Chapter XI. Polarizations and Weil pairings.

In the study of higher dimensional varieties and their moduli, one often considers polarized varieties. Here a polarization is usually defined as the class of an ample line bundle modulo a suitable equivalence relation, such as algebraic or homological equivalence. If X is an abelian variety then, as we have seen in (7.24), the class of an ample bundle L modulo algebraic equivalence carries the same information as the associated homomorphism $\lambda=\varphi_{L}: X \rightarrow X^{t}$. And it is in fact this homomorphism that we shall put in the foreground. One reason for this is that λ usually has somewhat better arithmetic properties; for instance, it may be defined over a smaller field than any line bundle representing it. The positivity of an ample bundle shall later be translated into the positivity of the Rosati involution associated to λ; this is an important result that shall be given in the next chapter.

The first Chern class of L only depends on L modulo algebraic equivalence, and we therefore expect that it can be expressed directly in terms of the associated homomorphism $\lambda=\varphi_{L}$. This is indeed the case. As we have seen before (cf. ??), the ℓ-adic cohomology of X can be described in more elementary terms via the Tate- ℓ-module. The class $c_{1}(L)$ then takes the form of an alternating pairing $E_{\ell}^{\lambda}: T_{\ell} X \times T_{\ell} X \rightarrow \mathbb{Z}_{\ell}(1)$, usually referred to as the Riemann form of L (or of λ). It is obtained, by a limit procedure, from pairings $e_{n}^{\lambda}: X[n] \times X[n] \rightarrow \mu_{n}$, called the Weil pairing.

§ 1. Polarizations.

(11.1) Proposition. Let X be an abelian variety. Let $\lambda: X \rightarrow X^{t}$ be a homomorphism, and consider the line bundle $M:=(\mathrm{id}, \lambda)^{*} \mathscr{P}_{X}$ on X. Then $\varphi_{M}=\lambda+\lambda^{t}$. In particular, if λ is symmetric then $\varphi_{M}=2 \lambda$.

Proof. Immediate from Proposition (7.6) together with Exercise (7.5).
(11.2) Proposition. Let X be an abelian variety over a field k. Let $\lambda: X \rightarrow X^{t}$ be a homomorphism. Then the following properties are equivalent:
(a) λ is symmetric;
(b) there exists a field extension $k \subset K$ and a line bundle L on X_{K} such that $\lambda_{K}=\varphi_{L}$;
(c) there exists a finite separable field extension $k \subset K$ and a line bundle L on X_{K} such that $\lambda_{K}=\varphi_{L}$.

Proof. Assume (a) holds. Let $M:=(\mathrm{id}, \lambda)^{*} \mathscr{P}_{X}$ and $N:=M^{2}$. By the previous proposition we know that $\varphi_{M}=2 \lambda$, so $\varphi_{N}=4 \lambda$. In particular, $X[4] \subset K(N)=\operatorname{Ker}\left(\varphi_{N}\right)$. We claim that $X[2] \subset X[4]$ is totally isotropic with respect to the commutator pairing e^{N}. Indeed, if x, $x^{\prime} \in X[2](T)$ for some k-scheme T then possibly after passing to an fppf covering of T we can write $x=2 y$ and $x^{\prime}=2 y^{\prime}$ for some $y, y^{\prime} \in X[4](T)$. Our claim now follows by noting that the restriction of e^{N} to $X[4] \times X[4]$ takes values in μ_{4}. By Corollary (8.11) we can find a line bundle
L on $X_{\bar{k}}$ such that $N \cong[2]^{*} L$ on $X_{\bar{k}}$. But then $4 \lambda_{\bar{k}}=\varphi_{[2]^{*} L}=4 \varphi_{L}$, using Corollary (7.25). As $[4]_{X}$ is an epimorphism, it follows that $\lambda_{\bar{k}}=\varphi_{L}$. So (b) holds with $K=\bar{k}$.

To see that the apparently stronger condition (c) holds, view λ as a k-valued point of $H o m_{\mathrm{AV}}\left(X, X^{t}\right)$. Let $P(\lambda) \subset \mathrm{Pic}_{X / k}$ be the inverse image of λ under the homomorphism $\varphi: \operatorname{Pic}_{X / k} \rightarrow \operatorname{Hom}_{\mathrm{AV}}\left(X, X^{t}\right)$. As $P(\lambda)$ is a closed subscheme of $\mathrm{Pic}_{X / k}$, it is locally of finite type. If T is a k-scheme then the T-valued points of $P(\lambda)$ are the classes of line bundles M on X_{T} such that $\varphi_{M}=\lambda$. Note that $P(\lambda)$ inherits a natural action of $X^{t}=\operatorname{Pic}_{X / k}^{0}$ by translations. The exact sequence of (7.22) tells us that for every k-scheme T the set $P(\lambda)(T)$ is either empty or it is a principal homogeneous space under $X^{t}(T)$. Hence if L is a line bundle on $X_{\bar{k}}$ with $\varphi_{L}=\lambda_{\bar{k}}$ then $x \mapsto\left[t_{x}^{*} L\right]$ defines an isomorphism of \bar{k}-schemes $\left(X^{t}\right)_{\bar{k}} \xrightarrow{\sim} P(\lambda)_{\bar{k}}$. In particular, $P(\lambda)$ is a geometrically integral k-scheme, so it has points with values in some finite separable extension $k \subset K$.

Finally, it is clear that (c) implies both (a) and (b).
(11.3) Corollary. Let X / k be an abelian variety. Then the homomorphism $\psi: \mathrm{NS}_{X / k} \rightarrow$ $\operatorname{Hom}^{\text {symm }}\left(X, X^{t}\right)$ of (7.26) is an isomorphism.

Proof. Both group schemes are étale and we already know that ψ is injective. Hence it suffices to show that ψ is surjective on k_{s}-valued points, and this follows from the preceding Proposition.
(11.4) Proposition. Let X / k be an abelian variety. Let $\lambda: X \rightarrow X^{t}$ be a symmetric homomorphism, and write $M:=(\mathrm{id}, \lambda)^{*} \mathscr{P}_{X}$. Let $k \subset K$ be a field extension and let L be a line bundle on X_{K} with $\lambda_{K}=\varphi_{L}$.
(i) We have: λ is an isogeny $\Leftrightarrow L$ is non-degenerate $\Leftrightarrow M$ is non-degenerate.
(ii) If λ is an isogeny then L is effective if and only if M is effective.
(iii) We have: L is ample $\Leftrightarrow M$ is ample.

Proof. By Proposition (11.1) $\varphi_{M_{K}}=2 \varphi_{L}=\varphi_{L^{2}}$, so M_{K} and L^{2} are algebraically equivalent. Now (i) is clear, and (ii) follows from Corollary (9.23) and part (ii) of Proposition (9.18). For (iii), recall that a line bundle N on X is ample if and only if N is non-degenerate and effective; this is just Proposition (2.22).

