
Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized
varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a
suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian
variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equiv-
alence carries the same information as the associated homomorphism λ = ϕL: X → Xt. And
it is in fact this homomorphism that we shall put in the foreground. One reason for this is
that λ usually has somewhat better arithmetic properties; for instance, it may be defined over a
smaller field than any line bundle representing it. The positivity of an ample bundle shall later
be translated into the positivity of the Rosati involution associated to λ; this is an important
result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore
expect that it can be expressed directly in terms of the associated homomorphism λ = ϕL. This
is indeed the case. As we have seen before (cf. ??), the #-adic cohomology of X can be described
in more elementary terms via the Tate-#-module. The class c1(L) then takes the form of an
alternating pairing Eλ

" : T"X × T"X → Z"(1), usually referred to as the Riemann form of L (or
of λ). It is obtained, by a limit procedure, from pairings eλn: X[n]×X[n] → µn, called the Weil
pairing.

§ 1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let λ: X → Xt be a homomorphism, and
consider the line bundle M := (id,λ)∗PX on X. Then ϕM = λ + λt. In particular, if λ is
symmetric then ϕM = 2λ.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5). !

(11.2) Proposition. Let X be an abelian variety over a field k. Let λ: X → Xt be a homo-
morphism. Then the following properties are equivalent:

(a) λ is symmetric;

(b) there exists a field extension k ⊂ K and a line bundle L on XK such that λK = ϕL;

(c) there exists a finite separable field extension k ⊂ K and a line bundle L on XK such that
λK = ϕL.

Proof. Assume (a) holds. Let M := (id,λ)∗PX and N := M2. By the previous proposition
we know that ϕM = 2λ, so ϕN = 4λ. In particular, X[4] ⊂ K(N) = Ker(ϕN ). We claim
that X[2] ⊂ X[4] is totally isotropic with respect to the commutator pairing eN . Indeed, if x,
x′ ∈ X[2]

(
T
)
for some k-scheme T then possibly after passing to an fppf covering of T we can

write x = 2y and x′ = 2y′ for some y, y′ ∈ X[4]
(
T
)
. Our claim now follows by noting that the

restriction of eN to X[4]×X[4] takes values in µ4. By Corollary (8.11) we can find a line bundle
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L on Xk such that N ∼= [2]∗L on Xk. But then 4λk = ϕ[2]∗L = 4ϕL, using Corollary (7.25). As
[4]X is an epimorphism, it follows that λk = ϕL. So (b) holds with K = k.

To see that the apparently stronger condition (c) holds, view λ as a k-valued point of
Hom (X,Xt). Let P (λ) ⊂ PicX/k be the inverse image of λ under the homomorphism
ϕ: PicX/k → Hom (X,Xt). As P (λ) is a closed subscheme of PicX/k, it is locally of finite
type. If T is a k-scheme then the T -valued points of P (λ) are the classes of line bundles M
on XT such that ϕM = λ. Note that P (λ) inherits a natural action of Xt = Pic0X/k by trans-
lations. The exact sequence of (7.22) tells us that for every k-scheme T the set P (λ)(T ) is
either empty or it is a principal homogeneous space under Xt(T ). Hence if L is a line bundle
on Xk with ϕL = λk then x &→ [t∗xL] defines an isomorphism of k-schemes (Xt)k

∼−→ P (λ)k. In
particular, P (λ) is a geometrically integral k-scheme, so it has points with values in some finite
separable extension k ⊂ K.

Finally, it is clear that (c) implies both (a) and (b). !

(11.3) Corollary. Let X/k be an abelian variety. Then the homomorphism ψ: NSX/k →
Homsymm(X,Xt) of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that ψ is injective. Hence it suffices
to show that ψ is surjective on ks-valued points, and this follows from the preceding Proposi-
tion. !

(11.4) Proposition. Let X/k be an abelian variety. Let λ: X → Xt be a symmetric homo-
morphism, and write M := (id,λ)∗PX . Let k ⊂ K be a field extension and let L be a line
bundle on XK with λK = ϕL.

(i) We have: λ is an isogeny ⇔ L is non-degenerate ⇔ M is non-degenerate.

(ii) If λ is an isogeny then L is effective if and only if M is effective.

(iii) We have: L is ample ⇔ M is ample.

Proof. By Proposition (11.1) ϕMK = 2ϕL = ϕL2 , so MK and L2 are algebraically equivalent.
Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For
(iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective;
this is just Proposition (2.22). !

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.

(11.5) Corollary. Let X/k be an abelian variety. Let λ: X → Xt be a homomorphism. Then
the following properties are equivalent:

(a1) λ is a symmetric isogeny and the line bundle (id,λ)∗P on X is ample;

(a2) λ is a symmetric isogeny and the line bundle (id,λ)∗P on X is effective;

(b1) there exists a field extension k ⊂ K and an ample line bundle L on XK such that
λK = ϕL;

(b2) there exists a finite separable field extension k ⊂ K and an ample line bundle L on XK

such that λK = ϕL.

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny
λ: X → Xt that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square:
deg(λ) = d2 with d = χ(L) if λk = ϕL. If λ is an isomorphism (equivalent: λ has degree 1) then
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we call it a principal polarization.
It is clear that the sum of two polarizations is again a polarization. But of course the

polarizations do not form a subgroup of Hom (X,Xt).
We also remark that if λ is a polarization, then for any line bundle L on XK with λK = ϕL

we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only
depends on the associated homomorphism ϕN , as is clear for instance from Proposition (11.4).

(11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheaves

0 −→ Xt −→ PicX/k −→ Homsymm(X,Xt) −→ 0

which gives a long exact sequence in fppf cohomology

0 −→ Xt(k) −→ Pic(X) −→ Homsymm(X,Xt)
∂−→ H1

fppf(k,X
t) −→ · · · .

