
Chapter VII. Duality.

§ 1. Formation of quotients and the descent of coherent sheaves.

(7.1) Definition. Let S be a base scheme. Let ρ: G×S X → X be an action (from the left) of
an S-group scheme G on an S-scheme X. Let F be a coherent sheaf of OX -modules. Then an
action of G on F , compatible with the action ρ, is an isomorphism λ: pr∗2F

∼−→ ρ∗F of sheaves
on G×S X, such that on G×S G×S X we have a commutative diagram

pr∗3F
pr∗23(λ)−−−−−→ pr∗23ρ

∗F

(m×idX)∗(λ)

"
"(idG×ρ)∗(λ)

(m× idX)∗ρ∗F === (idG × ρ)∗ρ∗F .

Here is a more concrete explanation of what this means. If T is an S-scheme and g ∈ G(T ),
write ρg: XT → XT for the action of the element g. Then to have an action of G on F
that is compatible with ρ means that for every g ∈ G(T ) we have an isomorphism of sheaves
λg: FT

∼−→ ρ∗gFT such that λgh = ρ∗h(λg)◦λh for all g, h ∈ G(T ).

If F is a locally free OX -module we can take a more geometric point of view. First recall
that a locally free OX -module is “the same” as a geometric vector bundle over X. Namely,
V := V(F∨) is a geometric vector bundle over X, and F is the sheaf of sections of the structure
morphism π: V → X. Then a ρ-compatible G-action on F corresponds to an action ρ̃: G×SV →
V such that (i) the structure morphism π: V → X is G-equivariant, and (ii) the action ρ̃ is
“fibrewise linear”, meaning that for every S-scheme T and every g ∈ G(T ), x ∈ X(T ), the
isomorphism ρ̃(g): Vx → Vgx is OT -linear. We refer to such an action ρ̃ as a lifting of ρ.

With this notion of a G-action on a sheaf, we can formulate a useful result on the descent
of modules.

(7.2) Proposition. Let ρ: G ×S X → X be an action of an S-group scheme G on an S-
scheme X. Suppose there exists an fppf quotient p: X → Y of X by G. If F is a coherent
sheaf of OY -modules then the canonical isomorphism λcan: pr∗2(p

∗F )
∼−→ ρ∗(p∗F ) defines a ρ-

compatible G-action on p∗F . The functor F %→ (p∗F,λcan) gives an equivalence between the
category of coherent OY -modules and the category of coherent OX -modules with (ρ-compatible)
G-action. This restricts to an equivalence between the category of finite locally free OY -modules
and the category of finite locally free OX -modules with G-action.

This proposition should be seen as a statement in (faithfully flat) descent theory; it follows
for instance from the results of SGA 1, Exp. VIII, § 1. (See also [BLR], § 6.1, Thm. 4.) Given
such results in descent theory, the only point here is that a ρ-compatible G-action on a coherent
OX -module is the same as a descent datum on this module. (Recall that we have an isomorphism
(ρ, pr2): G×S X

∼−→ X ×Y X.) The assertion that finite locally free OX -modules with G-action
give rise to finite locally free OY -modules follows from EGA IV, Prop. 2.5.2.
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(7.3) Example. We consider the situation of the proposition. The geometric vector bundle
corresponding to the structure sheaf OX is just the affine line A1

X over X.
On OX (geometrically: on A1

X) we have a “trivial” action ρ̃triv, given by

ρ̃triv = ρ× idA1
S
: G×S A1

X = G×S X ×S A1
S −→ X ×S A1

S = A1
X .

The OY -module corresponding to (OX , ρ̃triv) is just OY itself.
Let ρ̃ be some other lifting of ρ to a G-action on A1

X . Let T be an S-scheme and g ∈
G(T ). The automorphism ρ̃(g) · ρ̃triv(g)−1 of A1

X ×S T = A1
XT

is given on every fibre A1
x

by some (invertible) scalar multiplication. This means that ρ̃(g) · ρ̃triv(g)−1 is given by an
element ν(g) ∈ Γ(XT , O∗

XT
). We find that an action ρ̃ gives rise to a morphism of functors

ν: G → ResX/SGm,X on the category Sch/S . The condition that ρ̃ is a group action means that
ν satisfies a cocycle condition ν(g1g2)

(
x
)
= ν(g1)

(
g2x) · ν(g2)

(
x
)
, where we simply write g2x for

ρ(g2)
(
x
)
. Conversely, given a morphism ν: G → ResX/SGm,X that satisfies this condition, one

finds back a G-action ρ̃ by ρ̃(g) = ν(g) · ρ̃triv(g).
Now suppose that the structure morphism f : X → S satisfies f∗(OXT ) = OT for all S-

schemes T . This holds for instance if X is a proper variety over a field. Then ResX/SGm,X
∼=

Gm,S as functors on Sch/S . In particular, any morphism ν: G → ResX/SGm,X is G-invariant,
in the sense that for all g1, g2 ∈ G(T ) and x ∈ X(T ) we have ν(g1)

(
g2x) = ν(g1)

(
x
)
. Hence the

cocycle condition in this case just says that ν is a homomorphism. So the conclusion is that the
liftings ρ̃ of ρ to a G-action on A1

X are in bijective correspondence with Hom
/S
(G,Gm). In

case G is a commutative, finite locally free S-group scheme this is just the Cartier dual GD(S).

Via Proposition (7.2), we can use this to obtain a description of the line bundles L on Y
such that p∗L ∼= OX . The result is as follows.

(7.4) Proposition. Let G be a commutative, finite locally free S-group scheme. Let ρ: G ×S

X → X be a free action of G on an S-scheme X. Let p: X → Y be the quotient of X by G.
Suppose that f∗(OXT ) = OT for all S-schemes T . Then for any S-scheme T there is a canonical
isomorphism of groups

δT :

(
isomorphism classes of line bundles

L on YT with p∗L ∼= OXT

)
∼−→ GD(T ) ,

and this isomorphism is compatible with base change T ′ → T .

Proof. To define δT for arbitrary S-schemes T we may replace S by T and p: X → Y by
pT : XT → YT . Note that by Theorem (4.16) and what was explained in Example (4.29), pT is
again the quotient morphism of XT by the action of GT , and of course also the assumption that
f∗(OXT ) = OT for all S-schemes T is preserved under base change. Hence it suffices to define
the isomorphism δS .

