
Chapter II. Line bundles and divisors on abelian varieties.

In this chapter we study divisors on abelian varieties. One of the main goals is to prove that
abelian varieties are projective. The Theorem of the Square (2.9) plays a key role. Since abelian
varieties are nonsingular, a Weil divisor defines a Cartier divisor and a line bundle, and we
have a natural isomorphism Cl(X)

∼−→ Pic(X). We shall mainly work with line bundles, but
sometimes (Weil) divisors are more convenient.

The following abuse of notation will prove handy: if L is a line bundle on a product variety
X × Y then we shall write Lx for the restriction of L to {x}× Y and, similarly, Ly denotes the
restriction L|X×{y}. Here of course x shall always be a point of X and y a point of Y .

In this chapter, varieties shall always be varieties over some ground field k, which in most
cases shall not be mentioned.

§ 1. The theorem of the square.

(2.1) Theorem. Let X and Y be varieties. Suppose X is complete. Let L and M be two line
bundles on X × Y . If for all closed points y ∈ Y we have Ly

∼= My there exists a line bundle N
on Y such that L ∼= M ⊗ p∗N , where p = prY : X × Y → Y is the projection onto Y .

Proof. This is a standard fact of algebraic geometry. A proof using cohomology runs as follows.
Since Ly⊗M−1

y is the trivial bundle and Xy is complete, the space of sections H0(Xy, Ly⊗M−1
y )

is isomorphic to k(y), the residue field of y. This implies that p∗(L ⊗ M−1) is locally free of
rank one, hence a line bundle (see MAV, §5 or HAG, Chap. III, § 12). We shall prove that the
natural map

α: p∗p∗(L⊗M−1) → L⊗M−1

is an isomorphism. If we restict to a fibre we find the map

OXy ⊗ Γ(Xy, OXy ) → OXy

which is an isomorphism. By Nakayama’s Lemma, this implies that α is surjective and by
comparing ranks we conclude that it is an isomorphism. !

As an easy consequence we find a useful prinicple.

(2.2) See-saw Principle. If, in addition to the assumptions of (2.1), we have Lx = Mx for
some point x ∈ X then L ∼= M .

Proof. We have L ∼= M ⊗ pr∗Y N . Over {x} × Y this gives Lx
∼= Mx ⊗ (pr∗Y N)x. Therefore,

(pr∗Y N)x is trivial, and this implies that N is trivial. !

(2.3) Lemma. Let X and Y be varieties, with X complete. For a line bundle L on X ×Y , the
set {y ∈ Y | Ly is trivial} is closed in Y .

Proof. If M is a line bundle on a complete variety then M is trivial if and only if both H0(M)
and H0(M−1) are non-zero. Hence

{y ∈ Y | Ly is trivial} = {y ∈ Y | h0(Ly) > 0} ∩ {y ∈ Y | h0(L−1
y ) > 0} . (1)
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But the functions y (→ h0(Ly) and y (→ h0(L−1) are upper semi-continuous on Y ; see MAV, § 5
or HAG, Chap. III, Thm. 12.8. So the two sets in the right hand side of (1) are closed in Y . !

Actually, there is a refinement of this which says the following.

(2.4) Lemma. Let X be a complete variety over a field k, let Y be a k-scheme, and let L be
a line bundle on X × Y . Then there exists a closed subscheme Y0 ↪→ Y which is the maximal
subscheme of Y over which L is trivial; i.e., (i) the restriction of L to X × Y0 is the pull back
(under prY0

) of a line bundle on Y0, and (ii) if ϕ: Z → Y is a morphism such that (idX ×ϕ)∗(L)
is the pullback of a line bundle on Z under p∗Z then ϕ factors through Y0.

For the proof we refer to MAV, §10. In Chapter 6 we shall discuss Picard schemes; once
we know the existence and some properties of PicX/k the assertion of the lemma is a formal
consequence. (See (6.4).)

The following theorem is again a general fact from algebraic geometry and could be accepted
as a black box. As it turns out, it is of crucial importance for the theory of abelian varieties. In
view of its importance we give a proof.

(2.5) Theorem. LetX and Y be complete varieties and let Z be a connected, locally noetherian
scheme. Let x ∈ X(k), y ∈ Y (k), and let z be a point of Z. If L is a line bundle on X × Y × Z
whose restriction to {x}×Y ×Z, to X × {y}×Z and to X ×Y × {z} is trivial then L is trivial.

Proof. We follow the proof given by Mumford in MAV. We view L as a family of line bundles
on X × Y parametrized by Z. Let Z ′ be the maximal closed subscheme of Z over which L is
trivial, as discussed above. We have z ∈ Z ′. We shall show that Z ′ = Z by showing that Z ′ is
an open subscheme and using the connectedness of Z.

