Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized
varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a
suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian
variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equiv-
alence carries the same information as the associated homomorphism A = p;: X — X*. And
it is in fact this homomorphism that we shall put in the foreground. Omne reason for this is
that X\ usually has somewhat better arithmetic properties; for instance, it may be defined over a
smaller field than any line bundle representing it. The positivity of an ample bundle shall later
be translated into the positivity of the Rosati involution associated to A; this is an important
result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore
expect that it can be expressed directly in terms of the associated homomorphism A\ = . This
is indeed the case. As we have seen before (cf. 7?), the ¢-adic cohomology of X can be described
in more elementary terms via the Tate-f-module. The class ¢;(L) then takes the form of an
alternating pairing Eg‘: Ty X X Ty X — Z¢(1), usually referred to as the Riemann form of L (or
of A). It is obtained, by a limit procedure, from pairings e)\: X [n] x X[n] — p,, called the Weil
pairing.

§ 1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let A\: X — X' be a homomorphism, and
consider the line bundle M := (id,\)*Z?x on X. Then ¢y = X+ A\'. In particular, if X is
symmetric then ppr = 2.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5). O

(11.2) Proposition. Let X be an abelian variety over a field k. Let A\: X — X' be a homo-

morphism. Then the following properties are equivalent:

(a) A is symmetric;

(b) there exists a field extension k C K and a line bundle L on X such that A\ = ¢r;

(c) there exists a finite separable field extension k C K and a line bundle L on Xy such that
A = QL.

Proof. Assume (a) holds. Let M := (id,\)*%x and N := M?2. By the previous proposition
we know that ¢y = 2\, so oy = 4A. In particular, X[4] € K(N) = Ker(py). We claim
that X[2] C X[4] is totally isotropic with respect to the commutator pairing . Indeed, if z,
' € X|[2] (T) for some k-scheme T then possibly after passing to an fppf covering of 1" we can
write = 2y and 2’ = 2y’ for some y, y’ € X[4](T). Our claim now follows by noting that the
restriction of eV to X[4] x X[4] takes values in j4. By Corollary (8.11) we can find a line bundle
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L on X3 such that N = [2]*L on X3. But then 4\; = ¢9)-1, = 4¢r, using Corollary (7.25). As
[4]x is an epimorphism, it follows that A; = ¢r. So (b) holds with K = k.

To see that the apparently stronger condition (c) holds, view A\ as a k-valued point of
Hompay(X,X"). Let P(\) C Picx, be the inverse image of A\ under the homomorphism
@: Picx/p, — Homav(X, X*). As P()) is a closed subscheme of Picx/, it is locally of finite
type. If T is a k-scheme then the T-valued points of P(\) are the classes of line bundles M
on X7 such that ¢y = A. Note that P()) inherits a natural action of X! = Picg(/k by trans-
lations. The exact sequence of (7.22) tells us that for every k-scheme T the set P(A\)(T") is
either empty or it is a principal homogeneous space under X*(7). Hence if L is a line bundle
on Xy with ¢z, = A then 2 — [t L] defines an isomorphism of k-schemes (X')r — P(\)z. In
particular, P()\) is a geometrically integral k-scheme, so it has points with values in some finite
separable extension k C K.

Finally, it is clear that (c) implies both (a) and (b). O

(11.3) Corollary. Let X/k be an abelian variety. Then the homomorphism v: NSx/, —
Hom™™™ (X, X*) of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that 1 is injective. Hence it suffices
to show that v is surjective on ks-valued points, and this follows from the preceding Proposi-
tion. g

(11.4) Proposition. Let X/k be an abelian variety. Let \: X — X' be a symmetric homo-
morphism, and write M := (id,\)*Z?x. Let k C K be a field extension and let L be a line
bundle on Xy with A\ = .

(i) We have: \ is an isogeny < L is non-degenerate < M is non-degenerate.

(ii) If X is an isogeny then L is effective if and only if M is effective.

(iii) We have: L is ample < M is ample.

Proof. By Proposition (11.1) par, = 291 = @12, so Mg and L? are algebraically equivalent.
Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For
(iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective;
this is just Proposition (2.22). O

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.

(11.5) Corollary. Let X/k be an abelian variety. Let \: X — X' be a homomorphism. Then
the following properties are equivalent:
(al) A is a symmetric isogeny and the line bundle (id, \)*%? on X is ample;
(a2) A is a symmetric isogeny and the line bundle (id, \)*%? on X is effective;
(b1) there exists a field extension k C K and an ample line bundle L on Xk such that
AK = ¥L;
(b2) there exists a finite separable field extension k C K and an ample line bundle L on Xk
such that \x = ¢y

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny
A: X — X' that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square:
deg(\) = d? with d = x(L) if A\ = ¢. If X is an isomorphism (equivalent: A has degree 1) then
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we call it a principal polarization.

It is clear that the sum of two polarizations is again a polarization. But of course the
polarizations do not form a subgroup of Homay (X, X?).

We also remark that if A is a polarization, then for any line bundle L on X with A\g = ¢,
we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only
depends on the associated homomorphism ¢y, as is clear for instance from Proposition (11.4).

