Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a suitable equivalence relation, such as algebraic or homological equivalence. If \(X \) is an abelian variety then, as we have seen in (7.24), the class of an ample bundle \(L \) modulo algebraic equivalence carries the same information as the associated homomorphism \(\lambda = \varphi_L : X \to X^t \). And it is in fact this homomorphism that we shall put in the foreground. One reason for this is that \(\lambda \) usually has somewhat better arithmetic properties; for instance, it may be defined over a smaller field than any line bundle representing it. The positivity of an ample bundle shall later be translated into the positivity of the Rosati involution associated to \(\lambda \); this is an important result that shall be given in the next chapter.

The first Chern class of \(L \) only depends on \(L \) modulo algebraic equivalence, and we therefore expect that it can be expressed directly in terms of the associated homomorphism \(\lambda = \varphi_L \). This is indeed the case. As we have seen before (cf. ??), the \(\ell \)-adic cohomology of \(X \) can be described in more elementary terms via the Tate-\(\ell \)-module. The class \(c_1(L) \) then takes the form of an alternating pairing \(E^\lambda : T_\ell X \times T_\ell X \to \mathbb{Z}_\ell(1) \), usually referred to as the Riemann form of \(L \) (or of \(\lambda \)). It is obtained, by a limit procedure, from pairings \(e_n^\lambda : X[n] \times X[n] \to \mu_n \), called the Weil pairing.

§ 1. Polarizations.

(11.1) Proposition. Let \(X \) be an abelian variety. Let \(\lambda : X \to X^t \) be a homomorphism, and consider the line bundle \(M := (\text{id}, \lambda)^* \mathcal{P}_X \) on \(X \). Then \(\varphi_M = \lambda + \lambda^t \). In particular, if \(\lambda \) is symmetric then \(\varphi_M = 2\lambda \).

Proof. Immediate from Proposition (7.6) together with Exercise (7.5).

(11.2) Proposition. Let \(X \) be an abelian variety over a field \(k \). Let \(\lambda : X \to X^t \) be a homomorphism. Then the following properties are equivalent:

(a) \(\lambda \) is symmetric;

(b) there exists a field extension \(k \subset K \) and a line bundle \(L \) on \(X_K \) such that \(\lambda_K = \varphi_L \);

(c) there exists a finite separable field extension \(k \subset K \) and a line bundle \(L \) on \(X_K \) such that \(\lambda_K = \varphi_L \).

Proof. Assume (a) holds. Let \(M := (\text{id}, \lambda)^* \mathcal{P}_X \) and \(N := M^2 \). By the previous proposition we know that \(\varphi_M = 2\lambda \), so \(\varphi_N = 4\lambda \). In particular, \(X[4] \subset K(N) = \text{Ker}(\varphi_N) \). We claim that \(X[2] \subset X[4] \) is totally isotropic with respect to the commutator pairing \(e^N \). Indeed, if \(x, x' \in X[2](T) \) for some \(k \)-scheme \(T \) then possibly after passing to an fpf covering of \(T \) we can write \(x = 2y \) and \(x' = 2y' \) for some \(y, y' \in X[4](T) \). Our claim now follows by noting that the restriction of \(e^N \) to \(X[4] \times X[4] \) takes values in \(\mu_4 \). By Corollary (8.11) we can find a line bundle...
Let X/k be a symmetric isogeny and the line bundle $(id, \lambda)^*\mathcal{P}$ on X is ample;
(a2) λ is a symmetric isogeny and the line bundle $(id, \lambda)^*\mathcal{P}$ on X is effective;
(b1) there exists a field extension $k \subset K$ and an ample line bundle L on X_K such that $\lambda_K = \varphi_L$;
(b2) there exists a finite separable field extension $k \subset K$ and an ample line bundle L on X_K such that $\lambda_K = \varphi_L$.

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny $\lambda: X \to X^t$ that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square: $\deg(\lambda) = d^2$ with $d = \chi(L)$ if $\lambda_K = \varphi_L$. If λ is an isomorphism (equivalent: λ has degree 1) then
we call it a principal polarization.

It is clear that the sum of two polarizations is again a polarization. But of course the polarizations do not form a subgroup of \(\text{Hom}_X(X, X^t) \).

We also remark that if \(\lambda \) is a polarization, then for any line bundle \(L \) on \(X_K \) with \(\lambda_K = \varphi_L \) we have that \(L \) is ample. In fact, ampleness of a line bundle \(N \) on an abelian variety only depends on the associated homomorphism \(\varphi_N \), as is clear for instance from Proposition (11.4).

(11.7) Let \(X \) be an abelian variety over a field \(k \). We have an exact sequence of fppf sheaves

\[
0 \rightarrow X^t \rightarrow \text{Pic}_{X/k} \rightarrow \text{Hom}^{\text{symm}}(X, X^t) \rightarrow 0
\]

which gives a long exact sequence in fppf cohomology

\[
0 \rightarrow X^t(k) \rightarrow \text{Pic}(X) \rightarrow \text{Hom}^{\text{symm}}(X, X^t) \xrightarrow{\partial} H^1_{\text{fppf}}(k, X^t) \rightarrow \cdots.
\]

For \(\lambda: X \rightarrow X^t \) a symmetric homomorphism, \(\partial(\lambda) \) is the obstruction for finding a line bundle \(L \) on \(X \) (over \(k \)) with \(\varphi_L = \lambda \). Now we know from Proposition (11.2) that \(\partial(2\lambda) = 0 \); hence \(\partial(\lambda) \) lies in the image of

\[
H^1_{\text{fppf}}(k, X^t[2]) \rightarrow H^1_{\text{fppf}}(k, X^t).
\]

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) Proposition. Let \(f: X \rightarrow Y \) be an isogeny. If \(\mu: Y \rightarrow Y' \) is a polarization of \(Y \), then \(f^*\mu := f^* \circ \mu \circ f \) is a polarization of \(X \) of degree \(\deg(f^*\mu) = \deg(f)^2 \cdot \deg(\mu) \).

Proof. It is clear that \(f^*\mu \) is an isogeny of the given degree. By assumption there is a field extension \(k \subset K \) and an ample line bundle \(M \) on \(Y_K \) such that \(\mu_K = \varphi_M \). Then \(f^*\mu_K = \varphi_{f^*M} \) and because \(f \) is finite \(f^*M \) is an ample line bundle on \(X_K \). \(\square \)

See Exercise (11.1) for a generalization.

(11.9) Definition. Let \(X \) and \(Y \) be abelian varieties over \(k \). A (divisorial) correspondence between \(X \) and \(Y \) is a line bundle \(L \) on \(X \times Y \) together with rigidifications \(\alpha: L|_{\{0\} \times Y} \sim \rightarrow O_Y \) and \(\beta: L|_{X \times \{0\}} \sim \rightarrow O_X \) that coincide on the fibre over \((0,0) \).

Correspondences between \(X \) and \(Y \) form a group \(\text{Corr}_k(X, Y) \), with group structure obtained by taking tensor products of line bundles. (Cf. the definition of \(P_{X/S, e} \) in Section (6.2).)

Note that the multiplicative group \(\mathbb{G}_m \) acts (transitively) on the choices of the rigidifications \((\alpha, \beta) \). Moreover, if \(Y = X \) we can speak of symmetric correspondences.