Let ζ be a point of Z ′. Write m for the maximal ideal of the local ring OZ,ζ and I ⊂ OZ,ζ

for the ideal defining (the germ of) Z ′. We have to show that I = (0). Suppose not. By Krull’s
Theorem (here we use that Z is locally noetherian) we have ∩nm

n = (0), hence there exists a
positive integer n such that I ⊂ mn, I *⊂ mn+1. Put a1 = (I,mn+1), and choose an ideal a2 with

mn+1 ⊂ a2 ⊂ (I,mn+1) = a1 and dimk(ζ)(a1/a2) = 1 .

(Note that such ideals exist.) Let Zi ⊂ Spec(OZ,ζ) be the closed subscheme defined by the ideal
ai (i = 1, 2). We will show that the restriction of L to X × Y × Z2 is trivial. This implies that
Z2 is contained in Z ′, which is a contradiction, since I *⊂ a2.

Write Li for the restriction of L to X × Y × Zi. By construction, L1 is trivial; choose a
trivializing global section s. The inclusion Z1 ↪→ Z2 induces a restriction map Γ(L2) → Γ(L1).
We claim: L2 is trivial if and only if s can be lifted to a global section of L2. To see this,
suppose first that we have a lift s′. The schemes X × Y × Z1 and X × Y × Z2 have the same
underlying point sets. If s′(P ) = 0 for some point P then also s(P ) = 0, but this contradicts
the assumption that s is a trivialization of L1. Hence s′ is nowhere zero, and since L2 is locally
free of rank 1 this implies that s′ trivializes L2. Conversely, if L2 is trivial then the restriction
map Γ(L2) → Γ(L1) is just Γ(OZ2) → Γ(OZ1) and this is surjective.

The obstruction for lifting s to a global section of L2 is an element ξ ∈ H1(X × Y,OX×Y ).
We know that the restrictions of L2 to {x}× Y × Z2 and to X × {y}× Z2 are trivial. Writing
i1 = (idX , y): X ↪→ X × Y and i2 = (x, idY ): Y ↪→ X × Y , this means that ξ has trivial image
under i∗1: H

1(X×Y,OX×Y ) → H1(X,OX) and under i∗2: H
1(X×Y,OX×Y ) → H1(Y,OY ). But
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the map (i∗1, i
∗
2) gives a (Künneth) isomorphism

H1(X × Y,OX×Y )
∼−→ H1(X,OX)⊕H1(Y,OY ) ,

hence ξ = 0 and s can be lifted. !

(2.6) Remarks. (i) In the theorem as stated we require x and y to be k-rational points of X,
resp. Y . We use this when we define the maps i1 and i2. But in fact the theorem holds without
these assumptions. The point is that if k ⊂ K is a field extension then a line bundle M on a
k-variety V is trivial if and only if the line bundle MK on VK is trivial. (See Exercise (2.1).)
Hence we may first pass to a bigger field K over which the points x and y (and even the point
z ∈ Z) become rational.

(ii) The previous theorem gives a strong general result about line bundles on a product of
three complete varieties. Note that the analogous statement for line bundles on a product of two
complete varieties is false in general. More precisely, suppose X and Y are complete k-varieties
and L is a line bundle on X × Y . If there exist points x ∈ X and y ∈ Y such that Lx

∼= OY

and Ly
∼= OX then it is not true in general that L ∼= OX×Y . For instance, take X = Y to be an

elliptic curve, and consider the divisor

D = ∆X −
(
{0}×X

)
−
(
X × {0}

)

where ∆X ⊂ X ×X is the diagonal. Note that L = OX×X(D) restricts to the trivial bundle on
{0}×X and on X × {0}. (Use that the divisor 1 · 0 (= 1 · eX) on X is linearly equivalent to a
divisor whose support does not contain 0.) But L is certainly not the trivial bundle: if it were,
L|{P}×X = OX(P − eX) ∼= OX for all points P ∈ X. But then there is a function f on X with
one zero and one pole and X would have to be a rational curve, which we know it is not.

Theorem (2.5), together with the previous remark, is a reflection of the quadratic character
of line bundles which comes out clearer as follows. If f(x) = ax2+ bx+ c is a quadratic function
on the real line then

f(x+ y + z)− f(x+ y)− f(x+ z)− f(y + z) + f(x) + f(y) + f(z)

is constant. The analogue of this for line bundles on abelian varieties is the celebrated Theorem
of the Cube. First a notational convention. If X is an abelian variety and I = {i1, . . . , ir} ⊂
{1, 2, . . . , n} then we write

pI : X
n → X , or pi1···ir : X

n → X ,

for the morphism sending (x1, x2, . . . , xn) to xi1+· · ·+xir . Thus, for example, pi is the projection
onto the ith factor, p12 = p1 + p2, etc. With these notations we have the following important
corollary to the theorem.