For λ: X → Xt a symmetric homomorphism, ∂(λ) is the obstruction for finding a line bundle L
on X (over k) with ϕL = λ. Now we know from Proposition (11.2) that ∂(2λ) = 0; hence ∂(λ)
lies in the image of

H1
fppf

(
k,Xt[2]

)
→ H1

fppf(k,X
t) .

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) Proposition. Let f : X → Y be an isogeny. If µ: Y → Y t is a polarization of Y , then
f∗µ := f t ◦µ◦f is a polarization of X of degree deg(f∗µ) = deg(f)2 · deg(µ).

Proof. It is clear that f∗µ is an isogeny of the given degree. By assumption there is a field
extension k ⊂ K and an ample line bundle M on YK such that µK = ϕM . Then f∗µK = ϕf∗M

and because f is finite f∗M is an ample line bundle on XK . !

See Exercise (11.1) for a generalization.

(11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondence
between X and Y is a line bundle L on X × Y together with rigidifications α: L|{0}×Y

∼−→ OY

and β: L|X×{0}
∼−→ OX that coincide on the fibre over (0, 0).

Correspondences between X and Y form a group Corrk(X,Y ), with group structure ob-
tained by taking tensor products of line bundles. (Cf. the definition of PX/S,ε in Section (6.2).)

Note that the multiplicative groep Gm acts (transitively) on the choices of the rigidifications
(α,β). Moreover, if Y = X we can speak of symmetric correspondences.

The Poincaré bundle P = PX on X × Xt comes equipped with a rigidification along
{0}×Xt. There is a unique rigidification along X × {0} such that the two rigidifications agree
at the origin (0, 0). We thus obtain an element

[PX ] = (PX ,αP ,βP) ∈ Corrk(X,Xt) .

The following proposition makes an alternative definition of the notion of polarization pos-
sible.

(11.10) Proposition. Let X/k be an abelian variety. Then we have a bijection

{polarizations λ: X → Xt} ∼−→
{

symmetric divisorial correspondences
(L,α,β) on X ×X such that ∆∗

XL is ample

}
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by associating to a polarization λ the divisorial correspondence (L,α,β) with L = (idX×λ)∗PX

and α and β the pull-backs under idX × λ of the rigidifications αP and βP .

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associat-
ing to (L,α,β) the unique homomorphism λ: X → Xt such that (L,α) = (idX×λ)∗(PX ,αP) as
rigidified line bundles on X ×X. The assumption that (L,α,β) is symmetric implies that λX is
symmetric, and because (idX ,λ)∗PX = ∆∗

X(idX ×λ)∗PX = ∆∗
XL is ample, λ is a polarization.

This establishes the correspondence. !

The alternative definition of a polarization suggested by Proposition (11.10) as “a sym-
metric self-correspondence such that restriction to the diagonal is ample” is evidently similar
in appearance to the definition of a positive definite symmetric bilinear form in linear algebra.
But, whereas in linear algebra one dominantly views a bilinear form b as a map V × V → k
rather than as a map V → V ∗ given by v &→

(
w &→ b(v, w)

)
, in the theory of abelian varieties the

latter point of view dominates. Note further that the role of the evaluation map V × V ∗ → k
with (v, w) &→ w(v) is played in our context by the Poincaré bundle P.

§ 2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form,
any isogeny f gives a pairing ef between Ker(f) and Ker(f t); this is an application of the duality
result Theorem (7.5). Of particular interest is the case f = [n]X . If we choose a polarization λ
we can map X[n] to Xt[n], and we obtain a bilinear form eλn on X[n], called the Weil pairing.
The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us
to take the limit of the pairings eλ"m , obtaining a bilinear form Eλ with values in Z"(1) on the
Tate module T"X. In cohomological terms this pairing is the first Chern class of λ (or rather, of
any line bundle representing it). It is the #-adic analogue of what over C is called the Riemann
form associated to a polarization. (See also ???)

(11.11) Definition. Let f : X → Y be an isogeny of abelian varieties over a field k. Write
β: Ker(f t)

∼−→ Ker(f)D for the isomorphism of Theorem (7.5).
(i) Define

ef : Ker(f)×Ker(f t) −→ Gm,k

to be the perfect bilinear pairing given (on points) by ef (x, y) = β(y)(x). Note that if Ker(f) is
killed by n ∈ Z!1 then ef takes values in µn ⊂ Gm. In the particular case that f = nX : X → X
we obtain a pairing

en: X[n]×Xt[n] → µn

which we call the Weil pairing .
(ii) Let λ: X → Xt be a homomorphism. We write

eλn: X[n]×X[n] → µn

for the bilinear pairing given by eλn(x1, x2) = en
(
x1,λ(x2)

)
. If λ = ϕL for some line bundle L

then we also write eLn instead of eλn.

Recall that if A and B are finite commutative group schemes (written additively), a pairing
e: A×B → Gm is said to be bilinear if e(a+a′, b) = e(a, b)·e(a′, b) and e(a, b+b′) = e(a, b)·e(a, b′)
for all points a and a′ of A and b and b′ of B. (Points with values in an arbitrary k-scheme.) The
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pairing e is said to be perfect if sending a to e(a,−): B → Gm gives an isomorphism A
∼−→ BD.

This is equivalent to the condition that b &→ e(−, b) gives an isomorphism B
∼−→ AD. It is

clear from the construction that the pairings ef , in particular also the Weil pairings, are perfect
bilinear pairings. If n is relatively prime to the degree of λ then the pairing eλn is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We
shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of ef by going back to the proof of (7.5). This
leads to the following description. Let T be a k-scheme. Let L be a rigidified line bundle on YT

that represents a class η ∈ Ker(f t)(T ). Then f∗L ∼= OXT . Hence the geometric line bundle L
corresponding to L can be described as a quotient of XT ×T A1

T by an action of Ker(f)T . More
precisely, by what was explained in (7.3) there exists a character χ: Ker(f)T → Gm,T such that
the action of a point x of Ker(f) on XT ×T A1

T is given (on points) by

(z, a) &→
(
z + x,χ(x) · a

)
.