The Poincaré bundle \(\mathcal{P} = \mathcal{P}_X \) on \(X \times X^t \) comes equipped with a rigidification along \(\{0\} \times X^t \). There is a unique rigidification along \(X \times \{0\} \) such that the two rigidifications agree at the origin \((0,0) \). We thus obtain an element

\[
[\mathcal{P}_X] = (\mathcal{P}_X, \alpha_{\mathcal{P}}, \beta_{\mathcal{P}}) \in \text{Corr}_k(X, X^t).
\]

The following proposition makes an alternative definition of the notion of polarization possible.

(11.10) Proposition. Let \(X/k \) be an abelian variety. Then we have a bijection

\[
\{ \text{polarizations } \lambda: X \rightarrow X^t \} \sim \rightarrow \left\{ \text{symmetric divisorial correspondences } \right\}
\]

\[
\left(L, \alpha, \beta \right) \text{ on } X \times X \text{ such that } \Delta_X^* L \text{ is ample}
\]

– 161 –
by associating to a polarization λ the divisorial correspondence (L, α, β) with $L = (\id_X \times \lambda)^* \mathcal{P}_X$ and α and β the pull-backs under $\id_X \times \lambda$ of the rigidifications $\alpha_{\mathscr{P}}$ and $\beta_{\mathscr{P}}$.

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associating to (L, α, β) the unique homomorphism $\lambda: X \to X^t$ such that $(L, \alpha) = (\id_X \times \lambda)^*(\mathcal{P}_X, \alpha_{\mathscr{P}})$ as rigidified line bundles on $X \times X$. The assumption that (L, α, β) is symmetric implies that λ_X is symmetric, and because $(\id_X, \lambda)^* \mathcal{P}_X = \Delta_X^*(\id_X \times \lambda)^* \mathcal{P}_X = \Delta_X^* L$ is ample, λ is a polarization. This establishes the correspondence. \Box

The alternative definition of a polarization suggested by Proposition (11.10) as “a symmetric self-correspondence such that restriction to the diagonal is ample” is evidently similar in appearance to the definition of a positive definite symmetric bilinear form in linear algebra. But, whereas in linear algebra one dominantly views a bilinear form as a map $V \times V \to k$ rather than as a map $V \to V^*$ given by $v \mapsto (w \mapsto b(v, w))$, in the theory of abelian varieties the latter point of view dominates. Note further that the role of the evaluation map $V \times V^* \to k$ with $(v, w) \mapsto w(v)$ is played in our context by the Poincaré bundle \mathscr{P}.

§ 2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form, any isogeny f gives a pairing e_f between $\Ker(f)$ and $\Ker(f^t)$; this is an application of the duality result Theorem (7.5). Of particular interest is the case $f = [n]_X$. If we choose a polarization λ we can map $X[n]$ to $X^t[n]$, and we obtain a bilinear form e^λ_n on $X[n]$, called the Weil pairing. The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us to take the limit of the pairings e^λ_n, obtaining a bilinear form E^λ with values in $\mathbb{Z}_l(1)$ on the Tate module $T_l X$. In cohomological terms this pairing is the first Chern class of λ (or rather, of any line bundle representing it). It is the ℓ-adic analogue of what over \mathbb{C} is called the Riemann form associated to a polarization. (See also ???)

(11.11) Definition. Let $f: X \to Y$ be an isogeny of abelian varieties over a field k. Write $\beta: \Ker(f^t) \sim \Ker(f)^D$ for the isomorphism of Theorem (7.5).

(i) Define $e_f: \Ker(f) \times \Ker(f^t) \to \mathbb{G}_{m,k}$ to be the perfect bilinear pairing given (on points) by $e_f(x, y) = \beta(y)(x)$. Note that if $\Ker(f)$ is killed by $n \in \mathbb{Z}_{\geq 1}$ then e_f takes values in $\mu_n \subset \mathbb{G}_m$. In the particular case that $f = n_X: X \to X$ we obtain a pairing $e_n: X[n] \times X^t[n] \to \mu_n$, which we call the Weil pairing.

(ii) Let $\lambda: X \to X^t$ be a homomorphism. We write $e^\lambda_n: X[n] \times X[n] \to \mu_n$ for the bilinear pairing given by $e^\lambda_n(x_1, x_2) = e_n(x_1, \lambda(x_2))$. If $\lambda = \varphi_L$ for some line bundle L then we also write e^L_n instead of e^λ_n.

Recall that if A and B are finite commutative group schemes (written additively), a pairing $e: A \times B \to \mathbb{G}_m$ is said to be bilinear if $e(a + a', b) = e(a, b) \cdot e(a', b)$ and $e(a, b + b') = e(a, b) \cdot e(a, b')$ for all points a and a' of A and b and b' of B. (Points with values in an arbitrary k-scheme.) The
pairing e is said to be perfect if sending a to $e(a, -): B \to \mathbb{G}_m$ gives an isomorphism $A \cong B^D$. This is equivalent to the condition that $b \mapsto e(-, b)$ gives an isomorphism $B \cong A^D$. It is clear from the construction that the pairings e_f, in particular the Weil pairings, are perfect bilinear pairings. If n is relatively prime to the degree of λ then the pairing e^n_f is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of e_f by going back to the proof of (7.5). This leads to the following description. Let T be a k-scheme. Let L be a rigidified line bundle on Y_T that represents a class $\eta \in \text{Ker}(f^i)(T)$. Then $f^*L \cong O_{X_T}$. Hence the geometric line bundle \mathbb{L} corresponding to L can be described as a quotient of $X_T \times_T \mathbb{A}_T^1$ by an action of $\text{Ker}(f)_T$. More precisely, by what was explained in (7.3) there exists a character $\chi: \text{Ker}(f)_T \to \mathbb{G}_m, T$ such that the action of a point x of $\text{Ker}(f)$ on $X_T \times_T \mathbb{A}_T^1$ is given (on points) by

$$(z, a) \mapsto (z + x, \chi(x) \cdot a).$$

The isomorphism $\text{Ker}(f^i) \cong \text{Ker}(f)^D$ of Theorem (7.5) sends η to χ. Hence the pairing e_f is given by $e_f(x, \eta) = \chi(x)$.

(11.13) Next let us give a more geometric description of the Weil pairings e_n. Suppose D is a divisor on X such that nD is linearly equivalent to zero. Write $L = O_X(D)$. As $n^*L \cong O_X$ (cf. Exercise (7.2)), there exists a rational function g on X with divisor $(g) = n^*D$. But also $L^n \cong O_X$, so there exists a rational function f with divisor $(f) = nD$. Then n^*f and g^n both have divisor $n \cdot n^*D = n^*(nD)$, so there is a constant $c \in k^*$ with $g^n = c \cdot (n^*f)$.

Let $x \in X[n](k)$ be a k-rational n-torsion point. We find that

$$(z, a) \mapsto (z + x, \chi(x) \cdot a).$$

The isomorphism $\text{Ker}(f^i) \cong \text{Ker}(f)^D$ of Theorem (7.5) sends η to χ. Hence the pairing e_f is given by $e_f(x, \eta) = \chi(x)$.

(11.14) Example. We calculate the Weil pairing e_3 on the elliptic curve E over \mathbb{F}_2 given by the affine equation $y^2 + y = x^3$. This curve has 9 points over \mathbb{F}_4 which realise an isomorphism $E[3](\mathbb{F}_4) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Let $O = P_\infty$ be the point at ∞, which we take as the identity element on E. The bundle $L = O_E(P_\infty)$ is ample. The associated principal polarization $\lambda: E \cong E^t = \text{Pic}^0_E/\mathbb{F}_2$ is given on points by $R \mapsto O_E(O - R)$. (Note that this is minus the map given by $R \mapsto O_E(R - O)$; see Remark (2.11).)