(11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheaves
0 — X' — Picx/p — Hom™™™ (X, X") — 0
which gives a long exact sequence in fppf cohomology
0 — X*(k) — Pic(X) — Hom™™ (X, X*) L5 HL o (k, X') — ---

For A\: X — X' a symmetric homomorphism, () is the obstruction for finding a line bundle L
on X (over k) with ¢, = A. Now we know from Proposition (11.2) that 9(2\) = 0; hence 9(\)
lies in the image of

Hflppf(k,Xt[Z]) — Hflppf(k:,Xt) :

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) Proposition. Let f: X — Y be an isogeny. If u: Y — Y is a polarization of Y, then
f*u:= ftopof is a polarization of X of degree deg(f*u) = deg(f)? - deg(u).

Proof. 1t is clear that f*u is an isogeny of the given degree. By assumption there is a field
extension £ C K and an ample line bundle M on Yx such that ux = @pr. Then f*ux = @p«p
and because f is finite f*M is an ample line bundle on X O

See Exercise (11.1) for a generalization.

(11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondence
between X and Y is a line bundle L on X x Y together with rigidifications a: Ljjo}xy = Oy
and B: L|x {0} — Ox that coincide on the fibre over (0,0).

Correspondences between X and Y form a group Corrg(X,Y), with group structure ob-
tained by taking tensor products of line bundles. (Cf. the definition of Px/g. in Section (6.2).)

Note that the multiplicative groep G, acts (transitively) on the choices of the rigidifications
(ar, B). Moreover, if Y = X we can speak of symmetric correspondences.

The Poincaré bundle &2 = Zx on X x X! comes equipped with a rigidification along
{0} x X*. There is a unique rigidification along X x {0} such that the two rigidifications agree
at the origin (0,0). We thus obtain an element

[yx] = (ﬂx,@(@,ﬁ{@) € Corrk(X, Xt).

The following proposition makes an alternative definition of the notion of polarization pos-
sible.

(11.10) Proposition. Let X/k be an abelian variety. Then we have a bijection

.. ) o~ symmetric divisorial correspondences
{polarizations A: X — X'} — {(L7 a, ) on X x X such that A% L is ample
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by associating to a polarization \ the divisorial correspondence (L, «, 3) with L = (idx X \)* Px
and « and 8 the pull-backs under idx X A of the rigidifications ag and Bg.

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associat-
ing to (L, a, B) the unique homomorphism A\: X — X* such that (L, a) = (idx x\)*(Px,aw) as
rigidified line bundles on X x X. The assumption that (L, a, ) is symmetric implies that Ax is
symmetric, and because (idx, \)* Px = A% (idx x \)*Px = A% L is ample, A is a polarization.
This establishes the correspondence. O

The alternative definition of a polarization suggested by Proposition (11.10) as “a sym-
metric self-correspondence such that restriction to the diagonal is ample” is evidently similar
in appearance to the definition of a positive definite symmetric bilinear form in linear algebra.
But, whereas in linear algebra one dominantly views a bilinear form b as a map V x V — k
rather than as a map V' — V* given by v — (w — b(v, w)), in the theory of abelian varieties the
latter point of view dominates. Note further that the role of the evaluation map V x V* — k
with (v, w) — w(v) is played in our context by the Poincaré bundle £2.

§ 2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form,
any isogeny f gives a pairing e between Ker(f) and Ker(f*); this is an application of the duality
result Theorem (7.5). Of particular interest is the case f = [n]x. If we choose a polarization A
we can map X [n] to X*[n], and we obtain a bilinear form e} on X|[n], called the Weil pairing.
The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us
to take the limit of the pairings e}, obtaining a bilinear form E* with values in Z(1) on the
Tate module 7, X. In cohomological terms this pairing is the first Chern class of A (or rather, of
any line bundle representing it). It is the ¢-adic analogue of what over C is called the Riemann
form associated to a polarization. (See also 777)

(11.11) Definition. Let f: X — Y be an isogeny of abelian varieties over a field k. Write
B: Ker(ft) = Ker(f)® for the isomorphism of Theorem (7.5).
(i) Define
ep: Ker(f) x Ker(f') — G

to be the perfect bilinear pairing given (on points) by ef(x,y) = 5(y)(z). Note that if Ker(f) is
killed by n € Z>, then ey takes values in p,, C G;,. In the particular case that f =nx: X — X
we obtain a pairing

en: X[n] x X'n] —

which we call the Weil pairing.
(ii) Let A: X — X' be a homomorphism. We write

ed: X[n] x X[n] — pn

for the bilinear pairing given by e)(z1,z2) = e, (:Ul, )\(:L‘z)). If A = ¢, for some line bundle L
then we also write e instead of ;).

Recall that if A and B are finite commutative group schemes (written additively), a pairing
e: AxB — G, is said to be bilinear if e(a+a’,b) = e(a, b)-e(a’, b) and e(a, b+bV') = e(a, b)-e(a, b’)
for all points a and a’ of A and b and ¥’ of B. (Points with values in an arbitrary k-scheme.) The

- 162 —



pairing e is said to be perfect if sending a to e(a, —): B — G,, gives an isomorphism A — BP.
This is equivalent to the condition that b +— e(—,b) gives an isomorphism B —» AP, Tt is
clear from the construction that the pairings e, in particular also the Weil pairings, are perfect
bilinear pairings. If n is relatively prime to the degree of A then the pairing e\ is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We
shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of ey by going back to the proof of (7.5). This
leads to the following description. Let T" be a k-scheme. Let L be a rigidified line bundle on Y7
that represents a class n € Ker(f*)(T). Then f*L = Ox,.. Hence the geometric line bundle L
corresponding to L can be described as a quotient of X7 x7 AL by an action of Ker(f)r. More
precisely, by what was explained in (7.3) there exists a character x: Ker(f)r — G, 1 such that
the action of a point z of Ker(f) on X7 xr AL is given (on points) by

(z,a) = (z+z,x(z) - a) .