Putting Propositions (2.22), (11.2) and (11.4) together we obtain the following corollary.
(11.5) Corollary. Let X / k be an abelian variety. Let $\lambda: X \rightarrow X^{t}$ be a homomorphism. Then the following properties are equivalent:
(a1) λ is a symmetric isogeny and the line bundle (id, $\lambda)^{*} \mathscr{P}$ on X is ample;
(a2) λ is a symmetric isogeny and the line bundle (id, $\lambda)^{*} \mathscr{P}$ on X is effective;
(b1) there exists a field extension $k \subset K$ and an ample line bundle L on X_{K} such that $\lambda_{K}=\varphi_{L}$;
(b2) there exists a finite separable field extension $k \subset K$ and an ample line bundle L on X_{K} such that $\lambda_{K}=\varphi_{L}$.
(11.6) Definition. Let X be an abelian variety over a field k. A polarization of X is an isogeny $\lambda: X \rightarrow X^{t}$ that satisfies the equivalent conditions in (11.5).

By the Riemann-Roch Theorem (9.11) the degree of a polarization is always a square: $\operatorname{deg}(\lambda)=d^{2}$ with $d=\chi(L)$ if $\lambda_{\bar{k}}=\varphi_{L}$. If λ is an isomorphism (equivalent: λ has degree 1) then
we call it a principal polarization.
It is clear that the sum of two polarizations is again a polarization. But of course the polarizations do not form a subgroup of $\operatorname{Hom}_{\mathrm{AV}}\left(X, X^{t}\right)$.

We also remark that if λ is a polarization, then for any line bundle L on X_{K} with $\lambda_{K}=\varphi_{L}$ we have that L is ample. In fact, ampleness of a line bundle N on an abelian variety only depends on the associated homomorphism φ_{N}, as is clear for instance from Proposition (11.4).
(11.7) Let X be an abelian variety over a field k. We have an exact sequence of fppf sheaves

$$
0 \longrightarrow X^{t} \longrightarrow \operatorname{Pic}_{X / k} \longrightarrow \operatorname{Hom}^{\text {symm }}\left(X, X^{t}\right) \longrightarrow 0
$$

which gives a long exact sequence in fppf cohomology

$$
0 \longrightarrow X^{t}(k) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Hom}^{\text {symm }}\left(X, X^{t}\right) \xrightarrow{\partial} H_{\mathrm{fppf}}^{1}\left(k, X^{t}\right) \longrightarrow \cdots
$$

For $\lambda: X \rightarrow X^{t}$ a symmetric homomorphism, $\partial(\lambda)$ is the obstruction for finding a line bundle L on X (over k) with $\varphi_{L}=\lambda$. Now we know from Proposition (11.2) that $\partial(2 \lambda)=0$; hence $\partial(\lambda)$ lies in the image of

$$
H_{\mathrm{fppf}}^{1}\left(k, X^{t}[2]\right) \rightarrow H_{\mathrm{fppf}}^{1}\left(k, X^{t}\right) .
$$

(NOG VERDERE OPM OVER MAKEN, BV VGL MET GALOIS COHOM?)

(11.8) Proposition. Let $f: X \rightarrow Y$ be an isogeny. If $\mu: Y \rightarrow Y^{t}$ is a polarization of Y, then $f^{*} \mu:=f^{t} \circ \mu \circ f$ is a polarization of X of degree $\operatorname{deg}\left(f^{*} \mu\right)=\operatorname{deg}(f)^{2} \cdot \operatorname{deg}(\mu)$.

Proof. It is clear that $f^{*} \mu$ is an isogeny of the given degree. By assumption there is a field extension $k \subset K$ and an ample line bundle M on Y_{K} such that $\mu_{K}=\varphi_{M}$. Then $f^{*} \mu_{K}=\varphi_{f^{*} M}$ and because f is finite $f^{*} M$ is an ample line bundle on X_{K}.

See Exercise (11.1) for a generalization.
(11.9) Definition. Let X and Y be abelian varieties over k. A (divisorial) correspondence between X and Y is a line bundle L on $X \times Y$ together with rigidifications $\alpha: L_{\mid\{0\} \times Y} \xrightarrow{\sim} O_{Y}$ and $\beta: L_{\mid X \times\{0\}} \xrightarrow{\sim} O_{X}$ that coincide on the fibre over $(0,0)$.

Correspondences between X and Y form a group $\operatorname{Corr}_{k}(X, Y)$, with group structure obtained by taking tensor products of line bundles. (Cf. the definition of $P_{X / S, \varepsilon}$ in Section (6.2).)

Note that the multiplicative groep \mathbb{G}_{m} acts (transitively) on the choices of the rigidifications (α, β). Moreover, if $Y=X$ we can speak of symmetric correspondences.

The Poincaré bundle $\mathscr{P}=\mathscr{P}_{X}$ on $X \times X^{t}$ comes equipped with a rigidification along $\{0\} \times X^{t}$. There is a unique rigidification along $X \times\{0\}$ such that the two rigidifications agree at the origin $(0,0)$. We thus obtain an element

$$
\left[\mathscr{P}_{X}\right]=\left(\mathscr{P}_{X}, \alpha_{\mathscr{P}}, \beta_{\mathscr{P}}\right) \in \operatorname{Corr}_{k}\left(X, X^{t}\right) .
$$

The following proposition makes an alternative definition of the notion of polarization possible.
(11.10) Proposition. Let X / k be an abelian variety. Then we have a bijection

$$
\left\{\text { polarizations } \lambda: X \rightarrow X^{t}\right\} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { symmetric divisorial correspondences } \\
(L, \alpha, \beta) \text { on } X \times X \text { such that } \Delta_{X}^{*} L \text { is ample }
\end{array}\right\}
$$

by associating to a polarization λ the divisorial correspondence (L, α, β) with $L=\left(\operatorname{id}_{X} \times \lambda\right)^{*} \mathscr{P}_{X}$ and α and β the pull-backs under $\operatorname{id}_{X} \times \lambda$ of the rigidifications $\alpha_{\mathscr{P}}$ and $\beta_{\mathscr{P}}$.

Proof. This is essentially contained in Corollary (11.5). The inverse map is obtained by associating to (L, α, β) the unique homomorphism $\lambda: X \rightarrow X^{t}$ such that $(L, \alpha)=\left(\operatorname{id}_{X} \times \lambda\right)^{*}\left(\mathscr{P}_{X}, \alpha_{\mathscr{P}}\right)$ as rigidified line bundles on $X \times X$. The assumption that (L, α, β) is symmetric implies that λ_{X} is symmetric, and because $\left(\mathrm{id}_{X}, \lambda\right)^{*} \mathscr{P}_{X}=\Delta_{X}^{*}\left(\mathrm{id}_{X} \times \lambda\right)^{*} \mathscr{P}_{X}=\Delta_{X}^{*} L$ is ample, λ is a polarization. This establishes the correspondence.

The alternative definition of a polarization suggested by Proposition (11.10) as "a symmetric self-correspondence such that restriction to the diagonal is ample" is evidently similar in appearance to the definition of a positive definite symmetric bilinear form in linear algebra. But, whereas in linear algebra one dominantly views a bilinear form b as a map $V \times V \rightarrow k$ rather than as a map $V \rightarrow V^{*}$ given by $v \mapsto(w \mapsto b(v, w))$, in the theory of abelian varieties the latter point of view dominates. Note further that the role of the evaluation map $V \times V^{*} \rightarrow k$ with $(v, w) \mapsto w(v)$ is played in our context by the Poincaré bundle \mathscr{P}.