Let us calculate $e_3^3(Q, P)$ for $P = (0, 0)$ and $Q = (1, \alpha)$, where α is an element of \mathbb{F}_4 not in \mathbb{F}_2. First we note that the function y has divisor $(y) = 3 \cdot (P - O)$. Next we compute a function g with divisor $[3]^*(O - P)$. For this we compute the "triplication formula" on E which expresses for a point $R = (\xi, \eta)$ on E the coordinates of $3R$ in those of R. As we have seen in Example (5.26), E is supersingular. The relative Frobenius $\pi = F_{E/\mathbb{F}_2}: E \to E$ is an endomorphism of E. One can show that it satisfies $\pi^2 = -2$, for example by verifying
that for $T \in E$ the point $\pi^2(T)$ lies on the tangent line to E in T. As -1 on E is given by $(x,y) \mapsto (x,y+1)$ we find that $2R$ has coordinates (ξ^4,η^4+1). Next one calculates that the coordinates of $3R$ are $((6\xi^4+\xi^2+1)/(\xi^4+1), (7\xi^4+1)/(\xi^4+1))$. Hence the function
\[g = \frac{x^4+x}{yx^3+1} \]
has divisor $g = [3]^*(O-P)$. (Use that $3 \cdot (g) = [3]^*(y) = 3 \cdot [3]^*(O-P)$.)

Now we know that g/t_Q^*g is constant and this constant can be computed by evaluating g and t_Q^*g at a suitable point T; so
\[g/t_Q^*g = g(T)/g(T+Q). \]

For T we take a point rational over F_{64}. Let γ be a generator of F_{64}^* with $\gamma^21 = \alpha$ and such that $\delta := \gamma^9 \in F_{64}$ satisfies $\delta^3 + \delta = 1$. Then the point $T = (\gamma^3, \gamma^{18})$ is in $E(F_{64})$. One easily verifies that $(\gamma^21, \gamma^{18}+1)$ is again a point of E, and that it lies on the line through T and Q; hence $T + Q = (\gamma^{24}, \gamma^{18})$. By (11.13) we conclude that $e_3(Q,P) = e_3(Q,(O-P))$ equals $(\gamma^{12} + \gamma^3)/(\gamma^{33} + \gamma^{24}) = 1/\gamma^{21} = 1/\alpha = \alpha^2$.

The value of $e_3(P',Q')$ for any pair $(P',Q') \in E[3] \times E[3]$ can be computed from this using the fact that e_3 is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let $f : X \to Y$ be an isogeny of abelian varieties over a field k. By definition, $f^t : Y^t \to X^t$ is the unique map such that $(f \times \id_Y)^t_* \mathcal{P}_X \cong (\id_X \times f^{t*})^* \mathcal{P}_X$ as line bundles on $X \times Y^t$ with rigidification along $(0 \times Y)^t$. Note that this isomorphism is unique, so without ambiguity we can define $\mathcal{D} := (f \times \id_Y)^t_* \mathcal{P}_Y = (\id_X \times f^{t*})^* \mathcal{P}_Y$. The diagram to keep in mind is

\[\begin{array}{ccc}
\mathcal{P}_X & \xrightarrow{\text{id} \times f^t} & \mathcal{P}_Y \\
X \times X^t & \xleftarrow{\text{id} \times f^t} & X \times Y^t \\
& \xrightarrow{f \times \id} & Y \times Y^t
\end{array} \]

On the line bundle \mathcal{D} we have an action of $\Ker(f) \times \{0\}$, lifting the action on $X \times Y^t$ by translations. This action is given by isomorphisms $\sigma_x : \mathcal{D}_T \sim \to t^*_{(x,0)} \mathcal{D}_T$, for any k-scheme T and $x \in \Ker(f)(T)$. Likewise, we have an action of $\{0\} \times \Ker(f^t)$, given by isomorphisms $\tau_q : \mathcal{D}_T \sim \to t^*_{(0,q)} \mathcal{D}_T$ for $q \in \Ker(f^t)(T)$. Unless f is an isomorphism, these two group scheme actions on \mathcal{D} do not commute, for if they did it would give us an action of $\Ker(f) \times \Ker(f^t)$ and \mathcal{D} would descend to a line bundle L on $(X \times Y^t)/\Ker(f) \times \Ker(f^t) = Y \times X^t$. But then we had $(-1)^9 = \chi(\mathcal{P}_X) = \deg(f) \cdot \chi(L)$, which is possible only if $\deg(f) = 1$. We shall prove that the extent to which the two actions fail to commute is measured by the pairing e_f.

Let \mathcal{D}' be the restriction of \mathcal{D} to $X \times \Ker(f^t)$. We have $\mathcal{D}' = (\id_X \times f^{t*})^* ((\mathcal{P}_X)|_{X \times \{0\}})$, so the natural rigidification of \mathcal{P}_X along $X \times \{0\}$ (see (7.7)) gives us a trivialisation $\mathcal{D}' \sim \to O_{X \times \Ker(f^t)}$. The action of $\{0\} \times \Ker(f^t)$ on \mathcal{D} restricts to the trivial action on \mathcal{D}'. It will be useful to think of \mathcal{D}' as being the sheaf of sections of \mathbb{A}^1 over $X \times \Ker(f^t)$. Writing $\mathbb{A}^1_{X \times \Ker(f^t)} = X \times \Ker(f^t) \times \mathbb{A}^1$, the action of a point $(0,q) \in \{0\} \times \Ker(f^t)$ on \mathcal{D}' corresponds to the action on $X \times \Ker(f^t) \times \mathbb{A}^1$ given by $\tau_q : (t,u,a) \mapsto (t,u+q,a)$.

Note that also the action of $\Ker(f) \times \{0\}$ restricts to an action on \mathcal{D}'. To describe this action we apply what was explained in (11.12) in the “universal case”, i.e., with $T = \Ker(f^t)$ and $\eta = \id_Y$. The corresponding line bundle L on $Y_T = Y \times \Ker(f^t)$ is just the restriction of \mathcal{P}_Y to $Y \times \Ker(f^t)$, so f^*L is precisely our bundle \mathcal{D}'. If we write a point of $\Ker(f)_T = \cdots - 164 -
Ker(\(f\)) \times_k Ker(\(f^t\)) as a pair \((x, u)\) then the conclusion of (11.12) is that the character \(\chi: \text{Ker}(f) \times_k \text{Ker}(f^t) \rightarrow G_{m,k} \times_k \text{Ker}(f^t)\) is given by \((x, u) \mapsto (\epsilon_f(x,u),u)\). Hence the action of a point \((x, 0) \in \text{Ker}(f) \times \{0\}\) on \(\mathcal{D}\) corresponds to the action on \(X \times \text{Ker}(f^t) \times k^1\) given by \(\sigma_x:\ (t,u,a) \mapsto (t + x, u, \epsilon_f(x,u) \cdot a)\).

Now we can start drawing some conclusions. The first result is an interpretation of the pairing \(\epsilon_f\) as a measure for the extent to which the two group scheme actions on \(\mathcal{D}\) fail to commute.