(2.7) Theorem of the Cube. Let L be a line bundle on X. Then the line bundle

Θ(L) :=
⊗

I⊂{1,2,3}

p∗IL
⊗(−1)1+#I

= p∗123L⊗ p∗12L
−1 ⊗ p∗13L

−1 ⊗ p∗23L
−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L
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on X ×X ×X is trivial.

Proof. Restriction of Θ(L) to {0}×X ×X gives the bundle

m∗L⊗ p∗2L
−1 ⊗ p∗3L

−1 ⊗m∗L−1 ⊗OX×X ⊗ p∗2L⊗ p∗3L

which is obviously trivial. Similarly for X × {0} × X and X × X × {0}. By (2.5) the result
follows. !

We could sharpen the corollary by saying that Θ(L) is canonically trivial, see Exercise (2.2).

(2.8) Corollary. Let Y be a scheme and let X be an abelian variety. For every triple f , g, h
of morphisms Y → X and for every line bundle L on X, the bundle

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

on Y is trivial.

Proof. Consider (f, g, h): Y → X ×X ×X and use (2.7). !

Another important corollary is the following.

(2.9) Theorem of the Square. Let X be an abelian variety and let L be a line bundle on X.
Then for all x, y ∈ X(k),

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL .

More generally, let T be a k-scheme and write LT for the pull-back of L to XT . Then

t∗x+yLT ⊗ LT
∼= t∗xLT ⊗ t∗yLT ⊗ pr∗T

(
(x+ y)∗L⊗ x∗L−1 ⊗ y∗L−1

)

for all x, y ∈ X(T ).

Proof. In the first formulation, this is immediate from (2.8) by taking for f the identity on X and
for g and h the constant maps with images x and y. For the general form, take f = prX : XT =
X ×k T → X, take g = x◦prT and h = y ◦prT . Then

f + g = prX ◦tx , f + h = prX ◦ty , g + h = (x+ y)◦prT

and
f + g + h = prX ◦tx+y

Now again apply (2.8). !

The theorem allows the following interpretation. (Compare this with what we have seen in
Examples (1.7) and (1.9).)

(2.10) Corollary. Let L be a line bundle on an abelian variety X. Let Pic(X) be the group
of isomorphism classes of line bundles on X. Then the map ϕL: X(k) → Pic(X) given by
x (→ [t∗xL⊗ L−1] is a homomorphism.

Proof. Immediate from (2.9). !

(2.11) Remark. The homomorphisms ϕL will play a very important role in the theory. In
later chapters (see in particular Chapters 6 and 7) we shall introduce the dual Xt of an abelian
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variety X, and we shall interprete ϕL as a homomorphism X → Xt. The homomorphisms
λ: X → Xt that are (geometrically) of the form ϕL for an ample line bundle L are called
polarizations; see Chapter 11.

At this point, let us already caution the reader that there is a sign convention in the theory
that can easily lead to misunderstanding. In the theory of elliptic curves one usually describes
line bundles of degree 0 (which is what the dual elliptic curve is about!) in the form OE(P −O).
More precisely: if E is an elliptic curve with origin O then the map P (→ OE(P − O) gives an
isomorphism E

∼−→ Et = Pic0E/k. This map is not the polarization associated to the ample line
bundle L = OE(O); rather it is minus that map. In general, if D is a divisor on an abelian
variety X then t∗xOX(D) is OX

(
(t−x(D)

)
= OX(D − x), not OX(D + x). So if L = OE(O) on

an elliptic curve E, the map ϕL is given on points by P (→ OE(O − P ).

The same remark applies to the theory of Jacobians (see in particular Chapter 14). If C is
a smooth projective curve over a field k, and if P0 ∈ C(k) is a k-rational point then we have a
natural morphism ϕ from C to its Jacobian variety J = Jac(C) := Pic0C/k. In most literature one
considers the map C → J given on points by P (→ OC(P − P0). However, we have a canonical
principal polarization on J (see again Chapter 14 for further details), and in connection with
this it is more natural to consider the morphism ϕ: C → J given by P (→ OC(P0 − P ).

Let X be an abelian variety. For every n ∈ Z we have a homomorphism [n] = [n]X : X → X
called “multiplication by n”. For n " 1, it sends x ∈ X(k) to x + · · · + x (n terms); for
n = −m # −1 we have [n]X = iX ◦ [m]X . If there is no risk of confusion, we shall often simply
write n for [n]; in particular this includes the abbreviations 1 for [1] = idX , 0 for [0] (the constant
map with value 0), and −1 for [−1] = −idX . The effect of n on line bundles is described by the
following result.