§ 2. Pairings.

We now turn to the study of some bilinear forms attached to isogenies. In its most general form, any isogeny f gives a pairing e_{f} between $\operatorname{Ker}(f)$ and $\operatorname{Ker}\left(f^{t}\right)$; this is an application of the duality result Theorem (7.5). Of particular interest is the case $f=[n]_{X}$. If we choose a polarization λ we can map $X[n]$ to $X^{t}[n]$, and we obtain a bilinear form e_{n}^{λ} on $X[n]$, called the Weil pairing. The pairings that we consider satisfy a number of compatibilities, which, for instance, allow us to take the limit of the pairings $e_{\ell^{m}}^{\lambda}$, obtaining a bilinear form E^{λ} with values in $\mathbb{Z}_{\ell}(1)$ on the Tate module $T_{\ell} X$. In cohomological terms this pairing is the first Chern class of λ (or rather, of any line bundle representing it). It is the ℓ-adic analogue of what over \mathbb{C} is called the Riemann form associated to a polarization. (See also ???)
(11.11) Definition. Let $f: X \rightarrow Y$ be an isogeny of abelian varieties over a field k. Write $\beta: \operatorname{Ker}\left(f^{t}\right) \xrightarrow{\sim} \operatorname{Ker}(f)^{D}$ for the isomorphism of Theorem (7.5).
(i) Define

$$
e_{f}: \operatorname{Ker}(f) \times \operatorname{Ker}\left(f^{t}\right) \longrightarrow \mathbb{G}_{m, k}
$$

to be the perfect bilinear pairing given (on points) by $e_{f}(x, y)=\beta(y)(x)$. Note that if $\operatorname{Ker}(f)$ is killed by $n \in \mathbb{Z}_{\geqslant 1}$ then e_{f} takes values in $\mu_{n} \subset \mathbb{G}_{m}$. In the particular case that $f=n_{X}: X \rightarrow X$ we obtain a pairing

$$
e_{n}: X[n] \times X^{t}[n] \rightarrow \mu_{n}
$$

which we call the Weil pairing.
(ii) Let $\lambda: X \rightarrow X^{t}$ be a homomorphism. We write

$$
e_{n}^{\lambda}: X[n] \times X[n] \rightarrow \mu_{n}
$$

for the bilinear pairing given by $e_{n}^{\lambda}\left(x_{1}, x_{2}\right)=e_{n}\left(x_{1}, \lambda\left(x_{2}\right)\right)$. If $\lambda=\varphi_{L}$ for some line bundle L then we also write e_{n}^{L} instead of e_{n}^{λ}.

Recall that if A and B are finite commutative group schemes (written additively), a pairing $e: A \times B \rightarrow \mathbb{G}_{m}$ is said to be bilinear if $e\left(a+a^{\prime}, b\right)=e(a, b) \cdot e\left(a^{\prime}, b\right)$ and $e\left(a, b+b^{\prime}\right)=e(a, b) \cdot e\left(a, b^{\prime}\right)$ for all points a and a^{\prime} of A and b and b^{\prime} of B. (Points with values in an arbitrary k-scheme.) The
pairing e is said to be perfect if sending a to $e(a,-): B \rightarrow \mathbb{G}_{m}$ gives an isomorphism $A \xrightarrow{\sim} B^{D}$. This is equivalent to the condition that $b \mapsto e(-, b)$ gives an isomorphism $B \xrightarrow{\sim} A^{D}$. It is clear from the construction that the pairings e_{f}, in particular also the Weil pairings, are perfect bilinear pairings. If n is relatively prime to the degree of λ then the pairing e_{n}^{λ} is perfect, too.

There are various ways in which we can make the pairings defined above more explicit. We shall give a couple of different points of view.
(11.12) Let us first try to unravel the definition of e_{f} by going back to the proof of (7.5). This leads to the following description. Let T be a k-scheme. Let L be a rigidified line bundle on Y_{T} that represents a class $\eta \in \operatorname{Ker}\left(f^{t}\right)(T)$. Then $f^{*} L \cong O_{X_{T}}$. Hence the geometric line bundle \mathbb{L} corresponding to L can be described as a quotient of $X_{T} \times_{T} \mathbb{A}_{T}^{1}$ by an action of $\operatorname{Ker}(f)_{T}$. More precisely, by what was explained in (7.3) there exists a character $\chi: \operatorname{Ker}(f)_{T} \rightarrow \mathbb{G}_{m, T}$ such that the action of a point x of $\operatorname{Ker}(f)$ on $X_{T} \times_{T} \mathbb{A}_{T}^{1}$ is given (on points) by

$$
(z, a) \mapsto(z+x, \chi(x) \cdot a)
$$

The isomorphism $\operatorname{Ker}\left(f^{t}\right) \xrightarrow{\sim} \operatorname{Ker}(f)^{D}$ of Theorem (7.5) sends η to χ. Hence the pairing e_{f} is given by $e_{f}(x, \eta)=\chi(x)$.
(11.13) Next let us give a more geometric description of the Weil pairings e_{n}. Suppose D is a divisor on X such that $n D$ is linearly equivalent to zero. Write $L=O_{X}(D)$. As $n^{*} L \cong O_{X}$ (cf. Exercise (7.2)), there exists a rational function g on X with divisor $(g)=n^{*} D$. But also $L^{n} \cong O_{X}$, so there exists a rational function f with divisor $(f)=n D$. Then $n^{*} f$ and g^{n} both have divisor $n \cdot n^{*} D=n^{*}(n D)$, so there is a constant $c \in k^{*}$ with $g^{n}=c \cdot\left(n^{*} f\right)$.

Let $x \in X[n](k)$ be a k-rational n-torsion point. We find that

$$
g(\xi)^{n}=c \cdot f(n \xi)=c \cdot f(n(\xi+x))=g(\xi+x)^{n}=\left(\left(t_{x}^{*} g\right)(\xi)\right)^{n}
$$

for all $\xi \in X(\bar{k})$. So $g / t_{x}^{*}(g)$ is an n-th root of unity. We claim that in fact $e_{n}(x,[D])=g / t_{x}^{*}(g)$.
To see this, note that we have an isomorphism of line bundles $n^{*} L \xrightarrow{\sim} O_{X}$ given by $g \mapsto 1$. As described in (11.12), there is a character $\chi: X[n] \rightarrow \mathbb{G}_{m}$ such that the natural action of $X[n]$ on $n^{*} L$ becomes the action of $X[n]$ on O_{X} given by the character χ. Note that $x \in X[n](k)$ acts on the identity section $1 \in \Gamma\left(X, O_{X}\right)$ as multiplication by $\chi(x)^{-1}$. Hence $g / t_{x}^{*}(g)=\chi(x)=e_{n}(x,[D])$, as claimed.
(11.14) Example. We calculate the Weil pairing e_{3} on the elliptic curve E over \mathbb{F}_{2} given by the affine equation $y^{2}+y=x^{3}$. This curve has 9 points over \mathbb{F}_{4} which realise an isomorphism $E[3]\left(\mathbb{F}_{4}\right) \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. Let $O=P_{\infty}$ be the point at ∞, which we take as the identity element on E. The bundle $L=O_{E}\left(P_{\infty}\right)$ is ample. The associated principal polarization $\lambda: E \xrightarrow{\sim} E^{t}=\mathrm{Pic}_{E / \mathbb{F}_{2}}^{0}$ is given on points by $R \mapsto O_{E}(O-R)$. (Note that this is minus the map given by $R \mapsto O_{E}(R-O)$; see Remark (2.11).)