The isomorphism Ker(f t)
∼−→ Ker(f)D of Theorem (7.5) sends η to χ. Hence the pairing ef is

given by ef (x, η) = χ(x).

(11.13) Next let us give a more geometric description of the Weil pairings en. Suppose D is
a divisor on X such that nD is linearly equivalent to zero. Write L = OX(D). As n∗L ∼= OX

(cf. Exercise (7.2)), there exists a rational function g on X with divisor (g) = n∗D. But also
Ln ∼= OX , so there exists a rational function f with divisor (f) = nD. Then n∗f and gn both
have divisor n · n∗D = n∗(nD), so there is a constant c ∈ k∗ with gn = c · (n∗f).

Let x ∈ X[n](k) be a k-rational n-torsion point. We find that

g(ξ)n = c · f(nξ) = c · f
(
n(ξ + x)

)
= g(ξ + x)n =

(
(t∗xg)(ξ)

)n

for all ξ ∈ X(k). So g/t∗x(g) is an n-th root of unity. We claim that in fact en
(
x, [D]

)
= g/t∗x(g).

To see this, note that we have an isomorphism of line bundles n∗L
∼−→ OX given by

g &→ 1. As described in (11.12), there is a character χ: X[n] → Gm such that the natural
action of X[n] on n∗L becomes the action of X[n] on OX given by the character χ. Note that
x ∈ X[n](k) acts on the identity section 1 ∈ Γ(X,OX) as multiplication by χ(x)−1. Hence
g/t∗x(g) = χ(x) = en

(
x, [D]

)
, as claimed.

(11.14) Example. We calculate the Weil pairing e3 on the elliptic curve E over F2 given by
the affine equation y2 + y = x3. This curve has 9 points over F4 which realise an isomorphism
E[3]

(
F4

) ∼= Z/3Z × Z/3Z. Let O = P∞ be the point at ∞, which we take as the identity
element on E. The bundle L = OE(P∞) is ample. The associated principal polarization
λ: E

∼−→ Et = Pic0E/F2
is given on points by R &→ OE(O − R). (Note that this is minus

the map given by R &→ OE(R−O); see Remark (2.11).)
Let us calculate eλ3 (Q,P ) for P = (0, 0) and Q = (1,α), where α is an element of F4 not

in F2. First we note that the function y has divisor (y) = 3 · (P − O). Next we compute
a function g with divisor [3]∗(O − P ). For this we compute the “triplication formula” on E
which expresses for a point R = (ξ, η) on E the coordinates of 3R in those of R. As we
have seen in Example (5.26), E is supersingular. The relative Frobenius π = FE/F2

: E → E
is an endomorphism of E. One can show that it satisfies π2 = −2, for example by verifying
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that for T ∈ E the point π2(T ) lies on the tangent line to E in T . As −1 on E is given by
(x, y) &→ (x, y + 1) we find that 2R has coordinates (ξ4, η4 + 1). Next one calculates that the
coordinates of 3R are

(
(ξ9 + ξ3 + 1)/(ξ + ξ4)2, (ηξ3 + 1)3/(ξ + ξ4)3

)
. Hence the function

g =
x4 + x

yx3 + 1

has divisor (g) = [3]∗(O − P ). (Use that 3 · (g) = [3]∗(y) = 3 · [3]∗(O − P ).)
Now we know that g/t∗Qg is constant and this constant can be computed by evaluating g

and t∗Qg at a suitable point T ; so

g/t∗Qg = g(T )/g(T +Q) .

For T we take a point rational over F64. Let γ be a generator of F∗
64 with γ21 = α and such

that δ := γ9 ∈ F∗
8 satisfies δ3 + δ = 1. Then the point T = (γ3, γ18) is in E(F64). One easily

verifies that (γ24, γ18 + 1) is again a point of E, and that it lies on the line through T and Q;
hence T + Q = (γ24, γ18). By (11.13) we conclude that eλ3 (Q,P ) = e3

(
Q, (O − P )

)
equals

(γ12 + γ3)/(γ33 + γ24) = 1/γ21 = 1/α = α2.
The value of eλ3 (P

′, Q′) for any pair (P ′, Q′) ∈ E[3]×E[3] can be computed from this using
the fact that e3 is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let f : X → Y be an isogeny of abelian varieties over a field k. By definition, f t: Y t →
Xt is the unique map such that (f × idY t)∗PY

∼= (idX × f t)∗PX as line bundles on X × Y t

with rigidification along {0}× Y t. Note that this isomorphism is unique, so without ambiguity
we can define Q := (f × idY t)∗PY = (idX × f t)∗PX . The diagram to keep in mind is

PX Q PY

X ×Xt id×ft

←−−−− X × Y t f×id−−−→ Y × Y t
(1)

On the line bundle Q we have an action of Ker(f) × {0}, lifting the action on X × Y t by
translations. This action is given by isomorphisms σx: QT

∼−→ t∗(x,0)QT , for any k-scheme T

and x ∈ Ker(f)
(
T
)
. Likewise, we have an action of {0} × Ker(f t), given by isomorphisms

τq: QT
∼−→ t∗(0,q)QT for q ∈ Ker(f t)

(
T
)
. Unless f is an isomorphism, these two group scheme

actions on Q do not commute, for if they did it would give us an action of Ker(f) × Ker(f t)
and Q would descend to a line bundle L on (X × Y t)/Ker(f) × Ker(f t) = Y ×Xt. But then
we had (−1)g = χ(PX) = deg(f) · χ(L), which is possible only if deg(f) = 1. We shall prove
that the extent to which the two actions fail to commute is measured by the pairing ef .

