
Chapter XII. The endomorphism ring.

§ 1. First basic results about the endomorphism algebra.

Let X and Y be abelian varieties over a field k. If f and g are homomorphisms from X to Y
then we have a homomorphism (f + g): X → Y given on points by x "→ f(x) + g(x). More
formally,

(f + g) = mY ◦(f, g): X
(f,g)−−−→ Y ×k Y

mY−−−→ Y .

This gives the set Homk(X,Y ) of homomorphisms X → Y (over the given field k) the structure
of an abelian group. For Y = X we find that Endk(X) has a natural ring structure, with
composition of endomorphisms as the ring multiplication.

If n ∈ Z and f ∈ Homk(X,Y ) then we have n · f = f ◦ [n]X = [n]Y ◦f . But for n &= 0 we
know that [n]X is an isogeny, in particular it is surjective; so we find that the group Homk(X,Y )
is torsion-free. We write

Hom0
k(X,Y ) := Homk(X,Y )⊗Z Q and End0k(X) := Endk(X)⊗Z Q .

By definition, End0k(X) is a Q-algebra. If there is no risk of confusion one simply refers to
End0k(X) as the endomorphism algebra of X. (The term algebra is supposed to distinguish it
from the endomorphism ring Endk(X).) In the sequel we shall often suppress the subscript “k”;
in such cases it shall be understood that we consider homomorphisms or endomorphisms over
the given ground field.

(12.1) Remark. If k ⊂ K is a field extension then we have a natural inclusion Homk(X,Y ) ⊂
HomK(XK , YK), which in general is strict. Now HomK(XK , YK) is the set of K-valued points of
the k-group scheme Hom(X,Y ) which, as we have shown in Proposition (7.14), is étale. Hence if
k = ks we have Homk(X,Y ) = HomK(XK , YK) for any field extension k ⊂ K. We shall further
sharpen this in Corollary (12.13) below.

(12.2) Theorem. (Poincaré Splitting Theorem) Let X be an abelian variety over a field k. If
Y ⊂ X is an abelian subvariety then there exists an abelian subvariety Z ⊂ X such that the
homomorphism f : Y × Z → X given by (y, z) "→ y + z is an isogeny. (Thus Y + Z = X and
Y ∩ Z is finite.)

Proof. Write i: Y ↪→ X for the inclusion. Choose a polarization λ: X → Xt, and let

W := Ker
(
X

λ−→ Xt it−→ Y t
)
.

We know from Exercise (11.1) that λY := it ◦λ◦i: Y → Y t is again a polarization. In particular,
Y ∩W is finite.

Suppose we can find an abelian subvariety Z ⊂ X of dimension dim(X) − dim(Y ) with
Z ⊆ W . Then (Y ∩ Z) is finite, and because the kernel of f : Y × Z → X is contained in
(Y ∩ Z)× (Y ∩ Z) this implies that f is an isogeny, as desired.

Endoms, 15 september, 2011 (812)
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Now take Z := W 0
red. By Prop. (5.31) we know that Z is indeed an abelian subvariety of X,

and Z has dimension dim(X) − dim(Y ). Further, (Y ∩ Z) is finite, and because the kernel of
the natural homomorphism f : Y × Z → X is contained in (Y ∩ Z)× (Y ∩ Z) this implies that
f is an isogeny, as desired. !

(12.3) Remark. In the proof of the theorem we use the fact, proven in Prop. (5.31), that W 0
red

is an abelian subvariety of X. The main difficulty is that a priori (i.e., without knowing this
result) W 0

red might not even be a subgroup scheme of X; see Exercise (3.2). Instead of using
Prop. (5.31) we can also prove the theorem by the following argument that uses the existence
of the quotient abelian variety X/Y .

Let Y ⊂ X be an abelian subvariety. By Thm. (4.38) there exists an fppf quotient group
scheme q: X →→ Q := X/Y . Since Q is also a geometric quotient of X by Y , it is in fact an
abelian variety, of dimension dim(X) − dim(Y ). The homomorphism qt: Qt → Xt is injective
(see Exercise 7.7), and we use it to identify Qt with an abelian subvariety of Xt. Choose an
isogeny µ: Xt → X such that λ◦µ = [n]Xt for some positive integer n. Let Z ⊂ X be the image
of Qt under µ; so Z ∼= Qt/

(
Qt∩Ker(µ)

)
is an abelian subvariety of X, with dim(Z) = dim(Q) =

dim(X)− dim(Y ). Now note that λ(Z) ⊆ Qt ⊆ Ker(it); hence Z ⊆ W . In particular, Z ∩ Y is
finite, and as in the above proof it follows that the natural homomorphism Y × Z → X is an
isogeny. !

(12.4) Definition. A non-zero abelian variety X over a field k is said to be simple if X has no
abelian subvarieties other than 0 and X. We say that X is elementary if X is isogenous (over k)
to a power of a simple abelian variety, i.e., X ∼k Y m for some m " 1 and Y simple.

