Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equivalence carries the same information as the associated homomorphism $\lambda = \varphi_L \colon X \to X^t$. And it is in fact this homomorphism that we shall put in the foreground. One reason for this is that λ usually has somewhat better arithmetic properties; for instance, it may be defined over a smaller field than any line bundle representing it. The positivity of an ample bundle shall later be translated into the positivity of the Rosati involution associated to λ ; this is an important result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore expect that it can be expressed directly in terms of the associated homomorphism $\lambda = \varphi_L$. This is indeed the case. As we have seen before (cf. ??), the ℓ -adic cohomology of X can be described in more elementary terms via the Tate- ℓ -module. The class $c_1(L)$ then takes the form of an alternating pairing E_{ℓ}^{λ} : $T_{\ell}X \times T_{\ell}X \to \mathbb{Z}_{\ell}(1)$, usually referred to as the Riemann form of L (or of λ). It is obtained, by a limit procedure, from pairings e_n^{λ} : $X[n] \times X[n] \to \mu_n$, called the Weil pairing.

§ 1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let $\lambda: X \to X^t$ be a homomorphism, and consider the line bundle $M := (\mathrm{id}, \lambda)^* \mathscr{P}_X$ on X. Then $\varphi_M = \lambda + \lambda^t$. In particular, if λ is symmetric then $\varphi_M = 2\lambda$.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5). \Box

(11.2) **Proposition.** Let X be an abelian variety over a field k. Let $\lambda: X \to X^t$ be a homomorphism. Then the following properties are equivalent:

- (a) λ is symmetric;
- (b) there exists a field extension $k \subset K$ and a line bundle L on X_K such that $\lambda_K = \varphi_L$;
- (c) there exists a finite separable field extension $k \subset K$ and a line bundle L on X_K such that $\lambda_K = \varphi_L$.

Proof. Assume (a) holds. Let $M := (\mathrm{id}, \lambda)^* \mathscr{P}_X$ and $N := M^2$. By the previous proposition we know that $\varphi_M = 2\lambda$, so $\varphi_N = 4\lambda$. In particular, $X[4] \subset K(N) = \mathrm{Ker}(\varphi_N)$. We claim that $X[2] \subset X[4]$ is totally isotropic with respect to the commutator pairing e^N . Indeed, if x, $x' \in X[2](T)$ for some k-scheme T then possibly after passing to an fppf covering of T we can write x = 2y and x' = 2y' for some $y, y' \in X[4](T)$. Our claim now follows by noting that the restriction of e^N to $X[4] \times X[4]$ takes values in μ_4 . By Corollary (8.11) we can find a line bundle

PolWp, 15 september, 2011 (812)

L on $X_{\overline{k}}$ such that $N \cong [2]^*L$ on $X_{\overline{k}}$. But then $4\lambda_{\overline{k}} = \varphi_{[2]^*L} = 4\varphi_L$, using Corollary (7.25). As $[4]_X$ is an epimorphism, it follows that $\lambda_{\overline{k}} = \varphi_L$. So (b) holds with $K = \overline{k}$.

To see that the apparently stronger condition (c) holds, view λ as a k-valued point of $Hom_{\mathsf{AV}}(X, X^t)$. Let $P(\lambda) \subset \operatorname{Pic}_{X/k}$ be the inverse image of λ under the homomorphism $\varphi: \operatorname{Pic}_{X/k} \to Hom_{\mathsf{AV}}(X, X^t)$. As $P(\lambda)$ is a closed subscheme of $\operatorname{Pic}_{X/k}$, it is locally of finite type. If T is a k-scheme then the T-valued points of $P(\lambda)$ are the classes of line bundles M on X_T such that $\varphi_M = \lambda$. Note that $P(\lambda)$ inherits a natural action of $X^t = \operatorname{Pic}_{X/k}^0$ by translations. The exact sequence of (7.22) tells us that for every k-scheme T the set $P(\lambda)(T)$ is either empty or it is a principal homogeneous space under $X^t(T)$. Hence if L is a line bundle on $X_{\overline{k}}$ with $\varphi_L = \lambda_{\overline{k}}$ then $x \mapsto [t_x^*L]$ defines an isomorphism of \overline{k} -schemes $(X^t)_{\overline{k}} \xrightarrow{\sim} P(\lambda)_{\overline{k}}$. In particular, $P(\lambda)$ is a geometrically integral k-scheme, so it has points with values in some finite separable extension $k \subset K$.

Finally, it is clear that (c) implies both (a) and (b). \Box

(11.3) Corollary. Let X/k be an abelian variety. Then the homomorphism $\psi: NS_{X/k} \to Hom^{symm}(X, X^t)$ of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that ψ is injective. Hence it suffices to show that ψ is surjective on k_s -valued points, and this follows from the preceding Proposition.

(11.4) Proposition. Let X/k be an abelian variety. Let $\lambda: X \to X^t$ be a symmetric homomorphism, and write $M := (\mathrm{id}, \lambda)^* \mathscr{P}_X$. Let $k \subset K$ be a field extension and let L be a line bundle on X_K with $\lambda_K = \varphi_L$.

- (i) We have: λ is an isogeny $\Leftrightarrow L$ is non-degenerate $\Leftrightarrow M$ is non-degenerate.
- (ii) If λ is an isogeny then L is effective if and only if M is effective.
- (iii) We have: L is ample $\Leftrightarrow M$ is ample.

Proof. By Proposition (11.1) $\varphi_{M_K} = 2\varphi_L = \varphi_{L^2}$, so M_K and L^2 are algebraically equivalent. Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For (iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective; this is just Proposition (2.22).

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.

(11.5) Corollary. Let X/k be an abelian variety. Let $\lambda: X \to X^t$ be a homomorphism. Then the following properties are equivalent:

- (a1) λ is a symmetric isogeny and the line bundle $(id, \lambda)^* \mathscr{P}$ on X is ample;
- (a2) λ is a symmetric isogeny and the line bundle (id, λ)* \mathscr{P} on X is effective;
- (b1) there exists a field extension $k \subset K$ and an ample line bundle L on X_K such that $\lambda_K = \varphi_L$;
- (b2) there exists a finite separable field extension $k \subset K$ and an ample line bundle L on X_K such that $\lambda_K = \varphi_L$.

(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny $\lambda: X \to X^t$ that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square: $deg(\lambda) = d^2$ with $d = \chi(L)$ if $\lambda_{\overline{k}} = \varphi_L$. If λ is an isomorphism (equivalent: λ has degree 1) then we call it a principal polarization.

It is clear that the sum of two polarizations is again a polarization. But of course the polarizations do not form a subgroup of $\operatorname{Hom}_{AV}(X, X^t)$.

We also remark that if λ is a polarization, then for any line bundle L on X_K with $\lambda_K = \varphi_L$ we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only depends on the associated homomorphism φ_N , as is clear for instance from Proposition (11.4).

(11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheaves

$$0 \longrightarrow X^t \longrightarrow \operatorname{Pic}_{X/k} \longrightarrow \operatorname{Hom}^{\operatorname{symm}}(X, X^t) \longrightarrow 0$$

which gives a long exact sequence in fppf cohomology

$$0 \longrightarrow X^{t}(k) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Hom}^{\operatorname{symm}}(X, X^{t}) \xrightarrow{\partial} H^{1}_{\operatorname{fppf}}(k, X^{t}) \longrightarrow \cdots$$

For $\lambda: X \to X^t$ a symmetric homomorphism, $\partial(\lambda)$ is the obstruction for finding a line bundle L on X (over k) with $\varphi_L = \lambda$. Now we know from Proposition (11.2) that $\partial(2\lambda) = 0$; hence $\partial(\lambda)$ lies in the image of

$$H^1_{\mathrm{fppf}}(k, X^t[2]) \to H^1_{\mathrm{fppf}}(k, X^t).$$

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) **Proposition.** Let $f: X \to Y$ be an isogeny. If $\mu: Y \to Y^t$ is a polarization of Y, then $f^*\mu := f^t \circ \mu \circ f$ is a polarization of X of degree $\deg(f^*\mu) = \deg(f)^2 \cdot \deg(\mu)$.