(11.16) Proposition. Let \(f: X \rightarrow Y\) be an isogeny of abelian varieties over a field \(k\), and consider the line bundle \(\mathcal{D} := (f \times \text{id}_Y)^* \mathcal{P}_Y = (\text{id}_X \times f^t)^* \mathcal{P}_X\) on \(X \times Y^t\). Let \(T\) be a \(k\)-scheme, \(x \in \text{Ker}(f)(T)\) and \(q \in \text{Ker}(f^t)(T)\). Let \(\sigma_x:\ \mathcal{D}_T \xrightarrow{\sigma_x} t^*(x,0)\mathcal{D}_T\) be the isomorphism that gives the action of \((x,0) \in \text{Ker}(f) \times \{0\}\) on \(\mathcal{D}_T\), and let \(\tau_q:\ \mathcal{D}_T \xrightarrow{\tau_q} t^*(0,q)\mathcal{D}_T\) be the isomorphism that gives the action of \((0,q) \in \{0\} \times \text{Ker}(f^t)\). Then we have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{D}_T & \xrightarrow{\sigma_x} & t^*(x,0)\mathcal{D}_T \\
\downarrow & & \downarrow \\
\mathcal{D}_T & \xrightarrow{\tau_q} & t^*(0,q)\mathcal{D}_T \\
\end{array}
\]

Proof. A priori it is clear that there exists a constant \(c \in G_m(T)\) such that \((t^*(x,0)\sigma_x) \circ \tau_q = c \cdot (t^*(0,q)\tau_q) \circ \sigma_x\), so all we need to show is that \(c = \epsilon_f(x,q)\). For this we may restrict everything to \(X \times \text{Ker}(f^t)\). As in the above discussion, we think of \(\mathcal{D}\) as the sheaf of sections of \(k^1\) over \(X \times \text{Ker}(f^t)\). We have seen that \((t^*(x,0)\tau_q) \circ \sigma_x\) is given on points by \((t,u,a) \mapsto (t + x, u + q, \epsilon_f(x,u) \cdot a)\), whereas \((t^*(0,q)\tau_q) \circ \sigma_x\) is given by \((t,u,a) \mapsto (t + x, u + q, \epsilon_f(x,u+q) \cdot a)\). Because \(\epsilon_f\) is bilinear, the result follows. \(\square\)

Next we prove a compatibility result among the two main duality theorems that we have proved in Chapter 7.

(11.17) Proposition. Let \(f: X \rightarrow Y\) be an isogeny of abelian varieties. Let \(\kappa_X: X \rightarrow X^{\text{tt}}\) be the canonical isomorphism.

(i) For any \(k\)-scheme \(T\) and points \(x \in \text{Ker}(f)(T)\) and \(\eta \in \text{Ker}(f^t)(T)\) we have the relation \(\epsilon_f(\eta, \kappa_X(x)) = \epsilon_f(x,\eta)^{-1}\).

(ii) Let \(\beta_1: \text{Ker}(f^t) \sim \text{Ker}(f)^D\) and \(\beta_2: \text{Ker}(f^t) \sim \text{Ker}(f^{tt})^D\) be the canonical isomorphisms as in Theorem (7.5), and let \(\gamma: \text{Ker}(f)^{DD} \sim \text{Ker}(f)\) be the isomorphism of Theorem (3.22). Then the isomorphism \(\text{Ker}(f) \sim \text{Ker}(f^{tt})\) induced by \(\kappa_X\) equals \(-\beta_2^{-1} \circ \beta_1\circ \gamma^{-1}\).

Proof. (i) Consider the commutative diagram

\[
\begin{array}{ccc}
X \times X^t & \xleftarrow{\text{id} \times f^t} & X \times Y^t \\
\downarrow{\kappa_X \times \text{id}} & & \downarrow{\kappa_X \times \text{id}} \\
X^{tt} \times X^t & \xleftarrow{\text{id} \times f^t} & X^{tt} \times Y^t \\
\end{array}
\]

If we read the lower row from right to left (term by term!), we get the row

\[
\begin{array}{ccc}
Y^t \times Y^{tt} & \xleftarrow{\text{id} \times f^{tt}} & Y^t \times X^{tt} \\
\downarrow{\kappa_Y \times \text{id}} & & \downarrow{\kappa_Y \times \text{id}} \\
Y^t \times X^t & \xleftarrow{\text{id} \times f^t} & X^t \times X^t
\end{array}
\]
which is precisely (1) for the morphism $f^t: Y^t \to X^t$. Now the result follows from the previous proposition, with the -1 in the exponent coming from the fact that we are reading the lower row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations $e_f(x, \eta) = \beta_1(\eta)(x) = (\beta_1 D \circ \gamma^{-1})(x)(\eta)$ and $e_{f^t}(\eta, k_X(x)) = \beta_2(k_X(x))(\eta)$.

\(\square\)

(11.18) Example. Let X be an abelian variety over k. Let $\mathcal{P} = \mathcal{P}_X$ be its Poincaré bundle. Let n be a positive integer, and let $e_n: X[n] \times X^t[n] \to \mu_n$ be the Weil pairing.

The geometric line bundle on $X \times X^t[n]$ that corresponds to $\mathcal{P}|_{X \times X^t[n]}$ is the quotient of $\mathbb{A}^1_{X \times X^t[n]} = X \times X^t[n] \times \mathbb{A}^1$ under the action of $X[n] \times \{0\}$, with $x \in X[n]$ acting on $X \times X^t[n] \times \mathbb{A}^1$ by $\sigma_x: (t, u, a) \mapsto (t + x, u, e_n(x, u) \cdot a)$.

To make this completely explicit, suppose $k = \overline{k}$ and char$(k) \nmid n$, so that $X[n]$ and $X^t[n]$ are constant group schemes, each consisting of n^{2g} distinct points. Then for $\xi \in X^t[n](k)$, the restriction of the Poincaré bundle to $X \times \{\xi\}$ is given by

$$\mathcal{P}|_{X \times \{\xi\}}(U) = \left\{ f \in O_X(n^{-1}U) \mid f(v + x) = e_n(x, \xi) \cdot f(v) \text{ for all } v \in n^{-1}U \text{ and } x \in X[n]\right\}.$$

For the restriction of \mathcal{P}_X to $X[n] \times X^t$ we have an analogous description; namely, the corresponding geometric line bundle is the quotient of $\mathbb{A}^1_{X[n] \times X^t} = X[n] \times X^t \times \mathbb{A}^1$ under the action of $\{0\} \times X^t[n]$, with $\xi \in X^t[n]$ acting on $X[n] \times X^t \times \mathbb{A}^1$ by $\tau_\xi: (t, u, a) \mapsto (t, u + \xi, e_n(t, \xi^{-1} \cdot a)$. Note, however, that whereas our description of $\mathcal{P}|_{X[n] \times X^t}$ is essentially a reformulation of the definition of the Weil pairing, to arrive at our description of $\mathcal{P}|_{X[n] \times X^t}$ we use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated isogeny $\varphi_L: X \to X^t$ is symmetric, we have $K(L) = \text{Ker}(\varphi_L) = \text{Ker}(\varphi_L^t)$, and we obtain a pairing

$$e_{\varphi_L}: K(L) \times K(L) \to \mathbb{G}_m.$$

On the other hand we have the theta group $1 \to \mathbb{G}_m \to \mathcal{G}(L) \to K(L) \to 0$, and this, too, gives a pairing

$$e^L: K(L) \times K(L) \to \mathbb{G}_m.$$

(11.20) Proposition. We have $e_{\varphi_L} = e^L$.

\textbf{Proof.} We apply what was explained in (11.15) to the isogeny $\varphi_L: X \to X^t$. We identify $X \times X^t$ with $X \times X$ via the isomorphism $\text{id} \times \kappa_X: X \times X \xrightarrow{\sim} X \times X^t$. The line bundle $\mathcal{L} := (\varphi_L \times \kappa_X)^* \mathcal{P}_X = (\text{id} \times \varphi_L)^* \mathcal{P}_X$ is none other than the Mumford bundle $\Lambda(L)$ associated to L. Let $\mathcal{L}' := \mathcal{L}|_{X \times K(L)} = \Lambda(L)|_{X \times K(L)}$ which, as we already knew from Lemma (2.17), is trivial.

