
Chapter V. Isogenies.

In this chapter we define the notion of an isogeny, and we discuss some basic examples, in-
cluding the multiplication by an integer n != 0 and the relative Frobenius homomorphism in
characteristic p. As applications we obtain results about the group of n-torsion points on an
abelian variety. If the ground field has positive characteristic p this leads to the introduction of
an invariant, the p-rank of the abelian variety.

§ 1. Definition of an isogeny, and basic properties.

(5.1) Lemma. (i) Let X and Y be irreducible noetherian schemes which are both regular and
with dim(X) = dim(Y ). Let f : X → Y be a quasi-finite morphism. Then f is flat.

(ii) Let f : X → Y be a morphism of finite type between noetherian schemes, with Y reduced
and irreducible. Then there is a non-empty open subset U ⊆ Y such that either f−1(U) = ∅ or
the restricted morphism f : f−1(U) → U is flat.

A proof of (i) can be found in Altman-Kleiman [1], Chap. V, Cor. 3.6 or Matsumura [1],
Thm. 23.1. For (ii) we refer to Mumford [2], Lecture 8.

(5.2) Proposition. Let f : X → Y be a homomorphism of abelian varieties. Then the following
conditions are equivalent:

(a) f is surjective and dim(X) = dim(Y );

(b) Ker(f) is a finite group scheme and dim(X) = dim(Y );

(c) f is a finite, flat and surjective morphism.

Proof. We shall use that if h: Z1 → Z2 is a flat morphism of k-varieties and F ⊂ Z1 is the fibre
of h over a closed point of Z2 then F is equidimensional and

dim(Z1) = dim(Z2) + dim(F ) . (1)

(This is a special case of HAG, Chap. III, Prop. 9.5.)

Let us first assume that (b) holds. As f is proper and all fibres are translates of Ker(f) it
follows that f is finite. Hence f(X) is closed in Y , of dimension equal to dim(X) = dim(Y ).
Hence f is surjective. Further, by (i) of the lemma, f is flat. This shows that (a) and (c) hold.

Next suppose that (a) holds. By (ii) of the lemma, f is flat over a non-empty open subset
U ⊆ Y . As all fibres of f are translates of Ker(f), (b) follows from (1). That (c) implies (b)
again readily follows from (1). !

By making use of the results about quotients that were discussed in the previous chapter,
we could do without Lemma (5.1). We leave such an alternative proof of the proposition to the
reader.

(5.3) Definition. A homomorphism f : X → Y of abelian varieties is called an isogeny if f
satisfies the three equivalent conditions (a), (b) and (c) in (5.2). The degree of an isogeny f is
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the degree of the function field extension [k(X): k(Y )]. (Note that we have a homomorphism
k(Y ) → k(X), since an isogeny is surjective.)

If f : X → Y is an isogeny then f induces an isomorphism X/Ker(f)
∼−→ Y . Because all

fibres of f are translates of Ker(f) the sheaf f∗OX is a locally free OY -module of finite rank.
Computing this rank at the generic point of Y , respectively the closed point 0 ∈ Y , gives

deg(f) = rankOY (f∗OX) = rank
(
Ker(f)

)
.

(Here rank
(
Ker(f)

)
denotes the rank of the finite group scheme Ker(f).) If f : X → Y and

g: Y → Z are isogenies then so is g ◦f , and deg(g ◦f) = deg(g) · deg(f).

(5.4) Lemma. Let f : W → X and h: Y → Z be isogenies of abelian varieties over k. If g1,
g2: X → Y are homomorphisms such that h◦g1 ◦f = h◦g2 ◦f then g1 = g2.

Proof. We may assume that k = k. Suppose h◦g1 ◦f = h◦g2 ◦f . Because f is faithfully flat, it
is an epimorphism of schemes, so it follows that h◦g1 = h◦g2. Hence g1 − g2 maps X into the
finite group scheme Ker(h). As X is connected and reduced, g1 − g2 factors through Ker(h)0red,
which is trivial. !

(5.5) We recall the notion of a purely inseparable morphism (French: morphisme radiciel).
In EGA Inew, Prop. 3.7.1 it is shown that the following conditions on a morphism of schemes
f : X → Y are equivalent:

(a) f is universally injective; this means that for every Y ′ → Y the morphism f ′: X ′ → Y ′

obtained from f by base change is injective;
(b) f is injective and for every x ∈ X the residue field k(x) is a purely inseparable extension

of k
(
f(x)

)
;

(c) for every field K, the map X(K) → Y (K) induced by f is injective.
A morphism that satisfies these conditions is called a purely inseparable morphism.

(5.6) Proposition. Let f : X → Y be an isogeny.
(i) The following conditions are equivalent.

(a) The function field k(X) is a separable field extension of k(Y );
(b) f is an étale morphism;
(c) Ker(f) is an étale group scheme.

(ii) The following conditions are equivalent.
(a) The function field k(X) is a purely inseparable field extension of k(Y );
(b) f is a purely inseparable morphism;
(c) Ker(f) is a connected group scheme.

Proof. (i) That (b) and (c) are equivalent is clear from (4.33). If f is étale then for every x ∈ X,
writing y = f(x) ∈ Y , the residue field k(x) is a finite separable extension of k(y). If we apply
this with x the generic point of X, we see that (b) implies (a).

Now assume that k(X) is a finite separable extension of k(Y ). As f is a finite flat morphism,
it is étale at a point x ∈ X if and only if (Ω1

X/Y )x = 0. But Ω1
X/Y is a coherent OX -module,

hence its support is closed, and it follows that the locus where f is étale is an open subset
U ⊂ X. The assumption that k(X) is finite separable over k(Y ) means that the generic point
of X is in U , so U is non-empty. As f is proper it follows that there is an open subset V ⊂ Y
such that f−1(V ) is étale over V . But V is the quotient of f−1(V ) under Ker(f), so it follows
from (4.33) that Ker(f) is étale.
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(ii) We can factor f as a composition of two isogenies: X → X/Ker(f)0 → Y . The kernel
of the second isogeny is Ker(f)/Ker(f)0, which is étale. (See also Prop. (4.45).) Using (i) it
follows that (a) implies (c).

