
Chapter III. Basic theory of group schemes.

As we have seen in the previous chapter, group schemes come naturally into play in the study of
abelian varieties. For example, if we look at kernels of homomorphisms between abelian varieties
then in general this leads to group schemes that are not group varieties. In the next chapters
we shall have to deal with group schemes more often, so it is worthwile to set up some general
theory.

The present chapter mainly deals with some basic notions, covering most of what is needed
to develop the general theory of abelian varieties. We begin by introducing group schemes in
a relative setting, i.e., working over an arbitrary basis. After this, in order to avoid too many
technicalities, we shall focus on group schemes over a field and affine group schemes.

§ 1. Definitions and examples.

The definition of a group scheme is a variation on that of group variety, where we consider
arbitrary schemes rather than only varieties. This leads to the following, somewhat cumbersome,
definition.

(3.1) Definition. (i) Let S be a scheme. A group scheme over S, or an S-group scheme, is an
S-scheme π: G → S together with S-morphisms m: G×S G → G (group law, or multiplication),
i: G → G (inverse), and e: S → G (identity section), such that the following identities of
morphisms hold:

m◦(m× idG) = m◦(idG ×m) : G×S G×S G → G ,

m◦(e× idG) = j1 : S ×S G → G ,

m◦(idG × e) = j2 : G×S S → G ,

and
e◦π = m◦(idG × i)◦∆G/S = m◦(i× idG)◦∆G/S : G → G ,

where j1: S×SG
∼−→ G and j2: G×SS

∼−→ G are the canonical isomorphisms. (Cf. the definitions
and diagrams in (1.1).)

(ii) A group scheme G over S is said to be commutative if, writing s: G ×S G → G ×S G
for the isomorphism switching the two factors, we have the identity m = m◦s: G×S G → G.

(iii) Let (π1: G1 → S,m1, i1, e1) and (π2: G2 → S,m2, i2, e2) be two group schemes over S.
A homomorphism of S-group schemes from G1 to G2 is a morphism of schemes f : G1 → G2

over S such that f ◦m1 = m2 ◦(f × f): G1 ×S G1 → G2. (This condition implies that f ◦e1 = e2
and f ◦i1 = i2 ◦f .)

In practice it will usually either be understood what m, i and e are, or it will be unnecessary
to make them explicit; in such case we will simply speak about “a group scheme G over S”
without further specification. (In fact, we already did so in parts (ii) and (iii) of the definition.)

If G is a group scheme over S and if S′ → S is a morphism of schemes, then the pull-back
G′ := G ×S S′ inherits the structure of an S′-group scheme. In particular, if s ∈ S then the
fibre Gs := G×S Spec

(
k(s)

)
is a group scheme over the residue field k(s).
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Given an S-group scheme G and an integer n, we define [n] = [n]G: G → G to be the
morphism which on sections—using multiplicative notation for the group law—is given by g %→
gn. If n ! 1 it factors as

[n] = (G
∆n

G/S−−−−→ Gn
S

m(n)

−−−→ G) ,

where m(n) is the “iterated multiplication map”, given on sections by (g1, . . . , gn) %→ g1 · · · gn.
For commutative group schemes [n] is usually called “multiplication by n”.

(3.2) The definitions given in (3.1) are sometimes not so practicable. For instance, to define a
group scheme one would have to give a scheme G, then one needs to define the morphisms m,
i and e, and finally one would have to verify that a number of morphisms agree. Would it not
be much simpler to describe a group as a scheme whose points form a group? Fortunately this
can be done; it provides a way of looking at group schemes that is often more natural than the
definition given above.

Suppose we have a scheme X over some base scheme S. For many purposes the underlying
point set |X| is not a good object to work with. For instance, if X is a group variety then
|X| will in general not inherit a group structure. However, there is another meaning of the
term “point of X”, and this notion is a very convenient one. Namely, recall that if T → S is
another S-scheme then by a T -valued point of X we mean a morphism of schemes x: T → X
over S. The set of such points is denoted X(T ). As a particular case, suppose S = Spec(k) and
T = Spec(K), where k ⊂ K is a field extension. Then one would also refer to a T -valued point
of X as a “K-rational point”, or in some contexts also as a “point of X with coordinates in K”.

It is useful to place our discussion in a more general context. For this, consider a category C.
The example to keep in mind is the category C = Sch/S of schemes over a base scheme S. Write

Ĉ for the category of contravariant functors C → Sets with morphisms of functors as the
morphisms in Ĉ. For X ∈ C, the functor hX = HomC(−, X) is an object of Ĉ. Sending X
to hX gives a covariant functor h: C → Ĉ. The basic observation is that in this process we lose
no information, as made precise by the following fundamental lemma.

(3.3) Yoneda Lemma. The functor h: C → Ĉ is fully faithful. That is, for all objects X and
X ′ of C, the natural map HomC(X,X ′) → Hom

Ĉ
(hX , hX′) is a bijection. More generally: for

every F ∈ Ĉ and X ∈ C, there is a canonical bijection F (X) → Hom
Ĉ
(hX , F ).

Proof. Suppose given F ∈ Ĉ and X ∈ C. The identity morphism idX is an element of hX(X). If
α ∈ Hom

Ĉ
(hX , F ) then define ψ(α) := α(idX) ∈ F (X). This gives a map ψ: Hom

Ĉ
(hX , F ) →

F (X). In the other direction, suppose we have β ∈ F (X). If x: T → X is an element of hX(T )
for some T ∈ C, define ϕ(β)(x) ∈ F (T ) to be the image of β under F (x): F (X) → F (T ). Now it
is straightforward to verify that this gives a map ϕ: F (X) → Hom

Ĉ
(hX , F ) which is an inverse

of ψ. "

(3.4) Definition. A functor F ∈ Ĉ is said to be representable if it is isomorphic to a functor
hX for some X ∈ C. If this holds then it follows from the Yoneda lemma that X is uniquely
determined by F up to C-isomorphism, and any such X is said to represent the functor F .

(3.5) Continuing the discussion of (3.2), we define the notion of a group object in the category
C via the embedding into Ĉ. Thus, if X is an object of C then we define a C-group law on X to
be a lifting of the functor hX : C → Sets to a group-valued functor h̃X : C → Gr. Concretely, to
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give a group law on an object X means that for each object T in C we have to specify a group
law on the set hX(T ) = HomC(T,X), such that for every morphism f : T1 → T2 the induced
map hX(f): hX(T2) → hX(T1) is a homomorphism of groups. An object of C together with a
C-group law on it is called a C-group, or a group object in C. In exactly the same way we can
define other algebraic structures in a category, such as the notion of a ring object in C.

Let us now suppose that C is a category with finite products. This means that C has a
final object (the empty product), which we shall call S, and that for any two objects X and Y
there exists a product X × Y . If G is a group object in C then the group structure on hG gives
a morphism of functors

m: hG×SG = hG × hG −→ hG .

The Yoneda lemma tells us that this morphism is induced by a unique morphism mG: G×SG →
G. In a similar way we obtain morphisms iG: G → G and eG: S → G, and these morphisms
satisfy the relations of (3.1)(i). Conversely, data (mG, iG, eG) satisfying these relations define a
C-group structure on the object G.

Applying the preceding remarks to the category Sch/S of schemes over S, which is a category
with finite products and with S as final object, we see that a group scheme G over S is the
same as a representable group functor on Sch/S together with the choice of a representing object
(namely G). The conclusion of this discussion is so important that we state it as a proposition.

(3.6) Proposition. Let G be a scheme over a base scheme S. Then the following data are
equivalent:

(i) the structure of an S-group scheme on G, in the sense of Definition (3.1);
(ii) a group structure on the sets G(T ), functorial in T ∈ Sch/S .

For homomorphisms we have a similar assertion: if G1 and G2 are S-group schemes then the
following data are equivalent:

(i) a homomorphism of S-group schemes f : G1 → G2, in the sense of Definition (3.1);
(ii) group homomorphisms f(T ): G1(T ) → G2(T ), functorial in T ∈ Sch/S .

