Chapter VII. Duality.

§ 1. Formation of quotients and the descent of coherent sheaves.

(7.1) Definition. Let S be a base scheme. Let p: G xg X — X be an action (from the left) of
an S-group scheme G on an S-scheme X. Let F' be a coherent sheaf of Ox-modules. Then an
action of G on F, compatible with the action p, is an isomorphism \: pr3F' — p*F of sheaves
on G xg X, such that on G xg G xg X we have a commutative diagram

pl‘gF Prag(A) pr§3p*F
(mXidx)*(A)J( l(idcm*(A)
(m xidx)*p*F =—  (idg X p)*p*F

Here is a more concrete explanation of what this means. If T is an S-scheme and g € G(T),
write p,: X7 — Xgp for the action of the element g. Then to have an action of G on F
that is compatible with p means that for every g € G(T) we have an isomorphism of sheaves
Ag: Fp = p} Fp such that A, = pj,(Ag)e Ay for all g, h e G(T).

If F'is a locally free Ox-module we can take a more geometric point of view. First recall
that a locally free Ox-module is “the same” as a geometric vector bundle over X. Namely,
V :=V(FV) is a geometric vector bundle over X, and F' is the sheaf of sections of the structure
morphism 7: V' — X. Then a p-compatible G-action on F' corresponds to an action p: GxgV —
V such that (i) the structure morphism m: V' — X is G-equivariant, and (ii) the action p is
“fibrewise linear”, meaning that for every S-scheme T and every g € G(T), z € X(T), the
isomorphism p(g): V; — Vg is Op-linear. We refer to such an action p as a lifting of p.

With this notion of a G-action on a sheaf, we can formulate a useful result on the descent
of modules.

(7.2) Proposition. Let p: G xg X — X be an action of an S-group scheme G on an S-
scheme X. Suppose there exists an fppf quotient p: X — Y of X by G. If F is a coherent
sheaf of Oy-modules then the canonical isomorphism Acan: pri(p*F) — p*(p*F) defines a p-
compatible G-action on p*F. The functor F +— (p*F, Acan) gives an equivalence between the
category of coherent Oy -modules and the category of coherent O x -modules with (p-compatible)
G-action. This restricts to an equivalence between the category of finite locally free Oy -modules
and the category of finite locally free O x-modules with G-action.

This proposition should be seen as a statement in (faithfully flat) descent theory; it follows
for instance from the results of SGA 1, Exp. VIII, § 1. (See also [BLR], § 6.1, Thm. 4.) Given
such results in descent theory, the only point here is that a p-compatible G-action on a coherent
Ox-module is the same as a descent datum on this module. (Recall that we have an isomorphism
(p,pry): G x5 X — X xy X.) The assertion that finite locally free O x-modules with G-action
give rise to finite locally free Oy -modules follows from EGA IV, Prop. 2.5.2.
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(7.3) Example. We consider the situation of the proposition. The geometric vector bundle
corresponding to the structure sheaf Ox is just the affine line A% over X.
On Ox (geometrically: on A}X) we have a “trivial” action piiv, given by

ﬁtriv:PXidA}giGXSA&:GXSX XsAéHXXSAEIAﬁ(.

The Oy-module corresponding to (Ox, piriv) is just Oy itself.

Let p be some other lifting of p to a G-action on AL. Let T be an S-scheme and g €
G(T). The automorphism 5(g) - fuiv(g) ™" of Ay xg T = Al is given on every fibre A}
by some (invertible) scalar multiplication. This means that p(g) - periv(g)
element v(g) € I'(X7,0%_). We find that an action p gives rise to a morphism of functors
v: G — Resx/sGpm, x on the category Sch,g. The condition that p is a group action means that
v satisfies a cocycle condition v(g1g2) (x) =v(q) (ggx) -v(g2) (x), where we simply write gox for

is given by an

p(g2) (:c) Conversely, given a morphism v: G — Resx;sGy, x that satisfies this condition, one
finds back a G-action p by p(g) = v(9) - priv(9)-

Now suppose that the structure morphism f: X — S satisfies f.(Ox,) = Or for all S-
schemes T'. This holds for instance if X is a proper variety over a field. Then Resx/sG,, x =
Gm,s as functors on Sch,g. In particular, any morphism v: G — Resx;sGy,, x is G-invariant,
in the sense that for all g1, go € G(T) and = € X(T) we have v(g1)(g2x) = v(g1) (). Hence the
cocycle condition in this case just says that v is a homomorphism. So the conclusion is that the
liftings 5 of p to a G-action on Al are in bijective correspondence with Homgsch i <(G,Gy,). In
case G is a commutative, finite locally free S-group scheme this is just the Cartier dual GP(S9).

Via Proposition (7.2), we can use this to obtain a description of the line bundles L on Y
such that p*L = Ox. The result is as follows.

(7.4) Proposition. Let G be a commutative, finite locally free S-group scheme. Let p: G X g
X — X be a free action of G on an S-scheme X. Let p: X — Y be the quotient of X by G.
Suppose that f.(Ox,) = Or for all S-schemes T'. Then for any S-scheme T there is a canonical
isomorphism of groups

_ (isomorphism classes of line bundles\ ~ _ p
or ( L on Yy with p*L = Oy, — (D),

and this isomorphism is compatible with base change T" — T.

Proof. To define dp for arbitrary S-schemes T we may replace S by T and p: X — Y by
pr: Xp — Yp. Note that by Theorem (4.16) and what was explained in Example (4.29), pr is
again the quotient morphism of X7 by the action of G, and of course also the assumption that
f+(Ox,) = Op for all S-schemes T is preserved under base change. Hence it suffices to define
the isomorphism Jg.