Let T be a k-scheme, and consider T-valued points $x, y \in K(L)(T)$. Possibly after replacing T by a covering we can choose isomorphisms $\varphi: L_T \xrightarrow{\sim} t^*_x L_T$ and $\psi: L_T \xrightarrow{\sim} t^*_y L_T$. Then (x, φ) and (y, ψ) are T-valued points of $\mathcal{G}(L)$, and by definition of the pairing e^L we have the relation

$$(t^*_y \varphi) \circ \psi = e^L(x, y) \cdot (t^*_y \psi) \circ \varphi. \quad (3)$$

We can also view ψ as the trivialisation

$$\psi: O_{X_T \times \{y\}} \xrightarrow{\sim} \Lambda(L_T)|_{X_T \times \{y\}} = t^*_y L_T \otimes L_T^{-1}$$

- 166 -
that sends $1 \in \Gamma(X_T, O_{X_T \times \{y\}})$ to the global section ψ of $t^*_y L_T \otimes L_T^{-1}$. If $\sigma_x : \mathcal{O}_T \to t^*_{(x,0)} \mathcal{O}_T$ is the isomorphism that gives the action of $(x,0) \in K(L) \times \{0\}$ on \mathcal{O} then it follows from what we have seen in (11.15) that we have a commutative diagram

$$
\begin{array}{ccc}
\Lambda(L)_{X_T \times \{y\}} & \xrightarrow{(\sigma_x)_{|X_T \times \{y\}}} & t^*_{(x,0)} \Lambda(L)_{X_T \times \{y\}} \\
\psi & & \uparrow \psi_{x,y} \circ (t^*_{(x,0)} \psi) \\
O_{X_T \times \{y\}} & \xrightarrow{\text{can}} & t^*_{(x,0)} O_{X_T \times \{y\}}.
\end{array}
$$

We have $t^*_{(x,0)} \Lambda(L_T) = m^* (t^*_x L_T \otimes L_T^{-1}) \otimes p_y^* (t^*_x L_T \otimes L_T^{-1})^{-1} \otimes \Lambda(L_T)$. Taking this as an identification, σ_x is given on sections by $s \mapsto m^* \varphi \otimes p_y^* \varphi^{-1} \otimes s$. (Note that this does not depend on the choice of φ.) Now restrict to $X_T \times \{y\}$ and use the natural identification

$$
t^*_{(x,0)} \Lambda(L_T)_{X_T \times \{y\}} = t^*_{x+y} L_T \otimes t^*_x L_T^{-1} = \text{Hom}(t^*_x L_T, t^*_{x+y} L_T),
$$

we find that $\sigma_x \circ \varphi$ maps $1 \in \Gamma(X_T, O_{X_T \times \{y\}})$ to the homomorphism $t^*_y \varphi \circ \varphi^{-1} : t^*_x L_T \to t^*_{x+y} L_T$. On the other hand, the composition $(t^*_{(x,0)} \psi)$ can sends 1 to $t^*_x \psi$. Hence we have

$$
t^*_y \varphi \circ \varphi^{-1} = e_{\varphi_L}(x,y) \cdot t^*_x \psi
$$

and comparison with (3) now gives the result. \hfill \Box

(11.21) Proposition. (i) Let $f : X \to Y$ be a homomorphism of abelian varieties over k. Then for any integer $n \geq 1$ the diagram

$$
\begin{array}{ccc}
X[n] \times Y^t[n] & \xrightarrow{1 \times f^t} & X[n] \times X^t[n] \\
\downarrow f \times 1 & & \downarrow e_n \\
Y[n] \times Y^t[n] & \xrightarrow{e_n} & \mu_n
\end{array}
$$

is commutative. In other words: if T is a k-scheme, $x \in X[n](T)$ and $\eta \in Y^t[n](T)$ then $e_n(f(x),\eta) = e_n(x,f^t(\eta))$.

(ii) Let $f : X \to Y$ and $g : Y \to Z$ be isogenies, and write $h := g \circ f : X \to Z$. Then we have “commutative diagrams”

$$
\begin{array}{ccc}
\text{Ker}(f) \times \text{Ker}(f^t) & \xrightarrow{\text{can}} & \mathbb{G}_m \\
\downarrow i & & \Downarrow g^* \\
\text{Ker}(h) \times \text{Ker}(h^t) & \xrightarrow{\text{can}} & \mathbb{G}_m
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
\text{Ker}(g) \times \text{Ker}(g^t) & \xrightarrow{\text{can}} & \mathbb{G}_m \\
\downarrow f & & \Downarrow i \\
\text{Ker}(h) \times \text{Ker}(h^t) & \xrightarrow{\text{can}} & \mathbb{G}_m
\end{array}
$$

where the maps labelled “i” are the natural inclusion homomorphisms. By our assertion that the first diagram is commutative we mean that if T is a k-scheme, $x \in \text{Ker}(f)(T)$ and $\eta \in \text{Ker}(h^t)(T)$ then $e_f(x,g^t(\eta)) = e_h(i(x),\eta)$; similarly for the second diagram.

Proof. (i) Let $\chi : Y[n]_T \to \mathbb{G}_{m,T}$ be the character corresponding to η, as in (11.12). Then the character corresponding to $h^t(\eta)$ is $\chi \circ h : X[n]_T \to \mathbb{G}_{m,T}$. By (11.12) we find

$$
e_n(h(x),\eta) = \chi(h(x)) = \chi \circ h(x) = e_n(x,h^t(\eta)).
$$

(ii) Let $\chi : \text{Ker}(h)_T \to \mathbb{G}_{m,T}$ be the character corresponding to η. Then the character $\text{Ker}(f)_T \to \mathbb{G}_{m,T}$ corresponding to $g^t(\eta)$ is simply $\chi \circ i$. Hence by what was explained in (11.12),

\hfill \Box
\(e_k(i(x), \eta) = \chi(i(x)) = \chi \circ i(x) = e_f(x, g'(\eta)).\) This gives the first commutative diagram. For the second, apply the first diagram to the composition \(f^* \circ g^* : Z^t \to Y^t \to X^t;\) then apply (i) of Proposition (11.17). \(\square\)

(11.22) Corollary. Let \(\lambda : X \to X^t\) be a polarization, and let \(n\) be a positive integer. Then the pairing \(e^\lambda_n : X[n] \times X[n] \to \mu_n\) is alternating: for any \(x \in X[n](T)\) with \(T\) a \(k\)-scheme we have \(e^\lambda_n(x, x) = 1.\)

Proof. Without loss of generality we may assume that \(k = \overline{k}\) and write \(\lambda = \varphi_L\) for some ample \(L.\) Consider the composition \(n\lambda = \lambda \circ [n]_X.\) Applying (ii) of Proposition (11.21) we find a commutative diagram

\[
\begin{array}{ccc}
X[n] \times X^t[n] & \xrightarrow{e_n} & \mathbb{G}_m \\
i \downarrow & \uparrow \lambda & \\
\text{Ker}(n\lambda) \times \text{Ker}(n\lambda) & \xrightarrow{e_{n\lambda}} & \mathbb{G}_m
\end{array}
\]