(2.12) Corollary. For every line bundle L on an abelian variety X we have

n∗L ∼= Ln(n+1)/2 ⊗ (−1)∗Ln(n−1)/2 .

Proof. Set f = n, g = 1, and h = −1. Applying (2.8), one finds that

n∗L⊗ (n+ 1)∗L−1 ⊗ (n− 1)∗L−1 ⊗ n∗L⊗ L⊗ (−1)∗L

is trivial, i.e.,

n∗L2 ⊗ (n+ 1)∗L−1 ⊗ (n− 1)∗L−1 ∼= (L⊗ (−1)∗L)−1 .

The assertion now follows by induction, starting from the cases n = −1, 0, 1. !

In particular, if the line bundle L is symmetric, by which we mean that (−1)∗L ∼= L,
then we find that n∗L ∼= Ln2

for all n. For instance, if M is an arbitrary line bundle then
L+ := M ⊗ (−1)∗M is symmetric. Similarly, L− := M ⊗ (−1)∗M−1 is an example of an anti-
symmetric line bundle, i.e., a line bundle L for which (−1)∗L ∼= L−1; for such line bundles we
have n∗L ∼= Ln for all n. Note the contrast between the quadratic effect of n∗ in the symmetric
case and the linear effect in the anti-symmetric case. Further note that with the notation just
introduced we have M2 ∼= L+ ⊗ L−; so we find that the square of a line bundle can be written
as the product of a symmetric and an anti-symmetric part. This is a theme we shall explore in
much greater detail in later chapters.
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§ 2. Projectivity of abelian varieties.

We now turn to the question whether abelian varieties are projective. As it turns out the answer
is “yes”. We give two proofs of this. A fairly short proof is given in (2.26); the Theorem of the
Square plays a key role in this argument. The other proof we give is longer—it takes up most of
this section—but along the way we shall obtain a number of results that are interesting in their
own right. We think that Proposition (2.20) is particularly remarkable.

We shall need a couple of facts about group schemes. Since these form the main objects of
study of the next two chapters, we shall simply use what we need, and refer forward to the next
chapter for a precise explanation. Most of what is needed in this chapter can be summarized as
follows.

(2.13) Fact. Let X be an abelian variety over a field k. Suppose Y ↪→ X is a closed subgroup
scheme. If Y 0 is the connected component of Y containing the origin then Y 0 is an open and
closed subgroup scheme of Y and Y 0 is geometrically irreducible. If furthermore k is perfect
then the reduced underlying scheme Y 0

red ↪→ X is an abelian subvariety of X.

For the proof of this statement, see Prop. (3.17) and Exercise (3.2).

(2.14) Remark. The fact just stated is weaker than what is actually true. Namely, the con-
clusion that Y 0

red ↪→ X is an abelian subvariety of X holds true without the assumption that
the base field k is perfect. We shall see this in Prop. (5.31), once we have more theory at our
disposal. If we already knew the stronger version of the above fact at this stage, it would sim-
plify some of the arguments that we shall give. For instance, in the rest of this chapter we shall
sometimes work over k and then later draw conclusions that are valid over an arbitrary field.
The reason for this detour is that, at this stage, we can apply (2.13) only over a perfect field.

Suppose X = A × B is an abelian variety which is a product of positive dimensional
abelian varieties A and B, and suppose M is a line bundle on A. If prA: A × B → A is the
projection onto A then the bundle L := pr∗AM is invariant under translation over the points of
{0A}×B ⊂ X. Obviously, L is not ample. This suggests that if L is a line bundle on X which
is invariant under many translations, then L might not be ample.

(2.15) Definition. Let L be a line bundle on an abelian variety X. On X ×X we define the
Mumford line bundle Λ(L) by

Λ(L) := m∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 .

As we shall see, Λ(L) is a very useful bundle. The restriction of Λ(L) to a vertical fibre
{x}×X and to a horizontal fibre X×{x} is t∗xL⊗L−1. In particular, Λ(L) is trivial on {0}×X
and on X × {0}.

(2.16) Definition. With the above notations, we define K(L) ⊆ X as the maximal closed
subscheme (in the sense of (2.4)) such that Λ(L)|X×K(L) is trivial over K(L), i.e., such that
Λ(L)|X×K(L)

∼= pr∗2M for some line bundle M on K(L).

It follows from the universal property in (2.4) that the formation of K(L) is compatible
with base-change. In particular, if k ⊂ k′ is a field extension, writing L′ for the pull-back of L
to X ×k k′, we have K(L′) = K(L)×k k′.
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Roughly speaking, a point belongs to K(L) if L is invariant under translation by this point.
A more precise statement is given by the following lemma.