Proof. It is clear that $f^*\mu$ is an isogeny of the given degree. By assumption there is a field extension $k \subset K$ and an ample line bundle M on Y_K such that $\mu_K = \varphi_M$. Then $f^*\mu_K = \varphi_{f^*M}$ and because f is finite f^*M is an ample line bundle on X_K .

See Exercise (11.1) for a generalization.

(11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondence between X and Y is a line bundle L on $X \times Y$ together with rigidifications $\alpha: L_{|\{0\}\times Y} \xrightarrow{\sim} O_Y$ and $\beta: L_{|X\times\{0\}} \xrightarrow{\sim} O_X$ that coincide on the fibre over (0,0).

Correspondences between X and Y form a group $\operatorname{Corr}_k(X,Y)$, with group structure obtained by taking tensor products of line bundles. (Cf. the definition of $P_{X/S,\varepsilon}$ in Section (6.2).)

Note that the multiplicative groep \mathbb{G}_m acts (transitively) on the choices of the rigidifications (α, β) . Moreover, if Y = X we can speak of symmetric correspondences.

The Poincaré bundle $\mathscr{P} = \mathscr{P}_X$ on $X \times X^t$ comes equipped with a rigidification along $\{0\} \times X^t$. There is a unique rigidification along $X \times \{0\}$ such that the two rigidifications agree at the origin (0, 0). We thus obtain an element

$$[\mathscr{P}_X] = (\mathscr{P}_X, \alpha_{\mathscr{P}}, \beta_{\mathscr{P}}) \in \operatorname{Corr}_k(X, X^t).$$

The following proposition makes an alternative definition of the notion of polarization possible.

(11.10) Proposition. Let X/k be an abelian variety. Then we have a bijection

 $\{\text{polarizations } \lambda \colon X \to X^t\} \xrightarrow{\sim} \begin{cases} \text{symmetric divisorial correspondences} \\ (L, \alpha, \beta) \text{ on } X \times X \text{ such that } \Delta_X^*L \text{ is ample} \end{cases}$

by associating to a polarization λ the divisorial correspondence (L, α, β) with $L = (\mathrm{id}_X \times \lambda)^* \mathscr{P}_X$ and α and β the pull-backs under $\mathrm{id}_X \times \lambda$ of the rigidifications $\alpha_{\mathscr{P}}$ and $\beta_{\mathscr{P}}$.

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associating to (L, α, β) the unique homomorphism $\lambda: X \to X^t$ such that $(L, \alpha) = (\mathrm{id}_X \times \lambda)^* (\mathscr{P}_X, \alpha_{\mathscr{P}})$ as rigidified line bundles on $X \times X$. The assumption that (L, α, β) is symmetric implies that λ_X is symmetric, and because $(\mathrm{id}_X, \lambda)^* \mathscr{P}_X = \Delta_X^* (\mathrm{id}_X \times \lambda)^* \mathscr{P}_X = \Delta_X^* L$ is ample, λ is a polarization. This establishes the correspondence.

The alternative definition of a polarization suggested by Proposition (11.10) as "a symmetric self-correspondence such that restriction to the diagonal is ample" is evidently similar in appearance to the definition of a positive definite symmetric bilinear form in linear algebra. But, whereas in linear algebra one dominantly views a bilinear form b as a map $V \times V \to k$ rather than as a map $V \to V^*$ given by $v \mapsto (w \mapsto b(v, w))$, in the theory of abelian varieties the latter point of view dominates. Note further that the role of the evaluation map $V \times V^* \to k$ with $(v, w) \mapsto w(v)$ is played in our context by the Poincaré bundle \mathscr{P} .

§ 2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form, any isogeny f gives a pairing e_f between $\operatorname{Ker}(f)$ and $\operatorname{Ker}(f^t)$; this is an application of the duality result Theorem (7.5). Of particular interest is the case $f = [n]_X$. If we choose a polarization λ we can map X[n] to $X^t[n]$, and we obtain a bilinear form e_n^{λ} on X[n], called the Weil pairing. The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us to take the limit of the pairings $e_{\ell m}^{\lambda}$, obtaining a bilinear form E^{λ} with values in $\mathbb{Z}_{\ell}(1)$ on the Tate module $T_{\ell}X$. In cohomological terms this pairing is the first Chern class of λ (or rather, of any line bundle representing it). It is the ℓ -adic analogue of what over \mathbb{C} is called the Riemann form associated to a polarization. (See also ???)

(11.11) Definition. Let $f: X \to Y$ be an isogeny of abelian varieties over a field k. Write $\beta: \operatorname{Ker}(f^t) \xrightarrow{\sim} \operatorname{Ker}(f)^D$ for the isomorphism of Theorem (7.5).

(i) Define

$$e_f: \operatorname{Ker}(f) \times \operatorname{Ker}(f^t) \longrightarrow \mathbb{G}_{m,k}$$

to be the perfect bilinear pairing given (on points) by $e_f(x, y) = \beta(y)(x)$. Note that if Ker(f) is killed by $n \in \mathbb{Z}_{\geq 1}$ then e_f takes values in $\mu_n \subset \mathbb{G}_m$. In the particular case that $f = n_X \colon X \to X$ we obtain a pairing

$$e_n: X[n] \times X^t[n] \to \mu_n$$

which we call the Weil pairing.

(ii) Let $\lambda: X \to X^t$ be a homomorphism. We write

$$e_n^{\lambda} \colon X[n] \times X[n] \to \mu_n$$

for the bilinear pairing given by $e_n^{\lambda}(x_1, x_2) = e_n(x_1, \lambda(x_2))$. If $\lambda = \varphi_L$ for some line bundle L then we also write e_n^L instead of e_n^{λ} .

Recall that if A and B are finite commutative group schemes (written additively), a pairing $e: A \times B \to \mathbb{G}_m$ is said to be bilinear if $e(a+a', b) = e(a, b) \cdot e(a', b)$ and $e(a, b+b') = e(a, b) \cdot e(a, b')$ for all points a and a' of A and b and b' of B. (Points with values in an arbitrary k-scheme.) The

pairing e is said to be perfect if sending a to $e(a, -): B \to \mathbb{G}_m$ gives an isomorphism $A \xrightarrow{\sim} B^D$. This is equivalent to the condition that $b \mapsto e(-, b)$ gives an isomorphism $B \xrightarrow{\sim} A^D$. It is clear from the construction that the pairings e_f , in particular also the Weil pairings, are perfect bilinear pairings. If n is relatively prime to the degree of λ then the pairing e_n^{λ} is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We shall give a couple of different points of view.

(11.12) Let us first try to unravel the definition of e_f by going back to the proof of (7.5). This leads to the following description. Let T be a k-scheme. Let L be a rigidified line bundle on Y_T that represents a class $\eta \in \text{Ker}(f^t)(T)$. Then $f^*L \cong O_{X_T}$. Hence the geometric line bundle \mathbb{L} corresponding to L can be described as a quotient of $X_T \times_T \mathbb{A}_T^1$ by an action of $\text{Ker}(f)_T$. More precisely, by what was explained in (7.3) there exists a character χ : $\text{Ker}(f)_T \to \mathbb{G}_{m,T}$ such that the action of a point x of Ker(f) on $X_T \times_T \mathbb{A}_T^1$ is given (on points) by

$$(z,a) \mapsto (z+x,\chi(x) \cdot a).$$

The isomorphism $\operatorname{Ker}(f^t) \xrightarrow{\sim} \operatorname{Ker}(f)^D$ of Theorem (7.5) sends η to χ . Hence the pairing e_f is given by $e_f(x,\eta) = \chi(x)$.