In practise we often identify a group scheme G with the functor of points hG, and we use
the same notation G for both of them.

Already in the simplest examples we will see that this is useful, since it is often easier
to understand a group scheme in terms of its functor of points than by giving the structure
morphisms m, i and e. Before we turn to examples, let us use the functorial language to define
the notion of a subgroup scheme.

(3.7) Definition. Let G be a group scheme over S. A subscheme (resp. an open subscheme,
resp. a closed subscheme) H ⊂ G is called an S-subgroup scheme (resp. an open S-subgroup
scheme, resp. a closed S-subgroup scheme) of G if hH is a subgroup functor of hG, i.e., if
H(T ) ⊂ G(T ) is a subgroup for every S-scheme T . A subgroup scheme H ⊂ G is said to be
normal in G if H(T ) is a normal subgroup of G(T ) for every S-scheme T .

In what follows, if we speak about subgroup schemes it shall be understood that we give
H the structure of an S-group scheme induced by that on G. An alternative, but equivalent,
definition of the notion of a subgroup scheme is given in Exercise (3.1).

(3.8) Examples. 1. The additive group. Let S be a base scheme. The additive group over S,
denoted Ga,S , corresponds to the functor which associates to an S-scheme T the additive group
Γ(T,OT ). For simplicity, let us assume that S = Spec(R) is affine. Then Ga,S is represented by
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the affine S-scheme A1
S = Spec

(
R[x]

)
. The structure of a group scheme is given, on rings, by

the following homomorphisms:

m̃: R[x] → R[x]⊗R R[x] given by x %→ x⊗ 1 + 1⊗ x , defining the group law;

ĩ: R[x] → R[x] given by x %→ −x , defining the inverse;

ẽ: R[x] → R given by x %→ 0 , defining the identity.

(See (3.9) below for further discussion of how to describe an affine group scheme in terms of a
Hopf algebra.)

2. The multiplicative group. This group scheme, denoted Gm,S , represents the functor
which associates to an S-scheme T the multiplicative group Γ(T,OT )∗ of invertible elements of
Γ(T,OT ). As a scheme, Gm = Spec

(
OS [x, x−1]

)
. The structure of a group scheme is defined by

the homomorphisms given by

x %→ x⊗ x defining the multiplication;

x %→ x−1 defining the inverse;

x %→ 1 defining the identity element.

3. n-th Roots of unity. Given a positive integer n, we have an S-group scheme µn,S which
associates to an S-scheme T the subgroup of Gm(T ) of elements whose order divides n. The
OS-algebra defining this group scheme is OS [x, x−1]/(xn − 1) with the group law given as in
Example 2. Put differently, µn,S is a closed subgroup scheme of Gm,S .

4. pn-th Roots of zero. Let p be a prime number and suppose that char(S) = p. Consider
the closed subscheme αpn,S ⊂ Ga,S defined by the ideal (xpn

); so αpn,S := Spec
(
OS [x]/(xpn

)
)
.

As is not hard to verify, this is in fact a closed subgroup scheme of Ga,S . If S = Spec(k) for a
field k of characteristic p then geometrically αpn,k is just a “fat point” (a point together with its
(pn − 1)st infinitesimal neighbourhood); but as a group scheme it has an interesting structure.
If T is an S-scheme then αpn(T ) = {f ∈ Γ(T,OT ) | fpn

= 0}, with group structure given by
addition.

5. Constant group schemes. Let M be an arbitrary (abstract) group. Let MS := S(M),
the direct sum of copies of S indexed by the set M . If T is an S-scheme then MS(T ) is the
set of locally constant functions of |T | to M . The group structure on M clearly induces the
structure of a group functor on MS (multiplication of functions), so that MS becomes a group
scheme. The terminology “constant group scheme” should not be taken to mean that the functor
T %→ MS(T ) has constant value M ; in fact, if M is non-trivial then MS(T ) = M only if T is
connected.

In Examples 1–3 and 5, the group schemes as described here are all defined over Spec(Z).
That is, in each case we have GS = GZ ×Spec(Z) S where GZ is “the same” example but now
over the basis Spec(Z). The group schemes αpn of Example 4 are defined over Spec(Fp). The
subscript “S” is sometimes omitted if the basis is Spec(Z) resp. Spec(Fp), or if it is understood
over which basis we are working.

If G = Spec(A) is a finite k-group scheme then by the rank of G we mean the k-dimension of
its affine algebra A. Thus, for instance, the constant group scheme (Z/pZ)k, and (for char(k) =
p) the group schemes µp,k and αp,k all have rank p.

6. As is clear from the definitions, a group variety over a field k is the same as a geometrically
integral group scheme over k. In particular, abelian varieties are group schemes.
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7. Using the Yoneda lemma one easily sees that, for a group scheme G over a basis S, the
morphism i: G → G is a homomorphism of group schemes if and only if G is commutative.

8. Let S be a basis with char(S) = p. If G is an S-group scheme then G(p/S) naturally
inherits the structure of an S-group scheme (being the pull-back of G via the absolute Frobenius
morphism FrobS : S → S). The relative Frobenius morphism FG/S : G → G(p/S) is a homomor-
phism of S-group schemes.

9. Let V be a finite dimensional vector space over a field k. Then we can form the group
variety GL(V ) over k. If T = Spec(R) is an affine k-scheme then GL(V )(T ) is the group of
invertible R-linear transformations of V ⊗k R. If d = dimk(V ) then GL(V ) is non-canonically
(choice of a k-basis for V ) isomorphic to the group variety GLd,k of invertible d× d matrices; as
a scheme the latter is given by

GLd,k = Spec
(
k[Tij , U ; 1 # i, j # d]/(det ·U − 1)

)
,

where det ∈ k[Tij ] is the determinant polynomial. (So “ U = det−1 ”.) We leave it to the reader
to write out the formulas for the group law.

More generally, if V is a vector bundle on a scheme S then we can form the group scheme
GL(V/S) whose T -valued points are the vector bundle automorphisms of VT over T . If V has
rank d then this group scheme is locally on S isomorphic to a group scheme GLd,S of invertible
d× d matrices.

10. As another illustration of the functorial point of view, let us define semi-direct prod-
ucts. Let N and Q be two group schemes over a basis S. Consider the contravariant functor
Aut(N): Sch/S → Gr which associates to an S-scheme T the group of automorphisms of NT as
a T -group scheme. Suppose we are given an action of Q on N by group scheme automorphisms;
by this we mean that we are given a homomorphism of group functors

ρ: Q → Aut(N) .

Then we can form the semi-direct product group scheme N !ρQ. The underlying scheme is just
the product scheme N ×S Q. The group structure is defined on T -valued points by

(n, q) · (n′, q′) =
(
n · ρ(q)(n′), q · q′

)
,

as expected. By (3.6) this defines an S-group scheme N !ρ Q.
Here is an application. In ordinary group theory we know that every group of order p2 is

commutative. The analogue of this in the context of group schemes does not hold. Namely, if
k is a field of characteristic p > 0 then there exists a group scheme of rank p2 over k that is
not commutative. We construct it as a semi-direct product. First note that there is a natural
action of the group scheme Gm on the group scheme Ga; on points it is given by the usual action
of Gm(T ) = Γ(T,OT )∗ on Ga(T ) = Γ(T,OT ). This action restricts to a (non-trivial) action of
µp,k ⊂ Gm,k on αp,k ⊂ Ga,k. Then the semi-direct product αp ! µp has rank p2 but is not
commutative.