The isomorphism Ker(f*) = Ker(f)” of Theorem (7.5) sends 7 to y. Hence the pairing ey is
given by ef(z,n) = x(z).

(11.13) Next let us give a more geometric description of the Weil pairings e,,. Suppose D is
a divisor on X such that nD is linearly equivalent to zero. Write L = Ox (D). As n*L = Ox
(cf. Exercise (7.2)), there exists a rational function g on X with divisor (¢g) = n*D. But also
L™ = Oy, so there exists a rational function f with divisor (f) = nD. Then n*f and ¢g" both
have divisor n - n*D = n*(nD), so there is a constant ¢ € k* with ¢" = ¢ (n* f).

Let x € X|[n|(k) be a k-rational n-torsion point. We find that

g&)" =c-f(n&) =c- f(n(€+2z)) =g€+2)" = (thg)(€)"

for all £ € X (k). So g/t:(g) is an n-th root of unity. We claim that in fact e, (z, [D]) = g/t (g)-

To see this, note that we have an isomorphism of line bundles n*L —~+ Ox given by
g — 1. As described in (11.12), there is a character x: X[n] — G,, such that the natural
action of X[n] on n*L becomes the action of X[n] on Ox given by the character y. Note that
z € X|[n](k) acts on the identity section 1 € T'(X,Ox) as multiplication by y(x)~!. Hence
g/t:(9) = x(z) = e, (z, [D]), as claimed.

(11.14) Example. We calculate the Weil pairing e3 on the elliptic curve E over Fy given by
the affine equation 32 + y = 3. This curve has 9 points over F; which realise an isomorphism
E[3)(Fy) = Z/3Z x Z/3Z. Let O = Py be the point at oo, which we take as the identity
element on E. The bundle L = Opg(Py) is ample. The associated principal polarization
X E = E' = Pic%/IF2 is given on points by R — Og(O — R). (Note that this is minus
the map given by R — Og(R — O); see Remark (2.11).)

Let us calculate e3(Q, P) for P = (0,0) and Q = (1, ), where « is an element of F4 not
in Fy. First we note that the function y has divisor (y) = 3 - (P — O). Next we compute
a function g with divisor [3]*(O — P). For this we compute the “triplication formula” on E
which expresses for a point R = (£,17) on E the coordinates of 3R in those of R. As we
have seen in Example (5.26), I is supersingular. The relative Frobenius 7 = Fg/p,: E — E
is an endomorphism of E. One can show that it satisfies 72 = —2, for example by verifying
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that for T € E the point 72(T) lies on the tangent line to F in T. As —1 on E is given by
(x,y) — (z,y + 1) we find that 2R has coordinates (¢*,7* + 1). Next one calculates that the
coordinates of 3R are ((£2 + &+ 1)/(€+¢*)?, (n€* +1)* /(£ + €*)?). Hence the function

2t +x

9= BT

has divisor (g) = [3]*(O — P). (Use that 3 (g) = [3]*(y) =3 - [3]*(O — P).)
Now we know that g/ t59 is constant and this constant can be computed by evaluating g
and #,g at a suitable point T'; so

9/tog=9(T)/9(T + Q).

For T we take a point rational over Fgy. Let v be a generator of Ff, with v2! = o and such
that § := 79 € F} satisfies 6> +§ = 1. Then the point T = (v3,7!8) is in E(Fg4). One easily
verifies that (724,7'® + 1) is again a point of E, and that it lies on the line through 7" and Q;
hence T + Q = (v**,7'®). By (11.13) we conclude that €3(Q,P) = e3(Q, (O — P)) equals
(Y243 +9%) =14 =1/a = o>

The value of e3(P’, Q") for any pair (P’,Q’) € E[3] x E[3] can be computed from this using
the fact that e is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let f: X — Y be an isogeny of abelian varieties over a field k. By definition, f%: Yt —
X' is the unique map such that (f x idy¢)* Py = (idxy x f')*ZPx as line bundles on X x Y*
with rigidification along {0} x Y*. Note that this isomorphism is unique, so without ambiguity
we can define 2 := (f X idy+)* Py = (idx x f1)*ZPx. The diagram to keep in mind is

P 2 Py

fxid (1)

ELEAS Y x Y

X x Xt X xY?

On the line bundle 2 we have an action of Ker(f) x {0}, lifting the action on X x Y by
translations. This action is given by isomorphisms o,: 27 —» t?m,O)QT’ for any k-scheme T
and z € Ker(f)(T). Likewise, we have an action of {0} x Ker(f*), given by isomorphisms
T 21 — tz‘o’ q)QT for ¢ € Ker( ft)(T ) Unless f is an isomorphism, these two group scheme
actions on 2 do not commute, for if they did it would give us an action of Ker(f) x Ker(f*)
and 2 would descend to a line bundle L on (X x Y?)/Ker(f) x Ker(f!) =Y x X*. But then
we had (—1)9 = x(Px) = deg(f) - x(L), which is possible only if deg(f) = 1. We shall prove
that the extent to which the two actions fail to commute is measured by the pairing ey.