Let L be a line bundle on Y with p*L =2 Ox. Via the choice of an isomorphism a: p*L —»
Ox (or, more geometrically, the isomorphism a: p*V(L~1) =5 AL over X) the canonical G-
action on p* L translates into a G-action p on Ak, and as explained above this gives us a character
v: G = Gy, 5. We claim that this character is independent of the choice of . In general, any
other isomorphism p*L — Ox is of the form o/ = yoa for some v € I'(X, O%). Write p and g
for the G-actions on Al obtained using a and o, respectively, and let v and v/ be the associated
characters. If g € G(T) and y is a T-valued point of p*V(L™1) lying over x € X(T) then we
have the relations

Prriv (9, () = v() - priv (9, (y)) and ' (g, (y)) = v(g92) - 5(g, a(y)) ,
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where () is the image of v under the homomorphism I'(X, O% ) — I'(T, O%.) induced by xz: T' —
X, and similarly for v(gz). (Note that elements such as ﬁ(g,a(y)) are T-valued points of Al
lying over the point gx € X (T'), and on such elements we have the “fibrewise” multiplication by
functions on 7'.) But now our assumption that f.(Ox) = Og implies that v is the pull-back of
an element in I'(S, O%), so y(z) = vy(gz). Hence v = v/, as claimed.

Now we can simply apply the conclusion from (7.3), and define dg as the map that sends the
isomorphism class of L to the character v: G — G, s given on points by v(g) = p(9) - peiv(g) .
By Proposition (7.2), together with what was explained in Example (7.3), the map dg thus
obtained is indeed an isomorphism.

Finally we note that the maps d7 are indeed compatible with base change, as is immediate
from the construction. 0

§ 2. Two duality theorems.

(7.5) Theorem. Let f: X — Y be an isogeny of abelian varieties. Then f': Y* — X is again
an isogeny and there is a canonical isomorphism of group schemes

Ker(f)P? = Ker(f").

Proof. If T is a k-scheme, any class in Ker(f*)(T) is uniquely represented by a line bundle L
on Y7 such that f*L = Ox,.. Indeed, if L’ represents a class in Ker(f*)(T) then there is a line
bundle M on T such that f*L’ = pr:-M. Then L := L' ® prs-M ~! represents the same class
as L' and satisfies f*L = Ox,.. Conversely, if L; and Ly represent the same class then they
differ by a line bundle of the form pr7}.M; hence f*L; = f*Lo implies L; = Lo.

Applying Proposition (7.4) we obtain the desired isomorphism Ker(f?!) — Ker(f)P. In
particular this shows that f! has a finite kernel and therefore is again an isogeny. ([l

(7.6) Proposition. Let f: X — Y be a homomorphism. Let M be a line bundle on Y and
write L = f*M. Then ¢r: X — Xt equals the composition

t
x Ly 2oyt Ly xt
If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K (L)) =

deg(f)? - rank(K (M)).

Proof. That ¢ = fleppof is clear from the formula t%f*M = f*t’}(x)M. For the second
assertion recall that a line bundle L is non-degenerate precisely if ¢ is an isogeny, in which
case rank(K (L)) = deg(er). Now use (7.5). O

(7.7) The Poincaré bundle on X x X' comes equipped with a rigidification along {0} x X*. As
P x x{0} = Ox we can also choose a rigidification of & along X x {0}. Such a rigidification is
unique up to an element of I'(X, O% ) = k*. Hence there is a unique rigidification along X x {0}
such that the two rigidifications agree at the origin (0, 0).

Now we view 2 as a family of line bundles on X* parametrised by X. This gives a morphism

kx: X — X',
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As kx(0) = 0 it follows from Prop. (1.13) that xx is a homomorphism.

(7.8) Lemma. Let L be a line bundle on X. Then ¢p, = ¢t ornx: X — X,
Proof. Let s: X x X -+ X x X and s: X x X! — X* x X be the morphisms switching the two

~Y

factors; on points: s(z,y) = (y,x). We have a canonical isomorphism s*A(L) = A(L). Let T be
a k-scheme and x € X (7). Writing [M] for the class of a bundle M on X x T in Picg(/k(T) we
have

or(z) = [(X x T 2% x « X)*A(L)}
idxz

- _(X><T—>X><Xi>X><X)*A(L)}

idxz idxer

- _(X><T—>X><Xi>X><X4>X><Xt)*,@}

idxx

- :(XxT‘”—Xid>Xt><T—>Xt><Xi>X><Xt)*@] = ! orx(z).

As this holds for all T" and = the lemma, is proven. O
(7.9) Theorem. Let X be an abelian variety over a field. Then the homomorphism kx: X —
X' is an isomorphism.

Proof. Choose an ample line bundle L on X. The formula ¢ = ¢! rx shows that Ker(rx) is
finite; hence kx is an isogeny. Furthermore,

rank (K (L)) = deg(pr) = deg(¢}) - deg(rx) = rank (K (L)") - deg(rx),
using (7.5). But rank(K (L)"') = rank(K (L)), so kx has degree 1. O

(7.10) Corollary. If L is a non-degenerate line bundle on X then K (L) = K (L)P.
Proof. Apply (7.5) to ¢, and use (7.8) and (7.9). O

§ 3. Further properties of Picg(/k.