(3.9) Affine group schemes. Let S = Spec(R) be an affine base scheme. Suppose G = Spec(A)
is an S-group scheme which is affine as a scheme. Then the morphisms m, i and e giving G its
structure of a group scheme correspond to R-linear homomorphisms

m̃: A → A⊗R A called co-multiplication,

ĩ: A → A called antipode or co-inverse,

ẽ: A → R called augmentation or co-unit.
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These homomorphisms satisfy a number of identities, corresponding to the identities in the
definition of a group scheme; see (3.1)(i). For instance, the associativity of the group law
corresponds to the identity

(m̃⊗ 1)◦m̃ = (1⊗ m̃)◦m̃: A → A⊗R A⊗R A .

We leave it to the reader to write out the other identities.
A unitary R-algebra equipped with maps m̃, ẽ and ĩ satisfying these identities is called a

Hopf algebra or a co-algebra over R. A Hopf algebra is said to be co-commutative if s◦m̃ =
m̃: A → A⊗R A, where s: A⊗R A → A⊗R A is given by x⊗ y %→ y ⊗ x. Thus, the category of
affine group schemes over R is anti-equivalent to the category of commutative R-Hopf algebras,
with commutative group schemes corresponding to Hopf algebras that are both commutative
and co-commutative. For general theory of Hopf algebras we refer to ??. Note that in the
literature Hopf algebras can be non-commutative algebras. In this chapter, Hopf algebras are
assumed to be commutative.

The ideal I := Ker(ẽ: A → R) is called the augmentation ideal. Note that A = R · 1 ⊕ I
as R-module, since the R-algebra structure map R → A is a section of the augmentation. Note
that the condition that e: S → G is a two-sided identity element is equivalent to the relation

m̃(α) = (α⊗ 1) + (1⊗ α) mod I ⊗ I (1)

in the ring A⊗R A. For the co-inverse we then easily find the relation

ĩ(α) = −α mod I2 , if α ∈ I . (2)

(Exercise (3.3) asks you to prove this.)
The above has a natural generalization. Namely, suppose that G is a group scheme over

an arbitrary basis S such that the structural morphism π: G → S is affine. (In this situation
we say that G is an affine group scheme over S; cf. (3.10) below.) Let AG := π∗OG, which is a
sheaf of OS-algebras. Then G ∼= Spec(AG) as S-schemes, and the structure of a group scheme
is given by homomorphisms of (sheaves of) OS-algebras

m̃: AG → AG ⊗OS AG , ĩ: AG → AG , and ẽ: AG → OS

making AG into a sheaf of commutative Hopf algebras over OS . Note that the unit section
e: S → G gives an isomorphism between S and the closed subscheme of G defined by the
augmentation ideal I := Ker(ẽ).

§ 2. Elementary properties of group schemes.

(3.10) Let us set up some terminology for group schemes. As a general rule, if P is a property of
morphisms of schemes (or of schemes) then we say that a group scheme G over S with structural
morphism π: G → S has property P if π has this property as a morphism of schemes (or if G, as
a scheme, has this property). Thus, for example, we say that an S-group scheme G is noetherian,
or finite, if G is a noetherian scheme, resp. if π is a finite morphism. Other properties for which
the rule applies: the property of a morphism of schemes of being quasi-compact, quasi-separated,
(locally) of finite type, (locally) of finite presentation, finite and locally free, separated, proper,
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flat, and unramified, smooth, or étale. Similarly, if the basis S is the spectrum of a field k
then we say that G is (geometrically) reduced, irreducible, connected or integral if G has this
property as a k-scheme.

Note that we call G an affine group scheme over S if π is an affine morphism; we do not
require that G is affine as a scheme. Also note that if G is a finite S-group scheme then this
does not say that G(T ) is finite for every S-scheme T . For instance, we have described the
group scheme αp (over a field k of characteristic p) as a “fat point”, so it should have a positive
dimensional tangent space. Indeed, αp(k) = {1} but αp

(
k[ε]

)
= {1 + aε | a ∈ k}. We find

that the tangent space of αp at the origin has k-dimension 1 and that αp

(
k[ε]

)
is infinite if k is

infinite.
Let us also recall how the predicate “universal(ly)” is used. Here the general rule is the

following: we say that π: G → S universally has property P if for every morphism f : S′ → S,
writing π′: G′ → S′ for the morphism obtained from π by base-change via f , property P holds
for G′ over S′.

Let us now discuss some basic properties of group schemes. We begin with a general lemma.

(3.11) Lemma. (i) Let
X ′ i−→ X

g′

'
'g

Y ′ j−→ Y

be a cartesian diagram in the category of schemes. If g is an immersion (resp. a closed immersion,
resp. an open immersion) then so is g′.

(ii) Let f : Y → X be a morphism of schemes. If s: X → Y is a section of f then s is an
immersion. If f is separated then s is a closed immersion.

(iii) If s: X → Y is a section of a morphism f , as in (ii), then s maps closed points of X to
closed points of Y .

Proof. (i) Suppose g is an immersion. This means we have a subscheme Z ⊂ Y such that g
induces an isomorphism X

∼−→ Z. If Z is an open subscheme (i.e., g an open immersion) then
Y ′ ×Y Z is naturally isomorphic to the open subscheme j−1(Z) of Y ′, and the claim follows. If
Z is a closed subscheme defined by some ideal I ⊂ OY (i.e, g a closed immersion) then Y ′ ×Y Z
is naturally isomorphic to the closed subscheme of Y ′ defined by the ideal generated by j−1(I);
again the claim follows. The case of a general immersion follows by combining the two previous
cases.

(ii) By (i), it suffices to show that the commutative diagram

X
s−−−−−−−→ Y

s

'
'∆Y/X

Y
idY ×(s◦f)−−−−−−−→ Y ×X Y

(3)

is cartesian. This can be done by working on affine open sets. Alternatively, if T is any scheme
then the corresponding diagram of T -valued points is a cartesian diagram of sets, as one easily
checks. It then follows from the Yoneda lemma that (3) is cartesian.

(iii) Let P ∈ X be a closed point. Choose an affine open U ⊂ Y containing s(P ). It suffices
to check that s(P ) is a closed point of U . (This is special about working with points, as opposed
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to arbitrary subschemes.) But U → X is affine, hence separated, so (i) tells us that s(P ) is a
closed point of U . Alternatively, the assertion becomes obvious by working on rings. "

(3.12) Proposition. (i) An S-group scheme G is separated if and only if the unit section e is
a closed immersion.

(ii) If S is a discrete scheme (e.g., the spectrum of a field) then every S-group scheme is
separated.

Proof. (i) The “only if” follows from (ii) of the lemma. For the converse, consider the commu-
tative diagram

G
π−−−−−−−→ S

∆G/S

'
'e

G×S G
m◦ (idG×i)−−−−−−−→ G

For every S-scheme T it is clear that this diagram is cartesian on T -valued points. By the
Yoneda lemma it follows that the diagram is cartesian. Now apply (i) of the lemma.

(ii) Since separatedness is a local property on the basis, it suffices to consider the case that
S is a 1-point scheme. Then the unit section is closed, by (iii) of the lemma. Now apply (i). "

As the following example shows, the result of (ii) is in some sense the best possible. Namely,
suppose that S is a scheme which is not discrete. Then S has a non-isolated closed point s (i.e.,
a closed point s which is not open). Define G as the S-scheme obtained by gluing two copies of
S along S \ {s}. Then G is not separated over S, and one easily shows that G has a structure
of S-group scheme with Gs

∼= (Z/2Z)k(s). Notice that in this example G is even étale over S.

(Z/2Z) trivial fibres

↓ ↓ ↓
G

'π
S

s

Figure 3.

(3.13) Definition. (i) Let G be an S-group scheme with unit section e: S → G. Define
eG = e(S) ⊂ G (a subscheme of G) to be the image of the immersion e.

(ii) Let f : G → G′ be a homomorphism of S-group schemes. Then we define the kernel of f
to be the subgroup scheme Ker(f) := f−1(eG′) of G.