Let us calculate $e_{3}^{\lambda}(Q, P)$ for $P=(0,0)$ and $Q=(1, \alpha)$, where α is an element of \mathbb{F}_{4} not in \mathbb{F}_{2}. First we note that the function y has divisor $(y)=3 \cdot(P-O)$. Next we compute a function g with divisor $[3]^{*}(O-P)$. For this we compute the "triplication formula" on E which expresses for a point $R=(\xi, \eta)$ on E the coordinates of $3 R$ in those of R. As we have seen in Example (5.26), E is supersingular. The relative Frobenius $\pi=F_{E / \mathbb{F}_{2}}: E \rightarrow E$ is an endomorphism of E. One can show that it satisfies $\pi^{2}=-2$, for example by verifying
that for $T \in E$ the point $\pi^{2}(T)$ lies on the tangent line to E in T. As -1 on E is given by $(x, y) \mapsto(x, y+1)$ we find that $2 R$ has coordinates $\left(\xi^{4}, \eta^{4}+1\right)$. Next one calculates that the coordinates of $3 R$ are $\left(\left(\xi^{9}+\xi^{3}+1\right) /\left(\xi+\xi^{4}\right)^{2},\left(\eta \xi^{3}+1\right)^{3} /\left(\xi+\xi^{4}\right)^{3}\right)$. Hence the function

$$
g=\frac{x^{4}+x}{y x^{3}+1}
$$

has divisor $(g)=[3]^{*}(O-P)$. (Use that $3 \cdot(g)=[3]^{*}(y)=3 \cdot[3]^{*}(O-P)$.)
Now we know that $g / t_{Q}^{*} g$ is constant and this constant can be computed by evaluating g and $t_{Q}^{*} g$ at a suitable point T; so

$$
g / t_{Q}^{*} g=g(T) / g(T+Q)
$$

For T we take a point rational over \mathbb{F}_{64}. Let γ be a generator of \mathbb{F}_{64}^{*} with $\gamma^{21}=\alpha$ and such that $\delta:=\gamma^{9} \in \mathbb{F}_{8}^{*}$ satisfies $\delta^{3}+\delta=1$. Then the point $T=\left(\gamma^{3}, \gamma^{18}\right)$ is in $E\left(\mathbb{F}_{64}\right)$. One easily verifies that $\left(\gamma^{24}, \gamma^{18}+1\right)$ is again a point of E, and that it lies on the line through T and Q; hence $T+Q=\left(\gamma^{24}, \gamma^{18}\right)$. By (11.13) we conclude that $e_{3}^{\lambda}(Q, P)=e_{3}(Q,(O-P))$ equals $\left(\gamma^{12}+\gamma^{3}\right) /\left(\gamma^{33}+\gamma^{24}\right)=1 / \gamma^{21}=1 / \alpha=\alpha^{2}$.

The value of $e_{3}^{\lambda}\left(P^{\prime}, Q^{\prime}\right)$ for any pair $\left(P^{\prime}, Q^{\prime}\right) \in E[3] \times E[3]$ can be computed from this using the fact that e_{3} is bilinear and alternating; see Cor. (11.22) below.
(11.15) Let $f: X \rightarrow Y$ be an isogeny of abelian varieties over a field k. By definition, $f^{t}: Y^{t} \rightarrow$ X^{t} is the unique map such that $\left(f \times \mathrm{id}_{Y^{t}}\right)^{*} \mathscr{P}_{Y} \cong\left(\mathrm{id}_{X} \times f^{t}\right)^{*} \mathscr{P}_{X}$ as line bundles on $X \times Y^{t}$ with rigidification along $\{0\} \times Y^{t}$. Note that this isomorphism is unique, so without ambiguity we can define $\mathscr{Q}:=\left(f \times \mathrm{id}_{Y^{t}}\right)^{*} \mathscr{P}_{Y}=\left(\mathrm{id}_{X} \times f^{t}\right)^{*} \mathscr{P}_{X}$. The diagram to keep in mind is

$$
\begin{array}{cccc}
\mathscr{P}_{X} & \mathscr{Q} & & \mathscr{P}_{Y} \tag{1}\\
X \times X^{t} & \stackrel{\mathrm{id} \times f^{t}}{\leftrightarrows} & X \times Y^{t} & \xrightarrow{f \times \mathrm{id}}
\end{array} Y \times Y^{t}
$$

On the line bundle \mathscr{Q} we have an action of $\operatorname{Ker}(f) \times\{0\}$, lifting the action on $X \times Y^{t}$ by translations. This action is given by isomorphisms $\sigma_{x}: \mathscr{Q}_{T} \xrightarrow{\sim} t_{(x, 0)}^{*} \mathscr{Q}_{T}$, for any k-scheme T and $x \in \operatorname{Ker}(f)(T)$. Likewise, we have an action of $\{0\} \times \operatorname{Ker}\left(f^{t}\right)$, given by isomorphisms $\tau_{q}: \mathscr{Q}_{T} \xrightarrow{\sim} t_{(0, q)}^{*} \mathscr{Q}_{T}$ for $q \in \operatorname{Ker}\left(f^{t}\right)(T)$. Unless f is an isomorphism, these two group scheme actions on \mathscr{Q} do not commute, for if they did it would give us an action of $\operatorname{Ker}(f) \times \operatorname{Ker}\left(f^{t}\right)$ and \mathscr{Q} would descend to a line bundle L on $\left(X \times Y^{t}\right) / \operatorname{Ker}(f) \times \operatorname{Ker}\left(f^{t}\right)=Y \times X^{t}$. But then we $\operatorname{had}(-1)^{g}=\chi\left(\mathscr{P}_{X}\right)=\operatorname{deg}(f) \cdot \chi(L)$, which is possible only if $\operatorname{deg}(f)=1$. We shall prove that the extent to which the two actions fail to commute is measured by the pairing e_{f}.