Let X be an abelian variety over a field k. A line bundle L on X gives rise to a homo-
morphism ¢: X — Xt We are going to extend this construction to a more general situation.
Namely, let T" be a k-scheme, and suppose L is a line bundle on X7 := X x; T. We are going
to associate to L a homomorphism ¢r: X1 — erp.

As usual we write A(L) := m*L @ p;L~! @ p5L~! for the Mumford bundle on X7 x7 X7
associated to L. (Note that we are working in the relative setting, viewing T' as the base scheme.
If we rewrite X7 x7 X7 as X Xy X x5, T then A(L) becomes (m xid7)*L@pis L' @pss L7 ) In
order to distinguish the two factors X, let us write Xj(}) = Xp xpe(T) and Xj(?) =e(T) xp Xrp
where e(7") C Xr is the image of the zero section e: T' — X7. Viewing A(L) as a family of line
bundles on Xq(}) parametrized by Xq(?) we obtain a morphism

or: Xr = X3 — Picx, /= Picxp x5 T
As ¢1,(0) = 0 and the fibres X; are connected, ¢, factors through X% = Picg{/k X T.
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(7.11) Lemma. (i) The morphism @1, only depends on the class of L in Picx,(T').

(ii) Let f: T — S be a morphism of k-schemes. If M is a line bundle on Xg and L =
(idx x f)*M on Xr, then ¢r: Xp — X% is the morphism obtained from pyr: Xg — XE by
pulling back via f on the basis.

(ili) The morphism ¢r: X7 — Xk is a homomorphism.

Part (i) of the lemma will be sharpened in (7.15) below. As a particular case of (ii), note
that the fibre of ¢, above a point t € T is just ¢r,, where we write L; for the restriction of L
to X x {t}.

Proof. (i) If Ly and Ly have the same class then they differ by a factor pr» M. But then A(L;)
and A(Lz) differ by a factor 7* M ~1, where m: X7 x7 X7 — T is the structural morphism. This
implies that ¢r, = ¢r,, as claimed.
(ii) This readily follows from the definitions.
(iii) The assertion that ¢ is a homomorphism means that we have an equality of two
morphisms
wrem =mo(pp X pr): Xp x7 X7 — X5

For every t € T we already know that the two morphisms agree on the fibres above t. Hence
the lemma is true if 7" is reduced. In particular, the lemma is true in the “universal” case that
T = Picx/;, and L is the Poincaré bundle on X Xy, Picy/,. In the general case, consider the
morphism f: T — Picx/,, associated to the line bundle L. This morphism is characterized by the
property that L and (id x f)*&” have the same class in Picy,, (7). Now apply (i) and (ii). O

In the above we allow L—to be thought of as a family of line bundles on X parametrized
by T—to be non-constant. But the abelian variety we work on is a constant one. We can go
one step further by also letting the abelian varieties X; “vary with ¢”. This generalization will
be discussed in Chapter ?7; see in particular (?7.7).

We write K (L) := Ker(pr) C Xrp. It is the maximal subscheme of X7 over which A(L) is
trivial, viewing X x7 X1 as a scheme over Xp via the second projection. In particular, o =0
if and only if A(L) is trivial over X, meaning that A(L) = prj M for some line bundle M on Xr.
Using (2.17) we can make this a little more precise.

(7.12) Lemma. Let T be a locally noetherian k-scheme. Write m: Xp xp Xp — T for the
structural morphism. For a line bundle L on X, consider the following conditions.

(a) o, =0.

(b) A(L) = pr5M for some line bundle M on Xr.

(¢) A(L) =2 n*N for some line bundle N on T.

(d) ¢r, =0 for somet € T.
Then (a) < (b) < (¢) = (d), and if T is connected then all four conditions are equivalent. If
these equivalent conditions are satisfied then N = e*L~! and M = pr’.N.

Proof. The implications (d) <= (a) < (b) < (c) are clear. Let us write Xp X7 X7 as X X X x5 T
In this notation we have A(L) = (m x idp)*L ® p{s L™ @ p53 L~ and 7 becomes the projection
onto the third factor. Set N := e*L~!. We find that

ML) 0y xx < Z PreN =2 A(L)|x < (0} xT

as line bundles on X x T
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Suppose T is connected and ¢y, = 0 for some ¢t € T'. Then

A(L) | xxxx{ty = Oxxxx{t}

by (iii) of (2.17). By Thm. (2.5) the line bundle A(L) ® pfN~1 on X x X x T is trivial, i.e.,
A(L) = n*N. This shows that (d) = (a) for connected T'. For arbitrary 7' we get the implication
(a) = (c) by applying the previous to each of its connected components.

The last assertion of the lemma is obtained by restricting A(L) to {0} x {0} x T" and to
{0} x X x T. O

(7.13) Fact. Let X and Y be two projective varieties over a field k. Then the contravariant
functor
Homsch(X,Y): (Sch),) — Sets  given by T Homsch/T(XT,YT)

is representable by a k-scheme, locally of finite type.

This fact is a consequence of the theory of Hilbert schemes. A reference is 77. Note that in
this proof the projectivity of X and Y is used in an essential way. See also Matsumura-Oort [1]
for related results for non-projective varieties.

(7.14) Proposition. Let X and Y be two abelian varieties over a field k. Then the functor
Homay(X,Y): (Sch)x) — Ab  given by T +— Homgsch,, (X1, Y7)

is representable by an étale commutative k-group scheme.