(2.17) Lemma. Let T be a k-scheme and x: T → X a T -valued point of X.
(i) The morphism x factors through K(L) if and only if t∗xLT ⊗ L−1

T is the pull-back of a
line bundle on T .

(ii) If t∗xLT ⊗ L−1
T

∼= pr∗TM then M ∼= x∗L.
(iii) We have Λ(L)|X×K(L)

∼= OX×K(L).

In (iii), note that a priori we only knew that Λ(L)|X×K(L) is the pull-back of a line bundle
on K(L).

Proof. As usual, LT denotes the pull-back of L via the projection prX : XT → X. Since
prX ◦tx: XT → XT → X is equal to the compositionm◦(idX×x): XT = X×kT → X×kX → X,
we find

t∗xLT
∼= (idX × x)∗m∗L .

Note that we can write LT as LT = (idX × x)∗p∗1L. This gives

t∗xLT ⊗ L−1
T

∼= (idX × x)∗Λ(L)⊗ (idX × x)∗p∗2L

= (idX × x)∗Λ(L)⊗ (pr∗Tx
∗L) .

Using the defining properties of K(L) as given in Lemma (2.4), the assertion of (i) readily follows
from this formula.

For (ii) note that t∗xLT ⊗ L−1
T restricts to x∗L on {0}× T .

For (iii), take T = K(L), and let x: K(L) → X be the inclusion. Then

t∗xLT ⊗ L−1
T

∼=
(
m∗L⊗ p∗1L

−1
)
|X×K(L)

= Λ(L)|X×K(L) ⊗
(
p∗2L

)
|X×K(L)

= p∗2M ⊗ p∗2(L|K(L)) for some line bundle M on K(L),

whereas x∗L = L|K(L). Now apply (ii) to find that M = OK(L). !

(2.18) Proposition. The subscheme K(L) is a subgroup scheme of X.

Proof. Strictly speaking we have not yet defined the notion of a subgroup scheme; see Def-
inition (3.7) below. With that definition the proposition boils down to the statement that
K(L)(T ) ⊂ X(T ) is a subgroup, for any k-scheme T . This follows from (i) of the Lemma
together with the Theorem of the Square. !

The following lemma shows that an ample line bundle is invariant under only finitely many
translations.

(2.19) Lemma. If L is ample then K(L) is a finite group scheme.

Proof. Without loss of generality we may assume that k is algebraically closed. Set Y :=
K(L)0red ⊂ X which, as we noted in (2.13), is an abelian subvariety of X. The restriction L′ of
L to Y is again ample. By (iii) of Lemma (2.17) the bundle Λ(L′) on Y × Y is trivial. Pulling
this bundle back to Y via (1,−1): Y → Y × Y gives that L′ ⊗ (−1)∗L′ is trivial on Y . But L′

is ample, hence (−1)∗L′ and L′ ⊗ (−1)∗L′ are ample too. It follows that dim(Y ) = 0. Hence
K(L) is finite. !
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We would like to have a converse to this fact. To obtain this we first prove the following
remarkable result.

(2.20) Proposition. Let X be an abelian variety over an algebraically closed field k. Let
f : X → Y be a morphism of k-varieties. For x ∈ X, let Cx denote the connected component of
the fibre over f(x) such that x ∈ Cx, and write Fx for the reduced scheme underlying Cx. Then
F0 is an abelian subvariety of X and Fx = tx(F0) = x+ F0 for all x ∈ X(k).

Proof. Consider the morphism ϕ: X × Fx → Y obtained by restricting f ◦m to X ×Fx. Clearly
ϕ({0}× Fx) = {f(x)}. Since Fx is complete and connected, the Rigidity Lemma (1.11) implies
that ϕ maps the fibres {z}×Fx to a point. In particular, we find that f(y−x+Fx) = f(y) for all
x, y ∈ X(k). Putting y = z, x = 0 gives z + F0 ⊆ Fz; putting y = 0, x = z gives −z + Fz ⊆ F0.
This shows that Fz = z + F0.

To see that F0 is a subgroup scheme of X we take a geometric point a ∈ F0(k). Then
obviously Fa = F0 so that a + F0 = Fa = F0. Since F0 is reduced, it follows that F0 is a
subgroup scheme of X. By (2.13) it is then an abelian subvariety. !

To illustrate the proposition, suppose X is a simple abelian variety (over k = k), meaning
that it does not have any non-trivial abelian subvarieties. Then the conclusion is that every
morphism from X to another k-variety is either constant or finite. So the proposition puts
strong restrictions on the geometry of abelian varieties.