(11.13) Next let us give a more geometric description of the Weil pairings e_n . Suppose D is a divisor on X such that nD is linearly equivalent to zero. Write $L = O_X(D)$. As $n^*L \cong O_X$ (cf. Exercise (7.2)), there exists a rational function g on X with divisor $(g) = n^*D$. But also $L^n \cong O_X$, so there exists a rational function f with divisor (f) = nD. Then n^*f and g^n both have divisor $n \cdot n^*D = n^*(nD)$, so there is a constant $c \in k^*$ with $g^n = c \cdot (n^*f)$.

Let $x \in X[n](k)$ be a k-rational n-torsion point. We find that

$$g(\xi)^n = c \cdot f(n\xi) = c \cdot f(n(\xi + x)) = g(\xi + x)^n = ((t_x^*g)(\xi))^n$$

for all $\xi \in X(\overline{k})$. So $g/t_x^*(g)$ is an *n*-th root of unity. We claim that in fact $e_n(x, [D]) = g/t_x^*(g)$.

To see this, note that we have an isomorphism of line bundles $n^*L \xrightarrow{\sim} O_X$ given by $g \mapsto 1$. As described in (11.12), there is a character $\chi: X[n] \to \mathbb{G}_m$ such that the natural action of X[n] on n^*L becomes the action of X[n] on O_X given by the character χ . Note that $x \in X[n](k)$ acts on the identity section $1 \in \Gamma(X, O_X)$ as multiplication by $\chi(x)^{-1}$. Hence $g/t_x^*(g) = \chi(x) = e_n(x, [D])$, as claimed.

(11.14) Example. We calculate the Weil pairing e_3 on the elliptic curve E over \mathbb{F}_2 given by the affine equation $y^2 + y = x^3$. This curve has 9 points over \mathbb{F}_4 which realise an isomorphism $E[3](\mathbb{F}_4) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Let $O = P_{\infty}$ be the point at ∞ , which we take as the identity element on E. The bundle $L = O_E(P_{\infty})$ is ample. The associated principal polarization $\lambda: E \xrightarrow{\sim} E^t = \operatorname{Pic}^0_{E/\mathbb{F}_2}$ is given on points by $R \mapsto O_E(O - R)$. (Note that this is minus the map given by $R \mapsto O_E(R - O)$; see Remark (2.11).)

Let us calculate $e_3^{\lambda}(Q, P)$ for P = (0, 0) and $Q = (1, \alpha)$, where α is an element of \mathbb{F}_4 not in \mathbb{F}_2 . First we note that the function y has divisor $(y) = 3 \cdot (P - O)$. Next we compute a function g with divisor $[3]^*(O - P)$. For this we compute the "triplication formula" on Ewhich expresses for a point $R = (\xi, \eta)$ on E the coordinates of 3R in those of R. As we have seen in Example (5.26), E is supersingular. The relative Frobenius $\pi = F_{E/\mathbb{F}_2} : E \to E$ is an endomorphism of E. One can show that it satisfies $\pi^2 = -2$, for example by verifying that for $T \in E$ the point $\pi^2(T)$ lies on the tangent line to E in T. As -1 on E is given by $(x, y) \mapsto (x, y + 1)$ we find that 2R has coordinates $(\xi^4, \eta^4 + 1)$. Next one calculates that the coordinates of 3R are $((\xi^9 + \xi^3 + 1)/(\xi + \xi^4)^2, (\eta\xi^3 + 1)^3/(\xi + \xi^4)^3)$. Hence the function

$$g = \frac{x^4 + x}{yx^3 + 1}$$

has divisor $(g) = [3]^*(O - P)$. (Use that $3 \cdot (g) = [3]^*(y) = 3 \cdot [3]^*(O - P)$.)

Now we know that g/t_Q^*g is constant and this constant can be computed by evaluating g and t_Q^*g at a suitable point T; so

$$g/t_Q^*g = g(T)/g(T+Q).$$

For T we take a point rational over \mathbb{F}_{64} . Let γ be a generator of \mathbb{F}_{64}^* with $\gamma^{21} = \alpha$ and such that $\delta := \gamma^9 \in \mathbb{F}_8^*$ satisfies $\delta^3 + \delta = 1$. Then the point $T = (\gamma^3, \gamma^{18})$ is in $E(\mathbb{F}_{64})$. One easily verifies that $(\gamma^{24}, \gamma^{18} + 1)$ is again a point of E, and that it lies on the line through T and Q; hence $T + Q = (\gamma^{24}, \gamma^{18})$. By (11.13) we conclude that $e_3^{\lambda}(Q, P) = e_3(Q, (O - P))$ equals $(\gamma^{12} + \gamma^3)/(\gamma^{33} + \gamma^{24}) = 1/\gamma^{21} = 1/\alpha = \alpha^2$.

The value of $e_3^{\lambda}(P', Q')$ for any pair $(P', Q') \in E[3] \times E[3]$ can be computed from this using the fact that e_3 is bilinear and alternating; see Cor. (11.22) below.

(11.15) Let $f: X \to Y$ be an isogeny of abelian varieties over a field k. By definition, $f^t: Y^t \to X^t$ is the unique map such that $(f \times \operatorname{id}_{Y^t})^* \mathscr{P}_Y \cong (\operatorname{id}_X \times f^t)^* \mathscr{P}_X$ as line bundles on $X \times Y^t$ with rigidification along $\{0\} \times Y^t$. Note that this isomorphism is unique, so without ambiguity we can define $\mathscr{Q} := (f \times \operatorname{id}_{Y^t})^* \mathscr{P}_Y = (\operatorname{id}_X \times f^t)^* \mathscr{P}_X$. The diagram to keep in mind is

$$\begin{array}{cccc} \mathscr{P}_X & \mathscr{Q} & \mathscr{P}_Y \\ X \times X^t & \xleftarrow{\operatorname{id} \times f^t} & X \times Y^t & \xrightarrow{f \times \operatorname{id}} & Y \times Y^t \end{array} \tag{1}$$

On the line bundle \mathscr{Q} we have an action of $\operatorname{Ker}(f) \times \{0\}$, lifting the action on $X \times Y^t$ by translations. This action is given by isomorphisms $\sigma_x \colon \mathscr{Q}_T \xrightarrow{\sim} t^*_{(x,0)} \mathscr{Q}_T$, for any k-scheme Tand $x \in \operatorname{Ker}(f)(T)$. Likewise, we have an action of $\{0\} \times \operatorname{Ker}(f^t)$, given by isomorphisms $\tau_q \colon \mathscr{Q}_T \xrightarrow{\sim} t^*_{(0,q)} \mathscr{Q}_T$ for $q \in \operatorname{Ker}(f^t)(T)$. Unless f is an isomorphism, these two group scheme actions on \mathscr{Q} do not commute, for if they did it would give us an action of $\operatorname{Ker}(f) \times \operatorname{Ker}(f^t)$ and \mathscr{Q} would descend to a line bundle L on $(X \times Y^t)/\operatorname{Ker}(f) \times \operatorname{Ker}(f^t) = Y \times X^t$. But then we had $(-1)^g = \chi(\mathscr{P}_X) = \operatorname{deg}(f) \cdot \chi(L)$, which is possible only if $\operatorname{deg}(f) = 1$. We shall prove that the extent to which the two actions fail to commute is measured by the pairing e_f .