That (b) implies (a) is immediate from property (b) in (5.5), applied to the generic point
of X.

Finally suppose that N := Ker(f) is a connected group scheme. Let k ⊂ K be a field
extension. Let A be the affine algebra of N and write AK = A ⊗k K. If y: Spec(K) → Y is
a K-valued point then the scheme-theoretic fibre f−1(y) := X ×Y,y Spec(K) is isomorphic to
NK = Spec(AK). As AK has finite K-dimension it is an artinian ring. Any artinian ring is
a product of artinian local rings; this corresponds to the decomposition of f−1(y) as a union
of connected components. But we know from (i) of (3.17) that NK is a connected scheme.
Hence AK is artinian local and |f−1(y)| consists of a single point. This shows that f satisfies
condition (c) of (5.5) and is therefore purely inseparable. !

(5.7) Definition. An isogeny f : X → Y is called separable if it satisfies the three equivalent
conditions in (5.6)(i). It is called a (purely) inseparable isogeny if it satisfies the equivalent
conditions of (5.6)(ii).

(5.8) Corollary. Every isogeny f : X → Y can be factorized as f = h◦g, where g: X → Z is
an inseparable isogeny and h: Z → Y is a separable isogeny. This factorization is unique up to
isomorphism, in the sense that if f = h′ ◦g′: X → Z ′ → Y is a second such factorization then
there is an isomorphism α: Z

∼−→ Z ′ with g′ = α◦g and h = h′ ◦α.

Proof. Immediate from the above and Prop. (4.45). !

An important example of an isogeny is the multiplication [n]X : X → X by an integer n != 0.
We write X[n] := Ker([n]X) ⊂ X.

(5.9) Proposition. For n != 0, the morphism [n]X is an isogeny. If g = dim(X), we have
deg([n]X) = n2g. If (char(k), n) = 1 then [n]X is separable.

Proof. Choose an ample and symmetric line bundle L on X. (Recall that L is said to be
symmetric if (−1)∗L ∼= L, and note that if L is ample then L⊗(−1)∗L is ample and symmetric.)
By (2.12) we know that n∗

XL ∼= L⊗n2
. The restiction of n∗

XL to Ker(f) is a trivial bundle which
is ample. (Here we use that n != 0.) This implies that Ker(f) is finite, hence [n]X is an isogeny.

To compute the degree we use intersection theory on smooth varieties. Choose an ample
symmetric divisor D. Then deg([n]X) · (D)g = ([n]∗XD)g. But [n]∗XD is linearly equivalent to
n2 ·D, so ([n]∗XD)g = n2g · (D)g, and we find that deg([n]X) = n2g.

If char(k) = 0 then the last assertion is trivial. If char(k) = p > 0 with p ! n then also
p ! n2g = rank(X[n]), and the result follows from Cor. (4.48). Alternatively, as p does not divide
n2g =

[
k(X1) : k(X2)

]
, the field extension k(X2) ⊂ k(X1) given by f is separable. !

(5.10) Corollary. If X is an abelian variety over an algebraically closed field k then X(k) is a
divisible group. That is, for every P ∈ X(k) and n ∈ Z\{0} there exists a point Q ∈ X(k) with
n ·Q = P .

Note that if the ground field k is only assumed to be separably closed then it is not true in
general that X(k) is a divisible group. See ?? for an example.
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(5.11) Corollary. If (char(k), n) = 1 then X[n](ks) = X[n](k) ∼= (Z/nZ)2g.

Proof. We know that X[n] is an étale group scheme of rank n2g. Hence X[n](ks) = X[n](k) is
an abelian group of order n2g, killed by n. Further, for every divisor d of n the subgroup of
elements killed by d is just X[d](ks) and has order d2g. It now readily follows from the structure
theorem for finite abelian groups that we must have X[n](ks) ∼= (Z/nZ)2g. !

(5.12) Proposition. If f : X → Y is an isogeny of degree d then there exists an isogeny
g: Y → X with g ◦f = [d]X and f ◦g = [d]Y .

Proof. If deg(f) = d then Ker(f) is a finite group scheme of rank d and is therefore annihilated
by multiplication by d; see Exercise (4.4). It follows that [d]X factors as

[d]X = (X
f−→ Y

g−→ X)

for some isogeny g: Y → X. Then g ◦ [d]Y = [d]X ◦g = (g ◦f)◦g = g ◦(f ◦g), and by Lemma (5.4)
it follows that f ◦g = [d]Y . !

(5.13) Corollary. The relation

X ∼k Y
def
= there exists an isogeny f : X → Y

is an equivalence relation on the set of abelian varieties over k.

If there is no risk of confusion we shall use the notation X ∼ Y instead of X ∼k Y . Note,
however, that the ground field plays a role: if k ⊂ K is a field extension then X ∼k Y implies
that XK ∼K YK , but the converse does not hold in general.

If there exists an isogeny f : X → Y then we say that X and Y are isogenous. Again this
notion is relative to a given ground field; if necessary we may specify that X and Y are isogenous
over the given field k.

(5.14) Example. Suppose we work over the field C of complex numbers. If X is an abelian
variety over C, the associated analytic manifold Xan is a complex torus; see also (1.10). So
we can write Xan = V/L, where V is a complex vector space and L ⊂ V is a lattice. More
intrinsically, V can be identified with the tangent space of Xan at the origin, and the projection
map V → X is then the exponential map in the sense of Lie theory. We shall come back to this
in more detail in Chapter ??.