Proof. Let H = Homsen(X,Y) and H' = Homsen (X x X,Y). Let f: Xy — Yg be the universal
morphism. Consider the morphism g: (X x X)y — Yy given on points by g(z1,22) = f(z1 +
x2) — f(x1) — f(x2). Consider also the “trivial” morphism e: (X x X))y — Yy given on points
by e(z1,22) = ey. Then g and e are H-valued points of H'; in other words, they correspond to
morphisms vy, ¥.: H — H'. The functor Homay(X,Y) is represented by the subscheme of H
given by the condition that 1, = 1.; in other words, it is given by the cartesian diagram

HomAV(X,Y) —_— H'
| | 2nrn
H— ("/’gv'(pe) H/ Xk H/

To get a group scheme structure on Homay(X,Y') we just note that Homay(X,Y) is natu-
rally a group functor; now apply (3.6).

It remains to be shown that Homay(X,Y) is an étale group scheme. We already know it is
locally of finite type over k, so it suffices to show that its tangent space at the origin is trivial.
It suffices to prove this in the special case that Y = X, for Homay(X,Y') embeds as a closed
subgroup scheme of &nday(X x Y) := Homav(X x Y, X x Y) by sending f: X — Y to the
endomorphism (z,y) — (0, f(z)) of X x Y.

A tangent vector of &nday(X) at the point idx is the same as a homomorphism &: X ) —
Xpk[e) Over Spec(k[s]) that reduces to the identity modulo €. Note that ¢ is necessarily an
automorphism. (It is the identity on underlying topological spaces, and it is an easy exercise to
show that £ gives an automorphism of the structure sheaf.) Hence by the results in Exercise (1.3),
& corresponds to a global vector field Z on X. As we know, the global vector fields on X are
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precisely the translation-invariant vector fields. On the other hand, a necessary condition for &
to be an endomorphism is that it maps the identity section of Xy to itself. This just means
that Z(ex) = 0. Hence = is the trivial vector field. This shows that idx has non non-trivial
first order deformations. O

In line with the notational conventions introduced in (1.16), we shall usually simply write
Hom(X,Y) for the group scheme of homomorphisms from X to Y. If we wish to refer to the
bigger scheme of arbitrary scheme morphisms from X to Y, or if there is a risk of confusion, we
shall use a subscript “AV” or “Sch” to indicate which of the two we mean.

By (i) and (ii) of Lemma (7.11), L + ¢, gives rise to a morphism of functors ¢: Picx/, —
Hom(X,X?"). If L and M are line bundles on X7 then A(L ® M) = A(L) ® A(M) and we find
that orem = ¢ + @ar- Summing up, we obtain a homomorphism of k-group schemes

@: Picx/, — Hom(X, X1,

(7.15) Lemma. Let T' be a connected k-scheme. Let L be a line bundle on Xp. Write L,
for Lxty. Then for any two k-valued points s, t € T'(k) we have ¢r, = ¢r,. In particular,
Picg(/k C Ker(yp).

Proof. By (d) = (a) of (7.12), applied with 7' = X* and with L = & the Poincaré bundle, we
find that X* = Pic% /i C Ker(p). As ¢ is a homomorphism, it is constant on the connected
components of Picy y.

Let f: T' — Picx/x be the morphism corresponding to L; it factors through some connected
component C' C Picx . Let M := P x ¢ be the restriction of the Poincaré bundle to X x C.
Using (i) and (ii) of (7.11) we find that ¢r: X7 — X% is obtained from pp: Xo — X& by
pulling back via f on the basis. But by the above, onr, ., = @y, - O

(7.16) Lemma. Let X be an abelian variety over k. Let T be a k-scheme and let L be a line
bundle on Xt such that ¢ = 0.

(i) If Y is a T-scheme then for any two morphisms f, g: Y — Xp of schemes over T we
have [(f 4+ ¢)*L] = [f*L ® g*L] in Picy,7(T).

(ii) For n € Z we have [n*L] = [L"] in Picx 4 (T).
Proof. If ¢, = 0 then A(L) = 7n*N for some line bundle N on 7. Pulling back via (f,g): ¥ —
X xp Xrp gives (f+¢9)*L = f*L® ¢*"L @ 7*N, where m: Y — T is the structural morphism.
But 7* N is trivial in Picy,7(T), so we get (i). Applying this with f =idx, and g = nx, gives
the relation [(n + 1)*L] = [L ® n*L]. By double induction on n, starting with the cases n =0
and n = 1, we obtain (ii). O

Using that Pic% /i C Ker(p) we obtain a positive answer to the questions posed in (6.20).
(7.17) Corollary. Let X and Y be abelian varieties over k. Then the map Hom(X,Y) —

Hom(Y't, X*t) given on points by f + f! is a homomorphism of k-group schemes. For all n € Z
we have (nx)! = nx:.

Combining this last result with (7.5) we find that X*[n] is canonically isomorphic to the
Cartier dual of X|[n], for every n € Z~y.

(7.18) Let X be an abelian variety. We call a homomorphism f: X — X* symmetric if f = f¢,
taking the isomorphism kx: X — X' of (7.9) as an identification. It follows from the previous
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corollary that the functor of symmetric homomorphisms X — X! is represented by a closed

subgroup scheme
Hom™™™ (X, X") ¢ Hom(X, X").

In fact, Hom™™™ (X, X*) is just the kernel of the endomorphism of Hom (X, X*) given by f
f=r

By Lemma (7.8), the homomorphism ¢: Picx/, — Hom(X,X") factors through the sub-
group Hom™™™ (X, X?). (Because Hom (X, X?') is étale, it suffices to know that ¢ maps into
Hom™>™™" for points with values in a field.)