Let \mathscr{Q}^{\prime} be the restriction of \mathscr{Q} to $X \times \operatorname{Ker}\left(f^{t}\right)$. We have $\mathscr{Q}^{\prime}=\left(\operatorname{id}_{X} \times f^{t}\right)^{*}\left(\left(\mathscr{P}_{X}\right)_{\mid X \times\{0\}}\right)$, so the natural rigidification of \mathscr{P}_{X} along $X \times\{0\}$ (see (7.7)) gives us a trivialisation $\mathscr{Q}^{\prime} \xrightarrow{\sim}$ $O_{X \times \operatorname{Ker}\left(f^{t}\right)}$. The action of $\{0\} \times \operatorname{Ker}\left(f^{t}\right)$ on \mathscr{Q} restricts to the trivial action on \mathscr{Q}^{\prime}. It will be useful to think of \mathscr{Q}^{\prime} as being the sheaf of sections of \mathbb{A}^{1} over $X \times \operatorname{Ker}\left(f^{t}\right)$. Writing $\mathbb{A}_{X \times \operatorname{Ker}\left(f^{t}\right)}^{1}=$ $X \times \operatorname{Ker}\left(f^{t}\right) \times \mathbb{A}^{1}$, the action of a point $(0, q) \in\{0\} \times \operatorname{Ker}\left(f^{t}\right)$ on \mathscr{Q}^{\prime} corresponds to the action on $X \times \operatorname{Ker}\left(f^{t}\right) \times \mathbb{A}^{1}$ given by $\tau_{q}:(t, u, a) \mapsto(t, u+q, a)$.

Note that also the action of $\operatorname{Ker}(f) \times\{0\}$ restricts to an action on \mathscr{Q}^{\prime}. To describe this action we apply what was explained in (11.12) in the "universal case", i.e., with $T=\operatorname{Ker}\left(f^{t}\right)$ and $\eta=\mathrm{id}_{T}$. The corresponding line bundle L on $Y_{T}=Y \times \operatorname{Ker}\left(f^{t}\right)$ is just the restriction of \mathscr{P}_{Y} to $Y \times \operatorname{Ker}\left(f^{t}\right)$, so $f^{*} L$ is precisely our bundle \mathscr{Q}^{\prime}. If we write a point of $\operatorname{Ker}(f)_{T}=$
$\operatorname{Ker}(f) \times{ }_{k} \operatorname{Ker}\left(f^{t}\right)$ as a pair (x, u) then the conclusion of (11.12) is that the character $\chi: \operatorname{Ker}(f) \times{ }_{k}$ $\operatorname{Ker}\left(f^{t}\right) \rightarrow \mathbb{G}_{m, k} \times_{k} \operatorname{Ker}\left(f^{t}\right)$ is given by $(x, u) \mapsto\left(e_{f}(x, u), u\right)$. Hence the action of a point $(x, 0) \in \operatorname{Ker}(f) \times\{0\}$ on \mathscr{Q}^{\prime} corresponds to the action on $X \times \operatorname{Ker}\left(f^{t}\right) \times \mathbb{A}^{1}$ given by $\sigma_{x}:(t, u, a) \mapsto$ $\left(t+x, u, e_{f}(x, u) \cdot a\right)$.

Now we can start drawing some conclusions. The first result is an interpretation of the pairing e_{f} as a measure for the extent to which the two group scheme actions on \mathscr{Q} fail to commute.
(11.16) Proposition. Let $f: X \rightarrow Y$ be an isogeny of abelian varieties over a field k, and consider the line bundle $\mathscr{Q}:=\left(f \times \operatorname{id}_{Y^{t}}\right)^{*} \mathscr{P}_{Y}=\left(\mathrm{id}_{X} \times f^{t}\right)^{*} \mathscr{P}_{X}$ on $X \times Y^{t}$. Let T be a k scheme, $x \in \operatorname{Ker}(f)(T)$ and $q \in \operatorname{Ker}\left(f^{t}\right)(T)$. Let $\sigma_{x}: \mathscr{Q}_{T} \xrightarrow{\sim} t_{(x, 0)}^{*} \mathscr{Q}_{T}$ be the isomorphism that gives the action of $(x, 0) \in \operatorname{Ker}(f) \times\{0\}$ on \mathscr{Q}_{T}, and let $\tau_{q}: \mathscr{Q}_{T} \xrightarrow{\sim} t_{(0, q)}^{*} \mathscr{Q}_{T}$ be the isomorphism that gives the action of $(0, q) \in\{0\} \times \operatorname{Ker}\left(f^{t}\right)$. Then we have a commutative diagram

$$
\begin{array}{cccc}
\mathscr{Q}_{T} & \xrightarrow{\sigma_{x}} & t_{(x, 0)}^{*} \mathscr{Q}_{T} & \xrightarrow{t_{(x, 0)}^{*} \tau_{q}} \\
\| & t_{(x, q)}^{*} \mathscr{Q}_{T} \\
\mathscr{Q}_{T} & \xrightarrow{\tau_{q}} & t_{(0, q)}^{*} \mathscr{Q}_{T} & \xrightarrow{t_{(0, q)}^{*} \sigma_{x}} \\
t_{(x, q)}^{*} & \text { multiplication by } e_{f}(x, q)
\end{array}
$$

Proof. A priori it is clear that there exists a constant $c \in \mathbb{G}_{m}(T)$ such that $\left(t_{(0, q)}^{*} \sigma_{x}\right) \circ \tau_{q}=$ $c \cdot\left(t_{(x, 0)}^{*} \tau_{q}\right) \circ \sigma_{x}$, so all we need to show is that $c=e_{f}(x, q)$. For this we may restrict everything to $X \times \operatorname{Ker}\left(f^{t}\right)$. As in the above discussion, we think of \mathscr{Q}^{\prime} as the sheaf of sections of \mathbb{A}^{1} over $X \times \operatorname{Ker}\left(f^{t}\right)$. We have seen that $\left(t_{(x, 0)}^{*} \tau_{q}\right) \circ \sigma_{x}$ is given on points by $(t, u, a) \mapsto(t+x, u+$ $\left.q, e_{f}(x, u) \cdot a\right)$, whereas $\left(t_{(0, q)}^{*} \sigma_{x}\right) \circ \tau_{q}$ is given by $(t, u, a) \mapsto\left(t+x, u+q, e_{f}(x, u+q) \cdot a\right)$. Because e_{f} is bilinear, the result follows.

Next we prove a compatibility result among the two main duality theorems that we have proved in Chapter 7.
(11.17) Proposition. Let $f: X \rightarrow Y$ be an isogeny of abelian varieties. Let $\kappa_{X}: X \rightarrow X^{t t}$ be the canonical isomorphism.
(i) For any k-scheme T and points $x \in \operatorname{Ker}(f)(T)$ and $\eta \in \operatorname{Ker}\left(f^{t}\right)(T)$ we have the relation $e_{f^{t}}\left(\eta, \kappa_{X}(x)\right)=e_{f}(x, \eta)^{-1}$.
(ii) Let $\beta_{1}: \operatorname{Ker}\left(f^{t}\right) \xrightarrow{\sim} \operatorname{Ker}(f)^{D}$ and $\beta_{2}: \operatorname{Ker}\left(f^{t t}\right) \xrightarrow{\sim} \operatorname{Ker}\left(f^{t}\right)^{D}$ be the canonical isomorphisms as in Theorem (7.5), and let $\gamma: \operatorname{Ker}(f)^{D D} \xrightarrow{\sim} \operatorname{Ker}(f)$ be the isomophism of Theorem (3.22). Then the isomorphism $\operatorname{Ker}(f) \xrightarrow{\sim} \operatorname{Ker}\left(f^{t t}\right)$ induced by κ_{X} equals $-\beta_{2}^{-1} \circ \beta_{1}^{D} \circ \gamma^{-1}$.
Proof. (i) Consider the commutative diagram