Let \mathscr{Q}' be the restriction of \mathscr{Q} to $X \times \operatorname{Ker}(f^t)$. We have $\mathscr{Q}' = (\operatorname{id}_X \times f^t)^* ((\mathscr{P}_X)_{|X \times \{0\}})$, so the natural rigidification of \mathscr{P}_X along $X \times \{0\}$ (see (7.7)) gives us a trivialisation $\mathscr{Q}' \xrightarrow{\sim} O_{X \times \operatorname{Ker}(f^t)}$. The action of $\{0\} \times \operatorname{Ker}(f^t)$ on \mathscr{Q} restricts to the trivial action on \mathscr{Q}' . It will be useful to think of \mathscr{Q}' as being the sheaf of sections of \mathbb{A}^1 over $X \times \operatorname{Ker}(f^t)$. Writing $\mathbb{A}^1_{X \times \operatorname{Ker}(f^t)} = X \times \operatorname{Ker}(f^t) \times \mathbb{A}^1$, the action of a point $(0,q) \in \{0\} \times \operatorname{Ker}(f^t)$ on \mathscr{Q}' corresponds to the action on $X \times \operatorname{Ker}(f^t) \times \mathbb{A}^1$ given by τ_q : $(t, u, a) \mapsto (t, u + q, a)$.

Note that also the action of $\operatorname{Ker}(f) \times \{0\}$ restricts to an action on \mathscr{Q}' . To describe this action we apply what was explained in (11.12) in the "universal case", i.e., with $T = \operatorname{Ker}(f^t)$ and $\eta = \operatorname{id}_T$. The corresponding line bundle L on $Y_T = Y \times \operatorname{Ker}(f^t)$ is just the restriction of \mathscr{P}_Y to $Y \times \operatorname{Ker}(f^t)$, so f^*L is precisely our bundle \mathscr{Q}' . If we write a point of $\operatorname{Ker}(f)_T =$

 $\operatorname{Ker}(f) \times_k \operatorname{Ker}(f^t)$ as a pair (x, u) then the conclusion of (11.12) is that the character χ : $\operatorname{Ker}(f) \times_k \operatorname{Ker}(f^t) \to \mathbb{G}_{m,k} \times_k \operatorname{Ker}(f^t)$ is given by $(x, u) \mapsto (e_f(x, u), u)$. Hence the action of a point $(x, 0) \in \operatorname{Ker}(f) \times \{0\}$ on \mathscr{Q}' corresponds to the action on $X \times \operatorname{Ker}(f^t) \times \mathbb{A}^1$ given by $\sigma_x: (t, u, a) \mapsto (t + x, u, e_f(x, u) \cdot a)$.

Now we can start drawing some conclusions. The first result is an interpretation of the pairing e_f as a measure for the extent to which the two group scheme actions on \mathscr{Q} fail to commute.

(11.16) Proposition. Let $f: X \to Y$ be an isogeny of abelian varieties over a field k, and consider the line bundle $\mathscr{Q} := (f \times \operatorname{id}_{Y^t})^* \mathscr{P}_Y = (\operatorname{id}_X \times f^t)^* \mathscr{P}_X$ on $X \times Y^t$. Let T be a kscheme, $x \in \operatorname{Ker}(f)(T)$ and $q \in \operatorname{Ker}(f^t)(T)$. Let $\sigma_x: \mathscr{Q}_T \xrightarrow{\sim} t^*_{(x,0)} \mathscr{Q}_T$ be the isomorphism that gives the action of $(x,0) \in \operatorname{Ker}(f) \times \{0\}$ on \mathscr{Q}_T , and let $\tau_q: \mathscr{Q}_T \xrightarrow{\sim} t^*_{(0,q)} \mathscr{Q}_T$ be the isomorphism that gives the action of $(0,q) \in \{0\} \times \operatorname{Ker}(f^t)$. Then we have a commutative diagram

Proof. A priori it is clear that there exists a constant $c \in \mathbb{G}_m(T)$ such that $(t^*_{(0,q)}\sigma_x) \circ \tau_q = c \cdot (t^*_{(x,0)}\tau_q) \circ \sigma_x$, so all we need to show is that $c = e_f(x,q)$. For this we may restrict everything to $X \times \operatorname{Ker}(f^t)$. As in the above discussion, we think of \mathscr{Q}' as the sheaf of sections of \mathbb{A}^1 over $X \times \operatorname{Ker}(f^t)$. We have seen that $(t^*_{(x,0)}\tau_q) \circ \sigma_x$ is given on points by $(t, u, a) \mapsto (t + x, u + q, e_f(x, u) \cdot a)$, whereas $(t^*_{(0,q)}\sigma_x) \circ \tau_q$ is given by $(t, u, a) \mapsto (t + x, u + q, e_f(x, u + q) \cdot a)$. Because e_f is bilinear, the result follows.

Next we prove a compatibility result among the two main duality theorems that we have proved in Chapter 7.

(11.17) **Proposition.** Let $f: X \to Y$ be an isogeny of abelian varieties. Let $\kappa_X: X \to X^{tt}$ be the canonical isomorphism.

(i) For any k-scheme T and points $x \in \text{Ker}(f)(T)$ and $\eta \in \text{Ker}(f^t)(T)$ we have the relation $e_{f^t}(\eta, \kappa_X(x)) = e_f(x, \eta)^{-1}$.

(ii) Let β_1 : Ker $(f^t) \xrightarrow{\sim}$ Ker $(f)^D$ and β_2 : Ker $(f^{tt}) \xrightarrow{\sim}$ Ker $(f^t)^D$ be the canonical isomorphisms as in Theorem (7.5), and let γ : Ker $(f)^{DD} \xrightarrow{\sim}$ Ker(f) be the isomorphism of Theorem (3.22). Then the isomorphism Ker $(f) \xrightarrow{\sim}$ Ker (f^{tt}) induced by κ_X equals $-\beta_2^{-1} \circ \beta_1^D \circ \gamma^{-1}$.

Proof. (i) Consider the commutative diagram

If we read the lower row from right to left (term by term!), we get the row

$$Y^{t} \times Y^{tt} \quad \stackrel{\text{id} \times f^{tt}}{\longleftarrow} \quad Y^{t} \times X^{tt} \quad \stackrel{f^{t} \times \text{id}}{\longrightarrow} \quad X^{t} \times X^{tt}$$
$$-165 -$$

which is precisely (1) for the morphism $f^t: Y^t \to X^t$. Now the result follows from the previous proposition, with the -1 in the exponent coming from the fact that we are reading the lower row in (2) from right to left, thereby switching factors.

(ii) This follows from (i) using the relations $e_f(x,\eta) = \beta_1(\eta)(x) = (\beta_1^D \circ \gamma^{-1})(x)(\eta)$ and $e_{f^t}(\eta,\kappa_X(x)) = \beta_2(\kappa_X(x))(\eta)$.

(11.18) Example. Let X be an abelian variety over k. Let $\mathscr{P} = \mathscr{P}_X$ be its Poincaré bundle. Let n be a positive integer, and let $e_n: X[n] \times X^t[n] \to \mu_n$ be the Weil pairing.

The geometric line bundle on $X \times X^t[n]$ that corresponds to $\mathscr{P}_{|X \times X^t[n]}$ is the quotient of $\mathbb{A}^1_{X \times X^t[n]} = X \times X^t[n] \times \mathbb{A}^1$ under the action of $X[n] \times \{0\}$, with $x \in X[n]$ acting on $X \times X^t[n] \times \mathbb{A}^1$ by σ_x : $(t, u, a) \mapsto (t + x, u, e_n(x, u) \cdot a)$.