This gives \(e^\lambda_n(x, x) = e_n(x, \lambda \circ i(x)) = e_n\lambda(i(x), i(x)) = 1,\) where in the last step we use Proposition (11.20) together with the remark that \(n\lambda = \varphi_L^n.\) \(\square\)

In particular, we find that the pairing \(e^\lambda_n\) is skew-symmetric: \(e^\lambda_n(x, y) = e^\lambda_n(y, x)^{-1}.\) Note, however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let \(X\) be an abelian variety over a field \(k.\) Fix a separable closure \(k \subset k_s.\) As usual, \(\ell\) denotes a prime number different from \(\text{char}(k).\) Let \(x = (0, x_1, x_2, \ldots)\) be an element of \(T_\ell X\) and \(\xi = (0, \xi_1, \xi_2, \ldots)\) and element of \(T_\ell X^t.\) Applying (ii) of Proposition (11.21) we find that

\[e_{\ell m}(x_m, \xi_m) = e_{\ell m+1}(\ell \cdot x_{m+1}, \xi_{m+1}) = e_{\ell m+1}(x_{m+1}, \xi_{m+1})^\ell.\]

This means precisely that

\[E(x, \xi) := (1, e_\ell(x_1, \xi_1), e_\ell^2(x_2, \xi_2), \ldots)\]

is a well-defined element of \(\mathbb{Z}_\ell(1) = T_\ell \mathbb{G}_m.\) The map \((x, \xi) \mapsto E(x, \xi)\) defines a perfect bilinear pairing

\[E : T_\ell X \times T_\ell X^t \to \mathbb{Z}_\ell(1).\]

If \(\beta : T_\ell X^t \xrightarrow{\sim} (T_\ell X)^\vee\) is the canonical isomorphism as in Proposition (10.9) then the pairing \(E\) is nothing else but the composition

\[T_\ell X \times T_\ell X^t \xrightarrow{\text{id} \times \beta} T_\ell X \times (T_\ell X)^\vee(1) \xrightarrow{\text{ev}} \mathbb{Z}_\ell(1)\]

where the map “ev” is the canonical pairing, or “evaluation pairing”. Note that the pairing \(E\) is equivariant with respect to the natural action of \(\text{Gal}(k_s/k)\) on all the terms involved.

If \(\lambda : X \to X^t\) is a polarization, we obtain a pairing

\[E^\lambda : T_\ell X \times T_\ell X \to \mathbb{Z}_\ell(1) \quad \text{by} \quad E^\lambda(x, x') := E(x, T_\ell \lambda(x')).\]

If \(\lambda = \varphi_L\) we also write \(E^L\) for \(E^\lambda.\) It readily follows from Corollary (11.22) that the pairing \(E^\lambda\) is alternating.

Putting everything together, \(E^\lambda\) is a \(\text{Gal}(k_s/k)\)-invariant element in \(\bigwedge^2(T_\ell X)^\vee(1).\) The cohomological interpretation is that \(E^\lambda\) is the first Chern class of \(\lambda,\) or rather of any line bundle representing \(\lambda.\) Note that \(\bigwedge^2(T_\ell X)^\vee(1) = H^2\left(X_{\overline{k}}, \mathbb{Z}_\ell(1)\right),\) see Corollary (10.39).
§ 3. Existence of polarizations, and Zarhin’s trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If $g = 1$ then X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via $Q \mapsto O - Q$). If $g \geq 2$ then in general X does not carry a principal polarization, not even if we allow an extension of the base field. Let us explain why this is so.

Fix $g \geq 2$. We shall use the fact that there exists an algebraically closed field k and an abelian variety Y of dimension g over k such that $\text{End}(Y) = \mathbb{Z}$. A proof of this shall be given later; see ???. Note that this does not work for arbitrary k; for instance, every abelian variety over $\overline{\mathbb{F}}_p$ has $\mathbb{Z} \subset \text{End}(Y)$, as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may assume there is a principal polarization $\lambda: Y \to Y^t$. As $k = \overline{k}$ there is a line bundle L with $\lambda = \varphi_L$. Because λ is principal and $\text{End}(X) = \mathbb{Z}$ the only polarizations of Y are those of the form $\varphi_L^m = n \cdot \lambda$, of degree n^{2g}.

On the other hand, if ℓ is any prime number different from $\text{char}(k)$ then $Y|\ell \cong (\mathbb{Z}/\ell \mathbb{Z})^{2g}$ as group schemes. Hence Y has a subgroup scheme H of order ℓ. Let $q: Y \to X := Y/H$ be the quotient. If $\mu: X \to X^t$ is a polarization then $q^* \mu$ is a polarization of Y, with $\deg(q^* \mu) = \ell^2 \cdot \deg(\mu)$. But as just explained, any polarization of Y has degree equal to n^{2g} for some $n \in \mathbb{N}$. Hence μ cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension $g \geq 2$ over a field of characteristic p in general does not even carry a separable polarization; see ??.

To arrive at some positive results, we shall now first give a very useful criterion for when a polarization $\lambda: X \to X^t$ descends over an isogeny $f: X \to Y$. If L is a line bundle on X then by Theorem (8.10) there exists a line bundle M on Y with $L \cong f^* M$ if and only if the following conditions are satisfied:

(a) $\text{Ker}(f)$ is contained in $K(L)$ and is totally isotropic with respect to the pairing $e_{\varphi(L)} = e_{\varphi_L}$;
(b) the inclusion map $\text{Ker}(f) \hookrightarrow K(L)$ can be lifted to a homomorphism $\text{Ker}(f) \hookrightarrow \mathcal{G}(L)$.

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let $\lambda: X \to X^t$ be a symmetric isogeny, and let $f: X \to Y$ be an isogeny.

(i) There exists a symmetric isogeny $\mu: Y \to Y^t$ such that $\lambda = f^* \mu := f^* \circ \mu \circ f$ if and only if $\text{Ker}(f)$ is contained in $\text{Ker}(\lambda)$ and is totally isotropic with respect to the pairing e_{λ}: $\text{Ker}(\lambda) \times \text{Ker}(\lambda) \to \mathbb{G}_m$. If such an isogeny μ exists then it is unique.

(ii) Assume that an isogeny μ as in (i) exists. Then μ is a polarization if and only if λ is a polarization.

Note that the “only if” in (ii) was already proven in Proposition (11.8). For this implication the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If $\lambda = f^* \circ \mu \circ f$ then $\text{Ker}(f) \subset \text{Ker}(\lambda)$ and it follows from (ii) of Proposition (11.21), applied with $q = (f^* \circ \mu)$ and $h = \lambda$, that $\text{Ker}(f)$ is totally isotropic for the pairing e_{λ}.

For the converse, assume $\text{Ker}(f)$ is contained in $\text{Ker}(\lambda)$ and is totally isotropic with respect to e_{λ}. Consider the line bundle $M := (1 \times \lambda)^* \mathcal{P}_X$ on $X \times X$. Recall from Example (8.26) that the theta group $\mathcal{G}(M)$ is naturally isomorphic to the Heisenberg group associated to the group scheme $\text{Ker}(\lambda)$. We have natural actions of $\text{Ker}(\lambda) \times \{0\}$ and $\{0\} \times \text{Ker}(\lambda)$ on M; for the first action note that M can also be written as $(\lambda \times 1)^* \mathcal{P}_X$. The assumption that $\text{Ker}(f) \subset \text{Ker}(\lambda)$
is totally isotropic for e_λ means precisely that the actions of $\text{Ker}(f) \times \{0\}$ and of $\{0\} \times \text{Ker}(f)$ commute, and therefore define an action of $\text{Ker}(f) \times \text{Ker}(f)$ on M. This gives us a line bundle \mathcal{N} on $Y \times Y$ such that $M \cong (f \times f)^* \mathcal{N}$. If $\mu: Y \to Y$ is the (unique) homomorphism such that

$\mathcal{N} = (1 \times \mu)^* \mathcal{P}_Y$ then we get the desired relation $\lambda = f^t \cdot \mu \cdot f$. The uniqueness of μ is immediate from Lemma (5.4). But we also have $\lambda = \lambda^t = (f^t \cdot \mu \cdot f)^t = f^t \cdot \mu^t \cdot f$. Hence $\mu = \mu^t$.