If we read the lower row from right to left (term by term!), we get the row

$$
Y^{t} \times Y^{t t} \stackrel{\mathrm{id} \times f^{t t}}{\longleftrightarrow} \quad Y^{t} \times X^{t t} \quad \xrightarrow{f^{t} \times \mathrm{id}} \quad X^{t} \times X^{t t}
$$

which is precisely (1) for the morphism $f^{t}: Y^{t} \rightarrow X^{t}$. Now the result follows from the previous proposition, with the -1 in the exponent coming from the fact that we are reading the lower row in (2) from right to left, thereby switching factors.
(ii) This follows from (i) using the relations $e_{f}(x, \eta)=\beta_{1}(\eta)(x)=\left(\beta_{1}^{D} \circ \gamma^{-1}\right)(x)(\eta)$ and $e_{f^{t}}\left(\eta, \kappa_{X}(x)\right)=\beta_{2}\left(\kappa_{X}(x)\right)(\eta)$.
(11.18) Example. Let X be an abelian variety over k. Let $\mathscr{P}=\mathscr{P}_{X}$ be its Poincaré bundle. Let n be a positive integer, and let $e_{n}: X[n] \times X^{t}[n] \rightarrow \mu_{n}$ be the Weil pairing.

The geometric line bundle on $X \times X^{t}[n]$ that corresponds to $\mathscr{P}_{\mid X \times X^{t}[n]}$ is the quotient of $\mathbb{A}_{X \times X^{t}[n]}^{1}=X \times X^{t}[n] \times \mathbb{A}^{1}$ under the action of $X[n] \times\{0\}$, with $x \in X[n]$ acting on $X \times X^{t}[n] \times \mathbb{A}^{1}$ by $\sigma_{x}:(t, u, a) \mapsto\left(t+x, u, e_{n}(x, u) \cdot a\right)$.

To make this completely explicit, suppose $k=\bar{k}$ and $\operatorname{char}(k) \nmid n$, so that $X[n]$ and $X^{t}[n]$ are constant group schemes, each consisting of $n^{2 g}$ distinct points. Then for $\xi \in X^{t}[n](k)$, the restriction of the Poincaré bundle to $X \times\{\xi\}$ is given by

$$
\mathscr{P}_{\mid X \times\{\xi\}}(U)=\left\{f \in O_{X}\left(n^{-1} U\right) \mid f(v+x)=e_{n}(x, \xi) \cdot f(v) \text { for all } v \in n^{-1} U \text { and } x \in X[n]\right\} .
$$

For the restriction of \mathscr{P}_{X} to $X[n] \times X^{t}$ we have an analogous description; namely, the corresponding geometric line bundle is the quotient of $\mathbb{A}_{X[n] \times X^{t}}^{1}=X[n] \times X^{t} \times \mathbb{A}^{1}$ under the action of $\{0\} \times X^{t}[n]$, with $\xi \in X^{t}[n]$ acting on $X[n] \times X^{t} \times \mathbb{A}^{1}$ by $\tau_{\xi}:(t, u, a) \mapsto(t, u+$ $\left.\xi, e_{n}(t, \xi)^{-1} \cdot a\right)$. Note, however, that whereas our description of $\mathscr{P}_{\mid X \times X^{t}[n]}$ is essentially a reformulation of the definition of the Weil pairing, to arrive at our description of $\mathscr{P}_{\mid X[n] \times X^{t}}$ we use (i) of Proposition (11.17).
(11.19) Let L be a non-degenerate line bundle on an abelian variety X. As the associated isogeny $\varphi_{L}: X \rightarrow X^{t}$ is symmetric, we have $K(L)=\operatorname{Ker}\left(\varphi_{L}\right)=\operatorname{Ker}\left(\varphi_{L}^{t}\right)$, and we obtain a pairing

$$
e_{\varphi_{L}}: K(L) \times K(L) \rightarrow \mathbb{G}_{m}
$$

On the other hand we have the theta group $1 \longrightarrow \mathbb{G}_{m} \longrightarrow \mathscr{G}(L) \longrightarrow K(L) \longrightarrow 0$, and this, too, gives a pairing

$$
e^{L}: K(L) \times K(L) \rightarrow \mathbb{G}_{m}
$$

(11.20) Proposition. We have $e_{\varphi_{L}}=e^{L}$.

Proof. We apply what was explained in (11.15) to the isogeny $\varphi_{L}: X \rightarrow X^{t}$. We identify $X \times X^{t t}$ with $X \times X$ via the isomorphism id $\times \kappa_{X}: X \times X \xrightarrow{\sim} X \times X^{t t}$. The line bundle $\mathscr{Q}:=\left(\varphi_{L} \times \kappa_{X}\right)^{*} \mathscr{P}_{X^{t}}=\left(\operatorname{id} \times \varphi_{L}\right)^{*} \mathscr{P}_{X}$ is none other than the Mumford bundle $\Lambda(L)$ associated to L. Let $\mathscr{Q}^{\prime}:=\mathscr{Q}_{\mid X \times K(L)}=\Lambda(L)_{\mid X \times K(L)}$ which, as we already knew from Lemma (2.17), is trivial.

Let T be a k-scheme, and consider T-valued points $x, y \in K(L)(T)$. Possibly after replacing T by a covering we can choose isomorphisms $\varphi: L_{T} \xrightarrow{\sim} t_{x}^{*} L_{T}$ and $\psi: L_{T} \xrightarrow{\sim} t_{y}^{*} L_{T}$. Then (x, φ) and (y, ψ) are T-valued points of $\mathscr{G}(L)$, and by definition of the pairing e^{L} we have the relation

$$
\begin{equation*}
\left(t_{y}^{*} \varphi\right) \circ \psi=e^{L}(x, y) \cdot\left(t_{x}^{*} \psi\right) \circ \varphi \tag{3}
\end{equation*}
$$

We can also view ψ as the trivialisation

$$
\psi: O_{X_{T} \times\{y\}} \xrightarrow{\sim} \Lambda\left(L_{T}\right)_{X_{T} \times\{y\}}=t_{y}^{*} L_{T} \otimes L_{T}^{-1}
$$

that sends $1 \in \Gamma\left(X_{T}, O_{X_{T} \times\{y\}}\right)$ to the global section ψ of $t_{y}^{*} L_{T} \otimes L_{T}^{-1}$. If $\sigma_{x}: \mathscr{Q}_{T} \rightarrow t_{(x, 0)}^{*} \mathscr{Q}_{T}$ is the isomorphism that gives the action of $(x, 0) \in K(L) \times\{0\}$ on \mathscr{Q} then it follows from what we have seen in (11.15) that we have a commutative diagram

