

ABELIAN VARIETIES

Exercises for week 38 (September 18)

Exercise 1. Let Y be a variety, and let F and G be vector bundles on X of ranks r and s , respectively. Suppose these are given, with respect to some open cover $Y = \cup V_i$, by cocycles $\{\phi_{ij}\}$ and $\{\psi_{ij}\}$.

(i) For each of the following vector bundles, give the rank and the corresponding cocycle:

$$F \oplus G, \quad F \otimes G, \quad F^\vee, \quad \text{Hom}_{O_X}(F, G), \quad \text{Sym}^2(F), \quad \wedge^2 F.$$

(ii) If $f: X \rightarrow Y$ is a morphism, explain how to describe f^*F in terms of a cocycle on X .
 (iii) Conclude that f^* is compatible—in the obvious sense—with the operations \oplus , \otimes , $(\)^\vee$, Hom , etc. (This is in fact true for arbitrary sheaves of modules but for locally free sheaves the method used here gives a simple way to make this explicit.)

Exercise 2. Let C be a complete non-singular curve of genus g over an algebraically closed field. If $D = \sum n_P \cdot P$ is a divisor on C , let $\deg(D) = \sum n_P$. (Caution: this notion of a degree is the right one only over an algebraically closed field, and for varieties of higher dimension, there is no good notion of degree of a divisor.) For a line bundle L we define the degree via the correspondence $Cl(C) \cong \text{Pic}(C)$. Let $\text{Pic}^n(C) \subset \text{Pic}(C)$ be the subset of (isomorphism classes of) line bundles of degree n , so that $\text{Pic}(C) = \bigoplus_{n \in \mathbb{Z}} \text{Pic}^n(C)$.

(i) If $g = 0$, show that $\text{Pic}(C) \cong \mathbb{Z}$ via the degree map.

In the rest of the exercise we assume that $g > 0$.

(ii) Prove that the map $C \rightarrow \text{Pic}^1(C)$ given by $P \mapsto O_C(P)$ is injective.
 (iii) Prove that the map $C^g \rightarrow \text{Pic}^g(C)$ given by $(P_1, \dots, P_g) \mapsto O_C(P_1 + \dots + P_g)$ is surjective.
 (iv) Suppose $g = 1$. Choose a point $O \in C$. Conclude from (ii) and (iii) that there is a unique group structure on C such that the map $C \rightarrow \text{Pic}^0(C)$ given by $P \mapsto O_C(P - O)$ is a homomorphism. (Remark: As we shall discuss, this group structure makes the curve into a *group variety*. The curve C with this group structure, determined by the choice of an origin, is called an *elliptic curve*.)

Exercise 3. Let $\Phi: E_1 \rightarrow E_2$ be a homomorphism of (geometric) vector bundles on a variety X over an algebraically closed field k . Let $\phi: \mathcal{E}_1 \rightarrow \mathcal{E}_2$ be the corresponding homomorphism between the associated sheaves of sections.

(i) For $x \in X$, explain the relation between the stalk $\mathcal{E}_{i,x}$ of the sheaf \mathcal{E}_i at x (which is a module over $O_{X,x}$), and the fibre $E_i(x)$ of E_i over the point x (which is a k -vector space).
 (ii) As discussed in the lecture, if ϕ is injective, this does not mean that Φ is fibrewise injective. Explain how this is related to the fact that the functor $-\otimes_{O_{X,x}} k$ is not left exact (unless X is a point).