Let L be a line bundle on Y with p∗L ∼= OX . Via the choice of an isomorphism α: p∗L
∼−→

OX (or, more geometrically, the isomorphism α: p∗V(L−1)
∼−→ A1

X over X) the canonical G-
action on p∗L translates into a G-action ρ̃ on A1

X , and as explained above this gives us a character
ν: G → Gm,S . We claim that this character is independent of the choice of α. In general, any
other isomorphism p∗L

∼−→ OX is of the form α′ = γ ◦α for some γ ∈ Γ(X,O∗
X). Write ρ̃ and ρ̃′

for the G-actions on A1
X obtained using α and α′, respectively, and let ν and ν′ be the associated

characters. If g ∈ G(T ) and y is a T -valued point of p∗V(L−1) lying over x ∈ X(T ) then we
have the relations

ρ̃triv
(
g,α′(y)

)
= γ(x) · ρ̃triv

(
g,α(y)

)
and ρ̃′

(
g,α′(y)

)
= γ(gx) · ρ̃

(
g,α(y)

)
,
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where γ(x) is the image of γ under the homomorphism Γ(X,O∗
X) → Γ(T,O∗

T ) induced by x: T →
X, and similarly for γ(gx). (Note that elements such as ρ̃

(
g,α(y)

)
are T -valued points of A1

X

lying over the point gx ∈ X(T ), and on such elements we have the “fibrewise” multiplication by
functions on T .) But now our assumption that f∗(OX) = OS implies that γ is the pull-back of
an element in Γ(S,O∗

S), so γ(x) = γ(gx). Hence ν = ν′, as claimed.
Now we can simply apply the conclusion from (7.3), and define δS as the map that sends the

isomorphism class of L to the character ν: G → Gm,S given on points by ν(g) = ρ̃(g) · ρ̃triv(g)−1.
By Proposition (7.2), together with what was explained in Example (7.3), the map δS thus
obtained is indeed an isomorphism.

Finally we note that the maps δT are indeed compatible with base change, as is immediate
from the construction. !

§ 2. Two duality theorems.

(7.5) Theorem. Let f : X → Y be an isogeny of abelian varieties. Then f t: Y t → Xt is again
an isogeny and there is a canonical isomorphism of group schemes

Ker(f)D
∼−→ Ker(f t) .

Proof. If T is a k-scheme, any class in Ker(f t)(T ) is uniquely represented by a line bundle L
on YT such that f∗L ∼= OXT . Indeed, if L

′ represents a class in Ker(f t)(T ) then there is a line
bundle M on T such that f∗L′ ∼= pr∗TM . Then L := L′ ⊗ pr∗TM

−1 represents the same class
as L′ and satisfies f∗L ∼= OXT . Conversely, if L1 and L2 represent the same class then they
differ by a line bundle of the form pr∗TM ; hence f∗L1

∼= f∗L2 implies L1
∼= L2.

Applying Proposition (7.4) we obtain the desired isomorphism Ker(f t)
∼−→ Ker(f)D. In

particular this shows that f t has a finite kernel and therefore is again an isogeny. !

(7.6) Proposition. Let f : X → Y be a homomorphism. Let M be a line bundle on Y and
write L = f∗M . Then ϕL: X → Xt equals the composition

X
f−→ Y

ϕM−−→ Y t ft

−−→ Xt .

If f is an isogeny and M is non-degenerate then L is non-degenerate too, and rank(K(L)) =
deg(f)2 · rank(K(M)).

Proof. That ϕL = f t ◦ϕM ◦f is clear from the formula t∗xf
∗M = f∗t∗f(x)M . For the second

assertion recall that a line bundle L is non-degenerate precisely if ϕL is an isogeny, in which
case rank(K(L)) = deg(ϕL). Now use (7.5). !

(7.7) The Poincaré bundle on X ×Xt comes equipped with a rigidification along {0}×Xt. As
P|X×{0}

∼= OX we can also choose a rigidification of P along X × {0}. Such a rigidification is
unique up to an element of Γ(X,O∗

X) = k∗. Hence there is a unique rigidification along X× {0}
such that the two rigidifications agree at the origin (0, 0).

Now we view P as a family of line bundles onXt parametrised byX. This gives a morphism

κX : X −→ Xtt .
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As κX(0) = 0 it follows from Prop. (1.13) that κX is a homomorphism.

(7.8) Lemma. Let L be a line bundle on X. Then ϕL = ϕt
L

◦κX : X → Xt.

Proof. Let s: X ×X → X ×X and s: X ×Xt → Xt ×X be the morphisms switching the two
factors; on points: s(x, y) = (y, x). We have a canonical isomorphism s∗Λ(L) ∼= Λ(L). Let T be
a k-scheme and x ∈ X(T ). Writing [M ] for the class of a bundle M on X × T in Pic0X/k(T ) we
have

ϕL(x) =
[
(X × T

id×x−−−→ X ×X)∗Λ(L)
]

=
[
(X × T

id×x−−−→ X ×X
s−→ X ×X)∗Λ(L)

]

=
[
(X × T

id×x−−−→ X ×X
s−→ X ×X

id×ϕL−−−−→ X ×Xt)∗P
]

=
[
(X × T

ϕL×id−−−−→ Xt × T
id×x−−−→ Xt ×X

s−→ X ×Xt)∗P
]
= ϕt

L ◦κX(x) .

As this holds for all T and x the lemma is proven. !

(7.9) Theorem. Let X be an abelian variety over a field. Then the homomorphism κX : X −→
Xtt is an isomorphism.

Proof. Choose an ample line bundle L on X. The formula ϕL = ϕt
L

◦κX shows that Ker(κX) is
finite; hence κX is an isogeny. Furthermore,

rank
(
K(L)

)
= deg(ϕL) = deg(ϕt

L) · deg(κX) = rank
(
K(L)D

)
· deg(κX) ,

using (7.5). But rank
(
K(L)D

)
= rank

(
K(L)

)
, so κX has degree 1. !

(7.10) Corollary. If L is a non-degenerate line bundle on X then K(L) ∼= K(L)D.