Note that an abelian variety that is simple over the ground field k need not be simple over
an extension of k. To avoid confusion we sometimes uses the terminology “k-simple”. If X is
simple over a separably closed field k then it follows from Remark (12.1) that XL is simple for
every extension k ⊂ L.

(12.5) Corollary. A non-zero abelian variety over k is isogenous to a product of k-simple
abelian varieties. More precisely, there exists k-simple abelian varieties Y1, . . . , Yn, no two of
which are k-isogenous, and positive integers m1, . . . ,mn such that

X ∼k Y m1
1 × · · · × Y mn

n . (1)

Up to permutation of the factors the Yi appearing in this decomposition are unique up to
k-isogeny, and the corresponding “multiplicities” mi are uniquely determined.

Proof. The existence of a decomposition (1) is immediate from the theorem. The unicity state-
ment is an easy exercise—note that a homomorphism between two simple abelian varieties is
either zero or an isogeny. !

(12.6) Definition. Let k be a field. We define the category of abelian varieties over k up to
isogeny , notation QAV/k, to be the category with as objects abelian varieties over k and with
HomQ /k

(X,Y ) = Hom0
k(X,Y ) := Hom

/k
(X,Y )⊗Z Q.

If X and Y are abelian varieties over k then an element f ∈ Hom0(X,Y ) is called a quasi-
isogeny if f is an isomorphism in the category QAV/k.

To explain the terminology, notice that a homomorphism of abelian varieties is an isomor-
phism in the category QAV/k if and only if it is an isogeny. In particular, two abelian varieties
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give isomorphic objects of QAV/k if and only if they are k-isogenous. More precisely, an element
f ∈ Hom0(X,Y ) is a quasi-isogeny if and only if there is a non-zero integer n such that nf is
an isogeny from X to Y .

(12.7) Corollary. If X is k-simple then End0k(X) is a division algebra. For X as in (1) we
have, writing Di := End0k(Yi),

End0k(X) ∼= Mm1(D1)× · · · ×Mmn(Dn) .

(Recall that Mm(R) denotes the ring of m×m matrices with coefficients in R.)

Proof. Let us (again) remark that any homomorphism between two k-simple abelian varieties is
either zero or an isogeny. But the isogenies from X to itself are invertible elements of End0k(X).
So if X is k-simple then End0k(X) is indeed a division algebra. For the second statement,
note that Homk(Yi, Yj) = 0 if i &= j, as it was assumed that Yi and Yj are simple and non-
isogenous. !

In categorical language, we have shown that QAV/k is a semi-simple category.

To obtain further results, we shall investigate homomorphisms f : X → Y via the induced
maps T"f on Tate-#-modules, or the maps f [p∞] on p-divisible groups. We shall usually state
results in both settings. If p &= char(k) then statements about f [p∞] can also be phrased in
terms of Tate modules, and it is this formulation that is most often used. (This is based on
the sentiment that ordinary groups with Galois action are conceptually easier than étale group
schemes.) Hence our main interest in results about f [p∞] is in the case that char(k) = p > 0,
even though this is often irrelevant in the proofs.

(12.8) Lemma. Let X and Y be abelian varieties over a field k, and let f ∈ Hom(X,Y ).
(i) Let # be a prime number, # &= char(k). If T"(f) is divisible by #m in HomZ!(T"X,T"Y )

then f is divisible by #m in Hom(X,Y ).
(ii) Let p be a prime number. If f [p∞] is divisible by pm in Hom

(
X[p∞], Y [p∞]

)
then f is

divisible by pm in Hom(X,Y ).

Proof. The divisibility of T"(f) means that f vanishes on X[#m](ks). But X[#m] is an étale group
scheme (# &= char(k)), hence f vanishes on X[#m]. This means that f factors through [#m]X .

The argument for (ii) is essentially the same: If f [p∞] is divisible by pm then f vanishes
on X[pm]; hence it factors through [pm]X . !

If T"(f) = #m · ϕ for some ϕ ∈ HomZ!(T"X,T"Y ) then the element g ∈ Hom(X,Y ) such
that #m · g = f is unique (as Hom(X,Y ) is torsion-free), and it follows from Theorem (12.10)
below that T"(g) = ϕ. Similarly, if f [p∞] = pm · ϕ then there is a unique g ∈ Hom(X,Y ) with
pm · g = f , and g[p∞] = ϕ.

(12.9) Lemma. Let X be an abelian variety, and let L be an ample line bundle on X. Then
the form BL: End(X)× End(X) → Z given by

BL(f, g) = c1(L)
g−1 · c1

(
(f + g)∗L⊗ f∗L−1 ⊗ g∗L−1

)

is bilinear and positive definite.

Note that by slight abuse of notation we write c1(L)g−1 ·c1(M) for deg
(
c1(L)g−1 ·c1(M)

)
=∫

X c1(L)g−1 · c1(M); cf. the remark following Thm. (9.11).
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Proof. Consider the map q: End(X) → CH1(X) given by f "→ c1(f∗L). It follows from the
Theorem of the Cube, Cor. (2.8), together with Exercise (2.5) that the map bL: End(X) ×
End(X) → CH1(X) given by

bL(f, g) = q(f + g)− q(f)− q(g) = c1
(
(f + g)∗L⊗ f∗L−1 ⊗ g∗L−1

)

is bilinear. But if h: CH1(X) → Z is the linear map given by ξ "→ c1(L)g−1 · ξ then BL = h◦bL;
hence BL is bilinear too.