Let 2 be the restriction of 2 to X x Ker(f*). We have 2’ = (idx x f)*((2x)xx{0}),
so the natural rigidification of Zx along X x {0} (see (7.7)) gives us a trivialisation 2" —
Ox xKer(ft)- The action of {0} x Ker(f*) on 2 restricts to the trivial action on 2'. It will be
useful to think of 2’ as being the sheaf of sections of A! over X x Ker(f!). Writing Akaer(ft) =
X x Ker(f") x Al, the action of a point (0,q) € {0} x Ker(f?) on 2’ corresponds to the action
on X x Ker(f*) x Al given by 74: (t,u,a) — (t,u+ q,a).

Note that also the action of Ker(f) x {0} restricts to an action on 2’. To describe this
action we apply what was explained in (11.12) in the “universal case”, i.e., with T" = Ker(f?)
and = idy. The corresponding line bundle L on Yy = Y x Ker(f?) is just the restriction
of Py to Y x Ker(f'), so f*L is precisely our bundle 2’. If we write a point of Ker(f)r =
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Ker(f)xxKer(f!) as a pair (x,u) then the conclusion of (11.12) is that the character x: Ker(f)xg
Ker(f*) — G ¥ Ker(f?) is given by (x,u) (ef(x,u),u). Hence the action of a point
(2,0) € Ker(f)x{0} on 2’ corresponds to the action on X x Ker(f!)xA! given by o,: (t,u,a) —
(t +z,u,ep(z,u) - a).

Now we can start drawing some conclusions. The first result is an interpretation of the
pairing ey as a measure for the extent to which the two group scheme actions on 2 fail to
commute.

(11.16) Proposition. Let f: X — Y be an isogeny of abelian varieties over a field k, and
consider the line bundle 2 := (f x idy+)* Py = (idx x f))*Px on X x Y*'. Let T be a k-
scheme, z € Ker(f)(T) and q € Ker(f*)(T). Let oy: 27 — t{z,0)2r be the isomorphism that
gives the action of (z,0) € Ker(f) x {0} on 27, and let 7,: D7 — tlo,q 21 be the isomorphism
that gives the action of (0,q) € {0} x Ker(f"). Then we have a commutative diagram

T CLU L NP
T (z,0)==T (z,q)=T
H lmultiplication by ef(x, q)
ti, O
Tq * (0,q)"® *
2r = Yog2r Hau 2T

Proof. A priori it is clear that there exists a constant ¢ € Gy (T') such that ({f, joz)emg =
c- (tZ‘x’O)Tq) 00y, so all we need to show is that ¢ = ef(z, ¢). For this we may restrict everything
to X x Ker(f*). As in the above discussion, we think of 2’ as the sheaf of sections of A!
over X x Ker(f!). We have seen that (t{z.0)Ta) ° 0w is given on points by (¢,u,a) — (t+zu+
g, ef(z,u) -a), whereas (tzko q)am)orq is given by (t,u,a) +— (t+x,u+q, ef(z,u+q)- a). Because
ey is bilinear, the result follows. O]

Next we prove a compatibility result among the two main duality theorems that we have
proved in Chapter 7.

(11.17) Proposition. Let f: X — Y be an isogeny of abelian varieties. Let kx: X — X' be
the canonical isomorphism.

(i) For any k-scheme T' and points « € Ker(f)(T) and n € Ker(f*)(T) we have the relation
ert (777 :‘ix(.%')) = ef(l', 77)_1-

(i) Let B1: Ker(f!) = Ker(f)P and Bo: Ker(f**) = Ker(f*)? be the canonical isomor-
phisms as in Theorem (7.5), and let v: Ker(f)PP =5 Ker(f) be the isomophism of Theo-

rem (3.22). Then the isomorphism Ker(f) — Ker(f") induced by rx equals —35 "o P oy~ 1.
Proof. (i) Consider the commutative diagram

X x Xt S x gyt XAy oy

KXxidJ/ I{Xxidl llﬂy)(id (2)
Xttx xt Iy oyt Iy oy
If we read the lower row from right to left (term by term!), we get the row

idx ftt Fixid
— _—

Yixyt Yt x Xt Xt x Xt
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which is precisely (1) for the morphism f*: Y* — X*. Now the result follows from the previous
proposition, with the —1 in the exponent coming from the fact that we are reading the lower
row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations ef(z,n) = B1(n)(z) = (67 ')(z)(n) and
epr (n, kx () = B2 (kx (@) (n). O

(11.18) Example. Let X be an abelian variety over k. Let & = Zx be its Poincaré bundle.
Let n be a positive integer, and let e,,: X[n] x X*[n] — pu, be the Weil pairing.

The geometric line bundle on X x X*[n] that corresponds to P x % xt[n] 18 the quotient of
Ak, xipn) = X xX'[n]x A' under the action of X[n]x {0}, with o € X[n] acting on X x X*[n]xA'
by o5 (t,u,a) = (t+z,u,en(z,u) - a).

