

ABELIAN VARIETIES

Exercises for week 3 (October 2)

Exercise 1. Let S be a base scheme. (If you prefer, you can take $S = \text{Spec}(k)$, though this does not simplify the exercise.) Let G and H be group schemes over S . As part of the data of a group scheme we have identity sections $e_G: S \rightarrow G$ and $e_H: S \rightarrow H$ (these are sections of the structural morphisms $G \rightarrow S$ and $H \rightarrow S$, respectively). Let $f: G \rightarrow H$ be a homomorphism of group schemes over S , and consider the scheme $K = S \times_{e_H, H, f} G$; this means that we have a fibre product diagram

$$\begin{array}{ccc} K & \longrightarrow & G \\ \downarrow & & \downarrow f \\ S & \xrightarrow{e_H} & H \end{array}$$

Prove that K represents the functor $T \mapsto \text{Ker}(f(T): G(T) \rightarrow H(T))$, and conclude that K itself is again a group scheme. (In fact, a subgroup scheme of G .) We call K the kernel (group scheme) of f ; usually it is denoted by $\text{Ker}(f)$.

Exercise 2. Let k be a base field, and consider the group scheme $\mathbb{G}_m = \text{Spec}(k[x, x^{-1}])$ over k . Let $f_n: \mathbb{G}_m \rightarrow \mathbb{G}_m$ be the morphism given by $g \mapsto g \cdot g \cdots g$ (product of n factors g).

- (i) Make sure you understand what we mean by this definition of f_n . What if $n < 0$? Give this morphism by an explicit map on coordinate rings. Also describe it as a morphism of functors, i.e., given a scheme T over k , what is the map $f_n(T): \Gamma(T, \mathcal{O}_T)^* \rightarrow \Gamma(T, \mathcal{O}_T)^*$?
- (ii) Prove in both descriptions that f is a homomorphism of group schemes.
- (iii) Define μ_n to be the kernel of f_n . (See the first exercise.) Show that this is an affine scheme and give its coordinate ring. Also describe μ_n as a functor: what is $\mu_n(T)$ for a k -scheme T ?
- (iv) Describe the underlying topological space of μ_8 if we take for k the following fields:

$$\mathbb{Q}, \quad \mathbb{Q}[i], \quad \overline{\mathbb{Q}}, \quad \overline{\mathbb{F}}_3, \quad \overline{\mathbb{F}}_2.$$

Exercise 3.

- (i) If X is an abelian variety over a field k and α is a global 1-form on X (i.e., a global section of the sheaf of differentials $\Omega^1_{X/k}$), prove that α is translation-invariant, i.e., that for every point $x \in X(k)$ with associated translation $t_x: X \rightarrow X$, we have $t_x^*(\alpha) = \alpha$.
- (ii) Why is the analogous assertion not true if we replace X by an affine group variety such as \mathbb{G}_m , even though we still have that $\Omega^1_{X/k} \cong \mathcal{O}_X$? E.g., the form dx on \mathbb{G}_m is not translation-invariant (why?); write down a 1-form that *is* translation invariant.
- (iii) Assume, for simplicity, that $\text{char}(k)$ is not 2 or 3. If E is an elliptic curve over k given by a Weierstrass equation $y^2 = x^3 + Ax + B$, write down a global 1-form on E , and prove that the form you give is everywhere regular (and therefore translation invariant).