It remains to be shown that BL(f, f) > 0 for all non-zero f ∈ End(X). Note that (2f)∗L⊗
(f∗L)−2 = f∗

(
[2]∗L

)
⊗ f∗L−2 is algebraically equivalent to f∗L4 ⊗ f∗L−2 = f∗L2. Hence

BL(f, f) = 2 · c1(L)g−1 · c1(f∗L). Because L is ample, it suffices to show that c1(f∗L) is an
effective class if f &= 0. Further, as BLn(f, f) = ng · BL(f, f) we may assume that L is very
ample. If f &= 0 then Y := f(X) ⊂ X is an abelian subvariety of X of positive dimension,
and there is an effective divisor D =

∑
niDi on Y such that L|Y = OY (D). But f : X → Y is

flat (see Exercise (5.1)), so f∗L is represented by the divisor
∑

ni[f−1Di], where [f−1Di] is the
divisor class associated to the scheme-theoretic inverse image of Di. In particular, c1(f∗L) is an
effective class, and the positivity of BL follows. !

(12.10) Theorem. Let X and Y be abelian varieties over a field k.
(i) If # is a prime number, # &= char(k) then the Z"-linear map

T": Hom(X,Y )⊗ Z" −→ HomZ!(T"X,T"Y )

given by f ⊗ c "→ c · T"(f) is injective and has a torsion-free cokernel.
(ii) If p is a prime number, the Zp-linear map

Φ: Hom(X,Y )⊗ Zp −→ Hom
(
X[p∞], Y [p∞]

)

given by f ⊗ c "→ c · f [p∞] is injective and has a torsion-free cokernel.

Proof. (i) We first prove that T" has a torsion-free cokernel. Notice that Coker(T") is a Z"-module,
so it can only have #-power torsion. Suppose we have ϕ ∈ HomZ!(T"X,T"Y ) and

∑
fi ⊗ ci ∈

Hom(X,Y ) ⊗ Z" such that #m · ϕ =
∑

ci · T"(fi). Choose integers ni with ni ≡ ci mod #m,
and write ci = ni + #m · di with di ∈ Z". Then f :=

∑
nifi is an element of Hom(X,Y ), and

T"(f) = #m ·
(
ϕ −

∑
diT"(fi)

)
is divisible by #m. By Lemma (12.8) there exists an element

g ∈ Hom(X,Y ) with T"(g) = ϕ −
∑

diT"(fi). Hence ϕ is in the image of the map T", which is
what we had to prove.

Now we prove that T" is injective. We first reduce to the case that Y = X. For this, put
Z := X × Y . Then we have a commutative diagram

Hom(X,Y )
T!−−→ HomZ!(T"X,T"Y )

&
&

End(Z)
T!−−→ EndZ!(T"Z)

where the left vertical map sends f : X → Y to the endomorphism (x, y) "→
(
0, f(x)

)
of Z, and

where the right vertical map is defined similarly. As the left vertical map is clearly injective,
this reduces the problem to the case X = Y .
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Suppose there exist linearly independent elements f1, . . . , fr ∈ End(X) and non-zero #-adic
integers c1, . . . , cr such that

c1T"(f1) + · · ·+ crT"(fr) = 0 . (2)

We may assume that r is minimal, i.e., that there is no such relation with fewer terms. Choose
an ample bundle L and let B = BL: End(X) × End(X) → Z be the form as in the lemma.
In (2) we may assume that B(f1, fj) = 0 for all j ∈ {2, . . . , r}; to achieve this, replace c1 by∑r

k=1 B(fk, f1) · ck, and for j " 2 replace fj by B(f1, f1) · fj −B(fj , f1) · f1. (Note that the new
elements fj are again linearly independent.)

Let m be a positive integer. Choose integers ni with ni ≡ ci mod #m. Then g := n1f1 +
· · ·+nrfr is an endomorphism of X such that T"(g) divisible by #n. By Lemma (12.8) there is an
h ∈ End(X) such that g = #n · h. Hence n1 ·B(f1, f1) = B(g, f1) is divisible by #m, and by our
choice of n1 it follows that c1 · B(f1, f1) is divisible by #m. But m was arbitrary, and B(f1, f1)
is a fixed positive integer. Hence c1 = 0, contradicting the minimality assumption on r.

The proof of (ii) is essentially the same; we leave it to the reader. !

(12.11) Corollary. If X and Y are abelian varieties over k then Hom(X,Y ) is a free Z-module
of rank at most 4 dim(X) dim(Y ). In particular, End0(X) is a finite dimensional semi-simple
Q-algebra, of dimension at most 4 dim(X)2.

Proof. We already know that Hom(X,Y ) is torsion-free. The upper bound for the rank is imme-
diate from the theorem, as HomZ!(T"X,T"Y ) is a free Z"-module of rank 4 dim(X) dim(Y ). !