Let X1 and X2 be complex abelian varieties; write Xan
i = Vi/Li. Let f : X1 → X2

be a homomorphism. It follows from the previous remarks that the associated analytic map
fan: Xan

1 → Xan
2 is given by a C-linear map ϕ: V1 → V2 such that ϕ(L1) ⊆ L2. Conversely, any

such ϕ gives an analytic map ϕ̄: Xan
1 → Xan

2 , and it can be shown (using a result of Chow, see
HAG, Appendix B, Thm. 2.2) that there exists a unique algebraic homomorphism f : X1 → X2

with ϕ̄ = fan.
As an example, multiplication by n onX corresponds to ϕ = n·idV , which obviously maps L

into itself. We find that the group of n-torsion points X[n](C) is isomorphic to n−1L/L ⊂ V/L,
and if g = dim(X) then indeed n−1L/L ∼= (Z/nZ)2g.

As an application we find that X1 ∼ X2 if and only if there exists a C-linear isomorphism
α: V1

∼−→ V2 such that α(L1 ⊗Q) = L2 ⊗Q; in other words, there should exist positive integers
m and n with m · L2 ⊆ α(L1) ⊆ n−1 · L2.
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§ 2. Frobenius and Verschiebung.

As the next example of an isogeny, we look at Frobenius in characteristic p > 0.

(5.15) Proposition. Let X be a g-dimensional abelian variety over a field k with char(k) =
p > 0. Then the relative Frobenius homomorphism FX/k: X → X(p) is a purely inseparable
isogeny of degree pg.

Proof. Write X[F ] := Ker(FX/k). On underlying topological spaces, the absolute Frobenius
FrobX : X → X is the identity. It follows that the topological space underlying X[F ] is the
singleton {e}. Let now U = Spec(A), with A = k[x1, . . . , xr]/(f1, . . . , fn), be an affine open
neigbourhood of e in X such that e corresponds to the maximal ideal m = (x1, . . . , xr) ⊂ A.
Write f (p)

i ∈ k[x1, . . . , xr] for the polynomial obtained from fi by raising all coefficients to the pth

power. Then U (p) = Spec(A(p)), with A(p) = k[x1, . . . , xr]/(f
(p)
1 , . . . , f (p)

n ), and FU/k: U → U (p),
the restriction of FX/k to U , is given on rings by

A = k[x1, . . . , xr]/(f1, . . . , fn) ←− A(p) = k[x1, . . . , xr]/(f
(p)
1 , . . . , f (p)

n )

xp
i ←−, xi .

It follows that X[F ] = Spec(B), with B = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r , f1, . . . , fn). In particular,

X[F ] is finite, hence FX/k is an isogeny.

Write Â for the m-adic completion of A. Without loss of generality we may assume that
x1, . . . , xg form a basis of m/m2 = T∨

X,e. The structure theory for complete regular local rings
tells us that there is an isomorphism

k[[t1, . . . , tg]]
∼−→ Â

sending ti to xi. (See Bourbaki [2], Chap. VIII, § 5, no 2.) Since (xp
1, . . . , x

p
r) ⊂ m, we find that

B = A/(xp
1, . . . , x

p
r)A ∼= Â/(xp

1, . . . , x
p
r)Â

∼= Â/(xp
1, . . . , x

p
g)Â

∼= k[[t1, . . . , tg]]/(t
p
1, . . . , t

p
g)

∼= k[t1, . . . , tg]/(t
p
1, . . . , t

p
g) .

In particular this shows that deg(FX/k) = rank(X[F ]) = pg and that X[F ] is a connected group
scheme. !

Our next goal is to define the Verschiebung isogeny for abelian varieties in characteristic p.
In fact, under a suitable flatness assumption the Verschiebung can be defined for arbitrary
commutative group schemes over a basis S with char(S) = p; we shall give the construction in
this generality. First we need some preparations.

(5.16) Let R be a ring with char(R) = p > 0. Let A be an R-algebra. Write T p(A) :=
A ⊗R ⊗R · · · ⊗R A for the p-fold tensor product of A over R. The symmetric group Sp on p
letters naturally acts on T p(A) by ring automorphisms. Write Sp(A) ⊂ T p(A) for the subalgebra
of Sp-invariants, i.e., the subalgebra of symmetric tensors.

Let N : T p(A) → Sp(A) be the “symmetrizer” map, i.e., the map given by

N(a1 ⊗ · · ·⊗ ap) =
∑

σ∈Sp

aσ(1) ⊗ · · ·⊗ aσ(p) .
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If s ∈ Sp(A) is a symmetric tensor and t ∈ T p(A) then N(st) = sN(t). It follows that J :=
N
(
T p(A)

)
is an ideal of Sp(A).

Write U := Spec(A) → T := Spec(R). Applying Thm. (4.8) we find that the quotient Sp(U)
of Up

T := U ×T U ×T · · ·×T U (p factors) under the natural action of Sp exists and is given by
Sp(U) = Spec

(
Sp(A)

)
. The scheme Sp(U) is called the p-th symmetric power of U over T . Note

that Sp(U/T ) would be a better notation, as the base scheme is important in the construction.
We trust, however, that the simpler notation Sp(U) will not cause any confusion. Let U [p/T ] ↪→
Sp(U) be the closed subscheme defined by the ideal J . If η: T p(A) → A is the multiplication
map, given by a1 ⊗ · · · ⊗ ap ,→ a1 · · · ap, then η

(
N(a1 ⊗ · · · ⊗ ap)

)
= p! · (a1 · · · ap) = 0. This

means that the morphism

U
∆p

U/T−−−−→ Up
T −→ Sp(U)

factors through U [p/T ] ⊂ Sp(U). Write F ′
U/T : U → U [p/T ] for the morphism thus obtained.