Proof. Apply (7.5) to ϕL and use (7.8) and (7.9). !

§ 3. Further properties of Pic0X/k.

Let X be an abelian variety over a field k. A line bundle L on X gives rise to a homo-
morphism ϕL: X → Xt. We are going to extend this construction to a more general situation.
Namely, let T be a k-scheme, and suppose L is a line bundle on XT := X ×k T . We are going
to associate to L a homomorphism ϕL: XT → Xt

T .
As usual we write Λ(L) := m∗L ⊗ p∗1L

−1 ⊗ p∗2L
−1 for the Mumford bundle on XT ×T XT

associated to L. (Note that we are working in the relative setting, viewing T as the base scheme.
If we rewrite XT ×T XT as X×kX×k T then Λ(L) becomes (m× idT )∗L⊗p∗13L

−1⊗p∗23L
−1.) In

order to distinguish the two factors XT , let us write X
(1)
T = XT ×T e(T ) and X(2)

T = e(T )×T XT

where e(T ) ⊂ XT is the image of the zero section e: T → XT . Viewing Λ(L) as a family of line
bundles on X(1)

T parametrized by X(2)
T we obtain a morphism

ϕL: XT = X(2)
T −→ PicXT /T = PicX/k ×k T .

As ϕL(0) = 0 and the fibres Xt are connected, ϕL factors through Xt
T = Pic0X/k ×k T .
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(7.11) Lemma. (i) The morphism ϕL only depends on the class of L in PicX/k(T ).
(ii) Let f : T → S be a morphism of k-schemes. If M is a line bundle on XS and L =

(idX × f)∗M on XT , then ϕL: XT → Xt
T is the morphism obtained from ϕM : XS → Xt

S by
pulling back via f on the basis.

(iii) The morphism ϕL: XT → Xt
T is a homomorphism.

Part (i) of the lemma will be sharpened in (7.15) below. As a particular case of (ii), note
that the fibre of ϕL above a point t ∈ T is just ϕLt , where we write Lt for the restriction of L
to X × {t}.

Proof. (i) If L1 and L2 have the same class then they differ by a factor pr∗TM . But then Λ(L1)
and Λ(L2) differ by a factor π∗M−1, where π: XT ×T XT → T is the structural morphism. This
implies that ϕL1 = ϕL2 , as claimed.

(ii) This readily follows from the definitions.
(iii) The assertion that ϕL is a homomorphism means that we have an equality of two

morphisms

ϕL ◦m = m◦(ϕL × ϕL): XT ×T XT −→ Xt
T .

For every t ∈ T we already know that the two morphisms agree on the fibres above t. Hence
the lemma is true if T is reduced. In particular, the lemma is true in the “universal” case that
T = PicX/k and L is the Poincaré bundle on X ×k PicX/k. In the general case, consider the
morphism f : T → PicX/k associated to the line bundle L. This morphism is characterized by the
property that L and (id× f)∗P have the same class in PicX/k(T ). Now apply (i) and (ii). !

In the above we allow L—to be thought of as a family of line bundles on X parametrized
by T—to be non-constant. But the abelian variety we work on is a constant one. We can go
one step further by also letting the abelian varieties Xt “vary with t”. This generalization will
be discussed in Chapter ??; see in particular (?.?).

We write K(L) := Ker(ϕL) ⊂ XT . It is the maximal subscheme of XT over which Λ(L) is
trivial, viewing XT ×T XT as a scheme over XT via the second projection. In particular, ϕL = 0
if and only if Λ(L) is trivial over XT , meaning that Λ(L) = pr∗2M for some line bundle M on XT .
Using (2.17) we can make this a little more precise.

(7.12) Lemma. Let T be a locally noetherian k-scheme. Write π: XT ×T XT → T for the
structural morphism. For a line bundle L on XT , consider the following conditions.

(a) ϕL = 0.
(b) Λ(L) ∼= pr∗2M for some line bundle M on XT .
(c) Λ(L) ∼= π∗N for some line bundle N on T .
(d) ϕLt = 0 for some t ∈ T .

Then (a) ⇔ (b) ⇔ (c) ⇒ (d), and if T is connected then all four conditions are equivalent. If
these equivalent conditions are satisfied then N ∼= e∗L−1 and M = pr∗TN .

Proof. The implications (d) ⇐ (a) ⇔ (b) ⇐ (c) are clear. Let us write XT ×T XT as X×kX×kT .
In this notation we have Λ(L) = (m× idT )∗L⊗ p∗13L

−1 ⊗ p∗23L
−1 and π becomes the projection

onto the third factor. Set N := e∗L−1. We find that

Λ(L)|{0}×X×T
∼= pr∗TN ∼= Λ(L)|X×{0}×T

as line bundles on X × T .
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Suppose T is connected and ϕLt = 0 for some t ∈ T . Then

Λ(L)|X×X×{t}
∼= OX×X×{t}

by (iii) of (2.17). By Thm. (2.5) the line bundle Λ(L) ⊗ p∗3N
−1 on X × X × T is trivial, i.e.,

Λ(L) ∼= π∗N . This shows that (d) ⇒ (a) for connected T . For arbitrary T we get the implication
(a) ⇒ (c) by applying the previous to each of its connected components.

The last assertion of the lemma is obtained by restricting Λ(L) to {0} × {0} × T and to
{0}×X × T . !

(7.13) Fact. Let X and Y be two projective varieties over a field k. Then the contravariant
functor

Hom (X,Y ): (Sch/k) → Sets given by T %→ Hom
/T
(XT , YT )

is representable by a k-scheme, locally of finite type.

This fact is a consequence of the theory of Hilbert schemes. A reference is ??. Note that in
this proof the projectivity of X and Y is used in an essential way. See also Matsumura-Oort [1]
for related results for non-projective varieties.

(7.14) Proposition. Let X and Y be two abelian varieties over a field k. Then the functor

Hom (X,Y ): (Sch/k) → Ab given by T %→ Hom
/T
(XT , YT )

is representable by an étale commutative k-group scheme.