We give another interpretation of F0. For this, let D be an effective divisor on X and
let L = OX(D) be the corresponding line bundle. We claim that linear system |2D| has no
base-points, i.e., the sections of L⊗2 define a morphism of X to projective space. To see this we
have to show that for every geometric point y of X there exists an element E ∈ |2D| that does
not contain y. Now the Theorem of the Square tells us that the divisors of the form

t∗xD + t∗−xD (2)

belong to |2D|. It is easy to see that given y there exists a geometric point x such that y does
not belong to the support of the divisor (2). This means that the map ϕ: X → P(Γ(X,L⊗2)∗)
defined by the sections of L⊗2 is a morphism. Note that we also have a morphism

f : X → P = |2D|, x (→ t∗xD + t∗−xD .

The relation between ϕ and f shall be discussed in ??.
We now again assume that k = k. For an effective divisor D on X we define the reduced

closed subscheme H(D) ⊂ X by

H(D)(k) =
{
x ∈ X(k)

∣∣ t∗xD = D
}
.

By t∗xD = D we here mean equality of divisors, not of divisor classes. ClearlyH(D) is a subgroup
scheme of X.

(2.21) Lemma. Assume k = k and let L be an effective line bundle on the abelian variety X.
Let f : X → Pn be the morphism defined by the sections of L⊗2. As in (2.20) let F0 be the
reduced connected fibre of f containing 0. Then H(D)0 = F0 = K(L)0red, where the superscript
“ 0 ” denotes the connected component containing 0.
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Proof. Let x ∈ F0. It follows from (2.20) that f ◦tx = f . Hence if s ∈ Γ(X,L⊗2) then s and t∗xs
have the same zero divisor. We apply this to s = t2, where t is a section of L with divisor D.
This gives t∗xD = D, i.e., x ∈ H(D). This shows that F0 ⊆ H(D), and since F0 is connected
we find F0 ⊆ H(D)0. Next, it is obvious that H(D)0 is contained in K(L)0red. To prove that
K(L)0red ⊆ F0, write L′ for the restriction of L to K(L)0red. By (2.13), K(L)0red is an abelian
subvariety of X. Clearly it suffices to show that L′ is trivial. Now L′, hence also (−1)∗L′, has
a non-trivial global section. On the other hand, (−1)∗L′ ∼= (L′)−1, as we have seen already in
the proof of (2.19). Hence L′ is trivial. !

As we shall see in the next chapters, there exists a quotient X ′ := X/F0 which is again an
abelian variety. The Stein factorisation of the morphism f is given by X →→ X ′ → Pn, and L is
the pull-back of a bundle on X ′.

(2.22) Proposition. Let L be a line bundle on an abelian variety X which has a non-zero
global section. If K(L) is a finite group scheme then L is ample.

Proof. We may work over an algebraic closure of k. (Note that if a line bundle L becomes ample
after extension of the ground field then it is already ample.) Let D be the divisor of the given
section. By (2.21) the fibre F0 is reduced to a point and by (2.20) it follows that f is quasi-finite.
Since f is also proper, it is finite. By general theory (see HAG, Chap. III, Exercise 5.7), if the
sections of L⊗2 define a finite morphism X → Pn then L is ample. !

(2.23) Corollary. Let D be an effective divisor on an abelian variety X over an algebraically
closed field. Set L = OX(D). Then the following are equivalent:

(a) H(D) is finite,
(b) K(L) is finite,
(c) L is ample.

For later use we introduce some terminology.

(2.24) Definition. A line bundle L on an abelian variety is said to be non-degenerate if K(L)
is finite.

So, an effective line bundle is non-degenerate if and only if it is ample.

(2.25) Theorem. An abelian variety is a projective variety.

Proof. We first prove this for k = k. Choose a quasi-affine open subset U ⊂ X such that
X \ U = ∪i∈IDi for certain prime divisors Di. Set D =

∑
i∈I Di. By the preceding results it

suffices to show that H(D) is finite. If x ∈ H(D) then tx transforms U into itself. Assuming—
as we may—that 0 ∈ U , we find that H(D) is contained in U . But H(D) is proper, since
F0 = H(D)0 (as in (2.21)). It follows that H(D) is finite.