Note that the diagram
Ker(f) ↪−→ G

'
'f

S
e−−−→ G′

is cartesian. In particular, Ker(f) represents the contravariant functor Sch/S → Gr given by

T %→ Ker
(
f(T ): G(T ) −→ G′(T )

)
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and is a normal subgroup scheme of G. If G′ is separated over S then Ker(f) ⊂ G is a closed
subgroup scheme.

As examples of kernels we have, taking S = Spec(Fp) as our base scheme,

µp = Ker(F : Gm → Gm) , αp = Ker(F : Ga → Ga) ,

where in both cases F denotes the Frobenius endomorphism.

(3.14) Left and right translations; sheaves of differentials. Let G be a group scheme over a
basis S. Given an S-scheme T and a point g ∈ G(T ), the right translation tg: GT → GT and
the left translation t′g: GT → GT are defined just as in (1.4). Using the Yoneda lemma we can
also define tg and t′g by saying that for every T -scheme T ′, the maps tg(T ′): G(T ′) → G(T ′)
and t′g(T

′): G(T ′) → G(T ′) are given by γ %→ γg resp. γ %→ gγ. Here we view g as an element of
G(T ′) via the canonical homomorphism G(T ) → G(T ′).

If in the above we take T = G and g = idG ∈ G(G) then the resulting translations τ and
τ ′: G ×S G → G ×S G are given by (g1, g2) → (g1g2, g2), resp. (g1, g2) → (g2g1, g2). Here we
view G×S G as a scheme over G via the second projection. We call τ and τ ′ the universal right
(resp. left) translation. The point is that any other right translation tg: G ×S T → G ×S T as
above is the pull-back of τ via idG × g (i.e., the pull-back via g on the basis), and similarly for
left translations.

As we have seen in (1.5), the translations on G are important in the study of sheaves of
differentials. We will formulate everything using right translations. A 1-form α ∈ Γ(G,Ω1

G/S)
is said to be (right) invariant if it is universally invariant under right translations; by this we
mean that for every T → S and g ∈ G(T ), writing αT ∈ Γ(T,Ω1

GT /T ) for the pull-back of α
via GT → G, we have t∗gαT = αT . In fact, it suffices to check this in the universal case: α is
invariant if and only if p∗1α ∈ Γ(G×SG, p∗1Ω

1
G/S) is invariant under τ . The invariant differentials

form a subsheaf (π∗Ω1
G/S)

G of π∗Ω1
G/S .

For the next result we need one more notation: if π: G → S is a group scheme with unit
section e: S → G, then we write

ωG/S := e∗Ω1
G/S ,

which is a sheaf of OS-modules. If S is the spectrum of a field then ωG/S is just cotangent space
of G at the origin.

(3.15) Proposition. Let π: G → S be a group scheme. Then there is a canonical isomorphism
π∗ωG/S

∼−→ Ω1
G/S . The corresponding homomorphism ωG/S → π∗Ω1

G/S (by adjunction of the

functors π∗ and π∗) induces an isomorphism ωG/S
∼−→ (π∗Ω1

G/S)
G.

Proof. As in (1.5), the geometric idea is that an invariant 1-form on G can be reobtained from
its value along the zero section by using the translations, and that, by a similar proces, an
arbitrary 1-form can be written as a function on G times an invariant form. To turn this idea
into a formal proof we use the universal translation τ .

As above, we view G ×S G as a G-scheme via p2. Then τ is an automorphism of G ×S G
over G, so we have a natural isomorphism

τ∗Ω1
G×SG/G

∼−→ Ω1
G×SG/G . (4)

We observe that G×SG/G is the pull back under p1 of G/S; this gives that Ω1
G×SG/G = p∗1Ω

1
G/S .

As τ = (m, p2): G×S G → G×S G, we find that (4) can be rewritten as

m∗Ω1
G/S

∼−→ p∗1Ω
1
G/S .
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Pulling back via (e◦π, idG): G → G×S G gives the isomorphism

Ω1
G/S

∼−→ π∗e∗Ω1
G/S = π∗ωG/S . (5)

By adjunction, (5) gives rise to a homomorphism π∗: ωG/S → π∗Ω1
G/S associating to a

section β ∈ Γ(S,ωG/S) the 1-form π∗β ∈ Γ(G,π∗ωG/S) = Γ(G,Ω1
G/S). The isomorphism (5)

is constructed in such a way that π∗β is an invariant form. Clearly e∗(π∗β) = β. Conversely,
if α ∈ Γ(G,Ω1

G/S) is an invariant form then m∗(α) = τ∗
(
p∗1(α)

)
= p∗1(α). Pulling back (as in

the above argument) via (e◦π, idG) then gives that α = π∗e∗(α). This shows that the map
(π∗Ω1

G/S)
G → ωG/S given on sections by α %→ e∗α is an inverse of π∗. "

(3.16) The identity component of a group scheme over a field. Let G be a group scheme over
a field k. By (3.12), G is separated over k. The image of the identity section is a single closed
point e = eG of degree 1.

Assume in addition that G is locally of finite type over k. Then the scheme G is locally
noetherian, hence locally connected. If we write G0 for the connected component of G con-
taining e, it follows that G0 is an open subscheme of G. We call G0 the identity component
of G.

Geometrically, one expects that the existence of a group structure implies that G, as a
k-scheme, “looks everywhere the same”, so that certain properties need to be tested only at the
origin. The following proposition shows that for smoothness and reducedness this is indeed the
case. Note, however, that our intuition is a geometric one: in general we can only expect that
“G looks everywhere locally the same” if we work over k = k. In the following proposition it is
good to keep some simple examples in mind. For instance, let p be a prime number and consider
the group scheme µp over the field Q. The underlying topological space consists of two closed
points: the origin e = 1, and a point P corresponding to the non-trivial pth roots of unity. If
we extend scalars from Q to a field containing a pth root of unity then the identity component
(µp)0 = {e} stays connected but the other component {P} splits up into a disjoint union of p−1
connected components.

(3.17) Proposition. Let G be a group scheme, locally of finite type over a field k.
(i) The identity component G0 is an open and closed subgroup scheme of G which is

geometrically irreducible. In particular: for any field extension k ⊂ K, we have (G0)K = (GK)0.
(ii) The following properties are equivalent:

(a1) G⊗k K is reduced for some perfect field K containing k;
(a2) the ring OG,e ⊗k K is reduced for some perfect field K containing k;
(b1) G is smooth over k;
(b2) G0 is smooth over k;
(b3) G is smooth over k at the origin.

(iii) Every connected component of G is irreducible and of finite type over k.

Proof. (i) We first prove that G0 is geometrically connected; that it is even geometrically irre-
ducible will then follow from (iii). More generally, we show that if X is a connected k-scheme,
locally of finite type, that has a k-rational point x ∈ X(k) then X is geometrically connected.
(See EGA IV, 4.5.14 for a more general result.)

Let k be an algebraic closure of k. First we show that the projection p: Xk → X is open
and closed. Suppose {Vα}α∈I is an open covering of X. Then {Vα,k}α∈I is a covering of Xk. If
each Vα,k → Vα is open and closed then the same is true for p. Hence we may assume that X is
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affine and of finite type over k. Let Z ⊂ Xk be closed. Then there is a finite extension k ⊂ K
inside k such that Z is defined over K; concretely this means that there is closed subscheme
ZK ⊂ XK with Z = ZK ⊗K k. Hence it suffices to show that the morphism pK : XK → X is
open and closed. But this is immediate from the fact that pK is finite and flat. (Use HAG,
Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.)

Now suppose we have two non-empty open and closed subsets U1 and U2 of Xk. Because
X is connected, it follows that p(U1) = p(U2) = X. The unique point x ∈ Xk lying over x is
therefore contained in U1 ∩ U2; hence U1 ∩ U2 is non-empty. This shows that Xk is connected.