Our next goal is to show that not only Pic% /i C Ker(p) but that the two are in fact equal.
First we prove a lemma about the cohomology of line bundles L with ¢ = 0. Note that we are
here again working over a field; this lemma has no straightforward generalization to the relative
setting.

(7.19) Lemma. Let L be a line bundle on X with ¢y, = 0. If L % Ox then H'(X,L) = 0 for
all 1.

Proof. First we treat the group H°(X,L). If there is a non-trivial section s then (—1)*s is a
non-trivial section of (—1)*L = L~'; so both L and L~! have a non-trivial section, and this
implies that L is trivial. Since we have assumed this is not the case, H°(X, L) = {0}.
Let now i > 1 be the smallest positive integer such that H*(X,L) # 0. Consider the
composition
X > XxX™ X, givenby x> (2,0)— .

On cohomology this induces the maps

H{(X,L) = H'(X x X,m"L) > H(X,L),

~Y

the composition of which is the identity. But since m*L = piL ® p3sL, the Kiinneth formula
gives
H'(X x X,m"L) = H'(X x X,pjL®p;L)= > H*X,L)® H'(X,L).
a+b=i
Since H(X, L) = {0} we may consider only those terms in the RHS where a > 1 and b > 1.
But then a < i which by our choice of ¢ implies that H*(X, L) = 0. This shows that the identity
map on H'(X, L) factors via zero. O

In the proof of the next proposition we need some facts about cohomology and base change.
Here is what we need.

(7.20) Fact. Let f: X — Y be a proper morphism of noetherian schemes, with Y reduced and
connected. Let F' be a coherent sheaf of Ox-modules on X.
(i) Ify = dimy,) H1(X,, F,) is a constant function on Y then R?f,(F) is a locally free sheaf
onY, and for all y € Y the natural map Rif.(F) ®o, k(y) = HY(X,, F,) is an isomorphism.
(ii) If R1f.(F) =0 for all ¢ > qo then HY(X,,F,) =0 for ally € Y and q > qo.

A proof of this result can be found in [MAV], § 5.

(7.21) Proposition. Let X be an abelian variety over an algebraically closed field k. Let L
be an ample line bundle on X and M a line bundle with @p; = 0. Then there exists a point
r € X(k) with M 2L ® L',
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Proof. We follow Mumford’s beautiful proof. The idea is to look at the cohomology on X x X
of the line bundle
K:=AL) ®psM~*.

The projections p1,p2: X x X — X give rise to two Leray spectral sequences

EY? = HP(X, R «(K)) = H"T(X x X, K)
and
EP? = HP(X, Ry . (K)) = HTI(X x X, K).

The restrictions of K to the horizontal and vertical fibres are given by

Kipyxx 2 LOLT @ M1,
K|X><{:n} = t;L@L_l .

Assume that there is no # € X (k) such that L& L~! = M. Tt then follows that K|, x is
a non-trivial bundle in Ker(y) for every . (Note that [t!L® L~ = ¢r(x) € Picg(/k C Ker(p).)
By Lemma (7.19) and (7.20) this gives Rp; ,(K) = (0) for all ¢, and from the first spectral
sequence we find that H™"(X x X, K) = 0 for all n.

Now use the second spectral sequence. For x ¢ K(L) the bundle ;L ® L~ is a non-trivial
bundle in Ker(y). Again by Lemma (7.15) we find that supp(R%py . K) C K(L). Since K (L) is
a finite subscheme of X (the bundle L being ample) we find

@ qu2,*<K)x ifp = 0;
EP = {xEK(L)

0 otherwise.

As we only have non-zero terms for p = 0, the spectral sequence degenerates at level E). This
gives H"(X x X, K) = ©per(n)R"p2,« (K)z.

Comparing the two answers for H"(X x X, K) we find that R"p, .(K) = 0 for all n. By
(7.20) this implies that H™ (X, K|xx () = 0 for all . But K|x (o} is the trivial bundle, so
taking n = 0 and x = 0 gives a contradiction. O

(7.22) Corollary. Let X be an abelian variety over a field k. Then Picg(/k = Ker (¢: Picy,, —
Hom(X,X")).

Proof. We already know that Ker(y) is a subgroup scheme of Picx/, that contains Pic_OX Ik
Hence Ker(¢) is the union of a number of connected components of Picx /. By the proposition,
every k-valued point of Ker(¢) lies in Pic’. The claim follows. O

(7.23) Corollary. Let X be an abelian variety over a field k. Let L be a line bundle on X.
(i) If [L"] € Picg(/k for some n # 0 then [L] € Picg(/k. In particular, if L has finite order,
ie., L™ = Ox for some n € Z>1, then [L] € Pic_OX/k.
(i) We have [L ® (—1)*L™1] € Picg(/k.
(iii) We have

[L] € Pic())(/k <= n"L=L" forallneZ
<= n*L=L" forsomencZ)\{0,1}.
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Proof. (i) Since ¢ is a homomorphism we have prn(x) = n-¢r(z) = ¢r(n - x). Hence if
[L™] € Pic’(X) then ¢y, is trivial on all points in the image of nx. But nx is surjective, so ¢,
is trivial.

(ii) Direct computation shows that ¢(_qy«1(z) = —¢r(z) for all L and z. Since also
or-1(z) = —pr(z), we find that [L @ (—1)*L™1] € Ker(y).