To make this completely explicit, suppose k = k and char(k) { n, so that X[n] and X*[n]
are constant group schemes, each consisting of n?¢9 distinct points. Then for ¢ € X*[n](k), the
restriction of the Poincaré bundle to X x {{} is given by

Pixxiey(U) = {f € Ox(n'U) | flv+ ) = en(x,) - f(v) for all v € n™'U and x € X[n]} .

For the restriction of 2x to X[n| x X' we have an analogous description; namely, the
corresponding geometric line bundle is the quotient of Aﬁ([n]x ¢ = X[n] x X' x Al under the
action of {0} x X'[n], with £ € X'[n] acting on X[n] x X' x A! by 7¢: (t,u,a) — (t,u +
Een(t,O) - a). Note, however, that whereas our description of & x x:[,) is essentially a
reformulation of the definition of the Weil pairing, to arrive at our description of &\ x|, xxt we
use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated
isogeny ¢r: X — X' is symmetric, we have K(L) = Ker(¢r) = Ker(¢}), and we obtain a
pairing

ep,: K(L) x K(L) = Gy, .
On the other hand we have the theta group 1 — G,,, — ¢(L) — K(L) — 0, and this, too,

gives a pairing
ek K(L) x K(L) — G,, .

(11.20) Proposition. We have e,,, = el.

Proof. We apply what was explained in (11.15) to the isogeny ¢pr: X — X'. We identify
X x X* with X x X via the isomorphism id x ky: X x X =+ X x X*. The line bundle
2= (o X kx)*Px+ = (id X p1,)* Px is none other than the Mumford bundle A(L) associated
to L. Let 2" := Q|xxx) = ML) xxx() Which, as we already knew from Lemma (2.17), is
trivial.

Let T be a k-scheme, and consider T-valued points z, y € K (L) (T) Possibly after replac-
ing T' by a covering we can choose isomorphisms ¢: Ly — t% Ly and ¢: Ly — tyLr. Then
(x,¢) and (y,1)) are T-valued points of 4 (L), and by definition of the pairing e” we have the
relation

(typ) ot = e"(z,y) - (). (3)
We can also view v as the trivialisation

. OXTX{y} = A(LT)XTX{y} = tZLT ® L;l
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that sends 1 € I'(X1, Ox,x{y}) to the global section ¢ of ¢; L+ ® L;l. If op: Q7 — tzkx,o)QT
is the isomorphism that gives the action of (z,0) € K (L) x {0} on 2 then it follows from what
we have seen in (11.15) that we have a commutative diagram

ML) X7 x{y} tle,0) ML) X7 x [y}
ﬂ)T Teq,L(w,y)-(t?z,o)w)

can

Oxrx{y} — tzm,O)OXTX{y}

(92) 1 xpx (v}

We have ¢7, o A(Lr) = m*(t;Lr @ Ly') @ pi(t;Lr @ Ly') ™ @ A(Lp). Taking this as an
identification, o is given on sections by s — m*¢ @ pip~! ®s. (Note that this does not depend
on the choice of ¢.) Now restrict to X7 x {y} and use the natural identification

t(o.0)MET) Xrx (g} = tayyLr @ 5Ly = Hom(t Ly, thy L) .

we find that o,°¢ maps 1 € I'(X7,0x,x{y}) to the homomorphism t;gpoz/zo(p_lz trLy —

t34+yLr. On the other hand, the composition (tz‘m 0)1/1) ocan sends 1 to t¢. Hence we have

typotep™ = ey, (2,y) - 30
and comparison with (3) now gives the result. O

(11.21) Proposition. (i) Let f: X — Y be a homomorphism of abelian varieties over k. Then
for any integer n > 1 the diagram

X[ x Yin] 2% Xn] x X0

leJ{ J/Cn

€n

Yn| x Ytn] —— fn,

is commutative. In other words: if T is a k-scheme, x € X[n|(T) and n € Y'[n](T) then
en(£(),1) = ea (e, £1(1)).

(ii) Let f: X — Y and g: Y — Z be isogenies, and write h := go f: X — Z. Then we have
“commutative diagrams”

Ker(f) x Ker(f) —L G, Ker(g) x Ker(g') —% G,
I b | o] H
Ker(h) x Ker(ht) 25 G, Ker(h) x Ker(ht) 5 G,

where the maps labelled “” are the natural inclusion homomorphisms. By our assertion that the

first diagram is commutative we mean that if T is a k-scheme, = € Ker(f)(T) and n € Ker(h')(T)
then ey (x, g'(n)) = e (i(x),n); similarly for the second diagram.

Proof. (i) Let x: Y[n]r — G,, 1 be the character corresponding to 7, as in (11.12). Then the
character corresponding to h'(n) is xoh: X[n|r — G, r. By (11.12) we find

en(h(z). 1) = x(h(x)) = Xoh(z) = e (2,1 (n))

(ii) Let x: Ker(h)r — Gy, be the character corresponding to 1. Then the character
Ker(f)r — Gy, 1 corresponding to g*(n) is simply yei. Hence by what was explained in (11.12),

- 167 -



en(i(z),n) = x(i(z)) = xoi(z) = es(z,9"(n)). This gives the first commutative diagram. For
the second, apply the first diagram to the composition f'og': Z! — Y* — X*; then apply (i) of
Proposition (11.17). O

(11.22) Corollary. Let \: X — X' be a polarization, and let n be a positive integer. Then
the pairing ep: X[n] x X[n] — p, is alternating: for any v € X[n](T) with T a k-scheme we

have e} (z,z) = 1.