Write A(p/R) := A ⊗R,F R, where F = FrobR: R → R is the Frobenius homomorphism,
given by r ,→ rp. We view A(p/R) as an R-algebra via r ,→ 1 ⊗ r; so for a ∈ A and r ∈ R we
have the relations rp · (a⊗ 1) = a⊗ rp = (ra)⊗ 1. By definition, U (p/T ) = Spec

(
A(p/R)

)
. Now

observe that we have a well-defined map

ϕA/R: A
(p/R) → Sp(A)/J

sending a⊗ r ∈ A(p/R) to (ra⊗ a⊗ · · ·⊗ a) mod J . Note that (ra⊗ a⊗ · · ·⊗ a) is an element
of Sp(A) because all tensors are taken over the ring R. Also note that ϕA/R is well-defined
precisely because we use p-tensors. (Check this yourself!) Write ϕU/T : U

[p/T ] → U (p/T ) for the
morphism of schemes induced by ϕA/R. It is clear from the definitions that FU/T = ϕU/T ◦F ′

U/T .
We now globalize these constructions. For this, consider a base scheme S of characteristic p

and an S-scheme π: X → S. Define Sp(X), the pth symmetric power of X over S, to be the
quotient of Xp

S under the natural action of Sp. If U ⊂ X and T ⊂ S are affine open subsets with
π(U) ⊆ T then Sp(U) is an affine open subset of Sp(X). The closed subschemes U [p/T ] ↪→ Sp(U)
glue to a locally closed subscheme X [p/S] ↪→ Sp(X). Also, the morphisms F ′

U/T and ϕU/T glue
and give a factorization of the relative Frobenius morphism FX/S as

FX/S = (X
F ′

X/S−−−−→ X [p/S] ϕX/S−−−−→ X(p/S)) .

By construction, the composition of F ′
X/S and the inclusion X [p/S] ↪→ Sp(X) is the same as the

composition of the diagonal ∆p
X/S : X → Xp

S and the natural projection Xp
S → Sp(X). Summing

up, we have a commutative diagram

X Xp
S

X [p/S] Sp(X)

X(p/S)

∆X/S−−−−→
'F ′

X/S

'ϕX/S

'

↪−→FX/S

(5.17) Lemma. (i) The construction of X [p/S], as well as the formation of F ′
X/S and ϕX/S , is

functorial in X and compatible with flat base change T → S.
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(ii) If X is flat over S then ϕX/S : X
[p/S] → X(p/S) is an isomorphism of S-schemes.

Proof. Part (i) of the lemma is a straightforward verification. For (ii), it suffices to treat the
case that X = U = Spec(A) and S = T = Spec(R). Let M be an R-module. Just as before we
can form the p-fold tensor product T p(M) of M over R and the submodule Sp(M) ⊂ T p(M) of
symmetric tensors, and there is a symmetrizer mapN : T p(M) → Sp(M). We have a well-defined
map

ϕM/R: M
(p/R) −→ Sp(M)/N

(
T p(M)

)
given by m⊗ r ,→ [rm⊗m⊗ · · ·⊗m] .

Suppose M is a free R-module with a basis {ei}i∈I . The tensors ei := ei1 ⊗ ei2 ⊗ · · ·⊗ eip with
i = (i1, . . . , ip) ∈ Ip, form a basis of T p(M). Such a tensor ei can be symmetrized in a minimal
way. Namely, if H ⊂ Sp is the stabilizer of (i1, . . . , ip) in the natural action of Sp on Ip then
for σ̄ ∈ H\Sp the element eiσ̄(1)

⊗ eiσ̄(2)
⊗ · · ·⊗ eiσ̄(p)

is well-defined; now set

si :=
∑

σ̄∈H\Sp

eiσ̄(1)
⊗ eiσ̄(2)

⊗ · · ·⊗ eiσ̄(p)
.

The symmetric tensors si obtained in this way span Sp(M); note however that different se-
quences i may give the same tensor si. If i1 = i2 = · · · = ip then N(ei) = p! · si = 0; if not all
ij are equal then N(ei) is a unit times si. (Recall that R is an Fp-algebra.) We conclude that
the tensors ei ⊗ ei ⊗ · · ·⊗ ei form a basis of Sp(M)/N

(
T p(M)

)
, and it follows that ϕM/R is an

isomorphism if M is free over R.
Now we use a non-trivial result from commutative algebra. Namely, if M is flat over R

then it can be written as a filtered direct limit, say M = lim
−→

Mα, of free R-modules. For a proof
see [??]. Since lim

−→
is right exact and commutes with tensor products, ϕM/R can be identified

with lim
−→
ϕMα/R and is therefore again an isomorphism. Applying this to M = A the lemma

follows. !

We now consider a commutative S-group scheme G. The morphism m(p): Gp
S → G given

on sections by (g1, g2, . . . , gp) ,→ g1g2 · · · gp factors through Sp(G), say via m̄(p): Sp(G) → G. It
follows that [p]: G → G, which is equal to m(p) ◦∆p

G/S , factors as

[p] =
(
G

F ′
G/S−−−−→ G[p/S] ↪−→ Sp(G)

m̄(p)

−−−→ G) . (2)

(5.18) Definition. If G is a commutative flat group scheme over a basis S of characteristic p
then we define the Verschiebung homomorphism

VG/S : G
(p/S) −→ G

to be the composition

VG/S =
(
G(p/S)

ϕ−1
G/S−−−−→ G[p/S] ↪−→ Sp(G)

m̄(p)

−−−→ G
)
.

That VG/S is indeed a homomorphism of group schemes follows from (i) of the lemma.

(5.19) Proposition. Let S be a scheme with char(S) = p > 0. Let G be a flat S-group scheme.
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(i) We have VG/S ◦FG/S = [p]G: G −→ G.
(ii) If G is finite locally free over S then the Verschiebung is Cartier dual to the Frobenius

homomorphism; more precisely, we have (VG/S)
D = FGD/S and VG/S = (FGD/S)

D.