We have $t_{(x, 0)}^{*} \Lambda\left(L_{T}\right)=m^{*}\left(t_{x}^{*} L_{T} \otimes L_{T}^{-1}\right) \otimes p_{1}^{*}\left(t_{x}^{*} L_{T} \otimes L_{T}^{-1}\right)^{-1} \otimes \Lambda\left(L_{T}\right)$. Taking this as an identification, σ_{x} is given on sections by $s \mapsto m^{*} \varphi \otimes p_{2}^{*} \varphi^{-1} \otimes s$. (Note that this does not depend on the choice of φ.) Now restrict to $X_{T} \times\{y\}$ and use the natural identification

$$
t_{(x, 0)}^{*} \Lambda\left(L_{T}\right)_{\mid X_{T} \times\{y\}}=t_{x+y}^{*} L_{T} \otimes t_{x}^{*} L_{T}^{-1}=\operatorname{Hom}\left(t_{x}^{*} L_{T}, t_{x+y}^{*} L_{T}\right)
$$

we find that $\sigma_{x} \circ \psi$ maps $1 \in \Gamma\left(X_{T}, O_{X_{T} \times\{y\}}\right)$ to the homomorphism $t_{y}^{*} \varphi \circ \psi \circ \varphi^{-1}: t_{x}^{*} L_{T} \rightarrow$ $t_{x+y}^{*} L_{T}$. On the other hand, the composition $\left(t_{(x, 0)}^{*} \psi\right) \circ$ can sends 1 to $t_{x}^{*} \psi$. Hence we have

$$
t_{y}^{*} \varphi \circ \psi \circ \varphi^{-1}=e_{\varphi_{L}}(x, y) \cdot t_{x}^{*} \psi
$$

and comparison with (3) now gives the result.
(11.21) Proposition. (i) Let $f: X \rightarrow Y$ be a homomorphism of abelian varieties over k. Then for any integer $n \geqslant 1$ the diagram

is commutative. In other words: if T is a k-scheme, $x \in X[n](T)$ and $\eta \in Y^{t}[n](T)$ then $e_{n}(f(x), \eta)=e_{n}\left(x, f^{t}(\eta)\right)$.
(ii) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be isogenies, and write $h:=g \circ f: X \rightarrow Z$. Then we have "commutative diagrams"

where the maps labelled " i " are the natural inclusion homomorphisms. By our assertion that the first diagram is commutative we mean that if T is a k-scheme, $x \in \operatorname{Ker}(f)(T)$ and $\eta \in \operatorname{Ker}\left(h^{t}\right)(T)$ then $e_{f}\left(x, g^{t}(\eta)\right)=e_{h}(i(x), \eta)$; similarly for the second diagram.

Proof. (i) Let $\chi: Y[n]_{T} \rightarrow \mathbb{G}_{m, T}$ be the character corresponding to η, as in (11.12). Then the character corresponding to $h^{t}(\eta)$ is $\chi \circ h: X[n]_{T} \rightarrow \mathbb{G}_{m, T}$. By (11.12) we find

$$
e_{n}(h(x), \eta)=\chi(h(x))=\chi \circ h(x)=e_{n}\left(x, h^{t}(\eta)\right) .
$$

(ii) Let $\chi: \operatorname{Ker}(h)_{T} \rightarrow \mathbb{G}_{m, T}$ be the character corresponding to η. Then the character $\operatorname{Ker}(f)_{T} \rightarrow \mathbb{G}_{m, T}$ corresponding to $g^{t}(\eta)$ is simply $\chi \circ i$. Hence by what was explained in (11.12),
$e_{h}(i(x), \eta)=\chi(i(x))=\chi \circ i(x)=e_{f}\left(x, g^{t}(\eta)\right)$. This gives the first commutative diagram. For the second, apply the first diagram to the composition $f^{t} \circ g^{t}: Z^{t} \rightarrow Y^{t} \rightarrow X^{t}$; then apply (i) of Proposition (11.17).
(11.22) Corollary. Let $\lambda: X \rightarrow X^{t}$ be a polarization, and let n be a positive integer. Then the pairing $e_{n}^{\lambda}: X[n] \times X[n] \rightarrow \mu_{n}$ is alternating: for any $x \in X[n](T)$ with T a k-scheme we have $e_{n}^{\lambda}(x, x)=1$.

Proof. Without loss of generality we may assume that $k=\bar{k}$ and write $\lambda=\varphi_{L}$ for some ample L. Consider the composition $n \lambda=\lambda \circ[n]_{X}$. Applying (ii) of Proposition (11.21) we find a commutative diagram

This gives $e_{n}^{\lambda}(x, x)=e_{n}(x, \lambda \circ i(x))=e_{n \lambda}(i(x), i(x))=1$, where in the last step we use Proposition (11.20) together with the remark that $n \lambda=\varphi_{L^{n}}$.

In particular, we find that the pairing e_{n}^{λ} is skew-symmetric: $e_{n}^{\lambda}(x, y)=e_{n}^{\lambda}(y, x)^{-1}$. Note, however, that skew-symmetry is weaker in general than the property of being alternating.
(11.23) Let X be an abelian variety over a field k. Fix a separable closure $k \subset k_{s}$. As usual, ℓ denotes a prime number different from $\operatorname{char}(k)$. Let $x=\left(0, x_{1}, x_{2}, \ldots\right)$ be an element of $T_{\ell} X$ and $\xi=\left(0, \xi_{1}, \xi_{2}, \ldots\right)$ and element of $T_{\ell} X^{t}$. Applying (ii) of Proposition (11.21) we find that

$$
e_{\ell^{m}}\left(x_{m}, \xi_{m}\right)=e_{\ell^{m+1}}\left(\ell \cdot x_{m+1}, \xi_{m+1}\right)=e_{\ell^{m+1}}\left(x_{m+1}, \xi_{m+1}\right)^{\ell}
$$

This means precisely that

$$
E(x, \xi)=\left(1, e_{\ell}\left(x_{1}, \xi_{1}\right), e_{\ell^{2}}\left(x_{2}, \xi_{2}\right), \ldots\right)
$$

is a well-defined element of $\mathbb{Z}_{\ell}(1)=T_{\ell} \mathbb{G}_{m}$. The map $(x, \xi) \mapsto E(x, \xi)$ defines a perfect bilinear pairing

$$
E: T_{\ell} X \times T_{\ell} X^{t} \rightarrow \mathbb{Z}_{\ell}(1)
$$

If $\beta: T_{\ell} X^{t} \xrightarrow{\sim}\left(T_{\ell} X\right)^{\vee}(1)$ is the canonical isomorphism as in Proposition (10.9) then the pairing E is nothing else but the composition

$$
T_{\ell} X \times T_{\ell} X^{t} \xrightarrow{\mathrm{id} \times \beta} T_{\ell} X \times\left(T_{\ell} X\right)^{\vee}(1) \xrightarrow{\text { ev }} \mathbb{Z}_{\ell}(1)
$$

where the map "ev" is the canonical pairing, or "evaluation pairing". Note that the pairing E is equivariant with respect to the natural action of $\operatorname{Gal}\left(k_{s} / k\right)$ on all the terms involved.