Proof. Without loss of generality we may assume that k& = k and write A = ¢ for some
ample L. Consider the composition nA = Ao [n]x. Applying (ii) of Proposition (11.21) we find

a commutative diagram
X|[n] x X*t[n] <y G

L |
Ker(n)) x Ker(n)) =% G,,
This gives e (z,z) = ey (2, Aoi(x)) = enn(i(x),i(x)) = 1, where in the last step we use Propo-
sition (11.20) together with the remark that nA = ppn. O

In particular, we find that the pairing e\ is skew-symmetric: e}(x,y) = e)(y, ). Note,
however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let X be an abelian variety over a field k. Fix a separable closure k C ks. As usual,
¢ denotes a prime number different from char(k). Let z = (0, z1,z2,...) be an element of T; X
and ¢ = (0,¢1,&,...) and element of Ty X*. Applying (ii) of Proposition (11.21) we find that

Epm (xma gm) = €pm+1 (E *Tm+1, gm—s—l) = €ym+1 (xm—i-la gm—&—l)e .

This means precisely that

E(x,§) = (1,€€($17£1)36E2($2?£2)’ = )

is a well-defined element of Zy(1) = TyG,,,. The map (z,§) — E(x,§) defines a perfect bilinear
pairing
E: Ty X x Ty X" — Zy(1).

~

If B: T,X* = (T, X)V(1) is the canonical isomorphism as in Proposition (10.9) then the pair-
ing F is nothing else but the composition

T,X x Ty Xt Y25 T, X x (T,X)V (1) <% Zo(1)
where the map “ev” is the canonical pairing, or “evaluation pairing”. Note that the pairing F
is equivariant with respect to the natural action of Gal(ks/k) on all the terms involved.
If \: X — X! is a polarization, we obtain a pairing

EMTX xTyX - Z,(1) by  EMz,2):=E(z,Te\2)).

If A = ¢ we also write EZ for E*. Tt readily follows from Corollary (11.22) that the pairing E*
is alternating.

Putting everything together, E* is a Gal(ks/k)-invariant element in (A?(T;X)")(1). The
cohomological interpretation is that E* is the first Chern class of A, or rather of any line bundle
representing A. Note that (A%(TyX)Y)(1) = H?(Xy,,Z¢(1)), see Corollary (10.39).
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§ 3. Existence of polarizations, and Zarhin’s trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If g = 1 then
X is an elliptic curve, and the origin O (as a divisor on X)) gives a principal polarization (via
Q— O —Q). If g > 2 then in general X does not carry a principal polarization, not even if we
allow an extension of the base field. Let us explain why this is so.

Fix g > 2. We shall use the fact that there exists an algebraically closed field k and an
abelian variety Y of dimension g over k such that End(Y) = Z. A proof of this shall be given
later; see 7?7. Note that this does not work for arbitrary k; for instance, every abelian variety
over F), has Z C End(Y'), as we shall see in ?7.

If Y carries no principal polarization then we have the desired example. Hence we may
assume there is a principal polarization A\: Y — Y*. As k = k there is a line bundle L with
A = ¢r. Because A is principal and End(X) = Z the only polarizations of Y are those of the
form pr» = n -\, of degree n?9.

On the other hand, if £ is any prime number different from char(k) then Y'[(] & (Z/¢Z)%9
as group schemes. Hence Y has a subgroup scheme H of order ¢. Let ¢: Y — X :=Y/H be
the quotient. If p: X — X' is a polarization then ¢*u is a polarization of Y, with deg(q¢*u) =
¢2 . deg(u). But as just explained, any polarization of Y has degree equal to n29 for some n € N.
Hence p cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension g > 2
over a field of characteristic p in general does not even carry a separable polarization; see 77.

To arrive at some positive results, we shall now first give a very useful criterion for when a
polarization A\: X — X' descends over an isogeny f: X — Y. If L is a line bundle on X then
by Theorem (8.10) there exists a line bundle M on Y with L = f*M if and only if the following
conditions are satisfied:

(a) Ker(f) is contained in K (L) and is totally isotropic with respect to the pairing eg 1) = €, ;
(b) the inclusion map Ker(f) < K (L) can be lifted to a homomorphism Ker(f) < ¢(L).

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a
polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let \: X — X' be a symmetric isogeny, and let f: X — Y be an isogeny.
(i) There exists a symmetric isogeny pu: Y — Y such that A = f*u := flopo f if and only
if Ker(f) is contained in Ker(\) and is totally isotropic with respect to the pairing ey: Ker(\) x
Ker(\) — G,,. If such an isogeny p exists then it is unique.
(ii) Assume that an isogeny p as in (i) exists. Then p is a polarization if and only if X is a
polarization.

Note that the “only if” in (ii) was already proven in Proposition (11.8). For this implication
the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If A = ftopo f then Ker(f) C Ker(\) and it follows from (ii) of Proposition (11.21),
applied with g = (f*op) and h = X, that Ker(f) is totally isotropic for the pairing e.