(12.12) Corollary. If X is a g-dimensional abelian variety over a field k then its Néron-Severi
group NS(X) is a free Z-module of rank at most 4g2.

Proof. By Corollary (7.26) we have NS(X)
∼−→ Homsymm(X,Xt). !

(12.13) Corollary. Let X and Y be abelian varieties over a field k. Fix a separable algebraic
closure k ⊂ ks. Then there is a finite field extension k ⊂ K inside ks which is “the smallest field
extension over which all homomorphisms from X to Y are defined”, meaning that K has the
following two properties:

(a) for any field extension K ⊂ L we have HomK(XK , YK)
∼−→ HomL(XL, YL);

(b) if Ω is a field containing ks and F ⊂ Ω is a subfield with k ⊆ F and HomF (XF , YF )
∼−→

HomΩ(XΩ, YΩ), then K ⊆ F .

Proof. As Hom(X,Y ) is an étale group scheme, this assertion is just a matter of Galois theory.
Choose generators f1, . . . , fr of Homks(Xks , Yks) as an additive group. Let Γi ⊂ Gal(ks/k) be
the stabilizer of fi under the natural continuous action of Gal(ks/k) on Homks(Xks , Yks). Each
Γi is an open subgroup of Gal(ks/k). Now let K ⊂ ks be the fixed field of Γ1 ∩ · · · ∩Γr; it is the
smallest subfield of ks over which the fi are all defined. Because the fi generate Homks(Xks , Yks)
the group scheme Hom(X,Y ) becomes constant over K; hence (a) holds. If F is as in (b) then
the fi are all defined over K ∩ F (intersection inside Ω), and by definition of K it follows that
K ⊆ (K ∩ F ), i.e., K ⊆ F . !

§ 2. The characteristic polynomial of an endomorphism.
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(12.14) Let X be an abelian variety of dimension g over a field k. If W is a Q-vector space
then a map γ: End(X) → W is said to be homogeneous of degree m if γ(n · f) = nm · γ(f)
for all f ∈ End(X) and all n ∈ Z. Any homogeneous map γ naturally extends to a map
γ: End0(X) → W : write g ∈ End0(X) as g = q · f for some q ∈ Q and f ∈ End(X), and then
set γ(g) = qm · γ(f).

We appply this to the map deg: End(X) → Q, which is homogeneous of degree 2g. Note
that, by convention, deg(f) = 0 if f ∈ End(X) is not finite. By the procedure that we have just
explained, this degree map extends to a map deg: End0(X) → Q, with deg(q · f) = q2g · deg(f)
for q ∈ Q and f ∈ End(X).

(12.15) Proposition. The map deg: End0(X) → Q is a homogeneous polynomial map of
degree 2g. This means that if e1, . . . , eu is a basis for End0(X) as a Q-vector space, then there
is a homogeneous polynomial D ∈ Q[t1, . . . , tu] of degree 2g such that

deg(c1e1 + · · ·+ cueu) = D(c1, . . . , cu)

for all ci ∈ Q.

Proof. Let L be a symmetric ample bundle on X. Then the map γ: End(X) → CH1
Q(X) given

by f "→ c1(f∗L) is homogeneous of degree 2, so by what was explained in (12.14) it naturally
extends to a map γ: End0(X) → CH1

Q(X). By Cor. (9.12), deg(f) = c1(f∗L)g/c1(L)g for all
f ∈ End(X); note that this also holds if f : X → X is not an isogeny, for in that case the
Riemann-Roch Theorem (9.11) gives χ(f∗L)2 = deg(ϕf∗L) = 0. Hence it suffices to show that
the map γ is a homogeneous polynomial map of degree 2.

As we have seen in the proof of Lemma (12.9), the map b: End(X) × End(X) → CH1(X)
given by b(f, g) = c1

(
(f + g)∗L⊗ f∗L−1 ⊗ g∗L−1

)
is bilinear. Also, b is clearly symmetric. But,

again using the assumption that L is symmetric, γ(f) = (1/2) · b(f, f). From this it readily
follows that γ is polynomial of degree 2. !

(12.16) Definition. Let X be an abelian variety over k. If f ∈ End0(X) then, by the propo-
sition, there is a monic polynomial P = Pf ∈ Q[t] of degree 2g such that P (n) = deg

(
[n]X − f

)

for all n ∈ Z. We call P the characteristic polynomial of f . If P =
∑2g

i=0 ait
i then we define the

trace of f by trace(f) := −a2g−1.

In this context, the degree of an endomorphism f is also sometimes referred to as the norm
of f ; so, with the previous notation, Norm(f) := deg(f) = a0.

(12.17) Lemma. Let Q be a field of characteristic zero. Let A be a semisimple Q-algebra of
finite Q-dimension, and let A = A1 × · · · × Ah be the decomposition of A into a product of
simple factors. Let NrdAj/Q: Aj → Q be the reduced norm of Aj over Q. Suppose δ: A → Q is
a nonzero map that has the following two properties:

(a) δ is a homogeneous polynomial map;

(b) δ is multiplicative, meaning that δ(ab) = δ(a)δ(b) for all a, b ∈ A.