If k is arbitrary, we first choose an ample divisor D ⊂ Xk. Then D is defined over a finite
extension k′ of k. If k′ is Galois over k (which we may assume if k′/k is separable) then

D̃ :=
∑

σ∈Gal(k′/k)

σD

is an ample divisor on Xk which descends to X. If k′/k is purely inseparable such that αpm ∈ k
for all α ∈ k′ then pm ·D is an ample divisor which descends to X (clear from working at charts).
Combination of these two cases gives the theorem. !
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(2.26) We give another proof of the theorem. Choose a collection of prime divisors D1, . . . , Dn,
all containing 0, such that the (scheme-theoretic) intersection ∩n

i=1Di reduces to the single closed
point 0. Set D =

∑n
i=1 Di. We claim that 3D is a very ample divisor. To prove this we may

pass to an algebraic closure of the ground field, so we will now assume that k = k.
First let us show that the linear system |3D| separates points. Thus, given points P *= Q

ofX we want to find a divisor∆, linearly equivalent to 3D, with P ∈ Supp(∆) but Q /∈ Supp(∆).
The divisor we take shall be of the form

∆ =
n∑

i=1

t∗ai
Di + t∗biDi + t∗−ai−biDi (3)

for certain points ai, bi ∈ X. Note that by the Theorem of the Square, any divisor of this form
is linearly equivalent to 3D. As P *= Q and ∩Di = {0}, one of the Di does not contain P −Q.
Say it is D1. Take a1 = P , and choose the points b1, ai and bi (for 2 # i # n) such that Q is
not in the support of

t∗b1D1 + t∗−P−b1D1 +
n∑

i=2

t∗ai
Di + t∗biDi + t∗−ai−biDi . (4)

With these choices the divisor ∆ given by (3) has the required properties.
Essentially the same argument shows that |3D| also separates tangent vectors. Namely,

suppose P ∈ X and 0 *= τ ∈ TX,P . As the scheme-theoretic intersection ∩n
i=1Di reduces to the

single closed point 0, there is an index i such that t∗−P τ ∈ TX,0 does not lie in the subspace
TDi,0 ⊂ TX,0. Say this holds for i = 1. Take a1 = P , and take the remaining points ai and
bi such that P is not in the support of the divisor given by (4). This gives a divisor ∆ with
P ∈ Supp(∆) but τ not tangent to ∆. !

Later we shall prove that if D is an ample divisor on an abelian variety, then 3D is very
ample. In general 2D will not be very ample. For an example, take an elliptic curve E and let
D = P , a point. Then L(2P ) = Γ

(
E,O(2P )

)
has dimension 2, and |2P | defines a morphism

E → P1 of degree 2 with ramification divisor of degree 4. (In fact, if char(k) *= 2 this morphism
is ramified in 4 points.)

§ 3. Projective embeddings of abelian varieties.

Any smooth projective variety of dimension g can be embedded into P2g+1, see [??]. We shall
now show that an abelian variety of dimension g cannot be embedded into P2g−1 and that an
embedding into P2g exists only for elliptic curves and for certain abelian surfaces. So in some
sense abelian varieties do not fit easily into projective space; this also helps to explain why it is
so difficult to write down explicit examples of abelian varieties.

In the proof of the next result we shall use the Chow ring CH(X) of X; we could also work
with a suitable cohomology theory (e.g., Betti cohomology or étale cohomology). In fact, all we
need are a couple of basic formulas which can be found in Fulton’s book [1]. The Chow ring of
an abelian variety is further studied in Chap. 13.

(2.27) Theorem. No abelian variety of dimension g can be embedded into P2g−1. No abelian
variety of dimension g " 3 can be embedded into P2g.
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Proof. Let X be an abelian variety, dim(X) = g, and suppose we have an embedding i: X ↪→
P = Pm. Consider the exact sequence of sheaves (“adjunction sequence”)

0 → TX → i∗TP → N → 0 , (5)

where N is the normal bundle of X in P and TX (resp. TP) is the tangent bundle of X (resp. P).
Write h ∈ CH(X) for the class of a hyperplane section and ci = ci(N) (for i = 1, . . . , g − 1)
for the ith Chern class of N . We know that the tangent bundle of X is trivial. Therefore, the
equality of total Chern classes resulting from (5) reads:

(1 + h)m+1 = 1 +
m−g∑

i=1

ci .

(See Fulton [1], 3.2.12.) This implies immediately that hm−g+1 = 0 in CHg(X). But deg(hg)
equals the degree, say d, of X in Pm which is non-zero. We thus find m − g + 1 " g + 1,
i.e., m " 2g.

We now consider the case of an embedding into P2g. The previous argument gives

cg =

(
2g + 1

g

)
· hg .

Aplying the degree map we find

deg(cg) =

(
2g + 1

g

)
deg(hg) =

(
2g + 1

g

)
d . (6)

But since 2 dim(X) = dim(Pg), the degree of the highest Chern class cg of the normal bundle N
on X is the self-intersection number of X in P2g, (see Fulton [1], §6.3), which is d2. Together
with (6) this gives

d =

(
2g + 1

g

)
.