(ii) The essential step is to prove that (a2) ⇒ (b1); all other implications are easy. (For
(b3) ⇒ (b1) use (3.15).) One easily reduces to the case that k = k and that G is reduced at
the origin. Using the translations on G it then follows that G is reduced. In this situation, the
same argument as in (1.5) applies, showing that G is smooth over k.

For (iii) one first shows that G0 is irreducible and quasi-compact. We have already shown
that (G0)K = (GK)0 for any field extension k ⊂ K, so we may assume that k = k, in which case
we can pass to the reduced underlying group scheme G0

red; see Exercise (3.2). Note that G0
red

has the same underlying topological space as G0. By (ii), G0
red is smooth over k. Every point of

G0
red therefore has an open neighbourhood of the form U = Spec(A) with A a regular ring. As a

regular ring is a domain, such an affine scheme U is irreducible. Now suppose G0
red is reducible.

Because it is connected, there exist two irreducible components C1 -= C2 with C1∩C2 -= ∅. (See
EGA 0I, Cor. 2.1.10.) If y ∈ C1 ∩ C2, let U = Spec(A) be an affine open neighbourhood of y in
G0

red with A regular. Then one of C1 ∩ U and C2 ∩ U contains the other, say C2 ∩ U ⊆ C1 ∩ U .
But C2 ∩ U is dense in C2, hence C2 ⊆ C1. As C1 and C2 are irreducible components we must
have C2 = C1, contradicting the assumption.

To prove quasi-compactness of G0, take a non-empty affine open part U ⊂ G0. Then U
is dense in G0, as G0 is irreducible. Hence for every g ∈ G0(k) the two sets g · U−1 and U
intersect. It follows that the map U ×U → G0 given by multiplication is surjective. But U ×U
is quasi-compact, hence so is G0.

Now we look at the other connected components, working again over an arbitrary field k.
If H ⊂ G is a connected component, choose a closed point h ∈ H. Because G is locally of
finite type over k, there is a finite normal field extension k ⊂ L such that L contains the residue
field k(h). As in the proof of (i), the projection p: H ⊗k L → H is open and closed. One
easily shows that all points in p−1(h) are rational over L. If h̃ ∈ p−1(h) is one of these points
then using the translation th̃ one sees that the connected component C(h̃) of HL containing h̃
is isomorphic to G0

L as an L-scheme. Then p(C(h̃)) ⊂ H is irreducible, closed and open. As
H is connected it follows that p(C(h̃)) = H and that H is irreducible. Finally, the preceding
arguments show that H ⊗k L is the union of the components C(h̃) for all h̃ in the finite set
p−1(h). As each of these components is isomorphic to G0

L, which is quasi-compact, it follows
that H is quasi-compact. "

(3.18) Remarks. (i) Let G be a k-group scheme as in the proposition. Suppose that G⊗k K
is reduced (or that OG,e ⊗k K is reduced) for some non-perfect field K containing k. Then
it is not necessarily true that G is smooth over k. Here is an example: Suppose K = k is a
non-perfect field of characteristic p. Choose an element α ∈ k not in kp. Let G be the k-scheme
G = Spec

(
k[X,Y ]/(Xp +αY p)

)
. View A2

k = Spec
(
k[X,Y ]

)
as a k-group scheme by identifying

it with Ga,k × Ga,k. Then G is a closed subgroup scheme of A2
k. One easily checks that G is

reduced, but clearly it is not geometrically reduced (extend to the field k( p
√
α)), and therefore

G is not a smooth group scheme over k.
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(ii) In (iii) of the proposition, let us note that the connected components of G are in general
not geometrically irreducible; see the example given before the proposition.

(3.19) Remark. Let G be a group scheme, locally of finite type over a field k. In case G is
affine, we have seen in (3.9) that we can study it through its Hopf algebra. For arbitrary G
there is no immediate substitute for this, not even if we are only interested in the local structure
of G at the origin. Note that the group law does not, in general, induce a co-multiplication
on the local ring OG,e. We do have a homomorphism OG,e → OG×kG,(e,e) but OG×kG,(e,e) is
in general of course not the same as OG,e ⊗k OG,e; rather it is a localisation of it. In some
cases, however, something slightly weaker already suffices to obtain interesting conclusions. In
the proof of the next result we shall exploit the fact that, with m ⊂ OG,e the maximal ideal, we
do have a homomorphism m̃: OG,e → (OG,e/mq)⊗k (OG,e/mq) for which the analogue of (1) in
section (3.9) holds.

Another possibility is to consider the completed local ring ÔG,e. The group law on G
induces a co-multiplication m̃: ÔG,e → ÔG,e⊗̂kÔG,e (completed tensor product). In this way we
can associate to a group variety G a (smooth) formal group Ĝ = Spf

(
ÔG,e

)
. We shall further

go into this in ??.

(3.20) Theorem. (Cartier) Let G be a group scheme, locally of finite type over a field k of
characteristic zero. Then G is reduced, hence smooth over k.

Proof. We follow the elementary proof due to Oort [2]. Let A := OG,e be the local ring of G
at the identity element. Write m ⊂ A for the maximal ideal and nil(A) ⊂ A for the nilradical.
Since we are over a perfect field, the reduced scheme Gred underlying G is a subgroup scheme
(Exercise (3.2)), and by (ii) of Prop. (3.17) this implies that Ared := A/nil(A) is a regular local
ring. Writing mred := m/nil(A) ⊂ Ared, this gives

dim(A) = dim(Ared) = dimk(mred/m
2
red) = dimk

(
m/m2 + nil(A)

)
.

In particular, we see that it suffices to show that nil(A) ⊂ m2. Indeed, if this holds then
dim(A) = dim(m/m2), hence A is regular, hence nil(A) = 0.

Choose 0 -= x ∈ nil(A), and let n be the positive integer such that xn−1 -= 0 and xn = 0.
Because A is noetherian, we have ∩q!0 m

q = (0), so there exists an integer q ! 2 with xn−1 /∈ mq.
Consider B := A/mq and m̄ := m/mq ⊂ B, and let x̄ ∈ B denote the class of x ∈ A modulo mq.
As remarked above, the group law on G induces a homomorphism m̃: A → B ⊗k B. Just as
in (3.9), the fact that e ∈ G(k) is a two-sided identity element implies that we have

m̃(x) = (x̄⊗ 1) + (1⊗ x̄) + y with y ∈ m̄⊗k m̄ . (6)

(See also Exercise (3.3).) This gives

0 = m̃(xn) = m̃(x)n = ((x̄⊗ 1) + (1⊗ x̄) + y)n

=
n∑

i=0

(
n

i

)
· (x̄⊗ 1)n−i · ((1⊗ x̄) + y)i .

From this we get the relation

n · (x̄n−1 ⊗ x̄) ∈
(
(x̄n−1 · m̄)⊗k B +B ⊗k m̄2

)
⊂ B ⊗k B .
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But char(k) = 0, so that n is a unit, so that even (x̄n−1 ⊗ x̄) ∈ (x̄n−1 · m̄) ⊗k B + B ⊗k m̄2.
Now remark that a relation of the form y1 ⊗ y2 ∈ J1 ⊗k B +B ⊗k J2 implies that either y1 ∈ J1
or y2 ∈ J2. (To see this, simply view B, J1 and J2 as k-vector spaces.) But by the Nakayama
Lemma, x̄n−1 ∈ x̄n−1 · m̄ implies x̄n−1 = 0, which contradicts our choice of q. We conclude that
x̄ ∈ m̄2; hence x ∈ m2, and we are done. "

The conclusion of this theorem does not hold over fields of positive characteristic. For
example, if char(k) = p > 0 then the group schemes µp,k and αp,k are not reduced, hence not
smooth over k. (The argument of the above proof breaks down if n is divisible by p.)

§ 3. Cartier duality.

(3.21) Cartier duality of finite commutative group schemes. We now discuss some aspects of
finite commutative group schemes that play an important role in the study of abelian varieties.
In particular, the Cartier duality that we shall discuss here comes naturally into play when we
discuss the dual of an abelian variety; see Chapter 7.