Then there exist integers n1, . . . , nh such that

δ(a1, . . . , ah) = NrdA1/Q(a1)
n1 · · ·NrdAh/Q(ah)

nh

for all (a1, . . . , ah) ∈ A = A1 × · · · ×Ah.
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Proof. By (b) we have δ(a1, . . . , ah) = δ(a1, 1, . . . , 1) · δ(1, a2, 1, . . . , 1) · · · δ(1, . . . , 1, ah). Since
the function that sends aj ∈ Aj to δ(1, . . . , 1, aj , 1, . . . , 1) is again homogeneous polynomial and
multiplicative, it suffices to treat the case h = 1. So from now on we assume that A is a simple
Q-algebra. Let K be its centre, which is a finite field extension of Q. Choose an algebraic closure
Q of Q, and let Σ be the set of embeddings σ: K → Q that extend the given embedding Q ↪→ Q.

Let e1, . . . , eu be an ordered basis for A as a vector space over Q. Assumption (a) just means
that there exists a homogeneous polynomial D ∈ Q[t1, . . . , tu] such that δ(c1e1 + · · ·+ cueu) =
D(c1, . . . , cu) for all c1, . . . , cu ∈ Q. Because Q is infinite, D is uniquely determined. For any
field extension Q ⊂ L the map δ therefore uniquely extends to a homogeneous polynomial map
δL: AL := L ⊗Q A → L. Moreover, because A is Zariski dense in AL, the extended map δL is
again multiplicative.

We have
AQ =

∏

σ∈Σ

Aσ with Aσ = Q⊗σ,K A .

If m is the degree of A as a central simple K-algebra, each factor Aσ is (non-canonically)
isomorphic to Mm(Q). Write δσ: Aσ → Q for the map given by aσ "→ δQ(1, . . . , 1, aσ, 1, . . . , 1).

Because δσ is multiplicative and δ is not the zero map, δσ(a) ∈ Q
∗
for every a ∈ A∗

σ. Choosing
an isomorphism ισ: Aσ

∼−→ Mm(Q) we conclude that δσ gives a character of GLm over Q, that
is, a homomorphism of algebraic groups δσ: GLm,Q → Gm,Q. But any such character is of the
form detν for some integer ν; see ??. Note that the integer ν does not depend on the choice of ισ,
as by the Skolem-Noether theorem all automorphisms of Mm(Q) are inner automorphisms.

We conclude that there exist integers ν(σ) such that δQ is given by

δQ
(
(aσ)σ∈Σ

)
=

∏

σ∈Σ

δσ(aσ) =
∏

σ∈Σ

det
(
ισ(aσ)

)ν(σ)
.

Let us also note that the reduced norm map NrdA/Q: A → Q after extension of scalars Q ⊂ Q
gives the map AQ → Q that sends (aσ)σ∈Σ to

∏
σ∈Σ det

(
ισ(aσ)

)
. So all that is left to prove is

that the exponents ν(σ) are all equal. To see this, note that for any c ∈ K we have

δ(c) = δQ
(
(σ(c))σ∈Σ

)
=

∏

σ∈Σ

det
(
σ(c)

)ν(σ)
=

∏

σ∈Σ

σ(c)mν(σ) . (3)

Now it is an easy exercise in Galois theory to see that the RHS of (3) defines a function on K
that takes values in Q only if all exponents mν(σ) are equal. !

(12.18) Theorem. Let X be an abelian variety over a field k. Let # be a prime number
different from char(k). For f ∈ End0(X), let P",f ∈ Q"[t] be the characteristic polynomial
of V"f ∈ EndQ!(V"X), i.e., P",f (t) = det(t · id − V"f). Then P",f = Pf . In particular, the
characteristic polynomial of V"f has coefficients in Q and is independent of #.

Proof. We know that A := Q" ⊗Z End(X) is a semisimple Q"-algebra of finite dimension. Let
A = A1 × · · · × Ah be its decomposition into a product of simple factors. As explained in the
proof of (12.17) the degree map f "→ deg(f) extends uniquely to a homogeneous polynomial
map δ1: A → Q" of degree 2g.

The function δ2: A → Q" given by f "→ det(V"f) is also a homogeneous polynomial map
of degree 2g. As δ1 and δ2 are both multiplicative, we can apply Lemma (12.17) to each. We
conclude that there exist integers ni and νi such that for any f = (f1, . . . , fh) ∈ A,

δ1(f) = NrdA1/Q!
(f1)

n1 · · ·NrdAh/Q!
(fh)

nh
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and
δ2(f) = NrdA1/Q!

(f1)
ν1 · · ·NrdAh/Q!

(fh)
νh .