Proof. Let H = Hom (X,Y ) and H ′ = Hom (X×X,Y ). Let f : XH → YH be the universal
morphism. Consider the morphism g: (X ×X)H → YH given on points by g(x1, x2) = f(x1 +
x2)− f(x1)− f(x2). Consider also the “trivial” morphism e: (X ×X)H → YH given on points
by e(x1, x2) = eY . Then g and e are H-valued points of H ′; in other words, they correspond to
morphisms ψg, ψe: H → H ′. The functor Hom (X,Y ) is represented by the subscheme of H
given by the condition that ψg = ψe; in other words, it is given by the cartesian diagram

Hom (X,Y ) −−−−−→ H ′

"
"∆H′/k

H
(ψg,ψe)−−−−−→ H ′ ×k H ′ .

To get a group scheme structure on Hom (X,Y ) we just note that Hom (X,Y ) is natu-
rally a group functor; now apply (3.6).

It remains to be shown that Hom (X,Y ) is an étale group scheme. We already know it is
locally of finite type over k, so it suffices to show that its tangent space at the origin is trivial.
It suffices to prove this in the special case that Y = X, for Hom (X,Y ) embeds as a closed
subgroup scheme of End (X × Y ) := Hom (X × Y,X × Y ) by sending f : X → Y to the
endomorphism (x, y) %→

(
0, f(x)

)
of X × Y .

A tangent vector of End (X) at the point idX is the same as a homomorphism ξ: Xk[ε] →
Xk[ε] over Spec

(
k[ε]

)
that reduces to the identity modulo ε. Note that ξ is necessarily an

automorphism. (It is the identity on underlying topological spaces, and it is an easy exercise to
show that ξ gives an automorphism of the structure sheaf.) Hence by the results in Exercise (1.3),
ξ corresponds to a global vector field Ξ on X. As we know, the global vector fields on X are
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precisely the translation-invariant vector fields. On the other hand, a necessary condition for ξ
to be an endomorphism is that it maps the identity section of Xk[ε] to itself. This just means
that Ξ(eX) = 0. Hence Ξ is the trivial vector field. This shows that idX has non non-trivial
first order deformations. !

In line with the notational conventions introduced in (1.16), we shall usually simply write
Hom(X,Y ) for the group scheme of homomorphisms from X to Y . If we wish to refer to the
bigger scheme of arbitrary scheme morphisms from X to Y , or if there is a risk of confusion, we
shall use a subscript “AV” or “Sch” to indicate which of the two we mean.

By (i) and (ii) of Lemma (7.11), L %→ ϕL gives rise to a morphism of functors ϕ: PicX/k →
Hom(X,Xt). If L and M are line bundles on XT then Λ(L⊗M) ∼= Λ(L)⊗ Λ(M) and we find
that ϕL⊗M = ϕL + ϕM . Summing up, we obtain a homomorphism of k-group schemes

ϕ: PicX/k → Hom(X,Xt) .

(7.15) Lemma. Let T be a connected k-scheme. Let L be a line bundle on XT . Write Lt

for L|X×{t}. Then for any two k-valued points s, t ∈ T (k) we have ϕLs = ϕLt . In particular,
Pic0X/k ⊂ Ker(ϕ).

Proof. By (d) ⇒ (a) of (7.12), applied with T = Xt and with L = P the Poincaré bundle, we
find that Xt = Pic0X/k ⊂ Ker(ϕ). As ϕ is a homomorphism, it is constant on the connected
components of PicX/k.

Let f : T → PicX/k be the morphism corresponding to L; it factors through some connected
component C ⊂ PicX/k. Let M := P|X×C be the restriction of the Poincaré bundle to X × C.
Using (i) and (ii) of (7.11) we find that ϕL: XT → Xt

T is obtained from ϕM : XC → Xt
C by

pulling back via f on the basis. But by the above, ϕMf(s)
= ϕMf(t)

. !

(7.16) Lemma. Let X be an abelian variety over k. Let T be a k-scheme and let L be a line
bundle on XT such that ϕL = 0.

(i) If Y is a T -scheme then for any two morphisms f , g: Y → XT of schemes over T we
have

[
(f + g)∗L

]
=

[
f∗L⊗ g∗L

]
in PicY/T (T ).

(ii) For n ∈ Z we have [n∗L] = [Ln] in PicX/k(T ).

Proof. If ϕL = 0 then Λ(L) = π∗N for some line bundle N on T . Pulling back via (f, g): Y →
XT ×T XT gives (f + g)∗L = f∗L ⊗ g∗L ⊗ π∗N , where π: Y → T is the structural morphism.
But π∗N is trivial in PicY/T (T ), so we get (i). Applying this with f = idXT and g = nXT gives
the relation [(n + 1)∗L] = [L ⊗ n∗L]. By double induction on n, starting with the cases n = 0
and n = 1, we obtain (ii). !

Using that Pic0X/k ⊂ Ker(ϕ) we obtain a positive answer to the questions posed in (6.20).

(7.17) Corollary. Let X and Y be abelian varieties over k. Then the map Hom(X,Y ) →
Hom(Y t, Xt) given on points by f %→ f t is a homomorphism of k-group schemes. For all n ∈ Z
we have (nX)t = nXt .

Combining this last result with (7.5) we find that Xt[n] is canonically isomorphic to the
Cartier dual of X[n], for every n ∈ Z>0.

(7.18) Let X be an abelian variety. We call a homomorphism f : X → Xt symmetric if f = f t,
taking the isomorphism κX : X

∼−→ Xtt of (7.9) as an identification. It follows from the previous

– 104 –



corollary that the functor of symmetric homomorphisms X → Xt is represented by a closed
subgroup scheme

Homsymm(X,Xt) ⊂ Hom(X,Xt) .

In fact, Homsymm(X,Xt) is just the kernel of the endomorphism of Hom(X,Xt) given by f %→
f − f t.

By Lemma (7.8), the homomorphism ϕ: PicX/k → Hom(X,Xt) factors through the sub-
group Homsymm(X,Xt). (Because Hom(X,Xt) is étale, it suffices to know that ϕ maps into
Homsymm for points with values in a field.)

Our next goal is to show that not only Pic0X/k ⊂ Ker(ϕ) but that the two are in fact equal.
First we prove a lemma about the cohomology of line bundles L with ϕL = 0. Note that we are
here again working over a field; this lemma has no straightforward generalization to the relative
setting.