The Cartier dual of a group scheme can be defined in two ways: working functorially or
working with the underlying Hopf algebras. We first give two constructions of a dual group;
after that we prove that they actually describe the same object.

The functorial approach is based on the study of characters, by which we mean homo-
morphisms of the group scheme to the multiplicative group Gm. More precisely, suppose G is
any commutative group scheme over a basis S. Then we can define a new contravariant group
functor Hom(G,Gm,S) on the category of S-schemes by

Hom(G,Gm,S): T %→ Hom
/T
(GT ,Gm,T ) .

Next we define a dual object in terms of the Hopf algebra. For this we need to assume
that G is commutative and finite locally free over S. As in (3.9) above, write A := π∗OG. This
A is a finite locally free sheaf of OS-modules which comes equipped with the structure of a
sheaf of co-commutative OS-Hopf algebras. (Recall that all our Hopf algebras are assumed to
be commutative.) Thus we have the following maps:

algebra structure map a: OS → A , augmentation ẽ: A → OS ,

ring multiplication µ: A⊗OS A → A , co-multiplication m̃: A → A⊗OS A ,

co-inverse ĩ: A → A .

We define a new sheaf of co-commutative OS-Hopf algebras AD as follows: first we set
AD := HomOS (A,OS) as an OS-module. The above maps induce OS-linear maps

aD: AD → OS , ẽD: OS → AD ,

µD: AD → AD ⊗OS AD , m̃D: AD ⊗OS AD → AD ,

ĩD: AD → AD .

We give AD the structure of a sheaf of OS-algebras by defining m̃D to be the multiplication and
ẽD to be the algebra structure morphism. Next we define a Hopf algebra structure by using
µD as the co-multiplication, ĩD as the co-inverse, and aD as the co-unit. We leave it to the
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reader (Exercise (3.8)) to verify that this gives AD a well-defined structure of a co-commutative
OS-Hopf algebra. Schematically, if we write the structure maps of a Hopf algebra in a diagram

...

multiplication
... co-multiplication

antipode

algebra structure map
... augmentation map
...

then the diagram corresponding to AD is obtained from that of A by first dualizing all maps
and then reflecting in the dotted line.

We write α: A → (AD)D for the OS-linear map which sends a local section s ∈ A(U) to the
section evs = “evaluation at s” ∈ HomOS

(
HomOS (A,OS), OS

)
(U).

(3.22) Theorem. (Cartier Duality) Let π: G → S be a commutative S-group scheme which is
finite and locally free over S. Write A := π∗OG, and define the sheaf of co-commutative Hopf
algebras AD over OS as above. Then GD := Spec(AD) is a commutative, finite locally free
S-group scheme which represents the contravariant functor Hom(G,Gm,S): Sch/S → Gr given
by

T %→ Hom
/T
(GT ,Gm,T ) .

The homomorphism (GD)D → G induced by the map α: A → (AD)D is an isomorphism.

Proof. That GD is indeed a commutative group scheme is equivalent to saying that AD is a
sheaf of co-commutative Hopf algebras, which we have left as an exercise to the reader. That
GD is again finite and locally free over S (of the same rank as G) is clear, and so is the claim
that (GD)D → G is an isomorphism.

Note that the functor G %→ GD is compatible with base-change: if T is an S-scheme and
G is a commutative, finite locally free S-group scheme then (GT )D ∼= (GD)T canonically. In
particular, to prove that GD represents the functor Hom(G,Gm,S) we may assume that the
basis is affine, say S = Spec(R), and it suffices to show that GD(S) is naturally isomorphic to
the group Hom

/S
(G,Gm,S). As S is affine we may view A simply as an R-Hopf algebra (i.e.,

replace the sheaf A by its R-algebra of global sections).

Among the identities that are satisfied by the structure homomorphisms we have that
(ẽ ⊗ id)◦m̃: A → R ⊗R A ∼= A is the identity and that (̃i, id)◦m̃: A → A is equal to the
composition a◦ ẽ: A → R → A. In particular, if b ∈ A is an element with m̃(b) = b ⊗ b then it
follows that ẽ(b) · b = b and that ĩ(b) · b = ẽ(b). It follows that

{b ∈ A∗ | m̃(b) = b⊗ b} = {b ∈ A | m̃(b) = b⊗ b and ẽ(b) = 1} .

Write Agl for this set. (Its elements are sometimes referred to as the “group-like” elements of A.)
One easily checks that Agl is a subgroup of A∗.

With these remarks in mind, let us compute Hom
/S
(G,Gm,S) and GD(S). The R-

algebra homomorphisms f : R[x, x−1] → A are given by the elements b ∈ A∗, via the corre-
spondence b := f(x). The condition on b ∈ A∗ that the corresponding map f is a homo-
morphism of Hopf algebras is precisely that m̃(b) = b ⊗ b. Hence we find a natural bijection
Hom S (G,Gm,S)

∼−→ Agl, and one readily verifies this to be an isomorphism of groups.
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Every R-module homomorphism AD → R is of the form evb: λ %→ λ(b) for some b ∈ A.
Conversely, if b ∈ A then one verifies that

evb(1) = 1 ⇐⇒ ẽ(b) = 1

and

evb is a ring homomorphism ⇐⇒ m̃(b) = b⊗ b .

This gives a bijection GD(S)
∼−→ Agl, and again one easily verifies this to be an isomorphism of

groups. "

(3.23) Definition. Let π: G → S be a commutative S-group scheme which is finite and
locally free over S. Then we call GD the Cartier dual of G. Similarly, if f : G1 → G2 is a
homomorphism between commutative, finite locally free S-group schemes then we obtain an
induced homomorphism fD: GD

2 → GD
1 , called the Cartier dual of f .

(3.24) Examples. 1. Take G = (Z/nZ)S . Then it is clear from the functorial description of
the Cartier dual that GD = µn,S . Hence (Z/nZ) and µn are Cartier dual to each other. Note
that (Z/nZ)S and µn,S may well be isomorphic. For instance, if S = Spec(k) is the spectrum of
a field and if ζ ∈ k is a primitive nth root of 1 then we obtain an isomorphism (Z/nZ)k

∼−→ µn,k

sending 1̄ to ζ. In particular, if k = k and char(k) " n then (Z/nZ)k ∼= µn,k. By contrast, if
char(k) = p > 0 and p divides n then (Z/nZ)k and µn,k are not isomorphic.

2. Let S be a scheme of characteristic p > 0. We claim that αp,S is its own Cartier dual.
Of course this can be shown at the level of Hopf algebras, but the functorial interpretation is
perhaps more instructive. As Cartier duality is compatible with base-change it suffices to do
the case S = Spec(Fp).

Recall that if R is a ring of characteristic p then αp(R) = {r ∈ R | rp = 0} with its natural
structure of an additive group. If we want to make a homomorphism αp → Gm then the most
obvious guess is to look for an “exponential”. Indeed, if r ∈ αp(R) then

exp(r) = 1 + r +
r2

2!
+ · · ·+ rp−1

(p− 1)!

is a well-defined element of R∗, and r %→ exp(r) defines a homomorphism αp(R) → Gm(R). Now
remark that αp (like Ga) is not just a group scheme but has a natural structure of a functor
in rings. The self-duality αp

∼−→ αD
p = Hom

/Fp
(αp,Gm) is obtained by sending a point

ξ ∈ αp(T ) (where T is an Fp-scheme) to the homomorphism of group schemes αp,T → Gm,T

given (on points with values in T -schemes) by x %→ exp(ξ · x).
3. After the previous example, one might guess that αpn is self-dual for all n. This is not

the case. Instead, (αpn)D can be described as the kernel of Frobenius on the group scheme Wn

of Witt vectors of length n. See Oort [3], § 10. For a special case of this, see also Exercise ??.

§ 4. The component group of a group scheme.