On the other hand, if we apply the Hirzebruch-Riemann-Roch theorem to the line bundle L =
O(1) and use that the Chern classes of X vanish we find that

χ(L) = c1(L)
g/g! ,

where χ(L) =
∑g

i=0(−1)i dimk Hi(X,L) is the Euler-Poincaré characteristic of L. Since χ(L) ∈
Z it follows that g! divides deg(hg) = d. (For more details on Riemann-Roch see Chapter IX.)
But one easily checks that

g! divides

(
2g + 1

g

)
⇒ g < 3 .

This finishes the proof. !

The proof of the theorem shows that the possibilities for g = 1 and g = 2 are the cubic
curves in P2 and abelian surfaces of degree 10 in P4. We have met the cubic curves in (1.7).
That there exist abelian surfaces of degree 10 in P4 was shown first by Comessatti in 1909.
He considered complex abelian surfaces C2/Λ, where Λ ⊂ C2 is the lattice obtained from a
suitable embedding of OK ⊕ OK , with OK the ring of integers of K = Q(

√
5). Horrocks and
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Mumford found abelian surfaces in P4 as zero sets of sections of the Horrocks-Mumford bundle,
an indecomposable rank two vector bundle on P2. For further discussion we refer to Chap. ??.

Exercises.

(2.1) Let k ⊂ K be a field extension. Let X be a k-variety and F a sheaf of OX -modules.
Write XK for the K-variety obtained from X by extension of scalars, and let FK := (XK →
X)∗F . Show that dimk H0(X,F ) = dimK H0(XK , FK). Also show that F ∼= OX if and only if
FK

∼= OXK .

(2.2) Show that the isomorphism in the Theorem of the Cube is canonical. By this we mean that
to a given line bundle L on an abelian varietyX we can associate an isomorphism τX,L: Θ(L)

∼−→
OX×X×X in a functorial way, i.e, such that for every homomorphism f : Y → X we have
f∗(τX,L) = τY,f∗L (via the canonical isomorphisms Θ(f∗L) ∼= (f ×f ×f)∗Θ(L) and OY×Y×Y

∼=
(f × f × f)∗OX×X×X).

(2.3) Let X be an abelian variety over an algebraically closed field. Show that every effective
divisor on X is linearly equivalent to an effective divisor without multiple components.

(2.4) Prove that no abelian variety of dimension g can be embedded into (P1)2g−1. Analyze
when an abelian variety of dimension g can be embedded into (P1)2g.

(2.5) Let A and B be two abelian groups, written additively, and let n " 0 be an integer. If
f : A → B is a map (not necessarily a homomorphism), define a map θn(f): An → B by

θn(f)
(
a1, . . . , an

)
=

∑

I

(−1)n+#If(aI) ,

where I runs over the non-empty subsets of {1, 2, . . . , n} and aI :=
∑

i∈I ai. For instance,
θ0(f): {0} → B is the map with value 0 (by convention), θ1(f) = f , and

θ2(f)
(
a, a′

)
= f(a+ a′)− f(a)− f(a′)

θ3(f)
(
a, a′, a′′

)
= f(a+ a′ + a′′)− f(a+ a′)− f(a+ a′′)− f(a′ + a′′) + f(a) + f(a′) + f(a′′) .

(i) Show that θn(f): An → B is symmetric, i.e., invariant under the action of the group Sn

on An by permutation of the factors.
(ii) For n " 1, show that we have a relation

θn+1(f)
(
a1, . . . , an, an+1

)
=

θn(f)
(
a1, . . . , an + an+1

)
− θn(f)

(
a1, . . . , an

)
− θn(f)

(
a1, . . . , an+1

)
.

(iii) Use (i) and (ii) to show that θn+1(f) = 0 if and only if the map θn(f): An → B is n-linear.
(iv) Let L be a line bundle on an abelian variety X over a field k. If T is a k-scheme, show

that the map X(T )×X(T ) → Pic(T ) given by (x1, x2) (→ (x1 + x2)∗L⊗ x∗
1L

−1 ⊗ x∗
2L

−1 is
bilinear.

Notes. The Theorem of the Square and of the Cube are the pivotal theorems for divisors or line bundles on
abelian varieties. They are due to Weil [3]. Our discussion owes much to Mumford’s book MAV. Solomon
Lefschetz (1884–1972) gave a criterion for complex tori to be embeddable into projective space. This was re-
modelled by Weil to give the projectivity of abelian varieties; see Weil [5]. Our first proof of Theorem (2.25)
follows MAV; the argument given in (2.26) is the one found in Lang [1]. The definition of K(L) goes back to
Weil. Proposition (2.20) is due to M.V. Nori. Theorem (2.27) is due to Barth [1] and Van de Ven [1].
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