(ii) By Proposition (11.2) there exists a field extension $k \subset K$ and a line bundle L on Y_K with $\mu_K = \varphi_L$, and then $\lambda_K = \varphi_{f^*L}$. Because f is finite, L is effective if and only if f^*L is effective. \square

Corollary (11.26). Let X be an abelian variety over an algebraically closed field. Then X is isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization $\lambda: X \to X^t$. By Lemma (8.22) there exists a Lagrangian subgroup $H \subset \text{Ker}(\lambda)$. (There clearly exists a subgroup $H \subset \text{Ker}(\lambda)$ satisfying condition (i) of that Lemma.) By the previous Proposition, λ descends to a principal polarization on X/H. \square

The conclusion of the Corollary no longer holds in general if we drop the assumption that the ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

Exercise (11.27). Before we turn to Zarhin’s trick, we recall from Exercise (7.8) some notation.

Suppose X is an abelian variety and $\alpha = (a_{ij})$ is an $r \times s$ matrix with integral coefficients. Then we denote by $[\alpha]_X: X^s \to X^r$ the homomorphism given by

$$[\alpha]_X(x_1, \ldots, x_s) = (a_{11}x_1 + a_{12}x_2 + \cdots + a_{1s}x_s, \ldots, \sum_{j=1}^s a_{ij}x_j, \ldots, a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rs}x_s).$$

For $r = s = 1$ this just gives our usual notation $[n]_X$ for the “multiplication by n” maps. As another example, the 1×2 matrix (11) gives the group law on X while the 2×1 matrix $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ gives the diagonal.

If β is a $q \times r$ matrix with integral coefficients then $[\beta \cdot \alpha]_X = [\beta]_X \cdot [\alpha]_X: X^s \to X^q$. It follows that if α is an invertible $r \times r$ matrix then $[\alpha]_X$ is an automorphism of X^r. Further, if $f: X \to Y$ is a homomorphism of abelian varieties then for any integral $r \times s$ matrix α,

$$[\alpha]^t_{Y^s \circ (f_{r^s}, \ldots, f)}, \ldots, f X^s \circ (f_{r^s}, \ldots, f) \cdot [\alpha]_X: X^s \to Y^r.$$

Proposition (11.28). Let X be an abelian variety of dimension g.

(i) If $\alpha \in M_r(\mathbb{Z})$ then $[\alpha]_X: X^r \to X^r$ has degree $\det(\alpha)^{2g}$.

(ii) Let β be an $r \times s$ matrix with integral coefficients. Then $([\beta]_X)^t = [\beta^t]_X$, where β^t is the transposed matrix.

Proof. (i) If $\det(\alpha) = 0$ then it is readily seen that $[\alpha]_X$ has infinite kernel, so by convention we have $\deg([\alpha]_X) = 0$. Now assume $\det(\alpha) \neq 0$, and let $\{e_1, \ldots, e_r\}$ be the standard ordered basis of \mathbb{Z}^r. By the theory of elementary divisors, there is an ordered basis $\{f_1, \ldots, f_r\}$ for \mathbb{Z}^r and a sequence of nonzero integers (n_1, \ldots, n_r) such that $\alpha(e_i) = n_i \cdot f_i$. Let $\beta \in \text{GL}_r(\mathbb{Z})$ be the matrix with $\beta(e_i) = f_i$, and let $\gamma = \text{diag}(n_1, \ldots, n_r)$ be the diagonal matrix with coefficients n_i. Then $[\beta]_X$ is an automorphism of X^r and it is clear that $[\gamma]_X: X^r \to X^r$, which is given by
(x_1, \ldots, x_r) \mapsto (n_1 x_1, \ldots, n_r x_r), has degree \((n_1 \cdots n_r)^2 = \det(\alpha)^2\). As \([\alpha]_X = [\gamma]_X \cdot [\beta]_X\) the claim follows.

(ii) Write \(\beta = (b_{ij})\). Any line bundle \(L\) on \(X^\ell\) with class \(\in \text{Pic}^0\) can be written as \(L = p_1^* L_1 \otimes \cdots \otimes p_r^* L_r\), where the \(p_i: X^\ell \to X\) are the projection maps and the \(L_i\) are line bundles on \(X\) with class \(\in \text{Pic}^0\). Because \((X^\ell)^s \simeq (X^s)^r\) (cf. Exercise (6.2)) it suffices to know the restriction of \([\beta]_X\) to each of the coordinate axes \(\{0\} \times \cdots \times \{0\} \times X \times \{0\} \times \cdots \times \{0\}\). But the restriction of \([\beta]_X\) to the \(j\)-th coordinate axis is the map \(X \to X^\ell\) given by \(x \mapsto (b_{1j} x, b_{2j} x, \ldots, b_{rj} x)\) and the pull-back of \(L\) under this map is

\[b_{1j} L_1 \otimes \cdots \otimes b_{rj} L_r = L_1^\otimes b_{1j} \otimes \cdots \otimes L_r^\otimes b_{rj}. \]

This means precisely that \([\beta]_X^t: (X^t)^s \to (X^s)^r = (X^s)^r\) is the map given by the matrix

\[
\left(\begin{array}{cccc}
 b_{11} & \cdots & b_{11} & \cdots & b_{1r_1} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 b_{1j} & \cdots & b_{ij} & \cdots & b_{ir_j} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 b_{1n} & \cdots & b_{i_1} & \cdots & b_{r_1}
\end{array} \right) = y^t \beta,
\]

as claimed. \(\square\)

11.29 Theorem. (Zarhin’s trick) Let \(X\) be an abelian variety over a field \(k\). Then \(X^4 \times (X^s)^4\) carries a principal polarization.

Proof. Suppose we have an abelian variety \(Y\), a polarization \(\mu: Y \to Y^t\), and an endomorphism \(\alpha: Y \to Y\). Consider the isogeny \(f: Y \times Y \to Y \times Y^t\) given by \((y_1, y_2) \mapsto (y_1 - \alpha(y_2), \mu(y_2))\). The kernel is given by \(\text{Ker}(f) = \{(\alpha(y), y) \mid y \in \text{Ker}(\mu)\}\). In particular, \(\deg(f) = \deg(\mu)\). Proposition (11.25) tells us under what conditions the polarization \(\mu \times \mu: (Y \times Y) \to (Y^t \times Y^t)\) descends to a polarization on \(Y \times Y^t\) via the isogeny \(f\). Namely: there exists a polarization \(\nu\) on \(Y \times Y^t\) with \(f^* \nu = (\mu \times \mu)\) if and only if

(a) \(\alpha(\text{Ker}(\mu)) \subseteq \text{Ker}(\mu)\), and

(b) \(e_\mu(\alpha(y_1), \alpha(y_2)) \cdot e_\mu(y_1, y_2) = 1\) for all (scheme valued) points \(y_1, y_2\) of \(\text{Ker}(\mu)\).

Note that if such a descended polarization \(\nu\) exists then it is principal.