(7.19) Lemma. Let L be a line bundle on X with ϕL = 0. If L ,∼= OX then Hi(X,L) = 0 for
all i.

Proof. First we treat the group H0(X,L). If there is a non-trivial section s then (−1)∗s is a
non-trivial section of (−1)∗L ∼= L−1; so both L and L−1 have a non-trivial section, and this
implies that L is trivial. Since we have assumed this is not the case, H0(X,L) = {0}.

Let now i " 1 be the smallest positive integer such that Hi(X,L) ,= 0. Consider the
composition

X → X ×X
m−→ X , given by x %→ (x, 0) %→ x .

On cohomology this induces the maps

Hi(X,L) → Hi(X ×X,m∗L) → Hi(X,L) ,

the composition of which is the identity. But since m∗L ∼= p∗1L ⊗ p∗2L, the Künneth formula
gives

Hi(X ×X,m∗L) ∼= Hi(X ×X, p∗1L⊗ p∗2L) ∼=
∑

a+b=i

Ha(X,L)⊗Hb(X,L) .

Since H0(X,L) = {0} we may consider only those terms in the RHS where a " 1 and b " 1.
But then a < i which by our choice of i implies that Ha(X,L) = 0. This shows that the identity
map on Hi(X,L) factors via zero. !

In the proof of the next proposition we need some facts about cohomology and base change.
Here is what we need.

(7.20) Fact. Let f : X → Y be a proper morphism of noetherian schemes, with Y reduced and
connected. Let F be a coherent sheaf of OX -modules on X.

(i) If y %→ dimk(y) H
q(Xy, Fy) is a constant function on Y then Rqf∗(F ) is a locally free sheaf

on Y , and for all y ∈ Y the natural map Rqf∗(F )⊗OY k(y) → Hq(Xy, Fy) is an isomorphism.
(ii) If Rqf∗(F ) = 0 for all q " q0 then Hq(Xy, Fy) = 0 for all y ∈ Y and q " q0.

A proof of this result can be found in [MAV], § 5.

(7.21) Proposition. Let X be an abelian variety over an algebraically closed field k. Let L
be an ample line bundle on X and M a line bundle with ϕM = 0. Then there exists a point
x ∈ X(k) with M ∼= t∗xL⊗ L−1.

– 105 –



Proof. We follow Mumford’s beautiful proof. The idea is to look at the cohomology on X ×X
of the line bundle

K := Λ(L)⊗ p∗2M
−1 .

The projections p1, p2: X ×X → X give rise to two Leray spectral sequences

Ep,q
2 = Hp(X,Rqp1,∗(K)) ⇒ Hp+q(X ×X,K)

and

E′p,q
2 = Hp(X,Rqp2,∗(K)) ⇒ Hp+q(X ×X,K) .

The restrictions of K to the horizontal and vertical fibres are given by

K|{x}×X
∼= t∗xL⊗ L−1 ⊗M−1 ,

K|X×{x}
∼= t∗xL⊗ L−1 .

Assume that there is no x ∈ X(k) such that t∗xL⊗L−1 ∼= M . It then follows that K|{x}×X is
a non-trivial bundle in Ker(ϕ) for every x. (Note that [t∗xL⊗L−1] = ϕL(x) ∈ Pic0X/k ⊂ Ker(ϕ).)
By Lemma (7.19) and (7.20) this gives Rqp1,∗(K) = (0) for all q, and from the first spectral
sequence we find that Hn(X ×X,K) = 0 for all n.

Now use the second spectral sequence. For x /∈ K(L) the bundle t∗xL⊗L−1 is a non-trivial
bundle in Ker(ϕ). Again by Lemma (7.15) we find that supp(Rqp2,∗K) ⊂ K(L). Since K(L) is
a finite subscheme of X (the bundle L being ample) we find

E′p,q
2 =

{ ⊕

x∈K(L)

Rqp2,∗(K)x if p = 0;

0 otherwise.

As we only have non-zero terms for p = 0, the spectral sequence degenerates at level E′
2. This

gives Hn(X ×X,K) = ⊕x∈K(L)R
np2,∗(K)x.

Comparing the two answers for Hn(X × X,K) we find that Rnp2,∗(K) = 0 for all n. By
(7.20) this implies that Hn(X,K|X×{x}) = 0 for all x. But K|X×{0} is the trivial bundle, so
taking n = 0 and x = 0 gives a contradiction. !

(7.22) Corollary. Let X be an abelian variety over a field k. Then Pic0X/k = Ker
(
ϕ: PicX/k →

Hom(X,Xt)
)
.

Proof. We already know that Ker(ϕ) is a subgroup scheme of PicX/k that contains Pic0X/k.
Hence Ker(ϕ) is the union of a number of connected components of PicX/k. By the proposition,
every k-valued point of Ker(ϕ) lies in Pic0. The claim follows. !

(7.23) Corollary. Let X be an abelian variety over a field k. Let L be a line bundle on X.
(i) If [Ln] ∈ Pic0X/k for some n ,= 0 then [L] ∈ Pic0X/k. In particular, if L has finite order,

i.e., Ln ∼= OX for some n ∈ Z!1, then [L] ∈ Pic0X/k.

(ii) We have [L⊗ (−1)∗L−1] ∈ Pic0X/k.
(iii) We have

[L] ∈ Pic0X/k ⇐⇒ n∗L ∼= Ln for all n ∈ Z

⇐⇒ n∗L ∼= Ln for some n ∈ Z \ {0, 1}.
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Proof. (i) Since ϕ is a homomorphism we have ϕLn(x) = n · ϕL(x) = ϕL(n · x). Hence if
[Ln] ∈ Pic0(X) then ϕL is trivial on all points in the image of nX . But nX is surjective, so ϕL

is trivial.
(ii) Direct computation shows that ϕ(−1)∗L(x) = −ϕL(x) for all L and x. Since also

ϕL−1(x) = −ϕL(x), we find that [L⊗ (−1)∗L−1] ∈ Ker(ϕ).
(iii) The first implication “⇒” was proven in (7.16) above; the second is trivial. Suppose that

n∗L ∼= Ln for some n /∈ {0, 1}. Since n∗L ∼= Ln⊗ [L⊗(−1)∗L](n
2−n)/2 it follows that L⊗(−1)∗L

has finite order, hence its class lies in Pic0X/k. By (ii) we also have [L ⊗ (−1)∗L−1] ∈ Pic0X/k.