Let Q′ be the restriction of Q to X × Ker(f t). We have Q′ = (idX × f t)∗
(
(PX)|X×{0}

)
,

so the natural rigidification of PX along X × {0} (see (7.7)) gives us a trivialisation Q′ ∼−→
OX×Ker(ft). The action of {0} × Ker(f t) on Q restricts to the trivial action on Q′. It will be
useful to think of Q′ as being the sheaf of sections of A1 over X×Ker(f t). Writing A1

X×Ker(ft) =

X ×Ker(f t)× A1, the action of a point (0, q) ∈ {0}×Ker(f t) on Q′ corresponds to the action
on X ×Ker(f t)× A1 given by τq: (t, u, a) &→ (t, u+ q, a).

Note that also the action of Ker(f) × {0} restricts to an action on Q′. To describe this
action we apply what was explained in (11.12) in the “universal case”, i.e., with T = Ker(f t)
and η = idT . The corresponding line bundle L on YT = Y × Ker(f t) is just the restriction
of PY to Y × Ker(f t), so f∗L is precisely our bundle Q′. If we write a point of Ker(f)T =
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Ker(f)×kKer(f t) as a pair (x, u) then the conclusion of (11.12) is that the character χ: Ker(f)×k

Ker(f t) → Gm,k ×k Ker(f t) is given by (x, u) &→
(
ef (x, u), u

)
. Hence the action of a point

(x, 0) ∈ Ker(f)×{0} on Q′ corresponds to the action onX×Ker(f t)×A1 given by σx: (t, u, a) &→(
t+ x, u, ef (x, u) · a

)
.

Now we can start drawing some conclusions. The first result is an interpretation of the
pairing ef as a measure for the extent to which the two group scheme actions on Q fail to
commute.

(11.16) Proposition. Let f : X → Y be an isogeny of abelian varieties over a field k, and
consider the line bundle Q := (f × idY t)∗PY = (idX × f t)∗PX on X × Y t. Let T be a k-
scheme, x ∈ Ker(f)

(
T
)
and q ∈ Ker(f t)

(
T
)
. Let σx: QT

∼−→ t∗(x,0)QT be the isomorphism that

gives the action of (x, 0) ∈ Ker(f)×{0} on QT , and let τq: QT
∼−→ t∗(0,q)QT be the isomorphism

that gives the action of (0, q) ∈ {0}×Ker(f t). Then we have a commutative diagram

QT
σx−−→ t∗(x,0)QT

t∗(x,0)τq−−−−−→ t∗(x,q)QT
∥∥∥

'multiplication by ef (x, q)

QT
τq−−→ t∗(0,q)QT

t∗(0,q)σx

−−−−−→ t∗(x,q)QT

Proof. A priori it is clear that there exists a constant c ∈ Gm(T ) such that (t∗(0,q)σx)◦τq =
c · (t∗(x,0)τq)◦σx, so all we need to show is that c = ef (x, q). For this we may restrict everything

to X × Ker(f t). As in the above discussion, we think of Q′ as the sheaf of sections of A1

over X × Ker(f t). We have seen that (t∗(x,0)τq)◦σx is given on points by (t, u, a) &→
(
t + x, u +

q, ef (x, u) ·a
)
, whereas (t∗(0,q)σx)◦τq is given by (t, u, a) &→

(
t+x, u+ q, ef (x, u+ q) ·a

)
. Because

ef is bilinear, the result follows. !

Next we prove a compatibility result among the two main duality theorems that we have
proved in Chapter 7.

(11.17) Proposition. Let f : X → Y be an isogeny of abelian varieties. Let κX : X → Xtt be
the canonical isomorphism.

(i) For any k-scheme T and points x ∈ Ker(f)
(
T
)
and η ∈ Ker(f t)

(
T
)
we have the relation

eft

(
η,κX(x)

)
= ef (x, η)−1.

(ii) Let β1: Ker(f t)
∼−→ Ker(f)D and β2: Ker(f tt)

∼−→ Ker(f t)D be the canonical isomor-
phisms as in Theorem (7.5), and let γ: Ker(f)DD ∼−→ Ker(f) be the isomophism of Theo-
rem (3.22). Then the isomorphism Ker(f)

∼−→ Ker(f tt) induced by κX equals −β−1
2

◦βD1 ◦γ−1.

Proof. (i) Consider the commutative diagram

X ×Xt id×ft

←−−−− X × Y t f×id−−−→ Y × Y t

κX×id

' κX×id

'
'κY ×id

Xtt ×Xt id×ft

←−−−− Xtt × Y t ftt×id−−−−→ Y tt × Y t .

(2)

If we read the lower row from right to left (term by term!), we get the row

Y t × Y tt id×ftt

←−−−− Y t ×Xtt ft×id−−−−→ Xt ×Xtt
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which is precisely (1) for the morphism f t: Y t → Xt. Now the result follows from the previous
proposition, with the −1 in the exponent coming from the fact that we are reading the lower
row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations ef (x, η) = β1(η)
(
x
)
= (βD1 ◦γ−1)(x)

(
η
)
and

eft

(
η,κX(x)

)
= β2

(
κX(x)

)(
η
)
. !

(11.18) Example. Let X be an abelian variety over k. Let P = PX be its Poincaré bundle.
Let n be a positive integer, and let en: X[n]×Xt[n] → µn be the Weil pairing.

The geometric line bundle on X ×Xt[n] that corresponds to P|X×Xt[n] is the quotient of
A1

X×Xt[n] = X×Xt[n]×A1 under the action ofX[n]×{0}, with x ∈ X[n] acting onX×Xt[n]×A1

by σx: (t, u, a) &→
(
t+ x, u, en(x, u) · a

)
.

To make this completely explicit, suppose k = k and char(k) ! n, so that X[n] and Xt[n]
are constant group schemes, each consisting of n2g distinct points. Then for ξ ∈ Xt[n](k), the
restriction of the Poincaré bundle to X × {ξ} is given by

P|X×{ξ}

(
U
)
=

{
f ∈ OX(n−1U)

∣∣ f(v + x) = en(x, ξ) · f(v) for all v ∈ n−1U and x ∈ X[n]
}
.

