,f{) satisfying: for each map
fa : Spec(k) — X determined by an o € Zy, we have fiK ~ (Z;—>Z;). As X is to-
tally disconnected, (2) is clear. Since K ®5 Z/{ ~ K1, one easily checks (1). Finally,
as the stalks frK over a € X (k) take on infinitely many disinct values, (3) follows.

Remark 6.6.13. — When X is a variety over an algebraically closed field k, it is easy
to give a direct proof that any K € DCOHS(XprOétJAE) is locally constant along a
stratification, together with an explicit description of the trivializing cover over each
stratum. Indeed, as in Proposition 6.6.11;\it suffices to find a dense open U C X such

that K|y is locally constant in D(Uprost, R). Replacing X by a suitable open, we may
assume (by Artin’s theorem [SGAT3, §X1.3]) that:

1. X is smooth, affine, connected, and a K (m, 1), i.e., pullback along the canonical
map Shv(Xe;) — Shv(Xfet) induces a fully faithful functor D¥ (X e, R/m"™) —