If X is a topological space then π0(X) denotes the set of connected components of X. The
purpose of this section is to discuss a scheme-theoretic analogue of this for schemes that are
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locally of finite type over a field k. To avoid confusion we shall use the notation π0 in the
topological context and /0 for the scheme-theoretic analogue.

If X/k is locally of finite type then /0(X) will be an étale k-scheme, and X %→ /0(X) is
a covariant functor. Furthermore, if G is a k-group scheme, locally of finite type over k, then
/0(G) inherits a natural structure of a group scheme; it is called the component group (scheme)
of G.

We start with some generalities on étale group schemes. Let us recall here that, according
to our conventions, an étale morphism of schemes f : X → Y is only required to be locally of
finite type; see ??.

(3.25) Étale group schemes over a field. Let k be a field. Choose a separable algebraic closure ks
and write Γk := Gal(ks/k). Then Γk is a pro-finite group, (see Appendix ??) and Galois theory
tells us that L %→ Gal(ks/L) gives a bijection between the field extensions of k inside ks and the
closed subgroups of Γk. Finite extensions of k correspond to open subgroups of Γk. A reference
is Neukirch [1], Sect. 4.1.

By a Γk-set we mean a set Y equipped with a continuous left action of Γk. The continuity
assumption here means that for every y ∈ Y the stabilizer Γk,y ⊂ Γk is an open subgroup; this
implies that the Γk-orbits in Y are finite.

Let S := Spec(k). If X is a connected étale scheme over S, then X is of the form X =
Spec(L), with L a finite separable field extension of k. An arbitrary étale S-scheme can be written
as a disjoint union of its connected components, and is therefore of the formX = 2α∈I Spec(Lα),
where I is some index set and where k ⊂ Lα is a finite separable extension of fields. Hence the
description of étale S-schemes is a matter of Galois theory. More precisely, if Et/k denotes the
category of étale k-schemes there is an equivalence of categories

Et/k
eq−−→

(
Γk-sets

)
.

associating to X ∈ Et/k the set X(ks) with its natural Γk-action. To obtain a quasi-inverse,
write a Γk-set Y as a union of orbits, say Y = 2α∈I(Γk · yα), let k ⊂ Lα be the finite field
extension (inside ks) corresponding to the open subgroup Stab(yα) ⊂ Γk, and associate to Y the
S-scheme 2α∈I Spec(Lα). Up to isomorphism of S-schemes this does not depend on the chosen
base points of the Γk-orbits, and it gives a quasi-inverse to the functor X %→ X(ks).

This equivalence of categories induces an equivalence between the corresponding categories
of group objects. This gives the following result.

(3.26) Proposition. Let k ⊂ ks and Γk = Gal(ks/k) be as above. Associating to an étale
k-group scheme G the group G(ks) with its natural Γk-action gives an equivalence of categories

(
étale

k-group schemes

)
eq−−→

(
Γk-groups

)
,

where by a Γk-group we mean an (abstract) group equipped with a continuous left action of Γk

by group automorphisms.

The proposition tells us that every étale k-group scheme G is a k-form of a constant group
scheme. More precisely, consider the (abstract) group M = G(ks). Then we can form the
constant group scheme Mk over k, and the proposition tells us that G ⊗ ks ∼= Mk ⊗ ks. If G
is finite étale over k then we can even find a finite separable field extension k ⊂ K such that
GK

∼= MK . So we can think of étale group schemes as “twisted constant group schemes”.
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For instance, if char(k) is prime to n then µn is a finite étale group scheme, and µn(ks) is
(non-canonically) isomorphic to Z/nZ. The action of Γk on µn(ks) is given by a homomorphism
χ: Γk → (Z/nZ)∗; here the rule is that if ζ ∈ ks

∗ is an n-th root of unity and σ ∈ Γk then
σζ = ζχ(σ).

Now we turn to the scheme /0(X) of connected components of X.

(3.27) Proposition. Let X be a scheme, locally of finite type over a field k. Then there is
an étale k-scheme /0(X) and a morphism q: X → /0(X) over k such that q is universal for k-
morphisms from X to an étale k-scheme. (By this we mean: for any k-morphism h: X → Y with
Y/k étale, there is a unique k-morphism g: /0(X) → Y such that h = g ◦q.) The morphism q
is faithfully flat, and its fibres are precisely the connected components of X.

Before we give the proof, let us make the last assertion more precise. If P is a point of
/0(X) then {P} is a connected component of /0(X), as the topological space of an étale scheme
is discrete. The claim is then that q−1(P ), as an open subscheme of X, is a connected component
of X, for all points P ∈

∣∣/0(X)
∣∣.

Proof. Consider the set πgeom
0 (X) := π0

(
|X ⊗k ks|

)
with its natural action of Γk. First we show

that the action of Γk is continuous. Let C ⊂ Xks be a connected component. Let D ⊂ X be the
connected component containing the image of C under the natural morphism Xks → X. Then
C is one of the connected components of D ⊗k ks. As D is locally of finite type over k, there
is a point x ∈ |D | such that k(x) is a finite extension of k. Let k′ be the separable algebraic
closure of k inside k(x), and let k′′ ⊂ ks denote the normal closure of k′. Then by EGA IV,
Prop. (4.5.15), all connected components of D ⊗k k′′ are geometrically connected. Hence the
stabilizer of C contains the open subgroup Gal(ks/k′′) ⊂ Γk, and is therefore itself open.

Define
/geom

0 (X) :=
∐

α∈πgeom
0 (X)

Spec(ks)
(α) ,

the disjoint union of copies of Spec(ks), one copy for each element of πgeom
0 (X). Consider the

morphism qgeom: Xks → /geom
0 (X) that on each connected component X(α) ⊂ Xks is given

by the structural morphism X(α) → Spec(ks)(α). (So a point P ∈ Xks is sent to the copy of
Spec(ks) labelled by the component of Xks that contains P .) Because the Γk-action on the
set πgeom

0 (X) is continuous, there is an étale k-scheme /0(X) such that we have an isomorphism
β: /0(X)

(
ks
) ∼−→ πgeom

0 (X) of sets with Galois action. Up to isomorphism of k-schemes, this
scheme is unique, and we have a unique isomorphism /0(X)⊗k ks

∼−→ /geom
0 (X) that gives the

identity on ks-valued points. (Here we fix the identification β.) Then qgeom can be viewed as a
morphism

qgeom: X ⊗k ks → /0(X)⊗k ks ,

which is Γk-equivariant. By Galois descent this defines a morphism q: X → /0(X) over k. (See
also Exercise (3.9).)

Next we show that the fibres of q are the connected components of X. Over ks this is clear
from the construction. Over k it suffices to show that distinct connected components of X are
mapped to distinct points of /0(X). But the connected components of X correspond to the
Γk-orbits in πgeom

0 (X), so the claim follows from the result over ks.
We claim that the morphism q: X → /0(X) has the desired universal property. To see

this, suppose h: X → Y is a k-morphism with Y/k étale. Then Y ⊗k ks is a disjoint union
of copies of Spec(ks). It readily follows from our construction of /0(X) and q that there is
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a unique morphism ggeom: /0(X) ⊗k ks → Y ⊗k ks such that hgeom: Xks → Yks factors as
hgeom = ggeom ◦qgeom. Moreover, ggeom is easily seen to be Galois-equivariant; hence we get the
desired morphism g: /0(X) → Y with h = g ◦q.

Finally we have to show that q is faithfully flat. But this can be checked after making a
base change to ks, and over ks it is clear from the construction. "

(3.28) In the situation of the proposition, we refer to /0(X) as the scheme of connected com-
ponents of X. If f : X → Y is a morphism of schemes that are locally of finite type over k then
we write /0(f): /0(X) → /0(Y ) for the unique morphism such that qY ◦f = /0(f)◦qX : X →
/0(Y ).