To get further information, we consider the #-adic valuation v: Q" → Z ∪ {∞}. Let E :=
End(X) ∩ End0(X)∗ be the monoid of isogenies X → X. If f ∈ E we can write N := Ker(f)
as N = N" × N ", with N " a group scheme of order prime to # and N" of #-power order, say
#N" = #a. We have v

(
deg(f)

)
= a. On the other hand, we have seen in Proposition (10.6)

that T"f : T"X → T"X is injective with cokernel N"(ks). Because # is relatively prime to char(k)
the group scheme N" is étale, so N"(ks) is just an ordinary abelian group of order #a. From the
theory of elementary divisors it then follows that v

(
det(V"f)

)
= a as well.

Any ϕ ∈ End0(X)∗ can be written as ϕ = q · f for some q ∈ Q∗ and f ∈ E . As δ1 and δ2
are both homogeneous of degree 2g, it follows that v

(
deg(ϕ)

)
= v

(
det(V")

)
. Now the set

{
f ∈ A

∣∣∣ v
(
δ1(f)

)
= v

(
δ2(f)

)}

is closed in A for the #-adic topology, and we have just shown that it contains End0(X)∗. But
End0(X)∗ is #-adically dense in A, so we conclude that v

(
δ1(f)

)
= v

(
δ2(f)

)
for all f ∈ A.

Applying this to all elements of the form (1, . . . , 1, #, 1, . . . , 1) ∈ A = A1 × · · · ×Ah, we find that
ni = νi for all i. !

(12.19) Corollary. For any f ∈ End0(X) we have Pf (f) = 0.

(12.20) Corollary. If f ∈ End(X) then Pf has integral coefficients.

Proof. Let f ∈ End(X). Because End(X) is finitely generated as an additive group, there is a
monic Q ∈ Z[t] with Q(f) = 0. But then also Q(V"f) = 0, which implies that all eigenvalues of
V"f are algebraic integers. So the coefficients of P",f = Pf are rational numbers which are at
the same time algebraic integers; hence they are integers. !

(12.21) Corollary. For f , g ∈ End0(X) we have the relations

deg(fg) = deg(f) · deg(g) , trace(f + g) = trace(f) + trace(g) , and trace(fg) = trace(gf) .

If p is a prime number and f ∈ End0(X) then it follows from Cor. (12.19) that Pf

(
f [p∞]

)
=

0. One naturally wonders if Pf can also be interpreted as the characteristic polynomial of f [p∞]
as an endomorphism of the p-divisible group X[p∞]. (??Nog verder uitwerken. Later bewijzen
dat Pf ook het char pol is van f op de kristallijne cohom??)

(12.22) Remark. Let X be a simple abelian variety over a field k, so that End0(X) is a division
algebra. If f ∈ End0(X) then Q[f ] ⊂ End0(X) is a number field, and Q"[f ] := Q" ⊗Q Q[f ] is
a product of finite field extensions of Q", say Q"[f ] = L1 × · · · × Lt. Correspondingly we have
a decomposition V"X = V1 ⊕ · · · ⊕ Vt. The fact that P",f has coefficients in Q means precisely
that V"X is free as a module over Q"[f ], or, equivalently, that di := dimLi(Vi) is independent
of i. To see this, let h be the minimum polynomial of f over Q. Let h = h1 · · ·ht be the prime
factorisation of h in Q"[t], so that Li

∼= Q"[t]/(hi). Then P",f equals hd1
1 · · ·hdt

t . Now it is an easy
exercise in Galois theory to see that

∏
hdi
i has coefficients in Q if and only if all exponents di

are equal.
It is not true, in general, that V"X, as a module over End0(X), is “defined over Q”. That

is, in general there is no End0(X)-module W such that V"X ∼= Q" ⊗Q W as modules over
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Q" ⊗Q End0(X). The easiest counterexample is provided by a supersingular elliptic curve X
over an algebraically closed field of characteristic p. In this case D := End0(X) is a quaternion
algebra with center Q, and if W is any left D-module of finite type then the Q-dimension of W is
divisible by 4, whereas V"X is 2-dimensional. Such examples only occur in positive characteristic,
and this has interesting consequences for the types of endomorphism algebras that can occur.
We shall come back to this in ?? below.

§ 3. The Rosati involution.

(12.23) Let λ: X → Xt be a polarization. If f ∈ End0(X) then we have f t ∈ End0(Xt), and
in End0(X) we can form the element f† := λ−1 ◦f t ◦λ:

X
λ−−−→ Xt

ft

&

X
λ−1

←−−− Xt

Note that in general the arrow λ−1 only exists in the category of abelian varieties up to isogeny;
unless λ is a principal polarization it does not exist as a true homomorphismXt → X. If we want
to stay in the usual category of abelian varieties, consider a homomorphism µ: Xt → X such that
µ◦λ = [n]X for some n > 0, and write f = (1/m) · g for some g ∈ End(X) and m ∈ Z>0. Then
h := µ◦gt ◦λ is a true endomorphism ofX, and by definition we have f† := (1/mn)·h ∈ End0(X).

It is readily checked that the map †: End0(X) → End0(X) given by f "→ f† is additive,
that (f ◦g)† = g† ◦f†, and that (f†)† = f . Hence † is an involution of the algebra End0(X). It
is called the Rosati involution associated to λ.

Note that † does not necessarily preserve the subring End(X) ⊂ End0(X), but if λ is a
principal polarization then of course it does.