To make this completely explicit, suppose $k = \overline{k}$ and $\operatorname{char}(k) \nmid n$, so that X[n] and $X^t[n]$ are constant group schemes, each consisting of n^{2g} distinct points. Then for $\xi \in X^t[n](k)$, the restriction of the Poincaré bundle to $X \times \{\xi\}$ is given by

$$\mathscr{P}_{|X \times \{\xi\}}(U) = \left\{ f \in O_X(n^{-1}U) \mid f(v+x) = e_n(x,\xi) \cdot f(v) \text{ for all } v \in n^{-1}U \text{ and } x \in X[n] \right\}.$$

For the restriction of \mathscr{P}_X to $X[n] \times X^t$ we have an analogous description; namely, the corresponding geometric line bundle is the quotient of $\mathbb{A}^1_{X[n] \times X^t} = X[n] \times X^t \times \mathbb{A}^1$ under the action of $\{0\} \times X^t[n]$, with $\xi \in X^t[n]$ acting on $X[n] \times X^t \times \mathbb{A}^1$ by τ_{ξ} : $(t, u, a) \mapsto (t, u + \xi, e_n(t, \xi)^{-1} \cdot a)$. Note, however, that whereas our description of $\mathscr{P}_{|X \times X^t[n]}$ is essentially a reformulation of the definition of the Weil pairing, to arrive at our description of $\mathscr{P}_{|X[n] \times X^t}$ we use (i) of Proposition (11.17).

(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated isogeny $\varphi_L \colon X \to X^t$ is symmetric, we have $K(L) = \text{Ker}(\varphi_L) = \text{Ker}(\varphi_L^t)$, and we obtain a pairing

$$e_{\varphi_L} \colon K(L) \times K(L) \to \mathbb{G}_m$$

On the other hand we have the theta group $1 \longrightarrow \mathbb{G}_m \longrightarrow \mathscr{G}(L) \longrightarrow K(L) \longrightarrow 0$, and this, too, gives a pairing

$$e^L \colon K(L) \times K(L) \to \mathbb{G}_m$$

(11.20) Proposition. We have $e_{\varphi_L} = e^L$.

Proof. We apply what was explained in (11.15) to the isogeny $\varphi_L: X \to X^t$. We identify $X \times X^{tt}$ with $X \times X$ via the isomorphism $\mathrm{id} \times \kappa_X: X \times X \xrightarrow{\sim} X \times X^{tt}$. The line bundle $\mathscr{Q} := (\varphi_L \times \kappa_X)^* \mathscr{P}_{X^t} = (\mathrm{id} \times \varphi_L)^* \mathscr{P}_X$ is none other than the Mumford bundle $\Lambda(L)$ associated to L. Let $\mathscr{Q}' := \mathscr{Q}_{|X \times K(L)} = \Lambda(L)_{|X \times K(L)}$ which, as we already knew from Lemma (2.17), is trivial.

Let T be a k-scheme, and consider T-valued points $x, y \in K(L)(T)$. Possibly after replacing T by a covering we can choose isomorphisms $\varphi: L_T \xrightarrow{\sim} t_x^* L_T$ and $\psi: L_T \xrightarrow{\sim} t_y^* L_T$. Then (x, φ) and (y, ψ) are T-valued points of $\mathscr{G}(L)$, and by definition of the pairing e^L we have the relation

$$(t_y^*\varphi) \circ \psi = e^L(x,y) \cdot (t_x^*\psi) \circ \varphi \,. \tag{3}$$

We can also view ψ as the trivialisation

$$\psi: O_{X_T \times \{y\}} \xrightarrow{\sim} \Lambda(L_T)_{X_T \times \{y\}} = t_y^* L_T \otimes L_T^{-1}$$
$$- 166 -$$

that sends $1 \in \Gamma(X_T, O_{X_T \times \{y\}})$ to the global section ψ of $t_y^* L_T \otimes L_T^{-1}$. If $\sigma_x \colon \mathscr{Q}_T \to t_{(x,0)}^* \mathscr{Q}_T$ is the isomorphism that gives the action of $(x, 0) \in K(L) \times \{0\}$ on \mathscr{Q} then it follows from what we have seen in (11.15) that we have a commutative diagram

$$\begin{split} \Lambda(L)_{X_T \times \{y\}} & \xrightarrow{(\sigma_x)_{|X_T \times \{y\}}} & t^*_{(x,0)} \Lambda(L)_{|X_T \times \{y\}} \\ \psi \uparrow & \uparrow e_{\varphi_L}(x,y) \cdot \left(t^*_{(x,0)}\psi\right) \\ O_{X_T \times \{y\}} & \xrightarrow{\operatorname{can}} & t^*_{(x,0)} O_{X_T \times \{y\}} & . \end{split}$$

We have $t^*_{(x,0)}\Lambda(L_T) = m^*(t^*_xL_T \otimes L_T^{-1}) \otimes p^*_1(t^*_xL_T \otimes L_T^{-1})^{-1} \otimes \Lambda(L_T)$. Taking this as an identification, σ_x is given on sections by $s \mapsto m^*\varphi \otimes p^*_2\varphi^{-1} \otimes s$. (Note that this does not depend on the choice of φ .) Now restrict to $X_T \times \{y\}$ and use the natural identification

$$t^*_{(x,0)}\Lambda(L_T)|_{X_T \times \{y\}} = t^*_{x+y}L_T \otimes t^*_x L_T^{-1} = Hom(t^*_x L_T, t^*_{x+y}L_T).$$

we find that $\sigma_x \circ \psi$ maps $1 \in \Gamma(X_T, O_{X_T \times \{y\}})$ to the homomorphism $t_y^* \varphi \circ \psi \circ \varphi^{-1}$: $t_x^* L_T \to t_{x+y}^* L_T$. On the other hand, the composition $(t_{(x,0)}^* \psi) \circ \text{can sends } 1$ to $t_x^* \psi$. Hence we have

$$t_y^*\varphi \circ \psi \circ \varphi^{-1} = e_{\varphi_L}(x, y) \cdot t_x^* \psi$$

and comparison with (3) now gives the result.

(11.21) Proposition. (i) Let $f: X \to Y$ be a homomorphism of abelian varieties over k. Then for any integer $n \ge 1$ the diagram

$$\begin{array}{cccc} X[n] \times Y^t[n] & \xrightarrow{1 \times f^t} & X[n] \times X^t[n] \\ & & & & \downarrow e_n \\ Y[n] \times Y^t[n] & \xrightarrow{e_n} & \mu_n \end{array}$$

is commutative. In other words: if T is a k-scheme, $x \in X[n](T)$ and $\eta \in Y^t[n](T)$ then $e_n(f(x), \eta) = e_n(x, f^t(\eta)).$

(ii) Let $f: X \to Y$ and $g: Y \to Z$ be isogenies, and write $h := g \circ f: X \to Z$. Then we have "commutative diagrams"

where the maps labelled "i" are the natural inclusion homomorphisms. By our assertion that the first diagram is commutative we mean that if T is a k-scheme, $x \in \text{Ker}(f)(T)$ and $\eta \in \text{Ker}(h^t)(T)$ then $e_f(x, g^t(\eta)) = e_h(i(x), \eta)$; similarly for the second diagram.

Proof. (i) Let $\chi: Y[n]_T \to \mathbb{G}_{m,T}$ be the character corresponding to η , as in (11.12). Then the character corresponding to $h^t(\eta)$ is $\chi \circ h: X[n]_T \to \mathbb{G}_{m,T}$. By (11.12) we find

$$e_n(h(x),\eta) = \chi(h(x)) = \chi \circ h(x) = e_n(x,h^t(\eta))$$

(ii) Let χ : Ker $(h)_T \to \mathbb{G}_{m,T}$ be the character corresponding to η . Then the character Ker $(f)_T \to \mathbb{G}_{m,T}$ corresponding to $g^t(\eta)$ is simply $\chi \circ i$. Hence by what was explained in (11.12),

 $e_h(i(x),\eta) = \chi(i(x)) = \chi \circ i(x) = e_f(x,g^t(\eta))$. This gives the first commutative diagram. For the second, apply the first diagram to the composition $f^t \circ g^t \colon Z^t \to Y^t \to X^t$; then apply (i) of Proposition (11.17).