Proof. Statement (i) follows from the definitions; indeed, if we write j: G[p/S] ↪−→ Sp(G) for the
inclusion morphism then

VG/S ◦FG/S = (m̄(p)
◦j ◦ϕ−1

G/S)◦(ϕG/S ◦F ′
G/S) = m̄(p)

◦j ◦F ′
G/S = [p]G

by (2).
For (ii), suppose G is finite locally free over S. Without loss of generality we may assume

that S = Spec(R) is affine, so that G is given by an R-algebra A. Possibly after further
localization on S we may assume that A is free as a module over R, say with basis {e1, . . . , en}.
Recall from the proof of Lemma (5.17) that given a sequence i = (i1, i2, . . . , ip) ∈ {1, 2, . . . , n}p,
we can symmetrize the tensor ei1 ⊗ ei2 ⊗ · · ·⊗ eip in a minimal way. The resulting collection of
tensors

{si}1!i1!i2!···!ip!n

is a basis of Sp(A). It follows from the proof of Lemma (5.17) that the Verschiebung VG/S is
given on rings by the composition

A
m̄(p)

−−−→ Sp(A) −→ A(p/R) ,

where m̄(p) is the homomorphism that corresponds to the morphism m̄(p): Sp(G) → G, and
where the homomorphism Sp(A) → A(p/R) is given by

si ,→
{
0, if ij < ij+1 for some j;
ei ⊗ 1 if i = (i, i, . . . , i).

.

Now we apply the functor ( )D = HomR(−, R). We have an isomorphism

(
AD

)(p/R) ∼−→
(
A(p/R)

)D

by sending ϕ ⊗ ρ ∈ AD ⊗R,F R to the map a ⊗ r ,→ rρϕ(a)p. Further there is a canonical
isomorphism

(
Sp(A)

)
D ∼= Symp(AD); here we note that by our general conventions in (??),

Symp(AD) is a quotient of the p-fold tensor product T p(AD), whereas Sp(A) is a sub-algebra
of T p(A). Using these identifications, and writing {ε1, . . . , εn} for the R-basis of AD dual to
{e1, . . . , en}, the dual of the map Sp(A) → A(p/R) is the map

(
AD

)(p/R) −→ Symp(AD) given by εi ⊗ ρ ,→ [ρεi ⊗ εi ⊗ · · ·⊗ εi] .

Furthermore, by definition of the ring structure on AD, the dual of the map m̄(p): A → Sp(A)
is the multiplication map Symp(AD) → AD given by [ϕ1 ⊗ · · · ⊗ ϕp] ,→ ϕ1 · · ·ϕp. Combining
this we see that the Cartier dual of VG/S is given on rings by the map

(
AD

)(p/R) → A sending ϕ⊗ r to r · ϕp .

This shows that (VG/S)
D = FGD/S . By Cartier duality then also VG/S = (FGD/S)

D. !

Now we apply this to abelian varieties.
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(5.20) Proposition. Let X be an abelian variety over a field k with char(k) = p. Then the
Verschiebung homomorphism VX/k: X

(p) → X is an isogeny of degree pg. We have VX/k ◦FX/k =
[p]X and FX/k ◦VX/k = [p]X(p) .

Proof. Write F = FX/k and V = VX/k. We have already seen that V ◦F = [p]X . It follows that
V satisfies (a) of Proposition (5.2); hence it is an isogeny. That V has degree pg follows from
the relation p2g = deg

(
[p]

)
= deg(V ) · deg(F ) = deg(V ) · pg. Finally, F ◦V ◦F = F ◦ [p] = [p]◦F ,

and because F is an epimorphism this implies that F ◦V = [p]. !

(5.21) Let X be a k-scheme, where k is a field of characteristic p. For m " 1 we write X(pm)

for the base change of X over the mth power Frobenius homomorphism Frobmk : k → k. By a
slight abuse of notation we write

Fm
X/k = FX(pm−1)/k

◦ · · · ◦FX(p)/k ◦FX/k: X → X(p) → X(p2) → · · · → X(pm)

for the “mth power” of Frobenius, or “iterated Frobenius”. Similarly, we can define an “mth
iterated Verschiebung” V m

X/k: X
(pm) → X by

V m
X/k = VX/k ◦VX(p)/k ◦ · · · ◦VX(pm−1)/k .

By an easy induction on m we find that [pm]X = V m
X/k

◦Fm
X/k and [pm]X(pm) = Fm

X/k
◦V m

X/k.
Indeed, for m = 1 this is just Proposition (5.20), and to make the induction we note that

V m+1
X/k

◦Fm+1
X/k = VX/k ◦V m

X(p)/k
◦Fm

X(p)/k
◦FX/k

= VX/k ◦ [pm]X(p) ◦FX/k

= [pm]X ◦VX/k ◦FX/k = [pm+1]X .

(Likewise for the relation [pm]X(pm) = Fm
X/k

◦V m
X/k.)

Let us now look what is the analogue of (5.11) in case char(k) | n. In fact, since all X[n](k)
are finite abelian, it suffices to consider the case that n = pm, where p = char(k) > 0.

(5.22) Proposition. Suppose char(k) = p > 0. There is an integer f = f(X), with 0 # f #

g = dim(X), such that X[pm](k) ∼= (Z/pmZ)f for all m " 0. If Y is isogenous to X then
f(Y ) = f(X).

Proof. We can factor pm: X → X as

[pm]X =

(
X

Fm
X/k−−−−→ X(pm) h1−−→ Y

h2−−→ X

)
,

where h1 ◦Fm
X/k is purely inseparable and h2 is a separable isogeny. Looking at the degrees we

find that X[pm](k) is an abelian group of rank deg(h2) = pd(m), where d(m) is an integer with
0 # d(m) # gm. Write f = d(1), so that X[p](k) ∼= (Z/pZ)f . It follows from Corollary (5.10)
that we have exact sequences of (abstract) groups

0 −→ X[pm−1](k) −→ X[pm](k)
pm−1

−−−−→ X[p](k) −→ 0 .

The claim that X[pm](k) ∼= (Z/pmZ)f for all m " 0 follows by induction on m.
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Finally, suppose h: X → Y is an isogeny, say of degree d. Then X[pm](k) maps to Y [pm](k),
and the kernel has order at most d. Taking m large enough, it follows that f(Y ) " f(X). As
X ∼ Y is a symmetric relation, we conclude that f(X) = f(Y ). !

(5.23) Definition. The integer f = f(X), which lies in the range 0 # f # g := dim(X), is
called the p-rank of X.