The Rosati involution depends on the chosen polarization. If µ: X → Xt is another polar-
ization then α := λ−1 ◦µ is a well-defined element of End0(X), and we can write µ = λ◦α. If
f "→ f‡ is the Rosati involution associated to µ then f‡ = α−1 ◦f† ◦α.

Note that deg(f†) = deg(f) for all f . As [n]†X = [n]X , it follows that in fact Pf† = Pf ; in
particular also trace(f†) = trace(f).

(12.24) Lemma. Let X be an abelian variety over a field k. Let # be a prime number with
# &= char(k). Let λ: X → Xt be a homomorphism, f "→ f† the associated Rosati involution, and
let Eλ: V"X × V"X → Q"(1) be the Riemann form of λ. Then for all f ∈ End(X) and all x,
y ∈ V"X we have

Eλ
(
V"f(x), y

)
= Eλ

(
x, V"f

†(y)
)
.

In other words, if ϕ "→ ϕ∗ is the adjoint involution on EndQ!(V"X) associated to the pairing Eλ,
then the map V": End

0(X) → EndQ!(V"X) is a ∗-homomorphism of algebras with involution.

Proof. Let E: V"X × V"Xt → Q" be the Q"-linear extension of the pairing defined in (11.23), so
that Eλ(x, y) = E

(
x, V"λ(y)

)
.

By definition of the Rosati involution we have V"λ◦V"f† = V"(λ◦f†) = V"f t ◦V"λ. Hence

Eλ
(
x, V"f

†(y)
)
= E(x, V"f

t
◦V"λ(y)

)
.
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By (i) of Prop. (11.21) this equals E(V"f(x), V"λ(y)
)
= Eλ

(
V"f(x), y

)
. !

(12.25) Proposition. Let X be an abelian variety over a field k. Let λ be a polarization of X,
and let f "→ f† be the associated Rosati involution on End0(X). Then the map NS(X) →
End0(X) given by [M ] "→ λ−1 ◦ϕM induces an isomorphism of Q-vector spaces

i: NS(X)⊗Q
∼−→

{
f ∈ End0(X)

∣∣ f = f†
}
.

In particular, the Picard number of X equals the Q-dimension of the space of †-symmetric
elements in End0(X).

Proof. By Cor. (11.3) the map [M ] "→ ϕM gives an isomorphism NS(X)
∼−→ Homsymm(X,Xt);

hence also NS(X) ⊗ Q
∼−→ Hom0,symm(X,Xt). Now consider the isomorphism End0(X)

∼−→
Hom0(X,Xt) given by f "→ λ◦f . Using that λ = λt one easily checks that under this iso-
morphism the †-symmetric elements of End0(X) correspond with the symmetric elements in
Hom0(X,Xt). !

(12.26) Theorem. (Positivity of the Rosati involution) Let X be an abelian variety of dimen-
sion g over a field k. Let † be the Rosati involution associated to a polarization λ.
(i) If λ = ϕL for some ample bundle L then for f ∈ End(X) we have

trace(ff†) = 2g · c1(L)
g−1 · c1(f∗L)

c1(L)g
.

(ii) The bilinear form End0(X) × End0(X) → Q given by (f, g) "→ trace(f · g†) is symmetric
and positive definite.

Part (ii) of the theorem can be reformulated by saying that the Rosati involution is a
positive involution; see Appendix A, (A.11).

Proof. (i) By Prop. (7.6) we have ϕf∗L = f t ◦ϕL ◦f . Hence for all n ∈ Z we get

deg(ϕf∗L−1⊗Ln) = deg(nϕL − ϕf∗L)

= deg(nϕL − f tϕLf)

= deg(ϕLn− ϕLf
†f)

= deg(ϕL) · deg(n− f†f) = χ(L)2 · Pf†f (n) .

(4)

Let Q ∈ Q[t] be the polynomial (of degree g) such that Q(n) =
(
n c1(L) − c1(f∗L)

)g
for

all n. Concretely, Q =
∑g

j=0 bjt
j with bj =

(g
j

)
(−1)g−j ·

(
c1(L)j · c1(f∗L)g−1

)
. By Riemann-

Roch (9.11), deg
(
ϕf∗L−1⊗Ln

)
= χ(f∗L−1 ⊗ Ln)2 = Q(n)2. Comparing with (4) we find that

Pf†f =
(
χ(L)−1 ·Q

)2

as polynomials. Comparing coefficients in degree 2g − 1 this gives

trace(ff†) = trace(f†f) = −2χ(L)−1 · bg · bg−1

= 2χ(L)−1 · c1(L)g · g ·
(
c1(L)

g−1 · c1(f∗L)
)

= 2g ·
(
c1(L)

g−1 · c1(f∗L)
)
.
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(ii) Symmetry of the form follows from the fact, noted in (12.23), that trace(h†) = trace(h).
To see that trace(ff†) > 0 for all f &= 0 we may assume that k = k and write λ = ϕL for some
ample bundle L. As f "→ trace(ff†) is homogeneous of degree 2, we may further assume that f
is a true endomorphism. Now use (i) and apply Lemma (12.9). !