(11.22) Corollary. Let $\lambda: X \to X^t$ be a polarization, and let n be a positive integer. Then the pairing $e_n^{\lambda}: X[n] \times X[n] \to \mu_n$ is alternating: for any $x \in X[n](T)$ with T a k-scheme we have $e_n^{\lambda}(x, x) = 1$.

Proof. Without loss of generality we may assume that $k = \overline{k}$ and write $\lambda = \varphi_L$ for some ample L. Consider the composition $n\lambda = \lambda \circ [n]_X$. Applying (ii) of Proposition (11.21) we find a commutative diagram

$$\begin{array}{cccc} X[n] \times X^{t}[n] & \xrightarrow{e_{n}} & \mathbb{G}_{m} \\ i & \uparrow \lambda & & \parallel \\ \operatorname{Ker}(n\lambda) \times \operatorname{Ker}(n\lambda) & \xrightarrow{e_{n\lambda}} & \mathbb{G}_{m} \end{array}$$

This gives $e_n^{\lambda}(x,x) = e_n(x,\lambda \circ i(x)) = e_{n\lambda}(i(x),i(x)) = 1$, where in the last step we use Proposition (11.20) together with the remark that $n\lambda = \varphi_{L^n}$.

In particular, we find that the pairing e_n^{λ} is skew-symmetric: $e_n^{\lambda}(x,y) = e_n^{\lambda}(y,x)^{-1}$. Note, however, that skew-symmetry is weaker in general than the property of being alternating.

(11.23) Let X be an abelian variety over a field k. Fix a separable closure $k \subset k_s$. As usual, ℓ denotes a prime number different from char(k). Let $x = (0, x_1, x_2, ...)$ be an element of $T_{\ell}X$ and $\xi = (0, \xi_1, \xi_2, ...)$ and element of $T_{\ell}X^t$. Applying (ii) of Proposition (11.21) we find that

$$e_{\ell^m}(x_m,\xi_m) = e_{\ell^{m+1}}(\ell \cdot x_{m+1},\xi_{m+1}) = e_{\ell^{m+1}}(x_{m+1},\xi_{m+1})^{\ell}.$$

This means precisely that

$$E(x,\xi) = (1, e_{\ell}(x_1,\xi_1), e_{\ell^2}(x_2,\xi_2), \ldots)$$

is a well-defined element of $\mathbb{Z}_{\ell}(1) = T_{\ell}\mathbb{G}_m$. The map $(x,\xi) \mapsto E(x,\xi)$ defines a perfect bilinear pairing

$$E: T_{\ell}X \times T_{\ell}X^t \to \mathbb{Z}_{\ell}(1).$$

If $\beta: T_{\ell}X^t \xrightarrow{\sim} (T_{\ell}X)^{\vee}(1)$ is the canonical isomorphism as in Proposition (10.9) then the pairing E is nothing else but the composition

$$T_{\ell}X \times T_{\ell}X^{t} \xrightarrow{\operatorname{id} \times \beta} T_{\ell}X \times (T_{\ell}X)^{\vee}(1) \xrightarrow{\operatorname{ev}} \mathbb{Z}_{\ell}(1)$$

where the map "ev" is the canonical pairing, or "evaluation pairing". Note that the pairing E is equivariant with respect to the natural action of $\text{Gal}(k_s/k)$ on all the terms involved.

If $\lambda: X \to X^t$ is a polarization, we obtain a pairing

$$E^{\lambda}: T_{\ell}X \times T_{\ell}X \to \mathbb{Z}_{\ell}(1) \qquad \text{by} \qquad E^{\lambda}(x, x') := E(x, T_{\ell}\lambda(x')).$$

If $\lambda = \varphi_L$ we also write E^L for E^{λ} . It readily follows from Corollary (11.22) that the pairing E^{λ} is alternating.

Putting everything together, E^{λ} is a $\operatorname{Gal}(k_s/k)$ -invariant element in $(\wedge^2(T_{\ell}X)^{\vee})(1)$. The cohomological interpretation is that E^{λ} is the first Chern class of λ , or rather of any line bundle representing λ . Note that $(\wedge^2(T_{\ell}X)^{\vee})(1) = H^2(X_{k_s}, \mathbb{Z}_{\ell}(1))$, see Corollary (10.39).

§ 3. Existence of polarizations, and Zarhin's trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If g = 1 then X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via $Q \mapsto O - Q$). If $g \ge 2$ then in general X does not carry a principal polarization, not even if we allow an extension of the base field. Let us explain why this is so.

Fix $g \ge 2$. We shall use the fact that there exists an algebraically closed field k and an abelian variety Y of dimension g over k such that $\operatorname{End}(Y) = \mathbb{Z}$. A proof of this shall be given later; see ??. Note that this does not work for arbitrary k; for instance, every abelian variety over $\overline{\mathbb{F}}_p$ has $\mathbb{Z} \subsetneq \operatorname{End}(Y)$, as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may assume there is a principal polarization $\lambda: Y \to Y^t$. As $k = \overline{k}$ there is a line bundle L with $\lambda = \varphi_L$. Because λ is principal and $\operatorname{End}(X) = \mathbb{Z}$ the only polarizations of Y are those of the form $\varphi_{L^n} = n \cdot \lambda$, of degree n^{2g} .

On the other hand, if ℓ is any prime number different from $\operatorname{char}(k)$ then $Y[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}$ as group schemes. Hence Y has a subgroup scheme H of order ℓ . Let $q: Y \to X := Y/H$ be the quotient. If $\mu: X \to X^t$ is a polarization then $q^*\mu$ is a polarization of Y, with $\operatorname{deg}(q^*\mu) = \ell^2 \cdot \operatorname{deg}(\mu)$. But as just explained, any polarization of Y has degree equal to n^{2g} for some $n \in \mathbb{N}$. Hence μ cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension $g \ge 2$ over a field of characteristic p in general does not even carry a separable polarization; see ??.

To arrive at some positive results, we shall now first give a very useful criterion for when a polarization $\lambda: X \to X^t$ descends over an isogeny $f: X \to Y$. If L is a line bundle on X then by Theorem (8.10) there exists a line bundle M on Y with $L \cong f^*M$ if and only if the following conditions are satisfied:

(a) Ker(f) is contained in K(L) and is totally isotropic with respect to the pairing $e_{\mathscr{G}(L)} = e_{\varphi_L}$; (b) the inclusion map Ker(f) $\hookrightarrow K(L)$ can be lifted to a homomorphism Ker(f) $\hookrightarrow \mathscr{G}(L)$.

(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a polarization to descend, it suffices that the analogue of condition (a) holds.

(11.25) Proposition. Let $\lambda: X \to X^t$ be a symmetric isogeny, and let $f: X \to Y$ be an isogeny. (i) There exists a symmetric isogeny $\mu: Y \to Y^t$ such that $\lambda = f^*\mu := f^t \circ \mu \circ f$ if and only if Ker(f) is contained in Ker (λ) and is totally isotropic with respect to the pairing e_{λ} : Ker $(\lambda) \times$ Ker $(\lambda) \to \mathbb{G}_m$. If such an isogeny μ exists then it is unique.

(ii) Assume that an isogeny μ as in (i) exists. Then μ is a polarization if and only if λ is a polarization.

Note that the "only if" in (ii) was already proven in Proposition (11.8). For this implication the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If $\lambda = f^t \circ \mu \circ f$ then $\operatorname{Ker}(f) \subset \operatorname{Ker}(\lambda)$ and it follows from (ii) of Proposition (11.21), applied with $g = (f^t \circ \mu)$ and $h = \lambda$, that $\operatorname{Ker}(f)$ is totally isotropic for the pairing e_{λ} .