(iii) The first implication “=" was proven in (7.16) above; the second is trivial. Suppose that
n*L = L™ for some n ¢ {0,1}. Since n*L & L"®[L® (—1)*L]" ~™/2 it follows that L& (—1)*L
has finite order, hence its class lies in Picg(/k. By (ii) we also have [L ® (—1)*L™1] € Picg(/k.
Hence [L?] € PicOX/k and by (i) then also [L] € Picg(/k. O

(7.24) In (3.29) we have associated to any group scheme G locally of finite type over a field k
an étale group scheme of connected components, denoted by wg(G). We now apply this with
G = Picxyy, for X /k an abelian variety. The associated component group scheme

NSx /i := wo(Picx k)

is called the Néron-Severi group scheme of X over k. The natural homomorphism ¢: Picx/, —
NSx /i realizes NSy, as the fppf quotient of Picy/, modulo Picg( /i hence we could also write

NSx;1, = Picx,/Pick . -

We refer to the group

as the Néron-Severi group of X. Note that NS(X) equals the subgroup of Gal(ks/k)-invariants
in NS(Xp,).

We say that two line bundles L and M are algebraically equivalent, notation L ~s M, if
[L] and [M] have the same image in NS(X'). As NS(X) naturally injects into NS(X7), algebraic
equivalence of line bundles (or divisors) can be tested over k, and there it coincides with the
notion defined in Remark (6.9). Hence we can think of the Néron-Severi group scheme as being
given by the classical, geometric Néron-Severi group NS(Xy,) = NS(X3) of line bundles (or
divisors) modulo algebraic equivalence, together with its natural action of Gal(ks/k). Note,
however, that a k-rational class £ € NS(X) may not always be representable by a line bundle
on X over the ground field k.

Let us rephrase some of the results that we have obtained in terms of the Néron-Severi

group.

(7.25) Corollary. The Néron-Severi group NS(X) is torsion-free. If n € Z and L is a line
bundle on X then n*L is algebraically equivalent to L™ ; in other words, n*: NS(X) — NS(X)
is multiplication by n?.

Proof. The first assertion is just (i) of Corollary (7.23). The second assertion follows from (ii)
of that Corollary together with Corollary (2.12). O

(7.26) Corollary (7.22) can be restated by saying that the natural homomorphism ¢: Picx/, —
Hom™™™ (X, X') C Hom(X, X") factors as

PiCx/k i) NSX/k <l> Homsymm(X’Xt)
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for some injective homomorphism t: NSx/, < Hom™™" (X, X"*). This says that the homomor-
phism ¢, associated to a line bundle L only depends on the algebraic equivalence class of L,
and that ¢, = @ only if L ~u, M. We shall later show that 1 is actually an isomorphism;
see Corollary (11.3).

§ 4. Applications to cohomology.

(7.27) Proposition. Let X be an abelian variety with dim(X) = g. Cup-product gives an
isomorphism A*H'(X,0x) — H*(X,0x). For every p and q we have a natural isomorphism
HY(X, Q’;(/k) = (ANTxt0) @ (APTY o). The Hodge numbers h?? = dim H?(X, QI)){/k) are given
by 10 = (2)(2).

Proof. Use (6.13) and the isomorphisms QY , = (A\PT §) ®) Ox. O

(7.28) Corollary. Multiplication by an integer n on X induces multiplication by n?*? on
HI(X,0%).

Proof. Immediate from the fact that nx induces multiplication by n on Tx o, applied to both
X and X' O

Before we state the next corollary, let us recall that the algebraic de Rham cohomology of
a smooth proper algebraic variety X over a field k is defined to be the hypercohomology of the

de Rham complex
. d d d
Q) = (Ox — Q_lX/k — Q?X/k —> ),
with Ox in degree zero. We have the so-called “stupid filtration” of this complex, by the
subcomplexes 0,25 Ik given by

. 0fori<p
[02179)(/k]Z =

Qé(/k for i > p.
This gives rise to a spectral sequence
EYY = HU(X,0%) = Hig"(X/k)

called the “Hodge—de Rham” spectral sequence.

If k& has characteristic zero then it follows from Hodge theory that this spectral sequence
degenerates at the Fj-level, see Deligne [1], section 5. If k has characteristic p > 0 then this is
no longer true in general. For examples and further results we refer to Deligne-Illusie [1] and
Oesterlé [1].

As we shall now show, for abelian varieties the degeneration of the Hodge-de Rham spectral
sequence at level E; follows from (6.12) without any restrictions on the field k.

(7.29) Corollary. Let X be an abelian variety over a field k. Then the “Hodge-de Rham”
spectral sequence of X degenerates at level E;.

Proof. We follow the proof given by Oda [1]. We have to show that the differentials d,.: E?9 —
Eptra=r+l are zero for all 7 > 1. By induction we may assume that this holds at all levels < r.
(The empty assumption if r = 1.)
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Write Ef(X) = @EP4, graded by total degree. Cup-product makes E(X) into a connected,
graded-commutative k-algebra. By our induction assumption and the Kiinneth formula there is
a canonical isomorphism

EN(X xX)2E(X)®, EXN(X).

Write p: EX(X) — EX(X) ®, EX(X) for the map induced by the multiplication law on X, and
write e: Ef(X) — EY(X) = k for the projection onto the degree zero component. One checks
that p and e give E(X) the structure of a graded bialgebra over k.

Let ¢ = dim(X). By what was shown above, E}(X) = H!(X,0x) ® H°(X, Qﬁ(/k) has
dimension 2g. Also, E{(X) = 0 for i > 2g. The Borel-Hopf structure theorem (6.12) then gives

r

EXY(X) =2 AN*ENX).