(5.24) Caution. Let X be an abelian variety of p-rank f > 0 over a non-perfect field k, and
let k ⊂ ks ⊂ k be respectively a separable closure and an algebraic closure of k. Then we have
natural injective maps X[pm](ks) → X[pm](k), but these are not, in general, isomorphisms. In
other words, in order to see all pmf distinct physical points of order pm, in general we need an
inseparable extension of the ground field.

At first sight this may seem to contradict the fact that an étale k-group scheme becomes
constant over ks. For instance, taking m = 1 we have a short exact sequence of k-group schemes

1 −→ X[p]loc −→ X[p] −→ X[p]ét −→ 1 ,

(see Prop. (4.45)) and X[p]ét ⊗k ks is isomorphic to (Z/pZ)f . However, in order to split the
exact sequence, and hence to be able to lift the points of X[p]ét to points of X[p], we in general
need to pass to an inseparable extension. See also the examples in (5.26) and (5.27) below for
a concrete illustration of this point.

(5.25) Remarks. (i) The p-rank does not depend on the ground field. More precisely, if k ⊂ K
is a field extension and X is an abelian variety over k then f(X) = f(XK). To see this we may
assume that k and K are both algebraically closed. By (4.45) the group scheme X[p] is a product
of its local and étale parts, i.e., X[p] ∼= X[p]loc × X[p]ét. Over k = k the étale part becomes
a constant group scheme, i.e., X[p]ét = Γk with Γ = X[p](k). But after extension of scalars
to K the local and étale parts of X[p] remain local and étale, respectively; see ??. Therefore
X[p](K) = Γk(K) = Γ, so indeed f(X) = f(XK).

(ii) Later we shall prove that the p-rank may take any value between 0 and dim(X): given
a field k with char(k) = p > 0 and integers 0 # f # g, there exists an abelian variety X over k
with dim(X) = g and f(X) = f . In fact, as clearly f(X1 ×X2) = f(X1) + f(X2), it suffices to
show that there exist elliptic curves X0 and X1 over k with f(Xi) = i.

(iii) An elliptic curve X is said to be ordinary if f(X) = 1 and supersingular if f(X) = 0.
In the examples below we shall use this terminology. In Chapter ??, we shall define the notions
“ordinary” and “supersingular” for abelian varieties of arbitrary dimension. It should be noted
that for dim(X) > 2, “supersingular” is not equivalent to “p-rank = 0”.

(5.26) Example. Let X be an elliptic curve over a field k with char(k) = 2. Then X can be
given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (3)

such that the origin is the “point at infinity” ∞ = (0 : 1 : 0). A point P ∈ X(k) with affine
coordinates (ξ, η) is a 2-torsion point precisely if the tangent line at P passes through ∞. An
easy calculation shows that this happens if and only if a1ξ + a3 = 0. We cannot have a1 = a3,
because X then would be singular. We conclude:

f(X) =

{
0 if a1 = 0;
1 if a1 != 0.
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It should be noted that if a1 = 0 and k = k then there is a linear change of coordinates
such that the equation for X becomes y2 + y = x3. So, up to isomorphism this is the only
supersingular elliptic curve in characteristic 2 (over k = k).

In the ordinary case, a1 != 0, we find that the non-trivial point of order 2 in X(k) is the
point with affine coordinates (a3/a1, η), where η ∈ k satisfies

η2 = (a3/a1)
3 + a2(a3/a1)

2 + a4(a3/a1) + a6 .

In particular, we see illustrated here the point made in (5.24) that in general we need to pass
to an inseparable extension of the ground field in order to have all p-torsion points rational.

(5.27) Example. Let X be an elliptic curve given by a Weierstrass equation (3), this time over
a field k with char(k) = 3. Then P ∈ X(k) \ {0} is a 3-torsion point if and only if P is a flex
point, i.e., a point at which the tangent line TX,P intersects X with multiplicity 3. (As X is
a nonsingular cubic curve the intersection multiplicity cannot be bigger.) Again this allows to
compute the p-rank by hand. To simplify, let us assume that a1 = a3 = 0; this is achieved after
a linear change of variables. Then P = (ξ, η) ∈ X(k) is a flex point if and only if

4a2η
2 = 4a22ξ

2 + 4a2a4ξ + a24 . (4)

Combined with the equation for X this is equivalent to

4a2ξ
3 + (4a2a6 − a24) = 0 . (5)

As X is nonsingular we cannot have a2 = a4 = 0. Hence

X is ordinary
def⇐⇒ X[3](k) ∼= Z/3Z ⇐⇒ a2 != 0 .

Note that if a2 != 0 then (5) has a unique solution for ξ ∈ k, and if ±η are the corresponding
solutions of (5.27.1) then (ξ,±η) are the only two non-trivial 3-torsion points in X(k). So
indeed X[3](k) ∼= Z/3Z and f = 1. Further note that solving (4) in general requires passing to
an inseparable extension of k.

(5.28) Example. Let k be a field of characteristic 2. Consider the elliptic curve X ⊂ P2
k given

by the homogeneous equation x2
1x2 +x1x2

2 = x3
0, with ∞ = (0 : 1 : 0) as origin. As we have seen

above, X is supersingular, which for an elliptic curve is the same as saying that X has p-rank
zero.

Recall that the group scheme α2 = α2,k is given by α2 = Spec
(
k[ε]/(ε2)

)
, with co-

multiplication ε ,→ ε ⊗ 1 + 1 ⊗ ε. We are going to give an action ρ: α2 × X → X of α2

on X. For this, write X as the union of two affine open subsets: X = U1 ∪ U2, with

U1 = X \ {(0 : 1 : 0)} = Spec
(
k[x, y]/(x3 − y2 − y)

)

and
U2 = X \ {(0 : 0 : 1)} = Spec

(
k[x, z]/(x3 − z2 − z)

)
.