For the converse, assume $\operatorname{Ker}(f)$ is contained in $\operatorname{Ker}(\lambda)$ and is totally isotropic with respect to e_{λ} . Consider the line bundle $M := (1 \times \lambda)^* \mathscr{P}_X$ on $X \times X$. Recall from Example (8.26) that the theta group $\mathscr{G}(M)$ is naturally isomorphic to the Heisenberg group associated to the group scheme $\operatorname{Ker}(\lambda)$. We have natural actions of $\operatorname{Ker}(\lambda) \times \{0\}$ and $\{0\} \times \operatorname{Ker}(\lambda)$ on M; for the first action note that M can also be written as $(\lambda \times 1)^* \mathscr{P}_{X^t}$. The assumption that $\operatorname{Ker}(f) \subset \operatorname{Ker}(\lambda)$ is totally isotropic for e_{λ} means precisely that the actions of $\operatorname{Ker}(f) \times \{0\}$ and of $\{0\} \times \operatorname{Ker}(f)$ commute, and therefore define an action of $\operatorname{Ker}(f) \times \operatorname{Ker}(f)$ on M. This gives us a line bundle Non $Y \times Y$ such that $M \cong (f \times f)^* N$. If $\mu: Y \to Y^t$ is the (unique) homomorphism such that $N = (1 \times \mu)^* \mathscr{P}_Y$ then we get the desired relation $\lambda = f^t \circ \mu \circ f$. The uniqueness of μ is immediate from Lemma (5.4). But we also have $\lambda = \lambda^t = (f^t \circ \mu \circ f)^t = f^t \circ \mu^t \circ f$. Hence $\mu = \mu^t$.

(ii) By Proposition (11.2) there exists a field extension $k \subset K$ and a line bundle L on Y_K with $\mu_K = \varphi_L$, and then $\lambda_K = \varphi_{f^*L}$. Because f is finite, L is effective if and only if f^*L is effective.

(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X is isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization $\lambda: X \to X^t$. By Lemma (8.22) there exists a Lagrangian subgroup $H \subset \text{Ker}(\lambda)$. (There clearly exists a subgroup $H \subset \text{Ker}(\lambda)$ satisfying condition (i) of that Lemma.) By the previous Proposition, λ descends to a principal polarization on X/H. \Box

The conclusion of the Corollary no longer holds in general if we drop the assumption that the ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].

(11.27) Before we turn to Zarhin's trick, we recall from Exercise (7.8) some notation.

Suppose X is an abelian variety and $\alpha = (a_{ij})$ is an $r \times s$ matrix with integral coefficients. Then we denote by $[\alpha]_X \colon X^s \to X^r$ the homomorphism given by

$$[\alpha]_X(x_1,\ldots,x_s) = (a_{11}x_1 + a_{12}x_2 + \cdots + a_{1s}x_s,\ldots,\sum_{j=1}^s a_{ij}x_j,\ldots,a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rs}x_s).$$

For r = s = 1 this just gives our usual notation $[n]_X$ for the "multiplication by n" maps. As another example, the 1×2 matrix (11) gives the group law on X while the 2×1 matrix $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ gives the diagonal.

If β is a $q \times r$ matrix with integral coefficients then $[\beta \cdot \alpha]_X = [\beta]_X \circ [\alpha]_X \colon X^s \to X^q$. It follows that if α is an invertible $r \times r$ matrix then $[\alpha]_X$ is an automorphism of X^r . Further, if $f \colon X \to Y$ is a homomorphism of abelian varieties then for any integral $r \times s$ matrix α ,

$$[\alpha]_Y \circ \underbrace{(f, \dots, f)}_{s} = \underbrace{(f, \dots, f)}_{r} \circ [\alpha]_X \colon X^s \to Y^r \,.$$

(11.28) Proposition. Let X be an abelian variety of dimension g.

(i) If $\alpha \in M_r(\mathbb{Z})$ then $[\alpha]_X \colon X^r \to X^r$ has degree $\det(\alpha)^{2g}$.

(ii) Let β be an $r \times s$ matrix with integral coefficients. Then $([\beta]_X)^t = [{}^t\beta]_{X^t}$, where ${}^t\beta$ is the transposed matrix.

Proof. (i) If $\det(\alpha) = 0$ then it is readily seen that $[\alpha]_X$ has infinite kernel, so by convention we have $\deg([\alpha_X]) = 0$. Now assume $\det(\alpha) \neq 0$, and let $\{e_1, \ldots, e_r\}$ be the standard ordered basis of \mathbb{Z}^r . By the theory of elementary divisors, there is an ordered basis $\{f_1, \ldots, f_r\}$ for \mathbb{Z}^r and a sequence of nonzero integers (n_1, \ldots, n_r) such that $\alpha(e_i) = n_i \cdot f_i$. Let $\beta \in \operatorname{GL}_r(\mathbb{Z})$ be the matrix with $\beta(e_i) = f_i$, and let $\gamma = \operatorname{diag}(n_1, \ldots, n_r)$ be the diagonal matrix with coefficients n_i . Then $[\beta]_X$ is an automorphism of X^r and it is clear that $[\gamma]_X: X^r \to X^r$, which is given by $(x_1,\ldots,x_r) \mapsto (n_1x_1,\ldots,n_rx_r)$, has degree $(n_1\cdots n_r)^{2g} = \det(\alpha)^{2g}$. As $[\alpha]_X = [\gamma]_X \circ [\beta]_X$ the claim follows.

(ii) Write $\beta = (b_{ij})$. Any line bundle L on X^r with class in Pic⁰ can be written as $L = p_1^*L_1 \otimes \cdots \otimes p_r^*L_r$, where the $p_i: X^r \to X$ are the projection maps and the L_i are line bundles on X with class in Pic⁰. Because $(X^s)^t \cong (X^t)^s$ (cf. Exercise (6.2)) it suffices to know the restriction of $[\beta]_X^*L$ to each of the coordinate axes $\{0\} \times \cdots \times \{0\} \times X \times \{0\} \times \cdots \times \{0\}$. But the restriction of $[\beta]_X$ to the *j*-th coordinate axis is the map $X \to X^r$ given by $x \mapsto (b_{1j}x, b_{2j}x, \ldots, b_{rj}x)$ and the pull-back of L under this map is

$$b_{1j}^*L_1\otimes\cdots\otimes b_{rj}^*L_r=L_1^{\otimes b_{1j}}\otimes\cdots\otimes L_r^{\otimes b_{rj}}.$$

This means precisely that $[\beta]_X^t: (X^r)^t = (X^t)^r \to (X^s)^t = (X^t)^s$ is the map given by the matrix

(b_{11})	• • •	b_{i1}	• • •	b_{r1}	
÷		÷		÷	
b_{1j}		b_{ij}		b_{rj}	$= {}^{t}\beta$,
÷		÷		:	
b_{1s}		b_{is}		b_{rs}	

as claimed.

(11.29) Theorem. (Zarhin's trick) Let X be an abelian variety over a field k. Then $X^4 \times (X^t)^4$ carries a principal polarization.

Proof. Suppose we have an abelian variety Y, a polarization $\mu: Y \to Y^t$, and an endomorphism $\alpha: Y \to Y$. Consider the isogeny $f: Y \times Y \to Y \times Y^t$ given by $(y_1, y_2) \mapsto (y_1 - \alpha(y_2), \mu(y_2))$. The kernel is given by $\text{Ker}(f) = \{(\alpha(y), y) \mid y \in \text{Ker}(\mu)\}$. In particular, $\text{deg}(f) = \text{deg}(\mu)$. Proposition (11.25) tells us under what conditions the polarization $\mu \times \mu: (Y \times Y) \to (Y^t \times Y^t)$ descends to a polarization on $Y \times Y^t$ via the isogeny f. Namely: there exists a polarization ν on $Y \times Y^t$ with $f^*\nu = (\mu \times \mu)$ if and only if

(a) $\alpha(\operatorname{Ker}(\mu)) \subseteq \operatorname{Ker}(\mu)$, and

(b) $e_{\mu}(\alpha(y_1), \alpha(y_2)) \cdot e_{\mu}(y_1, y_2) = 1$ for all (scheme valued) points y_1, y_2 of Ker(μ).