Since d, is compatible with the product structure (cup-product) on E}(X), it suffices to
show that d,. is zero on E}(X), which is just the space of primitive elements of E*(X). (See
6.17.) By functoriality of the Hodge—-de Rham spectral sequence we have pod, = (d, ® d;.)op.
Therefore, for ¢ € E}(X) we have u(d,(€)) = d-(€) ® 1 + 1 ® d,.(£). This shows that d,.(€) is
again a primitive element. But d,.(¢) € E?(X) which, by (6.17), contains no non-zero primitive
elements. This shows that d, = 0. O

(7.30) Corollary. There is an exact sequence
0 — Fil' Hig (X/k) — Hig(X/k) — H'(X,0x) — 0,

where Fil' Hig (X/k) := H(X, Q% ) = T .

To close this section let us fulfil an earlier promise and give an example of a smooth projec-
tive variety with non-reduced Picard scheme. We refer to Katsura-Ueno [1] for similar examples.

(7.31) Example. Let k be an algebraically closed field of characteristic 3. Let Eq be the elliptic
curve over k given by the Weierstrass equation y? = 23 — x. From (5.27) we know that E; is
supersingular. Let o be the automorphism of E; given by (x,y) — (z + 1,y). Then o has
order 3, so that we get an action of G := Z/3Z on E;. The quotient of F; by G is isomorphic
to P%; in affine coordinates te quotient map is just (z,y) — y.

Let E5 be an ordinary elliptic curve over k. Let 7 be the translation over a point of (exact)
order 3 on E5. Then (o, 7) is an automorphism of order 3 of the abelian surface X := Ej X Fs; this
gives a strictly free action of G := Z/37Z on X, and we can form the quotient m: X — Y := G\ X.
By (??) m is an étale morphism, so Y is again a non-singular algebraic surface. We have a
natural morphism Y — (G\E;) = P!; this exhibits Y as an elliptic surface over P!. In fact, for
all P € P1(k) with P # oo the fibre Yp above P is isomorphic to Es.

We compute h!(Y, Oy) using Hirzebruch-Riemann-Roch and Chern numbers for algebraic
surfaces. (A reference is 77.) The Euler number ¢z of Y is a multiple of the Euler number of X,
and this is 0. By the Hirzebruch-Riemann-Roch formula we have

1 —h'(Y,0y) +h*(Y,0y) = (¢ + c2)/12 =0,

since ¢§ = 0 for every elliptic surface. By Serre duality, h?(Y,Oy) = h%(Y, Q3 / i) Now we use

that HO(Y, Q%,/k) is isomorphic to the space of G-invariants in H°(X, Q%{/k) If w; is a basis for
HO(Ei,Q}Ei/k) then w; A wsy is a basis for HO(X, Q%{/k) But w; is a multiple of dy, which is
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invariant under o, and ws is translation invariant, in particular invariant under 7. In sum, we
find that h?(Y,Oy) =1 and h'(Y,Oy) = 2.

On the other hand, m: X — Y induces a homomorphism 7*: Picg//k — Xt = Picg(/k. The
same arguments as in the proof of Theorem (7.5) show that Ker(7*) = p3. On the other hand,
7* factors via the subscheme of G-invariants in X*. (See Exercise ?? for the existence of such
a subscheme of G-invariants.) The point here is that we are describing line bundles on Y as
coming from line bundles L on X together with an action of G. But such an action is given by
an isomorphism p*L — pr’ L of line bundles on G x;, X. The existence of such an isomorphism
says precisely that L corresponds to a G-invariant point of X?.

By Exercises ?? and ??, X! =5 X. The induced action of G on X’ is given by the
automorphism (o,id). (Cf. Exercise ??) Therefore, the subscheme of G-invariants in X is
Eiw X E5. The only geometric point of F; fixed under o is the origin. A computation in local
coordinates reveals that Ef@ is in fact the Frobenius kernel E4[F| C E; which can be shown to
be isomorphic to as. In any case, we find that Pic). /1 is 1-dimensional, whereas we have shown
its tangent space at the identity, isomorphic to H!(Y,Oy), to be 2-dimensional. Hence Picg,/k
is non-reduced.

§ 5. The duality between Frobenius and Verschiebung.

(7.32) Let S be a scheme of characteristic p. Recall that for any S-scheme ax: X — S we have
a commutative diagram with Cartesian square

X
xw/s) Vxs,
lag?) lax
S F‘robs S

If there is no risk of confusion we simply write X® for X®/%  Note that if ap: T — S
is an S-scheme then we have aroFrobr = Frobgoar and this gives a natural identification
(X7)P/T) = (X®/5)) 1. We denote this scheme simply by X(Tp).

Let us write T, for the scheme T viewed as an S-scheme via the morphism ar,, =
Frobgear = ap-Frobp: T — S. The morphism Frobp: T — T is not, in general, a morphism
of S-schemes, but if we view it as a morphism 7,y — 7' then it is a morphism over S. To avoid
confusion, let us write Frp: T,y — T for the morphism of S-schemes given by Frobr.

Let Y be an S-scheme. Recall that we write Y (T') for the T-valued points of Y. It is
understood here (though not expressed in the notation) that all schemes and morphisms of
schemes are over a fixed base scheme S; so Y (7') is the set of morphisms 7" — Y over S. There
is a natural bijection

wyr: YP(T) =5 Y(T(y)

sending a point n: T — Y@ to Wy /g on, which is a T{;-valued point of Y. The composition
wy,roFy;s(T): Y(T) = Y (I(y)
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is the map that sends y € Y/(7T') to yoFrp: T(,) — Y, which is the same as yoFroby: T — Y
viewed as a morphism T{,) — Y.