Hence [L2] ∈ Pic0X/k and by (i) then also [L] ∈ Pic0X/k. !

(7.24) In (3.29) we have associated to any group scheme G locally of finite type over a field k
an étale group scheme of connected components, denoted by -0(G). We now apply this with
G = PicX/k for X/k an abelian variety. The associated component group scheme

NSX/k := -0(PicX/k)

is called the Néron-Severi group scheme of X over k. The natural homomorphism q: PicX/k →
NSX/k realizes NSX/k as the fppf quotient of PicX/k modulo Pic0X/k; hence we could also write

NSX/k = PicX/k/Pic
0
X/k .

We refer to the group
NS(X) := NSX/k(k)

as the Néron-Severi group of X. Note that NS(X) equals the subgroup of Gal(ks/k)-invariants
in NS(Xks).

We say that two line bundles L and M are algebraically equivalent, notation L ∼alg M , if
[L] and [M ] have the same image in NS(X). As NS(X) naturally injects into NS(Xk), algebraic
equivalence of line bundles (or divisors) can be tested over k, and there it coincides with the
notion defined in Remark (6.9). Hence we can think of the Néron-Severi group scheme as being
given by the classical, geometric Néron-Severi group NS(Xks) = NS(Xk) of line bundles (or
divisors) modulo algebraic equivalence, together with its natural action of Gal(ks/k). Note,
however, that a k-rational class ξ ∈ NS(X) may not always be representable by a line bundle
on X over the ground field k.

Let us rephrase some of the results that we have obtained in terms of the Néron-Severi
group.

(7.25) Corollary. The Néron-Severi group NS(X) is torsion-free. If n ∈ Z and L is a line
bundle on X then n∗L is algebraically equivalent to Ln2

; in other words, n∗: NS(X) → NS(X)
is multiplication by n2.

Proof. The first assertion is just (i) of Corollary (7.23). The second assertion follows from (ii)
of that Corollary together with Corollary (2.12). !

(7.26) Corollary (7.22) can be restated by saying that the natural homomorphism ϕ: PicX/k →
Homsymm(X,Xt) ⊂ Hom(X,Xt) factors as

PicX/k
q−→ NSX/k ↪

ψ−→ Homsymm(X,Xt)
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for some injective homomorphism ψ: NSX/k ↪→ Homsymm(X,Xt). This says that the homomor-
phism ϕL associated to a line bundle L only depends on the algebraic equivalence class of L,
and that ϕL = ϕM only if L ∼alg M . We shall later show that ψ is actually an isomorphism;
see Corollary (11.3).

§ 4. Applications to cohomology.

(7.27) Proposition. Let X be an abelian variety with dim(X) = g. Cup-product gives an
isomorphism ∧•H1(X,OX)

∼−→ H•(X,OX). For every p and q we have a natural isomorphism
Hq(X,Ωp

X/k)
∼= (∧qTXt,0) ⊗ (∧pT∨

X,0). The Hodge numbers hp,q = dimHq(X,Ωp
X/k) are given

by hp,q =
(g
p

)(g
q

)
.

Proof. Use (6.13) and the isomorphisms Ωp
X/k

∼= (∧pT∨
X,0)⊗k OX . !

(7.28) Corollary. Multiplication by an integer n on X induces multiplication by np+q on
Hq(X,Ωp

X).

Proof. Immediate from the fact that nX induces multiplication by n on TX,0, applied to both
X and Xt. !

Before we state the next corollary, let us recall that the algebraic de Rham cohomology of
a smooth proper algebraic variety X over a field k is defined to be the hypercohomology of the
de Rham complex

Ω•

X/k = (OX
d−→ Ω1

X/k
d−→ Ω2

X/k
d−→ · · ·) ,

with OX in degree zero. We have the so-called “stupid filtration” of this complex, by the
subcomplexes σ!pΩ

•

X/k given by

[σ!pΩ
•

X/k]
i =

{
0 for i < p

Ωi
X/k for i " p.

This gives rise to a spectral sequence

Ep,q
1 = Hq(X,Ωp

X) ⇒ Hp+q
dR (X/k)

called the “Hodge–de Rham” spectral sequence.
If k has characteristic zero then it follows from Hodge theory that this spectral sequence

degenerates at the E1-level, see Deligne [1], section 5. If k has characteristic p > 0 then this is
no longer true in general. For examples and further results we refer to Deligne-Illusie [1] and
Oesterlé [1].

As we shall now show, for abelian varieties the degeneration of the Hodge-de Rham spectral
sequence at level E1 follows from (6.12) without any restrictions on the field k.

(7.29) Corollary. Let X be an abelian variety over a field k. Then the “Hodge-de Rham”
spectral sequence of X degenerates at level E1.

Proof. We follow the proof given by Oda [1]. We have to show that the differentials dr: Ep,q
r →

Ep+r,q−r+1
r are zero for all r " 1. By induction we may assume that this holds at all levels < r.

(The empty assumption if r = 1.)
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Write E∗
r (X) = ⊕Ep,q

r , graded by total degree. Cup-product makes E∗
r (X) into a connected,

graded-commutative k-algebra. By our induction assumption and the Künneth formula there is
a canonical isomorphism

E∗
r (X ×X) ∼= E∗

r (X)⊗k E∗
r (X) .

Write µ: E∗
r (X) → E∗

r (X)⊗k E∗
r (X) for the map induced by the multiplication law on X, and

write ε: E∗
r (X) → E0

k(X) = k for the projection onto the degree zero component. One checks
that µ and ε give E∗

r (X) the structure of a graded bialgebra over k.
Let g = dim(X). By what was shown above, E1

r (X) = H1(X,OX) ⊕ H0(X,Ω1
X/k) has

dimension 2g. Also, Ei
r(X) = 0 for i > 2g. The Borel-Hopf structure theorem (6.12) then gives

E∗
r (X) ∼= ∧∗E1

r (X) .