For the restriction of PX to X[n] × Xt we have an analogous description; namely, the
corresponding geometric line bundle is the quotient of A1

X[n]×Xt = X[n] × Xt × A1 under the

action of {0} × Xt[n], with ξ ∈ Xt[n] acting on X[n] × Xt × A1 by τξ: (t, u, a) &→
(
t, u +

ξ, en(t, ξ)−1 · a
)
. Note, however, that whereas our description of P|X×Xt[n] is essentially a

reformulation of the definition of the Weil pairing, to arrive at our description of P|X[n]×Xt we
use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated
isogeny ϕL: X → Xt is symmetric, we have K(L) = Ker(ϕL) = Ker(ϕt

L), and we obtain a
pairing

eϕL : K(L)×K(L) → Gm .

On the other hand we have the theta group 1 −→ Gm −→ G (L) −→ K(L) −→ 0, and this, too,
gives a pairing

eL: K(L)×K(L) → Gm .

(11.20) Proposition. We have eϕL = eL.

Proof. We apply what was explained in (11.15) to the isogeny ϕL: X → Xt. We identify
X × Xtt with X × X via the isomorphism id × κX : X × X

∼−→ X × Xtt. The line bundle
Q := (ϕL×κX)∗PXt = (id×ϕL)∗PX is none other than the Mumford bundle Λ(L) associated
to L. Let Q′ := Q|X×K(L) = Λ(L)|X×K(L) which, as we already knew from Lemma (2.17), is
trivial.

Let T be a k-scheme, and consider T -valued points x, y ∈ K(L)
(
T
)
. Possibly after replac-

ing T by a covering we can choose isomorphisms ϕ: LT
∼−→ t∗xLT and ψ: LT

∼−→ t∗yLT . Then
(x,ϕ) and (y,ψ) are T -valued points of G (L), and by definition of the pairing eL we have the
relation

(t∗yϕ)◦ψ = eL(x, y) · (t∗xψ)◦ϕ . (3)

We can also view ψ as the trivialisation

ψ: OXT×{y}
∼−→ Λ(LT )XT×{y} = t∗yLT ⊗ L−1

T
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that sends 1 ∈ Γ(XT , OXT×{y}) to the global section ψ of t∗yLT ⊗ L−1
T . If σx: QT → t∗(x,0)QT

is the isomorphism that gives the action of (x, 0) ∈ K(L)× {0} on Q then it follows from what
we have seen in (11.15) that we have a commutative diagram

Λ(L)XT×{y}

(σx)|XT ×{y}−−−−−−−−→ t∗(x,0)Λ(L)|XT×{y}

ψ

+
+eϕL

(x,y)·
(
t∗(x,0)ψ

)

OXT×{y}
can−−−−−−−−→ t∗(x,0)OXT×{y} .

We have t∗(x,0)Λ(LT ) = m∗(t∗xLT ⊗ L−1
T ) ⊗ p∗1(t

∗
xLT ⊗ L−1

T )−1 ⊗ Λ(LT ). Taking this as an

identification, σx is given on sections by s &→ m∗ϕ⊗ p∗2ϕ
−1⊗ s. (Note that this does not depend

on the choice of ϕ.) Now restrict to XT × {y} and use the natural identification

t∗(x,0)Λ(LT )|XT×{y} = t∗x+yLT ⊗ t∗xL
−1
T = Hom(t∗xLT , t

∗
x+yLT ) .

we find that σx ◦ψ maps 1 ∈ Γ(XT , OXT×{y}) to the homomorphism t∗yϕ◦ψ ◦ϕ−1: t∗xLT →
t∗x+yLT . On the other hand, the composition (t∗(x,0)ψ)◦can sends 1 to t∗xψ. Hence we have

t∗yϕ◦ψ ◦ϕ−1 = eϕL(x, y) · t∗xψ

and comparison with (3) now gives the result. !

(11.21) Proposition. (i) Let f : X → Y be a homomorphism of abelian varieties over k. Then
for any integer n " 1 the diagram

X[n]× Y t[n]
1×ft

−−−→ X[n]×Xt[n]

f×1

'
'en

Y [n]× Y t[n]
en−−−→ µn

is commutative. In other words: if T is a k-scheme, x ∈ X[n]
(
T
)
and η ∈ Y t[n]

(
T
)
then

en
(
f(x), η

)
= en

(
x, f t(η)

)
.

(ii) Let f : X → Y and g: Y → Z be isogenies, and write h := g ◦f : X → Z. Then we have
“commutative diagrams”

Ker(f)×Ker(f t)
ef−−→ Gm

i

'
+gt

∥∥∥

Ker(h)×Ker(ht)
eh−−→ Gm

and

Ker(g)×Ker(gt)
eg−−→ Gm

f

+
'i

∥∥∥

Ker(h)×Ker(ht)
eh−−→ Gm

where the maps labelled “i” are the natural inclusion homomorphisms. By our assertion that the
first diagram is commutative we mean that if T is a k-scheme, x ∈ Ker(f)

(
T
)
and η ∈ Ker(ht)

(
T
)

then ef
(
x, gt(η)

)
= eh

(
i(x), η

)
; similarly for the second diagram.

Proof. (i) Let χ: Y [n]T → Gm,T be the character corresponding to η, as in (11.12). Then the
character corresponding to ht(η) is χ◦h: X[n]T → Gm,T . By (11.12) we find

en
(
h(x), η

)
= χ

(
h(x)

)
= χ◦h(x) = en

(
x, ht(η)

)
.