For the converse, assume Ker(f) is contained in Ker(\) and is totally isotropic with respect
to ey. Consider the line bundle M := (1 x \)*Zx on X x X. Recall from Example (8.26) that
the theta group ¢ (M) is naturally isomorphic to the Heisenberg group associated to the group
scheme Ker(A). We have natural actions of Ker(\) x {0} and {0} x Ker(\) on M; for the first
action note that M can also be written as (A x 1)*Zx¢. The assumption that Ker(f) C Ker(\)
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is totally isotropic for ey means precisely that the actions of Ker(f) x {0} and of {0} x Ker(f)
commute, and therefore define an action of Ker(f) x Ker(f) on M. This gives us a line bundle N
on Y x Y such that M = (f x f)*N. If u: Y — Y is the (unique) homomorphism such that
N = (1x p)* Py then we get the desired relation A = fto o f. The uniqueness of i is immediate
from Lemma (5.4). But we also have A = \' = (ftopuo f)! = flouts f. Hence u = pl.

(ii) By Proposition (11.2) there exists a field extension £ C K and a line bundle L on Yk
with uxg = ¢r, and then Ag = @s-1. Because f is finite, L is effective if and only if f*L is
effective. O

(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X is
isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization \: X — X!. By Lemma (8.22) there exists a Lagrangian
subgroup H C Ker()\). (There clearly exists a subgroup H C Ker(\) satisfying condition (i) of
that Lemma.) By the previous Proposition, A descends to a principal polarization on X/H. O

The conclusion of the Corollary no longer holds in general if we drop the assumption that the
ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

(11.27) Before we turn to Zarhin’s trick, we recall from Exercise (7.8) some notation.
Suppose X is an abelian variety and a = (a;;) is an r x s matrix with integral coefficients.
Then we denote by [a]x: X® — X" the homomorphism given by

S
[Oé]X(SUh CeTg) = (alll‘l +aers+ -+ a15Ts, .-y E ATy .-y Qr1T1 + QpaZa + - - - +arsl‘s) .
j=1

For r = s = 1 this just gives our usual notation [n]x for the “multiplication by n” maps. As
1
another example, the 1 x 2 matrix (11) gives the group law on X while the 2 x 1 matrix ( 1)

gives the diagonal.

If B is a ¢ x r matrix with integral coefficients then |3 - a|x = [f]x-[a]x: X* — X9 It
follows that if « is an invertible r x r matrix then [a]x is an automorphism of X". Further, if
f: X — Y is a homomorphism of abelian varieties then for any integral r x s matrix «,

(aly e (freeos f) = (Frooos £) ola] s X* = Y7

(11.28) Proposition. Let X be an abelian variety of dimension g.

(i) If « € M.(Z) then [a]x: X" — X" has degree det(«)?9.

(ii) Let B be an r x s matrix with integral coefficients. Then ([B]X)t = [*8]
the transposed matrix.

«¢» where '3 is

Proof. (i) If det(a)) = 0 then it is readily seen that [a]x has infinite kernel, so by convention
we have deg([ax]) = 0. Now assume det(c) # 0, and let {e1,...,e,} be the standard ordered
basis of Z". By the theory of elementary divisors, there is an ordered basis { fi,..., f,} for Z"
and a sequence of nonzero integers (nq,...,n,) such that a(e;) = n; - f;. Let € GL,.(Z) be the
matrix with 5(e;) = f;, and let v = diag(nq,...,n,) be the diagonal matrix with coefficients n.
Then [5]x is an automorphism of X" and it is clear that [y]x: X" — X", which is given by
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(x1,...,2,) = (n121,...,n.2,), has degree (ny---n,)%9 = det(a)?9. As [a]x = [v]x°[B]x the
claim follows.

(ii) Write 8 = (b;;). Any line bundle L on X" with class in Pic® can be written as L =
p1L1®- - -®@p)L,, where the p;: X" — X are the projection maps and the L; are line bundles on X
with class in Pic”. Because (X*)! = (X*)* (cf. Exercise (6.2)) it suffices to know the restriction
of [B]% L to each of the coordinate axes {0} x --- x {0} x X x {0} x --- x {0}. But the restriction
of [B]x to the j-th coordinate axis is the map X — X" given by « + (by,x,bs;,...,byjz) and
the pull-back of L under this map is

’{jL1®...®b;‘ijT:Li®b1j®...®L§bm"

This means precisely that [8]%: (X™)! = (X')" — (X*)! = (X*)*® is the map given by the matrix

b11 bi1 br1
le b%J brj = tﬁ )
bls bis brs
as claimed. 0

(11.29) Theorem. (Zarhin’s trick) Let X be an abelian variety over a field k. Then X% x (X*)*
carries a principal polarization.

Proof. Suppose we have an abelian variety Y, a polarization u: Y — Y, and an endomorphism
o: Y — Y. Consider the isogeny f: Y x Y — Y x Y given by (y1,y2) — (y1 — a(y2), u(y2))-
The kernel is given by Ker(f) = {(a(y),y) | y € Ker(x)}. In particular, deg(f) = deg(n).
Proposition (11.25) tells us under what conditions the polarization p x p: (Y xY) — (Y x Y?)
descends to a polarization on Y x Y via the isogeny f. Namely: there exists a polarization v
onY x Yt with f*v = (u x p) if and only if

(a) o(Ker(p)) C Ker(u), and

(b) eu(ayr), (y2)) - euly1,y2) = 1 for all (scheme valued) points y1, yo of Ker(y).