Note that if such a descended polarization ν exists then it is principal.

Condition (a) means that there exists an endomorphism $\beta: Y^t \to Y^t$ such that $\beta \circ \mu = \mu \circ \alpha$. By (ii) of Proposition (11.21),

$$e_{\mu}(\alpha(y_1), \alpha(y_2)) = e_{\mu \circ \alpha}(y_1, \alpha(y_2)) = e_{\beta \circ \mu}(y_1, \alpha(y_2)) = e_{\mu}(y_1, \beta^t \alpha(y_2))$$

so (b) is equivalent to the condition that $e_{\mu}(y_1, (1 + \beta^t \alpha)(y_2)) = 1$ for all y_1, y_2 in Ker (μ) . As e_{μ} is a perfect pairing on Ker (μ) , this is equivalent to the condition that $(1 + \beta^t \alpha) \in \text{End}(Y)$ kills Ker (μ) .

We now apply this with $Y = X^4$. Choose any polarization λ on X, and take $\mu = \lambda^4$ (so $\mu = \lambda \times \lambda \times \lambda \times \lambda$). For α we take the endomorphism $[\alpha]_X$ given by a 4×4 matrix α with integral coefficients. As $\lambda^4 \circ [\alpha]_X = [\alpha]_{X^t} \circ \lambda^4$, condition (a) is automatically satisfied, and we have $\beta = [\alpha]_{X^t}$ in the above. Using (ii) of Proposition (11.28) we find that the only condition that remains is that $[\mathrm{id}_4 + {}^{\mathrm{t}}\alpha\alpha]_X$ kills $\mathrm{Ker}(\mu) = \mathrm{Ker}(\lambda)^4$, where id₄ is the 4×4 identity matrix.

Choose an integer m such that $\operatorname{Ker}(\lambda) \subset X[m]$. We are done if we can find an integral 4×4 matrix α such that $\operatorname{id}_4 + {}^{\operatorname{t}}\alpha \alpha \equiv 0 \mod m$. To see that such a matrix can be found we use the

fact that every integer can be written as a sum of four squares. In particular there exist integers a, b, c, d with $a^2 + b^2 + c^2 + d^2 = m - 1$. Now take

$$\alpha = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix},$$
(4)

for which we have $id_4 + {}^t\alpha\alpha = m \cdot id_4$.

(11.30) Remarks. (i) The choice of the matrix α can be explained as follows. Consider the Hamiltonian quaternion algebra $\mathbb{H} = \mathbb{R} \cdot 1 + \mathbb{R} \cdot i + \mathbb{R} \cdot j + \mathbb{R} \cdot k$, which is a central simple algebra over \mathbb{R} . For $x = a \cdot 1 + b \cdot i + c \cdot j + d \cdot k$ we define its complex conjugate by $\bar{x} = a \cdot 1 - b \cdot i - c \cdot j - d \cdot k$. The reduced trace and norm of \mathbb{H} over \mathbb{R} are given by

$$\operatorname{Trd}_{\mathbb{H}/\mathbb{R}}(x) = x + \bar{x} = 2a$$
 and $\operatorname{Nrd}_{\mathbb{H}/\mathbb{R}}(x) = x\bar{x} = a^2 + b^2 + c^2 + d^2$.

Further, taking $\{1, i, j, k\}$ as a basis of \mathbb{H} , left multiplication by x is given precisely by the matrix (4). The map $h: \mathbb{H} \to M_4(\mathbb{R})$ sending x to this matrix is an injective homomorphism of \mathbb{R} -algebras, and we have $h(\bar{x}) = {}^{\mathrm{th}}(x)$ and $\operatorname{Nrd}_{\mathbb{H}/\mathbb{R}}(x) = \det(h(x))$. Further it is clear that h maps the subring $\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot i + \mathbb{Z} \cdot j + \mathbb{Z} \cdot k$ into $M_4(\mathbb{Z})$. In sum, we can think of α as being the (left) multiplication by $a \cdot 1 + b \cdot i + c \cdot j + d \cdot k$, where a, b, c, d are chosen such that $a^2 + b^2 + c^2 + d^2 = m - 1$.

(ii) In general there is no positive n such that for any abelian variety X the nth power X^n admits a principal polarization. To see this we go back to the example in (11.24). We start with an abelian variety Y of dimension $g \ge 2$ over a field $k = \overline{k}$ such that $\operatorname{End}(Y) = \mathbb{Z}$ and such that Y does admit a principal polarization; see ?? for the existence. Any homomorphism $Y^n \to (Y^t)^n$ is of the form $\lambda^n \circ [\alpha]_Y = [\alpha]_{Y^t} \circ \lambda^n$ for some $\alpha \in M_n(\mathbb{Z})$, and it easily follows from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if $\alpha = {}^t\alpha$. Now choose a prime number ℓ different from char(k), and choose a subgroup $H \subset Y$ of order ℓ , generated by a point of order ℓ . Let $\pi: Y \to X := Y/H$ be the quotient.

Let μ be any polarization on X^n . By what was just explained we have $(\pi^n)^* \mu = \lambda^n \circ [\alpha]_Y$ for some $\alpha \in M_n(\mathbb{Z})$. Moreover, $H \times \cdots \times H \subset \operatorname{Ker}([\alpha]_Y)$, which readily implies that α is divisible by ℓ , say $\alpha = \ell \cdot \beta$. Further we have $\operatorname{deg}(\mu) \cdot \ell^{2n} = \operatorname{deg}([\alpha]_Y) = \ell^{2ng} \cdot \operatorname{det}(\beta)^{2g}$, so $\operatorname{deg}(\mu) = \ell^{2n(g-1)} \cdot \operatorname{det}(\beta)^{2g}$. In particular, X^n does not carry a principal polarization.

Exercises.

(11.1) Let $f: X \to Y$ be a homomorphism of abelian varieties with finite kernel. If $\mu: Y \to Y^t$ is a polarization, show that $f^*\mu := f^t \circ \mu \circ f$ is a polarization of X.

(11.2) Let X be an abelian variety over a field k. Suppose there exists a polarization $\lambda: X \to X^t$ with deg $(\lambda) = m$ odd.

(i) Show that there exist integers a and b with $1 + a^2 + b^2 \equiv 0 \mod m$. [Hint: Use the Chinese remainder theorem. First find a solution modulo p for any prime p dividing m. Then use the fact that the curve $C \subset \mathbb{A}^2$ given by $1 + x^2 + y^2 = 0$ is smooth over \mathbb{Z}_p $(p \neq 2 !)$ to see that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]

(ii) Adapting the proof of Zarhin's trick, show that $X^2 \times (X^t)^2$ admits a principal polarization.

(11.3) Let L be a line bundle on an abelian variety X over a perfect field k. Write $Y := K(L)_{red}^0$, which is an abelian subvariety of X, and let $q: X \to Z := X/Y$ be the quotient.

- (i) Show that $\varphi_L \colon X \to X^t$ factors as $\varphi_L = q^t \circ \psi \circ q$ for some homomorphism $\psi \colon Z \to Z^t$.
- (ii) Show that there is a finite separable field extension $k \subset K$ and a line bundle M on Z_K such that $\psi_K = \varphi_M$.
- (iii) With K and M as in (ii), conclude that the class of $L \otimes q^* M^{-1}$ lies in $\operatorname{Pic}^0_{X/k}(K)$.