(ii) Let χ: Ker(h)T → Gm,T be the character corresponding to η. Then the character
Ker(f)T → Gm,T corresponding to gt(η) is simply χ◦i. Hence by what was explained in (11.12),
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eh
(
i(x), η

)
= χ

(
i(x)

)
= χ◦i(x) = ef

(
x, gt(η)

)
. This gives the first commutative diagram. For

the second, apply the first diagram to the composition f t ◦gt: Zt → Y t → Xt; then apply (i) of
Proposition (11.17). !

(11.22) Corollary. Let λ: X → Xt be a polarization, and let n be a positive integer. Then
the pairing eλn: X[n] × X[n] → µn is alternating: for any x ∈ X[n]

(
T
)
with T a k-scheme we

have eλn(x, x) = 1.

Proof. Without loss of generality we may assume that k = k and write λ = ϕL for some
ample L. Consider the composition nλ = λ◦ [n]X . Applying (ii) of Proposition (11.21) we find
a commutative diagram

X[n]×Xt[n]
en−−→ Gm

i

'
+λ

∥∥∥

Ker(nλ)×Ker(nλ)
enλ−−→ Gm

This gives eλn(x, x) = en
(
x,λ◦i(x)

)
= enλ

(
i(x), i(x)

)
= 1, where in the last step we use Propo-

sition (11.20) together with the remark that nλ = ϕLn . !

In particular, we find that the pairing eλn is skew-symmetric: eλn(x, y) = eλn(y, x)
−1. Note,

however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let X be an abelian variety over a field k. Fix a separable closure k ⊂ ks. As usual,
# denotes a prime number different from char(k). Let x = (0, x1, x2, . . .) be an element of T"X
and ξ = (0, ξ1, ξ2, . . .) and element of T"Xt. Applying (ii) of Proposition (11.21) we find that

e"m(xm, ξm) = e"m+1(# · xm+1, ξm+1) = e"m+1(xm+1, ξm+1)
" .

This means precisely that

E(x, ξ) =
(
1, e"(x1, ξ1), e"2(x2, ξ2), . . .

)

is a well-defined element of Z"(1) = T"Gm. The map (x, ξ) &→ E(x, ξ) defines a perfect bilinear
pairing

E: T"X × T"X
t → Z"(1) .

If β: T"Xt ∼−→ (T"X)∨(1) is the canonical isomorphism as in Proposition (10.9) then the pair-
ing E is nothing else but the composition

T"X × T"X
t id×β−−−→ T"X × (T"X)∨(1)

ev−−→ Z"(1)

where the map “ev” is the canonical pairing, or “evaluation pairing”. Note that the pairing E
is equivariant with respect to the natural action of Gal(ks/k) on all the terms involved.

If λ: X → Xt is a polarization, we obtain a pairing

Eλ: T"X × T"X → Z"(1) by Eλ(x, x′) := E
(
x, T"λ(x

′)
)
.

If λ = ϕL we also write EL for Eλ. It readily follows from Corollary (11.22) that the pairing Eλ

is alternating.
Putting everything together, Eλ is a Gal(ks/k)-invariant element in

(
∧2(T"X)∨

)
(1). The

cohomological interpretation is that Eλ is the first Chern class of λ, or rather of any line bundle
representing λ. Note that

(
∧2(T"X)∨

)
(1) = H2

(
Xks ,Z"(1)

)
, see Corollary (10.39).
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§ 3. Existence of polarizations, and Zarhin’s trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If g = 1 then
X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via
Q &→ O −Q). If g " 2 then in general X does not carry a principal polarization, not even if we
allow an extension of the base field. Let us explain why this is so.

Fix g " 2. We shall use the fact that there exists an algebraically closed field k and an
abelian variety Y of dimension g over k such that End(Y ) = Z. A proof of this shall be given
later; see ??. Note that this does not work for arbitrary k; for instance, every abelian variety
over Fp has Z " End(Y ), as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may
assume there is a principal polarization λ: Y → Y t. As k = k there is a line bundle L with
λ = ϕL. Because λ is principal and End(X) = Z the only polarizations of Y are those of the
form ϕLn = n · λ, of degree n2g.

On the other hand, if # is any prime number different from char(k) then Y [#] ∼= (Z/#Z)2g

as group schemes. Hence Y has a subgroup scheme H of order #. Let q: Y → X := Y/H be
the quotient. If µ: X → Xt is a polarization then q∗µ is a polarization of Y , with deg(q∗µ) =
#2 ·deg(µ). But as just explained, any polarization of Y has degree equal to n2g for some n ∈ N.
Hence µ cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension g " 2
over a field of characteristic p in general does not even carry a separable polarization; see ??.

To arrive at some positive results, we shall now first give a very useful criterion for when a
polarization λ: X → Xt descends over an isogeny f : X → Y . If L is a line bundle on X then
by Theorem (8.10) there exists a line bundle M on Y with L ∼= f∗M if and only if the following
conditions are satisfied:
(a) Ker(f) is contained in K(L) and is totally isotropic with respect to the pairing eG (L) = eϕL ;
(b) the inclusion map Ker(f) ↪→ K(L) can be lifted to a homomorphism Ker(f) ↪→ G (L).

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a
polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let λ: X → Xt be a symmetric isogeny, and let f : X → Y be an isogeny.
(i) There exists a symmetric isogeny µ: Y → Y t such that λ = f∗µ := f t ◦µ◦f if and only

if Ker(f) is contained in Ker(λ) and is totally isotropic with respect to the pairing eλ: Ker(λ)×
Ker(λ) → Gm. If such an isogeny µ exists then it is unique.

(ii) Assume that an isogeny µ as in (i) exists. Then µ is a polarization if and only if λ is a
polarization.

Note that the “only if” in (ii) was already proven in Proposition (11.8). For this implication
the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If λ = f t ◦µ◦f then Ker(f) ⊂ Ker(λ) and it follows from (ii) of Proposition (11.21),
applied with g = (f t ◦µ) and h = λ, that Ker(f) is totally isotropic for the pairing eλ.