(7.33) Consider an abelian variety X over a field k of characteristic p. Take S := Spec(k). If
T is any S-scheme then X xg T(,) is the same as X®) xg T, and we find that

Picl?), (T) —— Picx/u(T(y) =

WPicy /1, T

isomorphism classes of rigidified
{line bundles (L,«) on X Xg T(p)}
{isomorphism classes of rigidified

= Picy o T).
line bundles (L,a) on X xg T} X! )/S( )

In this way we obtain an isomorphism Picg?} S = Picy /s, which we take as an identification.

Applying (7.32) with Y = Picx/, we find that the relative Frobenius of Picx/, over k is the
homomorphism that sends a point y € Picx /. (T") to yoFroby, viewed as a morphism T(,) —
Picx . Because the diagram

Wx /T

x¥ X

agpl J/&X

T FI"ObT T

is Cartesian this just means that Fpic/p: Picx/x — Picx ), sends the class of a rigidified line
bundle (L,«) on Xr to the class of (L(p),a(p)) on X:(Fp), where L®) .= W)*(T/TL, and where

aP): Op 5 e*L(P) = Frobk(e*L) is the rigidification of L) along the zero section obtained by
pulling back « via Frobr.

(7.34) Proposition. Let X be an abelian variety over a field k of characteristic p. We identify
(XH®) = (X@P)?! as in (7.33), and we denote this abelian variety by X*®). Then we have the
identities

F)t(/k = VXf/k: Xt,(p) N Xt and V}t(/k — FXt/k: Xt N Xt’(p) )

Proof. 1t suffices to prove that F% e Fxep X t — X equals [p]x¢, because if this holds then
together with Proposition (5.20) and the fact that Fx:/, is an isogeny it follows that ij/k =
Vxt /1. The other assertion follows by duality.

Let T be a k-scheme. Consider a rigidified line bundle (L, ) on X7 that gives a point
of X*(T). As explained in (7.33) Fx:/, sends (L,a) to (L®), o)) with LP) = oL
Because W, Fx /7 = Frobx,., pull-back via Fx,. /7 gives the line bundle Frob}TL on Xr.
But if Y is any scheme of characteristic p and M is a line bundle on Y then Froby (M) =2 MP; this
follows for instance by taking a trivialization of M and remarking that Froby raises all transition
functions to the power p. The rigidification we have on Fy /TW)’;T /TL = Froby L = L? is the

isomorphism
Or = Frob;.07 — €, o7 Wiprl = e;;p) Wi, 7L = Frobrey, L = (e, L)”

that is obtained from a by pulling back via Frobp, which just means it is o”. In sum, F% /k° Fxip,
sends (L, «) to (LP,aP), which is what we wanted to prove. O
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Exercises.

(7.1) Let X be an abelian variety. Let mx: X x X — X be the group law, and let Ax: X —
X x X be the diagonal morphism. Show that (mx)! = Ax:: X! x X* — X' and that (Ax)! =
mye: Xt x Xt — Xt

(7.2) Let L be a line bundle on an abelian variety X.

(i) Show that, for n € Z,
n*L = Ox — L"=0Ox.

(ii) Show that, for n € Z \ {—1,0,1},

L2 <«— L"!1~0y.

(7.3) Let X be an abelian variety over an algebraically closed field k. Show that every line
bundle L on X can be written as L = Ly ® Lo, where Ly is symmetric and [Ls] € Picg(/k. [Hint:
By (7.23), the class of the line bundle (—1)*L ® L1 is in Picg(/k. As Pic” is an abelian variety
and k = k, there exists a line bundle M on X with [M] € Pic® and M? = (~1)*L ® L~'. Now
show that L ® M is symmetric.]

(7.4) Let £ be the Poincaré bundle on X x X*. For m, n € Z, consider the endomorphism
(m,n) of X x X*. Show that (m,n)* P = pmn,

(7.5) Let £ be the Poincaré bundle on X x X!. Show that the associated homomorphism
ez X x Xt — X' x X" is the homomorphism given by p»(z, &) = (¢, kx(x)). [Hint: Compute
the restrictions of ¢(x,£)* 2 ® 27! to X x {0} and {0} x X" ]

(7.6) If 7 is a translation on an abelian variety, then what is the induced automorphism ¢ of
the dual abelian variety?

(7.7) Let X be an abelian variety over a field k. Let i: Y < X be an abelian subvariety. Write
q: X = Z := X/Y for the fppf quotient morphism, which exists by Thm. (4.38). Note that Z
is an abelian variety; see Example (4.40).

(i) Show that for any k-scheme T we have ¢.(Ox,) = Oz,.

(ii) Prove that ¢': Z' — X' is injective and gives an isomorphism between Z* and Ker(i*: X* —

Yt)t(‘)ed'

(7.8) Let L be a line bundle on an abelian variety X. For a symmetric m x m-matrix S with
integer coefficients s;; we define a line bundle L¥S on X™ by

175:= (& piLv) e (_© _ pyAD)™).
1=

1<i<js<m

If a = (aij) is an integer valued matrix of size m X n we define a homomorphism of abelian
varieties [a]x: X™ — X™ by a(z1,...,24) = (Y1, .., Ym) With y; = 2?21 a;;x;.

(i) Prove that [a]% (L®9) is algebraically equivalent to LR aSa),

(ii) Assume that L is a symmetric line bundle. Prove that [a]% (L&g) o~ M(aSa),

Notes. (nog aanvullen)

- 112 —