Condition (a) means that there exists an endomorphism \(\beta: Y^t \to Y^t\) such that \(\beta^t \mu = \mu \circ \alpha\). By (ii) of Proposition (11.21),

\[
e_\mu(\alpha(y_1), \alpha(y_2)) = e_\mu(\alpha(y_1), \alpha(y_2)) = e_\beta(\nu_1, \alpha(y_2)) = e_\beta(\nu_1, \beta^t \alpha(y_2)),
\]

so (b) is equivalent to the condition that \(e_\mu(y_1, (1 + \beta^t \alpha)(y_2)) = 1\) for all \(y_1, y_2\) in \(\text{Ker}(\mu)\). As \(e_\mu\) is a perfect pairing on \(\text{Ker}(\mu)\), this is equivalent to the condition that \((1 + \beta^t \alpha) \in \text{End}(Y)\) kills \(\text{Ker}(\mu)\).

We now apply this with \(Y = X^4\). Choose any polarization \(\lambda\) on \(X\), and take \(\mu = \lambda^4\) (so \(\mu = \lambda \times \lambda \times \lambda \times \lambda\)). For \(\alpha\) take the endomorphism \([\alpha]_X\) given by a \(4 \times 4\) matrix \(\alpha\) with integral coefficients. As \(\lambda^4 \cdot [\alpha]_X = [\alpha]_X \cdot \lambda^4\), condition (a) is automatically satisfied, and we have \(\beta = [\alpha]_X\) in the above. Using (ii) of Proposition (11.28) we find that the only condition that remains is that \([\text{id}_4 + \beta \alpha]_X\) kills \(\text{Ker}(\mu) = \text{Ker}(\lambda)^4\), where \(\text{id}_4\) is the \(4 \times 4\) identity matrix.

Choose an integer \(m\) such that \(\text{Ker}(\lambda) \subseteq X[m]\). We are done if we can find an integral \(4 \times 4\) matrix \(\alpha\) such that \(\text{id}_4 + \beta \alpha \equiv 0 \mod m\). To see that such a matrix can be found we use the
fact that every integer can be written as a sum of four squares. In particular there exist integers a, b, c, d with $a^2 + b^2 + c^2 + d^2 = m - 1$. Now take

$$
\alpha = \begin{pmatrix}
 a & -b & -c & -d \\
 b & a & -d & c \\
 c & d & a & -b \\
 d & -c & b & a
\end{pmatrix},
$$

(4)

for which we have $id_4 + 4\alpha = m \cdot id_4$.

(11.30) Remarks. (i) The choice of the matrix α can be explained as follows. Consider the Hamiltonian quaternion algebra $\mathbb{H} = \mathbb{R} \cdot 1 + \mathbb{R} \cdot i + \mathbb{R} \cdot j + \mathbb{R} \cdot k$, which is a central simple algebra over \mathbb{R}. For $x = a \cdot 1 + b \cdot i + c \cdot j + d \cdot k$ we define its complex conjugate by $\bar{x} = a \cdot 1 - b \cdot i - c \cdot j - d \cdot k$. The reduced trace and norm of \mathbb{H} over \mathbb{R} are given by

$$
\text{Trd}_{\mathbb{H}/\mathbb{R}}(x) = x + \bar{x} = 2a \\
\text{Nrd}_{\mathbb{H}/\mathbb{R}}(x) = x\bar{x} = a^2 + b^2 + c^2 + d^2.
$$

Further, taking $\{1, i, j, k\}$ as a basis of \mathbb{H}, left multiplication by x is given precisely by the matrix (4). The map $h: \mathbb{H} \to M_4(\mathbb{R})$ sending x to this matrix is an injective homomorphism of \mathbb{R}-algebras, and we have $h(\bar{x}) = h(x)$ and $\text{Nrd}_{\mathbb{H}/\mathbb{R}}(x) = \det(h(x))$. Further it is clear that h maps the subring $\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot i + \mathbb{Z} \cdot j + \mathbb{Z} \cdot k$ into $M_4(\mathbb{Z})$. In sum, we can think of α as being the (left) multiplication by $a \cdot 1 + b \cdot i + c \cdot j + d \cdot k$, where a, b, c, d are chosen such that $a^2 + b^2 + c^2 + d^2 = m - 1$.

(ii) In general there is no positive n such that for any abelian variety X the nth power X^n admits a principal polarization. To see this we go back to the example in (11.24). We start with an abelian variety Y of dimension $g \geq 2$ over a field $k = \bar{k}$ such that $\text{End}(Y) = \mathbb{Z}$ and such that Y does admit a principal polarization; see ?? for the existence. Any homomorphism $Y^n \to (Y^\ell)^n$ is of the form $\lambda^n \cdot [\alpha]_Y = [\alpha]_Y \cdot \lambda^n$ for some $\alpha \in M_n(\mathbb{Z})$, and it easily follows from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if $\alpha = \bar{\lambda}$. Now choose a prime number ℓ different from $\text{char}(k)$, and choose a subgroup $H \subset Y$ of order ℓ, generated by a point of order ℓ. Let $\pi: Y \to X := Y/H$ be the quotient.

Let μ be any polarization on X^n. By what was just explained we have $(\pi^n)^* \mu = \lambda^n \cdot [\alpha]_Y$ for some $\alpha \in M_n(\mathbb{Z})$. Moreover, $H \times \cdots \times H \subset \text{Ker}([\alpha]_Y)$, which readily implies that α is divisible by ℓ, say $\alpha = \ell \cdot \beta$. Further we have $\deg(\mu) \cdot \ell^{2n} = \deg([\alpha]_Y) = \ell^{2ng} \cdot \det(\beta)^{2g}$, so $\deg(\mu) = \ell^{2n(g-1)} \cdot \det(\beta)^{2g}$. In particular, X^n does not carry a principal polarization.

Exercises.

(11.1) Let $f: X \to Y$ be a homomorphism of abelian varieties with finite kernel. If $\mu: Y \to Y^\ell$ is a polarization, show that $f^* \mu := f^\ell \cdot \mu \cdot f$ is a polarization of X.

(11.2) Let X be an abelian variety over a field k. Suppose there exists a polarization $\lambda: X \to X^\ell$ with $\deg(\lambda) = m$ odd.

(i) Show that there exist integers a and b with $1 + a^2 + b^2 \equiv 0 \mod m$. [Hint: Use the Chinese remainder theorem. First find a solution modulo p for any prime p dividing m. Then use the fact that the curve $C \subset k^2$ given by $1 + x^2 + y^2 = 0$ is smooth over \mathbb{Z}_p ($p \neq 2$) to see that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
(ii) Adapting the proof of Zarhin’s trick, show that \(X^2 \times (X^t)^2 \) admits a principal polarization.

11.3 Let \(L \) be a line bundle on an abelian variety \(X \) over a perfect field \(k \). Write \(Y := K(L)^0_{\text{red}} \), which is an abelian subvariety of \(X \), and let \(q \colon X \to Z := X/Y \) be the quotient.

(i) Show that \(\varphi_L \colon X \to X^t \) factors as \(\varphi_L = q^t \circ \psi \circ q \) for some homomorphism \(\psi \colon Z \to Z^t \).

(ii) Show that there is a finite separable field extension \(k \subset K \) and a line bundle \(M \) on \(Z_K \) such that \(\psi_K = \varphi_M \).

(iii) With \(K \) and \(M \) as in (ii), conclude that the class of \(L \otimes q^* M^{-1} \) lies in \(\text{Pic}^0_{X/k}(K) \).