For the converse, assume Ker(f) is contained in Ker(λ) and is totally isotropic with respect
to eλ. Consider the line bundle M := (1× λ)∗PX on X ×X. Recall from Example (8.26) that
the theta group G (M) is naturally isomorphic to the Heisenberg group associated to the group
scheme Ker(λ). We have natural actions of Ker(λ) × {0} and {0} × Ker(λ) on M ; for the first
action note that M can also be written as (λ× 1)∗PXt . The assumption that Ker(f) ⊂ Ker(λ)
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is totally isotropic for eλ means precisely that the actions of Ker(f)× {0} and of {0}×Ker(f)
commute, and therefore define an action of Ker(f)×Ker(f) on M . This gives us a line bundle N
on Y × Y such that M ∼= (f × f)∗N . If µ: Y → Y t is the (unique) homomorphism such that
N = (1×µ)∗PY then we get the desired relation λ = f t ◦µ◦f . The uniqueness of µ is immediate
from Lemma (5.4). But we also have λ = λt = (f t ◦µ◦f)t = f t ◦µt ◦f . Hence µ = µt.

(ii) By Proposition (11.2) there exists a field extension k ⊂ K and a line bundle L on YK

with µK = ϕL, and then λK = ϕf∗L. Because f is finite, L is effective if and only if f∗L is
effective. !

(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X is
isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization λ: X → Xt. By Lemma (8.22) there exists a Lagrangian
subgroup H ⊂ Ker(λ). (There clearly exists a subgroup H ⊂ Ker(λ) satisfying condition (i) of
that Lemma.) By the previous Proposition, λ descends to a principal polarization on X/H. !

The conclusion of the Corollary no longer holds in general if we drop the assumption that the
ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

(11.27) Before we turn to Zarhin’s trick, we recall from Exercise (7.8) some notation.
Suppose X is an abelian variety and α = (aij) is an r × s matrix with integral coefficients.

Then we denote by [α]X : Xs → Xr the homomorphism given by

[α]X
(
x1, . . . , xs) =

(
a11x1 + a12x2 + · · ·+ a1sxs, . . . ,

s∑

j=1

aijxj , . . . , ar1x1 + ar2x2 + · · ·+ arsxs

)
.

For r = s = 1 this just gives our usual notation [n]X for the “multiplication by n” maps. As

another example, the 1× 2 matrix (1 1) gives the group law on X while the 2× 1 matrix

(
1
1

)

gives the diagonal.
If β is a q × r matrix with integral coefficients then [β · α]X = [β]X ◦ [α]X : Xs → Xq. It

follows that if α is an invertible r × r matrix then [α]X is an automorphism of Xr. Further, if
f : X → Y is a homomorphism of abelian varieties then for any integral r × s matrix α,

[α]Y ◦ (f, . . . , f)
︸ ︷︷ ︸

s

= (f, . . . , f)
︸ ︷︷ ︸

r

◦ [α]X : Xs → Y r .

(11.28) Proposition. Let X be an abelian variety of dimension g.
(i) If α ∈ Mr(Z) then [α]X : Xr → Xr has degree det(α)2g.
(ii) Let β be an r× s matrix with integral coefficients. Then

(
[β]X

)t
=

[
tβ
]
Xt , where

tβ is
the transposed matrix.

Proof. (i) If det(α) = 0 then it is readily seen that [α]X has infinite kernel, so by convention
we have deg

(
[αX ]

)
= 0. Now assume det(α) -= 0, and let {e1, . . . , er} be the standard ordered

basis of Zr. By the theory of elementary divisors, there is an ordered basis {f1, . . . , fr} for Zr

and a sequence of nonzero integers (n1, . . . , nr) such that α(ei) = ni · fi. Let β ∈ GLr(Z) be the
matrix with β(ei) = fi, and let γ = diag(n1, . . . , nr) be the diagonal matrix with coefficients ni.
Then [β]X is an automorphism of Xr and it is clear that [γ]X : Xr → Xr, which is given by
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(x1, . . . , xr) &→ (n1x1, . . . , nrxr), has degree (n1 · · ·nr)2g = det(α)2g. As [α]X = [γ]X ◦ [β]X the
claim follows.

(ii) Write β = (bij). Any line bundle L on Xr with class in Pic0 can be written as L =
p∗1L1⊗· · ·⊗p∗rLr, where the pi: Xr → X are the projection maps and the Li are line bundles onX
with class in Pic0. Because (Xs)t ∼= (Xt)s (cf. Exercise (6.2)) it suffices to know the restriction
of [β]∗XL to each of the coordinate axes {0}× · · ·×{0}×X×{0}× · · ·×{0}. But the restriction
of [β]X to the j-th coordinate axis is the map X → Xr given by x &→ (b1jx, b2jx, . . . , brjx) and
the pull-back of L under this map is

b∗1jL1 ⊗ · · ·⊗ b∗rjLr = L
⊗b1j
1 ⊗ · · ·⊗ L⊗brj

r .

This means precisely that [β]tX : (Xr)t = (Xt)r → (Xs)t = (Xt)s is the map given by the matrix





b11 · · · bi1 · · · br1
...

...
...

b1j · · · bij · · · brj
...

...
...

b1s · · · bis · · · brs




= tβ ,

as claimed. !

(11.29) Theorem. (Zarhin’s trick) Let X be an abelian variety over a field k. Then X4×(Xt)4

carries a principal polarization.

Proof. Suppose we have an abelian variety Y , a polarization µ: Y → Y t, and an endomorphism
α: Y → Y . Consider the isogeny f : Y × Y → Y × Y t given by (y1, y2) &→

(
y1 − α(y2), µ(y2)

)
.

The kernel is given by Ker(f) =
{
(α(y), y)

∣∣ y ∈ Ker(µ)
}
. In particular, deg(f) = deg(µ).