Note that if such a descended polarization v exists then it is principal.
Condition (a) means that there exists an endomorphism S3: Y* — Y such that Sopu = poa.
By (ii) of Proposition (11.21),

ep(a(yr), a(y2)) = epoa(y1,ay2)) = egou(yr, a(ye)) = eu(y1, B a(ys))

so (b) is equivalent to the condition that e, (y1, (1 + 8%a)(y2)) = 1 for all y1, y2 in Ker(u). As
e, is a pefect pairing on Ker(p), this is equivalent to the condition that (1 + f'a) € End(Y)
kills Ker(u).

We now apply this with Y = X*. Choose any polarization A on X, and take u = A* (so
w=AXAxAxA). For a we take the endomorphism [a]x given by a 4 X 4 matrix « with
integral coefficients. As A\ o[a]x = [a]xto A%, condition (a) is automatically satisfied, and we
have § = [a]x+ in the above. Using (ii) of Proposition (11.28) we find that the only condition
that remains is that [ids + *aa]x kills Ker(u) = Ker(\)#, where id, is the 4 x 4 identity matrix.

Choose an integer m such that Ker(\) C X|[m]. We are done if we can find an integral 4 x 4
matrix « such that ids 4+ *ac = 0 mod m. To see that such a matrix can be found we use the
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fact that every integer can be written as a sum of four squares. In particular there exist integers
a, b, ¢, d with a®? 4+ b® + c? + d*> = m — 1. Now take

a —b —c —d

b a —-d c
““le a4 o bl (4)
d —c b a
for which we have idy + taar = m - idy. O

(11.30) Remarks. (i) The choice of the matrix « can be explained as follows. Consider the
Hamiltonian quaternion algebraH =R-14+R-7+R-j+ Rk, which is a central simple algebra
over R. For x = a-14b-i+c-j+d-k we define its complex conjugate by £ = a-1—b-i—c-j—d-k.
The reduced trace and norm of H over R are given by

Trdg/r(z) =2+ 2 = 2a and Nrdg/p(z) = 22 = a® +b* + ¢ + d*.

Further, taking {1,4,7,k} as a basis of H, left multiplication by x is given precisely by the
matrix (4). The map h: H — M4 (R) sending = to this matrix is an injective homomorphism of
R-algebras, and we have h(z) = ®h(z) and Nrdyg(z) = det(h(x)). Further it is clear that h
maps the subring Z-1+7Z-i+Z-j+Z-k into My(Z). In sum, we can think of o as being
the (left) multiplication by a-1+b-i+4c-j + d -k, where a, b, ¢, d are chosen such that
A+ +E+d>=m—1

(ii) In general there is no positive n such that for any abelian variety X the nth power X"
admits a principal polarization. To see this we go back to the example in (11.24). We start
with an abelian variety Y of dimension g > 2 over a field k = k such that End(Y) = Z and
such that Y does admit a principal polarization; see 77 for the existence. Any homomorphism
Y™ — (Y™ is of the form A'o[a]y = [a]ytoA™ for some a € M, (Z), and it easily follows
from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if o = ‘a.
Now choose a prime number ¢ different from char(k), and choose a subgroup H C Y of order ¢,
generated by a point of order ¢. Let m: Y — X :=Y/H be the quotient.

Let u be any polarization on X”. By what was just explained we have (7™)*u = A" o[a]y
for some a € M,(Z). Moreover, H x --- x H C Ker([a]y), which readily implies that « is
divisible by ¢, say o = £- 3. Further we have deg(y) - (** = deg([a]y) = ¢*9 - det(B)?, so
deg(p) = €279~V . det(3)?9. In particular, X™ does not carry a principal polarization.

Exercises.

(11.1) Let f: X — Y be a homomorphism of abelian varieties with finite kernel. If p: Y — Y*
is a polarization, show that f*u := flopo f is a polarization of X.

(11.2) Let X be an abelian variety over a field k. Suppose there exists a polarization \: X — X*
with deg(\) = m odd.

(i) Show that there exist integers a and b with 1+ a? + b* = 0 mod m. [Hint: Use the Chinese
remainder theorem. First find a solution modulo p for any prime p dividing m. Then use
the fact that the curve C' C A? given by 1 + 22 + y? = 0 is smooth over Z, (p # 2 !) to see
that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
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(i) Adapting the proof of Zarhin’s trick, show that X2 x (X*)? admits a principal polarization.

(11.3) Let L be a line bundle on an abelian variety X over a perfect field k. Write Y := K (L)2 4,
which is an abelian subvariety of X, and let ¢: X — Z := X/Y be the quotient.
(i) Show that pr: X — X! factors as ¢, = q'+1)oq for some homomorphism v: Z — Z*.
(ii) Show that there is a finite separable field extension £ C K and a line bundle M on Zx such
that ¢K = ©M-
(iii) With K and M as in (ii), conclude that the class of L ® ¢* M 1! lies in Picg(/k(K).
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