Since dr is compatible with the product structure (cup-product) on E∗
r (X), it suffices to

show that dr is zero on E1
r (X), which is just the space of primitive elements of E∗

r (X). (See
6.17.) By functoriality of the Hodge–de Rham spectral sequence we have µ◦dr = (dr ⊗ dr)◦µ.
Therefore, for ξ ∈ E1

r (X) we have µ(dr(ξ)) = dr(ξ) ⊗ 1 + 1 ⊗ dr(ξ). This shows that dr(ξ) is
again a primitive element. But dr(ξ) ∈ E2

r (X) which, by (6.17), contains no non-zero primitive
elements. This shows that dr = 0. !

(7.30) Corollary. There is an exact sequence

0 −→ Fil1H1
dR(X/k) −→ H1

dR(X/k) −→ H1(X,OX) −→ 0 ,

where Fil1H1
dR(X/k) := H0(X,Ω1

X/k)
∼= T∨

X,0.

To close this section let us fulfil an earlier promise and give an example of a smooth projec-
tive variety with non-reduced Picard scheme. We refer to Katsura-Ueno [1] for similar examples.

(7.31) Example. Let k be an algebraically closed field of characteristic 3. Let E1 be the elliptic
curve over k given by the Weierstrass equation y2 = x3 − x. From (5.27) we know that E1 is
supersingular. Let σ be the automorphism of E1 given by (x, y) %→ (x + 1, y). Then σ has
order 3, so that we get an action of G := Z/3Z on E1. The quotient of E1 by G is isomorphic
to P1

k; in affine coordinates te quotient map is just (x, y) %→ y.
Let E2 be an ordinary elliptic curve over k. Let τ be the translation over a point of (exact)

order 3 on E2. Then (σ, τ) is an automorphism of order 3 of the abelian surfaceX := E1×E2; this
gives a strictly free action of G := Z/3Z on X, and we can form the quotient π: X → Y := G\X.
By (??) π is an étale morphism, so Y is again a non-singular algebraic surface. We have a
natural morphism Y → (G\E1) ∼= P1; this exhibits Y as an elliptic surface over P1. In fact, for
all P ∈ P1(k) with P ,= ∞ the fibre YP above P is isomorphic to E2.

We compute h1(Y,OY ) using Hirzebruch-Riemann-Roch and Chern numbers for algebraic
surfaces. (A reference is ??.) The Euler number c2 of Y is a multiple of the Euler number of X,
and this is 0. By the Hirzebruch-Riemann-Roch formula we have

1− h1(Y,OY ) + h2(Y,OY ) = (c21 + c2)/12 = 0 ,

since c21 = 0 for every elliptic surface. By Serre duality, h2(Y,OY ) = h0(Y,Ω2
Y/k). Now we use

that H0(Y,Ω2
Y/k) is isomorphic to the space of G-invariants in H0(X,Ω2

X/k). If ωi is a basis for

H0(Ei,Ω1
Ei/k

) then ω1 ∧ ω2 is a basis for H0(X,Ω2
X/k). But ω1 is a multiple of dy, which is
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invariant under σ, and ω2 is translation invariant, in particular invariant under τ . In sum, we
find that h2(Y,OY ) = 1 and h1(Y,OY ) = 2.

On the other hand, π: X → Y induces a homomorphism π∗: Pic0Y/k → Xt = Pic0X/k. The
same arguments as in the proof of Theorem (7.5) show that Ker(π∗) ∼= µ3. On the other hand,
π∗ factors via the subscheme of G-invariants in Xt. (See Exercise ?? for the existence of such
a subscheme of G-invariants.) The point here is that we are describing line bundles on Y as
coming from line bundles L on X together with an action of G. But such an action is given by
an isomorphism ρ∗L

∼−→ pr∗XL of line bundles on G×kX. The existence of such an isomorphism
says precisely that L corresponds to a G-invariant point of Xt.

By Exercises ?? and ??, Xt ∼−→ X. The induced action of G on Xt is given by the
automorphism (σ, id). (Cf. Exercise ??) Therefore, the subscheme of G-invariants in Xt is
E〈σ〉

1 × E2. The only geometric point of E1 fixed under σ is the origin. A computation in local

coordinates reveals that E〈σ〉
1 is in fact the Frobenius kernel E1[F ] ⊂ E1 which can be shown to

be isomorphic to α3. In any case, we find that Pic0Y/k is 1-dimensional, whereas we have shown

its tangent space at the identity, isomorphic to H1(Y,OY ), to be 2-dimensional. Hence Pic0Y/k

is non-reduced.

§ 5. The duality between Frobenius and Verschiebung.

(7.32) Let S be a scheme of characteristic p. Recall that for any S-scheme aX : X → S we have
a commutative diagram with Cartesian square

X

X(p/S)
WX/S−−−−→ X

"a(p)
X

"aX

S
FrobS−−−−→ S

If there is no risk of confusion we simply write X(p) for X(p/S). Note that if aT : T → S
is an S-scheme then we have aT ◦FrobT = FrobS ◦aT and this gives a natural identification
(XT )(p/T ) = (X(p/S))T . We denote this scheme simply by X(p)

T .
Let us write T(p) for the scheme T viewed as an S-scheme via the morphism aT(p)

:=
FrobS ◦aT = aT ◦FrobT : T → S. The morphism FrobT : T → T is not, in general, a morphism
of S-schemes, but if we view it as a morphism T(p) → T then it is a morphism over S. To avoid
confusion, let us write FrT : T(p) → T for the morphism of S-schemes given by FrobT .

Let Y be an S-scheme. Recall that we write Y (T ) for the T -valued points of Y . It is
understood here (though not expressed in the notation) that all schemes and morphisms of
schemes are over a fixed base scheme S; so Y (T ) is the set of morphisms T → Y over S. There
is a natural bijection

wY,T : Y
(p)(T )

∼−→ Y (T(p)) ,

sending a point η: T → Y (p) to WY/S ◦η, which is a T(p)-valued point of Y . The composition

wY,T ◦FY/S(T ): Y (T ) → Y (T(p))
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is the map that sends y ∈ Y (T ) to y ◦FrT : T(p) → Y , which is the same as y ◦FrobT : T → Y
viewed as a morphism T(p) → Y .