§ 4. The Albert classification.

(12.27) Let X be a simple abelian variety over a field k, and choose a polarization λ. To the
pair (X,λ) we associate the pair (D, †) with D = End0(X) the endomorphism algebra and †
the Rosati involution. We know that D is a simple Q-algebra of finite dimension and that † is
a positive involution.

Let K be the center of D (so that D is a central simple K-algebra), and let K0 := {x ∈ K |
x† = x} be the subfield of symmetric elements in K. We know that either K0 = K, in which
case † is said to be of the first kind, or that K0 ⊂ K is a quadratic extension, in which case † is
said to be of the second kind.

By a theorem of Albert (see Appendix???) the pair (D, †) is of one of four types. For
convenience we again describe the possibilities. Recall that if A is a quaternion algebra over a
field L, its canonical involution is the involution given by a "→ TrdA/L(a) − a. We write H for
the Hamiltionian quaternion algebra over R.

Type I: K0 = K = D is a totally real field.

† = idD.

Type II: K0 = K is a totally real field, and D is a quaternion algebra over K with D⊗K,σ R ∼=
M2(R) for every embedding σ: K → R.

Let d "→ d∗ be the canonical involution on D. Then there exists an element a ∈ D
such that a2 ∈ K is totally negative, and such that d† = ad∗a−1 for all d ∈ D.

We have an isomorphism D ⊗Q R ∼=
∏

σ:K→R M2(R) such that the involution † on
D ⊗Q R corresponds to the involution (A1, . . . , Ae) "→ (At

1, . . . , A
t
e).

Type III: K0 = K is a totally real field, andD is a quaternion algebra overK withD⊗K,σR ∼= H
for every embedding σ: K → R.

† is the canonical involution on D.

We have an isomorphism D⊗QR ∼=
∏

σ:K→R H such that the involution † on D⊗QR
corresponds to the involution (α1, . . . , αe) "→ (ᾱ1, . . . , ᾱe).

Type IV: K0 is a totally real field, K is a totally imaginary quadratic field extension ofK. Write
a "→ ā for the unique non-trivial automorphism of K over K0; this automorphism is
usually referred to as complex conjugation. If v is a finite place of K, write v̄ for its
complex conjugate. The algebra D is a central simple algebra over K such that: (a) If
v is a finite place of K with v = v̄ then invv(D) = 0; (b) For any place v of K we
have invv(D) + invv̄(D) = 0 in Q/Z.

If m is the degree of D as a central simple K-algebra, we have an isomorphism
D⊗QR ∼=

∏
σ:K0→R Mm(C) such that the involution † on D⊗QR corresponds to the

involution (A1, . . . , Ae0) "→ (A
t
1, . . . , A

t
e0).
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(12.28) Retaining the notation and assumptions of (12.27), write

e0 := [K0 : Q] , e := [K : Q] , and m := [D : K]1/2 .

(So m is just the degree of D as a central simple K-algebra.)
Write Dsymm := {d ∈ D | d† = d}. By Prop. (12.25), the Picard number ρ(X) :=

rankNS(X) can be calculated as ρ(X) = η · dimQ(D) = η · em2, where

η :=
dimQ(Dsymm)

dimQ(D)
.

For each of the types the factor η is easily calculated from the given description of D⊗Q R. We
find that η = 1 for Type I, η = 3/4 for Type II, η = 1/4 for Type III, and η = 1/2 for Type IV.

The invariants involved can be summarized as follows.

D

‖
K

‖
K0

|e0=e

Q

ρ = e

Type I

D

|4
K

‖
K0

|e0=e

Q

ρ = 3e

Type II

D

|4
K

‖
K0

|e0=e

Q

ρ = e

Type III

D

|m2

K

|2
K0

|e0
Q

ρ = e0m2

Type IV

As we shall prove next, there are some numerical restrictions on e0, e and d in relation to
g = dim(X). In case char(k) = 0 the restrictions are a little stronger than when char(k) = p > 0.

Exercises.

(12.1) Let X and Y be abelian varieties over a field k.
(i) If # is a prime number with # &= char(k), show that an element f ∈ Hom0(X,Y ) is a

quasi-isogeny if and only if V"(f): V"X → V"Y is an isomorphism.
(ii) If char(k) = p, show that an element f ∈ Hom(X,Y ) is an isogeny if and only if the induced

homomorphism f [p∞]: X[p∞] → Y [p∞] is an isogeny.

(12.2) Let X and Y be abelian varieties over a field k. Let k ⊂ K be a field extension.
(i) Show that the natural map Homk(X,Y ) ↪→ HomK(XK , YK) has a torsion-free cokernel.
(ii) If End0k(X) = End0K(XK), show that also Endk(X) = EndK(XK).

Notes. In the proof of Thm. (12.2) one has to pay attention in the case of a non-perfect ground field, as it is
not a priori clear that (in the notation of our proof) W 0

red
is an abelian subvariety of X. In some papers this

point is overlooked; see e.g. Milne [1], proof of 12.1.
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