Now we can give the action ρ on rings: let ρ1: α2 × U1 → U1 be given by the homomorphism

k[x, y]/(x3 − y2 − y) −→ k[x, y, ε]/(x3 − y2 − y, ε2) with x ,→ x+ ε , y ,→ y + εx2 ,
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and, similarly, let ρ2: α2 × U2 → U2 be given on rings by x ,→ x+ ε and z ,→ z + εx2. It is not
hard to verify that these homomorphisms are well-defined, that ρ1 and ρ2 agree on U1 ∩U2, and
that the resulting morphism ρ is indeed a group scheme action. Note that the points (0 : 1 : 0)
and (0 : 0 : 1) are α2-stable when viewed as points in the underlying topological space |X|, but
that they are not fixed points of the action. In fact, the action is strictly free.

On U1 the functions ξ := x2 and η := y2 are α2-invariant. They generate a subring of
O(U1) of index 2; as the functions x and y themselves are clearly not invariant we conclude that

O(U1)
α2 ∼= k[ξ, η]/(ξ3 − η2 − η) ↪−→ O(U1) = k[x, y]/(x3 − y2 − y) .

Similarly, the algebra of α2-invariants in O(U2) is generated by x2 and z2. We find that the
quotient α2\X is isomorphic to X itself, where the quotient map X → X is just the Frobenius
endomorpism, given on points by (x, y) ,→ (x2, y2).

It can be shown that there is an isomorphism X[F ] ∼= α2 such that the action ρ described
above becomes precisely the action of X[F ] on X by translations. As Exercise (??) shows,
this does not immediately follow from the fact that the quotient map for the α2-action is the
Frobenius morphism. Note that from the given definition of the action ρ it is not clear that this
is an action of a subgroup scheme by translations. We shall return to this later; see (??).

(5.29) Example. Let X be an elliptic curve over a field k with char(k) = p, such that X[F ] ∼=
αp,k. It is not hard to verify that k

∼−→ Endk(αp,k), where the map sends λ ∈ k to the
endomorphism of αp,k = Spec

(
k[t]/(tp)

)
given on rings by t ,→ λ · t. For (λ, µ) ∈ A2(k) we

obtain an embedding ϕ(λ,µ): αp,k ↪→ X ×X by taking the composition

αp,k
(λ,µ)−−−→ αp,k × αp,k

∼= X[F ]×X[F ] ⊂ X ×X .

The image of ϕ(λ,µ) only depends on (λ : µ) ∈ P1(k).

Figure ??.

We get a family of abelian surfaces over P1 by considering Y(λ:µ) := (X ×X)/ϕ(λ,µ)(αp). It can
be shown that given (λ0 : µ0) ∈ P1(k), there are only finitely many (λ : µ) with Y(λ:µ)

∼= Y(λ0:µ0).
The conclusion is that we have a non-trivial “continuous” family of isogenies X ×X → Y(λ:µ).
As we shall see later, such examples only exist in characteristic p > 0.

§ 3. Density of torsion points.

(5.30) Theorem. Let X be an abelian variety over a field k and let p be a prime number.
Then the collection of subschemes X[pm] for m " 0 is scheme-theoretically dense in X.

– 83 –



Let im: X[pm] ↪→ X be the inclusion homomorphism. By definition, saying that the col-
lection of subschemes X[pm] ⊂ X is scheme-theoretically dense in X means that there does not
exist a proper closed subscheme Y " X such that all im factor through Y . If p != char(k) we can
express the density of the torsion points of p-power order in a more elementary way. Namely, in
that case the following statements hold, as we shall see in the proof.
(1) Topological density: the union of the subspaces

∣∣X[pm]
∣∣ ⊂ |X| is dense in |X|;

(2) Function-theoretic density: the homomorphism of sheaves OX →
∏

m"0 OX[pm] that is
induced by the homomorphisms im is injective.

Because X is reduced, properties (1) and (2) are equivalent, and (1) immediately implies that
the collection of subschemes X[pn] is scheme-theoretically dense in X.

By contrast, if p = char(k) then (1) and (2) do not hold, in general. Indeed, if the p-
rank of X is zero then the group schemes X[pm] are local, which means that the underlying
topological space is reduced to the single point 0. So in this case we can only interprete the
density statement scheme-theoretically.

Proof. We give separate proofs for the cases p = char(k) and p != char(k).
First assume that p != char(k). It suffices to prove the assertion for k = k, which from now

on we assume. In this case we know that X[pm] is étale and consists of p2gm distinct closed
points. Let T ⊂ X(k) be the union of all X[pm](k), and let Y ⊂ X be the smallest closed
subscheme such that all im factor through Y . Note that Y is reduced; it is in fact just the
reduced closed subscheme of X whose underlying space is the Zariski closure of T . We shall first
prove that Y is a subgroup scheme of X.

If x ∈ T then the translation tx: X → X maps T into itself; hence tx(Y ) ⊆ Y . This holds
for all x ∈ T , so it follows that for all y ∈ Y (k) also the translation ty maps T into itself, and
hence ty(Y ) ⊂ Y . Because Y and Y ×k Y are reduced, this implies that under the group law
m: X ×X → X we have m(Y × Y ) ⊂ Y . As further it is clear that also Y is mapped into itself
under the inverse ι: X → X, we conclude that Y is indeed a subgroup scheme of X.

The identity component Y 0 is an abelian subvariety of X. Let N be the number of con-
nected components of Y . Further, let g = dim(X) and h = dim(Y 0). By Prop. (5.9) we have
#Y 0[pm](k) = p2mh for all m " 0, and it follows that #Y [pm](k) # N · p2mh. (If W ⊂ Y is a
connected component that contains a torsion point w with pm ·w = 0 then translation by w gives
an isomorphism Y 0[pm]

∼−→ W ∩ X[pm].) But by construction, Y contains all torsion points
of X of p-power order; so #Y [pm](k) = p2mg. Taking m very large we see that we must have
h = g, which gives that Y 0 = X.