(7.33) Consider an abelian variety X over a field k of characteristic p. Take S := Spec(k). If
T is any S-scheme then X ×S T(p) is the same as X(p) ×S T , and we find that

Pic(p)X/k(T )
∼−−−−−−−→

wPicX/k,T

PicX/k(T(p)) =

{isomorphism classes of rigidified

line bundles (L,α) on X ×S T(p)

}

=

{
isomorphism classes of rigidified

line bundles (L,α) on X(p) ×S T

}
= PicX(p)/S(T ) .

In this way we obtain an isomorphism Pic(p)X/S
∼−→ PicX(p)/S , which we take as an identification.

Applying (7.32) with Y = PicX/k we find that the relative Frobenius of PicX/k over k is the
homomorphism that sends a point y ∈ PicX/k(T ) to y ◦FrobT , viewed as a morphism T(p) →
PicX/k. Because the diagram

X(p)
T

WXT /T−−−−−→ XT

a(p)
X

"
"aX

T
FrobT−−−−→ T

is Cartesian this just means that FPic/k: PicX/k → PicX(p)/k sends the class of a rigidified line

bundle (L,α) on XT to the class of
(
L(p),α(p)

)
on X(p)

T , where L(p) := W ∗
XT /TL, and where

α(p): OT
∼−→ e∗L(p) = Frob∗T (e

∗L) is the rigidification of L(p) along the zero section obtained by
pulling back α via FrobT .

(7.34) Proposition. Let X be an abelian variety over a field k of characteristic p. We identify
(Xt)(p) = (X(p))t as in (7.33), and we denote this abelian variety by Xt,(p). Then we have the
identities

F t
X/k = VXt/k: X

t,(p) → Xt and V t
X/k = FXt/k: X

t → Xt,(p) .

Proof. It suffices to prove that F t
X/k

◦FXt/k: X
t → Xt equals [p]Xt , because if this holds then

together with Proposition (5.20) and the fact that FXt/k is an isogeny it follows that F t
X/k =

VXt/k. The other assertion follows by duality.

Let T be a k-scheme. Consider a rigidified line bundle (L,α) on XT that gives a point
of Xt(T ). As explained in (7.33) FXt/k sends (L,α) to

(
L(p),α(p)

)
with L(p) = W ∗

XT /TL.
Because WXT /T ◦FXT /T = FrobXT , pull-back via FXT /T gives the line bundle Frob∗XT

L on XT .
But if Y is any scheme of characteristic p andM is a line bundle on Y then Frob∗Y (M) ∼= Mp; this
follows for instance by taking a trivialization of M and remarking that FrobY raises all transition
functions to the power p. The rigidification we have on F ∗

XT /TW
∗
XT /TL = Frob∗XT

L = Lp is the
isomorphism

OT = Frob∗TOT
∼−→ e∗XT

F ∗
XT /TW

∗
XT /TL = e∗

X(p)
T

W ∗
XT /TL = Frob∗T e

∗
XT

L = (e∗XT
L)p

that is obtained from α by pulling back via FrobT , which just means it is αp. In sum, F t
X/k

◦FXt/k

sends (L,α) to (Lp,αp), which is what we wanted to prove. !
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Exercises.

(7.1) Let X be an abelian variety. Let mX : X ×X → X be the group law, and let ∆X : X →
X ×X be the diagonal morphism. Show that (mX)t = ∆Xt : Xt ×Xt → Xt, and that (∆X)t =
mXt : Xt ×Xt → Xt.

(7.2) Let L be a line bundle on an abelian variety X.
(i) Show that, for n ∈ Z,

n∗L ∼= OX ⇐⇒ Ln ∼= OX .

(ii) Show that, for n ∈ Z \ {−1, 0, 1},

n∗L ∼= L ⇐⇒ Ln−1 ∼= OX .

(7.3) Let X be an abelian variety over an algebraically closed field k. Show that every line
bundle L on X can be written as L = L1⊗L2, where L1 is symmetric and [L2] ∈ Pic0X/k. [Hint:

By (7.23), the class of the line bundle (−1)∗L⊗ L−1 is in Pic0X/k. As Pic0 is an abelian variety

and k = k, there exists a line bundle M on X with [M ] ∈ Pic0 and M2 ∼= (−1)∗L⊗ L−1. Now
show that L⊗M is symmetric.]

(7.4) Let P be the Poincaré bundle on X × Xt. For m, n ∈ Z, consider the endomorphism
(m,n) of X ×Xt. Show that (m,n)∗P ∼= Pmn.

(7.5) Let P be the Poincaré bundle on X × Xt. Show that the associated homomorphism
ϕP : X×Xt → Xt×Xtt is the homomorphism given by ϕP(x, ξ) =

(
ξ,κX(x)

)
. [Hint: Compute

the restrictions of t(x, ξ)
∗P ⊗ P−1 to X × {0} and {0}×Xt.]

(7.6) If τ is a translation on an abelian variety, then what is the induced automorphism τ t of
the dual abelian variety?

(7.7) Let X be an abelian variety over a field k. Let i: Y ↪→ X be an abelian subvariety. Write
q: X → Z := X/Y for the fppf quotient morphism, which exists by Thm. (4.38). Note that Z
is an abelian variety; see Example (4.40).
(i) Show that for any k-scheme T we have q∗(OXT ) = OZT .
(ii) Prove that qt: Zt → Xt is injective and gives an isomorphism between Zt and Ker(it: Xt →

Y t)0red.

(7.8) Let L be a line bundle on an abelian variety X. For a symmetric m ×m-matrix S with
integer coefficients sij we define a line bundle L"S on Xm by

L"S :=
( m
⊗
i=1

p∗iL
sii

)
⊗
(

⊗
1#i<j#m

p∗ijΛ(L)
sij

)
.

If α =
(
aij

)
is an integer valued matrix of size m × n we define a homomorphism of abelian

varieties [α]X : Xn → Xm by α(x1, . . . , xn) = (y1, . . . , ym) with yi =
∑n

j=1 aijxj .

(i) Prove that [α]∗X
(
L"S

)
is algebraically equivalent to L"(tαSα).

(ii) Assume that L is a symmetric line bundle. Prove that [α]∗X
(
L"S

) ∼= L"(tαSα).

Notes. (nog aanvullen)
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