(3.29) Let G be a k-group scheme, locally of finite type. The connected components of Gks are
geometrically connected; see EGA IV, Prop. (4.5.21). Therefore πgeom

0 (G) := π0

(
|Gks |

)
is equal

to π0

(
|Gk|

)
. The natural map qgeom: G(k) → πgeom

0 (G) is surjective and has G0(k) as its kernel.
As G0(k) is normal in G(k), the set πgeom

0 (G) inherits a group structure such that qgeom is a
homomorphism. It is clear from the construction that Aut(k/k) acts on πgeom

0 (G) through group
automorphisms. On the other hand, this action factors through Aut(k/k) →→ Gal(ks/k) =: Γk;
hence we find that Γk acts on πgeom

0 (G) through group automorphisms.
We can view /geom

0 (G) as the constant group scheme associated to the abstract group
πgeom
0 (G), and because Γk acts on πgeom

0 (G) through group automorphisms, the étale scheme
/0(G) over k inherits the structure of a k-group scheme. It is clear from the constructions that
qgeom: Gks → /geom

0 (G) is a Γk-equivariant homomorphism of group schemes. It follows that
q: G → /0(G) is a homomorphism of k-group schemes.

The conclusion of this discussion is that /0(G) has a natural structure of an étale group
scheme over k, and that q: G → /0(G) is a homomorphism. We refer to/0(G) as the component
group scheme of G.

Another way to show that /0(G), for G a k-group scheme, inherits the structure of a group
scheme is to use the fact that /0(G ×k G) ∼= /0(G) ×k /0(G); see Exercise 3.10. The group
law on /0(G) is the map

/0(m): /0(G×k G) ∼= /0(G)×k /0(G) −→ /0(G)

induced by the group law m: G×k G → G.

Exercises.

(3.1) Show that the following definition is equivalent to the one given in (3.7): If G is a group
scheme over a basis S then a subgroup scheme of G is a subscheme H ⊂ G such that (a) the
identity section e: S → G factors through H; (b) if j: H ↪→ G is the inclusion morphism then
the composition i◦j: H ↪→ G → G factors through H; (c) the composition m◦(j×j): H×SH →
G×S G → G factors through H.

(3.2)
(i) Let G be a group scheme over a perfect field k. Prove that the reduced underlying scheme

Gred ↪→ G is a closed subgroup scheme. [Hint: you will need the fact that Gred ×k Gred is
again a reduced scheme; see EGA IV, § 4.6. This is where we need the assumption that k
is perfect.]
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(ii) Show, by means of an example, that Gred is in general not normal in G.
(iii) Let k be a field of characteristic p. Let a ∈ k, and set G := Spec

(
k[x]/(xp2

+ axp)
)
. Show

that G is a subgroup scheme of Ga,k = Spec
(
k[x]

)
.

(iv) Assume that k is not perfect and that a ∈ k \ kp. Show that |G|, the topological space
underlying G, consists of p closed points, say |G| = {Q1, Q2, . . . , Qp}, where Q1 = e is
the origin. Show that G is reduced at the points Qi for i = 2, . . . , p but not geometrically
reduced. Finally show that the reduced underlying subscheme Gred ↪→ G is not a subgroup
scheme.

(3.3) Prove the relations (1) and (2) in (3.9). Also prove relation (6) in the proof of Theo-
rem (3.20).

(3.4) Let G be a group scheme over a field k. Write TG,e = Ker
(
G(k[ε]) → G(k)

)
for the

tangent space of G at the identity element. Show that the map Te(m): TG,e × TG,e → TG,e

induced by the group law m: G ×k G → G on tangent spaces (the “derivative of m at e”) is
given by Te(m)(a, b) = a+ b. Generalize this to group schemes over an arbitrary base.

(3.5) Let k be a field.
(i) If f : G1 → G2 is a homomorphism of k-group schemes, show that

TKer(f),e
∼= Ker

(
Te(f): TG1,e → TG2,e

)
.

(ii) If char(k) = p > 0, write G[F ] ⊂ G for the kernel of the relative Frobenius homomorphism
FG/k: G → G(p). Show that TG[F ],e

∼= TG,e.
(iii) If G is a finite k-group scheme and char(k) = p, show that G is étale over k if and only if

FG/k is an isomorphism. [Hint: in the “only if” direction, reduce to the case that k = k.]

(3.6) Let S = Spec(R) be an affine base scheme. Let G = Spec(A) be an affine S-group scheme
such that A is free of finite rank as an R-module. Choose an R-basis e1, . . . , ed for A, and
define elements aij ∈ A by m̃(ej) =

∑d
i=1 ei ⊗ aij . Let R[Tij , U ]/(det ·U − 1) be the affine

algebra of GLd,R, where det ∈ k[Tij ] is the determinant of the matrix
(
Tij

)
. Show that there is

a well-defined homomorphism of R-algebras

ϕ: R[Tij , U ]/(det ·U − 1) −→ A

with Tij %→ aij . Show that the corresponding morphism G → GLd,R is a homomorphism and
gives an isomorphism of G with a closed subgroup scheme of GLd,R. [Hint: write Md,R for the
ring scheme over R of d × d matrices. First show that we get a morphism f : G → Md,R such
that f(g1g2) = f(g1)f(g2) for all g1, g2 ∈ G. Next show that f(eG) is the identity matrix, and
conclude that f factors through the open subscheme GLd,R ⊂ Md,R. Finally show that ϕ is
surjective. Use the relations between m̃, ẽ and ĩ.]

(3.7) Let k be a field of characteristic p. Consider the group variety G := GLd,k. Let A =
Spec

(
k[Tij , U ]/(det ·U − 1)

)
be its affine algebra. Recall that we write [n]G: G → G for the

morphism given on points by g %→ gn.
(i) Let I ⊂ A be the augmentation ideal. Let [p]: A → A be the homomorphism of k-algebras

corresponding to [p]G. Show that [p](I) ⊆ Ip.
(ii) Let H = Spec(B) be a finite k-group scheme. Let J ⊂ B be the augmentation ideal. Show

that [p](J) ⊆ Jp. [Hint: use the previous exercise.] For an application of this result, see
Exercise (4.4).
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(3.8) Let π: G → S be an affine S-group scheme. Set A := π∗OG, so that G ∼= Spec(A) as an
S-scheme. Let AD := HomOS (A,OS). Show that with the definitions given in (3.21), AD is a
sheaf of co-commutative OS-Hopf algebras.

(3.9) Let k be a field, k ⊂ ks a separable algebraic closure, and write Γ := Gal(ks/k). Let X
be a scheme, locally of finite type over k, and let Y be an étale k-scheme. Note that Γ naturally
acts on the schemes Xks and Yks . If ϕ: Xks → Yks is a Γ-equivariant morphism of schemes
over ks, show that ϕ is defined over k, i.e., there is a (unique) morphism f : X → Y over k such
that fks = ϕ. [Hint: First reduce to the case that X is affine and that X and Y are connected.
Then work on rings.]

(3.10) Let X and Y be two schemes that are locally of finite type over a field k. Let qX : X →
/0(X) and qY : Y → /0(Y ) be the morphisms as in Prop. (3.27). By the universal property of
/0(X ×k Y ), there is a unique morphism

ρ: /0(X ×k Y ) → /0(X)×k /0(Y )

such that ρ◦q(X×Y ) = (qX ◦prX , qY ◦prY ). Show that ρ is an isomorphism. In particular,
conclude that if k ⊂ K is a field extension then /0(XK) is naturally isomorphic to /0(X)K .
[Hint: Reduce to the case k = ks. Use that if C and D are connected schemes over ks then C×ks

D is again connected. See EGA IV, Cor. (4.5.8), taking into account loc. cit., Prop. (4.5.21).]

Notes. Proposition (3.17) is taken from SGA 3, Exp. VIA. The example following Proposition (3.12) is taken
from ibid., Exp. VIB, §5. A different proof of Prop. (3.27) can be found in the book of Demazure and Gabriel [1].
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