Next we deal with the case p = char(k). Let Fm = Fm
X/k: X → X(pm) be the mth power

of the Frobenius homomorphism, and let X[Fm] ⊂ X be the kernel. Because [pm] = V m ◦Fm

(with V m = V m
X/k the iterated Verschiebung; see (5.21)) we have X[Fm] ⊂ X[pm]. So we are

done if we can prove that the collection of group schemes X[Fm] is scheme-theoretically dense
in X. As in the proof of Prop. (5.15), let U = Spec(A) with A = k[x1, . . . , xr]/(f1, . . . , fn) be an
affine open neigbourhood of the origin e in X such that e corresponds to the maximal ideal m =
(x1, . . . , xr) ⊂ A. Write f (pm)

i ∈ k[x1, . . . , xr] for the polynomial obtained from fi by raising all

coefficients to the power pm, and write A(pm) = k[x1, . . . , xr]/(f
(pm)
1 , . . . , f (pm)

n ). The restriction
of Fm to U is given on rings by the homomorphism A(pm) → A that sends xj to xpm

j . It follows

that X[Fm] is the closed subscheme of U defined by the ideal (xpm

1 , . . . , xpm

r , f1, . . . , fn) ⊂ A.
Suppose Y ⊂ X is a closed subscheme such that all inclusion homomorphisms X[Fm] ↪→ X

factor through Y . Let J ⊂ A be the ideal of Y ∩ U . As in the proof of Prop. (5.15), let Â
be the m-adic completion of A and choose the coordinates xi in such a way that x1, . . . , xg
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(with g = dim(X)) form a basis of m/m2. We then have an isomorphism k[[t1, . . . , tg]]
∼−→ Â

via ti ,→ xi, and we shall identify Â with k[[t1, . . . , tg]] via this isomorphism. The assumption
that X[Fm] is a subscheme of Y means that JÂ is contained in the ideal (tp

m

1 , . . . , tp
m

g ). The

intersection of the ideals (tp
m

1 , . . . , tp
m

g ) ⊂ Â for all m " 0 is the zero ideal, so we conclude

that JÂ = (0). But then the complete local ring ÔY,e = Â/JÂ of Y at the origin has Krull
dimension g, and consequently Y = X. !

We now prove the fact stated in Remark (2.14) that the results in (2.13) are true over an
arbitrary, not necessarily perfect, ground field.

(5.31) Proposition. Let X be an abelian variety over a field k. If Y ↪→ X is a closed subgroup
scheme then the connected component Y 0 ⊂ Y that contains the origin is an open and closed
subgroup scheme of Y that is geometrically irreducible. The reduced underlying scheme Y 0

red ↪→
X is an abelian subvariety of X.

Proof. The assertion that Y 0 is open and closed in Y and is geometrically irreducible, was proven
in Prop. (3.17). To prove that Y 0

red is an abelian subvariety of X we may assume, to simplify
notation, that Y = Y 0. We are going to prove that Yred is geometrically reduced. Before we
give the argument, let us explain how the desired conclusion follows. If Yred is geometrically
reduced then we have, with k ⊂ k an algebraic closure, that Yred,k = (Yk)red is a closed subgroup
scheme of Yk; see Exercise (3.2). But then also Yred is a closed subgroup scheme of Y . Indeed,
the assertion that Yred is a subgroup scheme just means that the morphism Yred × Yred → Y
given on points by (y1, y2) ,→ y1 − y2 factors through Yred ⊂ Y . If this holds after extension of
scalars to k then it also holds over k. So the conclusion is that Yred is a subgroup scheme of X
that is geometrically integral; hence it is an abelian subvariety.

We now prove that Yred is geometrically reduced. If char(k) = 0 then Y = Yred by
Thm. (3.20) and we are done by Prop. (3.17). Assume then that char(k) = p > 0. For all positive
integers n with p ! n the subgroup scheme Y [n] ⊂ Y is étale; hence we have Y [n] ⊂ Yred ⊂ Y .
This gives us a homomorphism of sheaves hn: OYred → OY [n] on |Yred| = |Y |, and we define

h: OYred →
∏

p!n

OY [n]

by h(f) =
∏

n hn(f). Further we know that (Yk)red ⊂ Xk is an abelian subvariety. By
Thm. (5.30) the collection of Y [n]k, for n " 1 with p ! n, is topologically dense in |Yk| = |(Yk)red|.
This implies that also the collection of all Y [n] is topologically dense in |Y | = |Yred|, and because
Yred is reduced, the homomorphism h is injective.

Suppose that Yred is not geometrically reduced. Then there is a finite, purely inseparable
field extension k ⊂ K such that (Yred)K is not reduced. (See EGA IV, Prop. 4.6.1.) As
k ⊂ K is purely inseparable, we have |(Yred)K | = |Yred| and |Y [n]K | = |Y [n]| for all n. The
structure sheaves of (Yred)K and Y [n]K are just OYred ⊗k K and OY [n] ⊗k K, respectively, and
the homomorphism

h⊗ id: OYred ⊗k K →
(∏

p!n

OY [n]

)
⊗k K

can be identified with the map

hK : O(Yred)K →
∏

p!n

OY [n]K
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induced by the inclusions Y [n]K ↪→ (Yred)K . By our assumptions, (Yred)K is not reduced,
whereas all Y [n]K are reduced schemes. Hence h⊗ id = hK must have a non-trivial kernel. But
then also h has a non-trivial kernel (k ⊂ K being faithfully flat), which contradicts our earlier
conclusion that it is injective. !

Exercises.

(5.1) Let f : X → Y be a surjective homomorphism of abelian varieties. Show that f is flat.

(5.2) Let k = Fp. By definition, αp is a subgroup scheme of Ga, so that we get a natural
action ρ: αp × Ga → Ga. Similarly, µp is a subgroup scheme of Gm, which gives an action
σ: µp ×Gm → Gm.
(i) Identify Gm with the open subscheme of Ga given by x != 0. Show that the action ρ restricts

to a free action ρ′ of αp on Gm, and that the Frobenius endomorphism F : Gm → Gm, given
on points by x ,→ xp, is a quotient morphism for ρ′.

(ii) Conclude that σ and ρ′ give rise to the same quotient morphism, even though αp !∼= µp.
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