Proposition (11.25) tells us under what conditions the polarization µ×µ: (Y × Y ) → (Y t × Y t)
descends to a polarization on Y × Y t via the isogeny f . Namely: there exists a polarization ν
on Y × Y t with f∗ν = (µ× µ) if and only if
(a) α

(
Ker(µ)

)
⊆ Ker(µ), and

(b) eµ
(
α(y1),α(y2)

)
· eµ(y1, y2) = 1 for all (scheme valued) points y1, y2 of Ker(µ).

Note that if such a descended polarization ν exists then it is principal.
Condition (a) means that there exists an endomorphism β: Y t → Y t such that β ◦µ = µ◦α.

By (ii) of Proposition (11.21),

eµ
(
α(y1),α(y2)

)
= eµ◦α

(
y1,α(y2)

)
= eβ ◦µ

(
y1,α(y2)

)
= eµ

(
y1,β

tα(y2)
)
,

so (b) is equivalent to the condition that eµ
(
y1, (1 + βtα)(y2)

)
= 1 for all y1, y2 in Ker(µ). As

eµ is a pefect pairing on Ker(µ), this is equivalent to the condition that (1 + βtα) ∈ End(Y )
kills Ker(µ).

We now apply this with Y = X4. Choose any polarization λ on X, and take µ = λ4 (so
µ = λ × λ × λ × λ). For α we take the endomorphism [α]X given by a 4 × 4 matrix α with
integral coefficients. As λ4 ◦ [α]X = [α]Xt ◦λ4, condition (a) is automatically satisfied, and we
have β = [α]Xt in the above. Using (ii) of Proposition (11.28) we find that the only condition
that remains is that [id4 + tαα]X kills Ker(µ) = Ker(λ)4, where id4 is the 4× 4 identity matrix.

Choose an integer m such that Ker(λ) ⊂ X[m]. We are done if we can find an integral 4×4
matrix α such that id4 + tαα ≡ 0 mod m. To see that such a matrix can be found we use the
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fact that every integer can be written as a sum of four squares. In particular there exist integers
a, b, c, d with a2 + b2 + c2 + d2 = m− 1. Now take

α =





a −b −c −d
b a −d c
c d a −b
d −c b a



 , (4)

for which we have id4 + tαα = m · id4. !

(11.30) Remarks. (i) The choice of the matrix α can be explained as follows. Consider the
Hamiltonian quaternion algebra H = R · 1+R · i+R · j+R · k, which is a central simple algebra
over R. For x = a ·1+b ·i+c ·j+d ·k we define its complex conjugate by x̄ = a ·1−b ·i−c ·j−d ·k.
The reduced trace and norm of H over R are given by

TrdH/R(x) = x+ x̄ = 2a and NrdH/R(x) = xx̄ = a2 + b2 + c2 + d2 .

Further, taking {1, i, j, k} as a basis of H, left multiplication by x is given precisely by the
matrix (4). The map h: H → M4(R) sending x to this matrix is an injective homomorphism of
R-algebras, and we have h(x̄) = th(x) and NrdH/R(x) = det

(
h(x)

)
. Further it is clear that h

maps the subring Z · 1 + Z · i + Z · j + Z · k into M4(Z). In sum, we can think of α as being
the (left) multiplication by a · 1 + b · i + c · j + d · k, where a, b, c, d are chosen such that
a2 + b2 + c2 + d2 = m− 1.

(ii) In general there is no positive n such that for any abelian variety X the nth power Xn

admits a principal polarization. To see this we go back to the example in (11.24). We start
with an abelian variety Y of dimension g " 2 over a field k = k such that End(Y ) = Z and
such that Y does admit a principal polarization; see ?? for the existence. Any homomorphism
Y n → (Y t)n is of the form λn ◦ [α]Y = [α]Y t ◦λn for some α ∈ Mn(Z), and it easily follows
from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if α = tα.
Now choose a prime number # different from char(k), and choose a subgroup H ⊂ Y of order #,
generated by a point of order #. Let π: Y → X := Y/H be the quotient.

Let µ be any polarization on Xn. By what was just explained we have (πn)∗µ = λn ◦ [α]Y
for some α ∈ Mn(Z). Moreover, H × · · · × H ⊂ Ker

(
[α]Y

)
, which readily implies that α is

divisible by #, say α = # · β. Further we have deg(µ) · #2n = deg
(
[α]Y

)
= #2ng · det(β)2g, so

deg(µ) = #2n(g−1) · det(β)2g. In particular, Xn does not carry a principal polarization.

Exercises.

(11.1) Let f : X → Y be a homomorphism of abelian varieties with finite kernel. If µ: Y → Y t

is a polarization, show that f∗µ := f t ◦µ◦f is a polarization of X.

(11.2) LetX be an abelian variety over a field k. Suppose there exists a polarization λ: X → Xt

with deg(λ) = m odd.
(i) Show that there exist integers a and b with 1+ a2 + b2 ≡ 0 mod m. [Hint: Use the Chinese

remainder theorem. First find a solution modulo p for any prime p dividing m. Then use
the fact that the curve C ⊂ A2 given by 1 + x2 + y2 = 0 is smooth over Zp (p -= 2 !) to see
that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
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(ii) Adapting the proof of Zarhin’s trick, show that X2× (Xt)2 admits a principal polarization.

(11.3) Let L be a line bundle on an abelian varietyX over a perfect field k. Write Y := K(L)0red,
which is an abelian subvariety of X, and let q: X → Z := X/Y be the quotient.
(i) Show that ϕL: X → Xt factors as ϕL = qt ◦ψ ◦q for some homomorphism ψ: Z → Zt.
(ii) Show that there is a finite separable field extension k ⊂ K and a line bundle M on ZK such

that ψK = ϕM .
(iii) With K and M as in (ii), conclude that the class of L⊗ q∗M−1 lies in Pic0X/k(K).
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