If $\lambda: X \rightarrow X^{t}$ is a polarization, we obtain a pairing

$$
E^{\lambda}: T_{\ell} X \times T_{\ell} X \rightarrow \mathbb{Z}_{\ell}(1) \quad \text { by } \quad E^{\lambda}\left(x, x^{\prime}\right):=E\left(x, T_{\ell} \lambda\left(x^{\prime}\right)\right) .
$$

If $\lambda=\varphi_{L}$ we also write E^{L} for E^{λ}. It readily follows from Corollary (11.22) that the pairing E^{λ} is alternating.

Putting everything together, E^{λ} is a $\operatorname{Gal}\left(k_{s} / k\right)$-invariant element in $\left(\wedge^{2}\left(T_{\ell} X\right)^{\vee}\right)(1)$. The cohomological interpretation is that E^{λ} is the first Chern class of λ, or rather of any line bundle representing λ. Note that $\left(\wedge^{2}\left(T_{\ell} X\right)^{\vee}\right)(1)=H^{2}\left(X_{k_{s}}, \mathbb{Z}_{\ell}(1)\right)$, see Corollary (10.39).

§ 3. Existence of polarizations, and Zarhin's trick.

(11.24) Suppose we have an abelian variety X of dimension g over a field k. If $g=1$ then X is an elliptic curve, and the origin O (as a divisor on X) gives a principal polarization (via $Q \mapsto O-Q$). If $g \geqslant 2$ then in general X does not carry a principal polarization, not even if we allow an extension of the base field. Let us explain why this is so.

Fix $g \geqslant 2$. We shall use the fact that there exists an algebraically closed field k and an abelian variety Y of dimension g over k such that $\operatorname{End}(Y)=\mathbb{Z}$. A proof of this shall be given later; see ??. Note that this does not work for arbitrary k; for instance, every abelian variety over $\overline{\mathbb{F}}_{p}$ has $\mathbb{Z} \subsetneq \operatorname{End}(Y)$, as we shall see in ??.

If Y carries no principal polarization then we have the desired example. Hence we may assume there is a principal polarization $\lambda: Y \rightarrow Y^{t}$. As $k=\bar{k}$ there is a line bundle L with $\lambda=\varphi_{L}$. Because λ is principal and $\operatorname{End}(X)=\mathbb{Z}$ the only polarizations of Y are those of the form $\varphi_{L^{n}}=n \cdot \lambda$, of degree $n^{2 g}$.

On the other hand, if ℓ is any prime number different from $\operatorname{char}(k)$ then $Y[\ell] \cong(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$ as group schemes. Hence Y has a subgroup scheme H of order ℓ. Let $q: Y \rightarrow X:=Y / H$ be the quotient. If $\mu: X \rightarrow X^{t}$ is a polarization then $q^{*} \mu$ is a polarization of Y, with $\operatorname{deg}\left(q^{*} \mu\right)=$ $\ell^{2} \cdot \operatorname{deg}(\mu)$. But as just explained, any polarization of Y has degree equal to $n^{2 g}$ for some $n \in \mathbb{N}$. Hence μ cannot be principal.

With a similar construction we shall see later that an abelian variety of dimension $g \geqslant 2$ over a field of characteristic p in general does not even carry a separable polarization; see ??.

To arrive at some positive results, we shall now first give a very useful criterion for when a polarization $\lambda: X \rightarrow X^{t}$ descends over an isogeny $f: X \rightarrow Y$. If L is a line bundle on X then by Theorem (8.10) there exists a line bundle M on Y with $L \cong f^{*} M$ if and only if the following conditions are satisfied:
(a) $\operatorname{Ker}(f)$ is contained in $K(L)$ and is totally isotropic with respect to the pairing $e_{\mathscr{G}(L)}=e_{\varphi_{L}}$;
(b) the inclusion map $\operatorname{Ker}(f) \hookrightarrow K(L)$ can be lifted to a homomorphism $\operatorname{Ker}(f) \hookrightarrow \mathscr{G}(L)$.
(The second condition in (a) is in fact implied by (b).) As we shall prove now, in order for a polarization to descend, it suffices that the analogue of condition (a) holds.
(11.25) Proposition. Let $\lambda: X \rightarrow X^{t}$ be a symmetric isogeny, and let $f: X \rightarrow Y$ be an isogeny.
(i) There exists a symmetric isogeny $\mu: Y \rightarrow Y^{t}$ such that $\lambda=f^{*} \mu:=f^{t} \circ \mu \circ f$ if and only if $\operatorname{Ker}(f)$ is contained in $\operatorname{Ker}(\lambda)$ and is totally isotropic with respect to the pairing $e_{\lambda}: \operatorname{Ker}(\lambda) \times$ $\operatorname{Ker}(\lambda) \rightarrow \mathbb{G}_{m}$. If such an isogeny μ exists then it is unique.
(ii) Assume that an isogeny μ as in (i) exists. Then μ is a polarization if and only if λ is a polarization.

Note that the "only if" in (ii) was already proven in Proposition (11.8). For this implication the assumption that f is an isogeny can be weakened; see Exercise (11.1).

Proof. (i) If $\lambda=f^{t} \circ \mu \circ f$ then $\operatorname{Ker}(f) \subset \operatorname{Ker}(\lambda)$ and it follows from (ii) of Proposition (11.21), applied with $g=\left(f^{t} \circ \mu\right)$ and $h=\lambda$, that $\operatorname{Ker}(f)$ is totally isotropic for the pairing e_{λ}.

For the converse, assume $\operatorname{Ker}(f)$ is contained in $\operatorname{Ker}(\lambda)$ and is totally isotropic with respect to e_{λ}. Consider the line bundle $M:=(1 \times \lambda)^{*} \mathscr{P}_{X}$ on $X \times X$. Recall from Example (8.26) that the theta group $\mathscr{G}(M)$ is naturally isomorphic to the Heisenberg group associated to the group scheme $\operatorname{Ker}(\lambda)$. We have natural actions of $\operatorname{Ker}(\lambda) \times\{0\}$ and $\{0\} \times \operatorname{Ker}(\lambda)$ on M; for the first action note that M can also be written as $(\lambda \times 1)^{*} \mathscr{P}_{X^{t}}$. The assumption that $\operatorname{Ker}(f) \subset \operatorname{Ker}(\lambda)$
is totally isotropic for e_{λ} means precisely that the actions of $\operatorname{Ker}(f) \times\{0\}$ and of $\{0\} \times \operatorname{Ker}(f)$ commute, and therefore define an action of $\operatorname{Ker}(f) \times \operatorname{Ker}(f)$ on M. This gives us a line bundle N on $Y \times Y$ such that $M \cong(f \times f)^{*} N$. If $\mu: Y \rightarrow Y^{t}$ is the (unique) homomorphism such that $N=(1 \times \mu)^{*} \mathscr{P}_{Y}$ then we get the desired relation $\lambda=f^{t} \circ \mu \circ f$. The uniqueness of μ is immediate from Lemma (5.4). But we also have $\lambda=\lambda^{t}=\left(f^{t} \circ \mu \circ f\right)^{t}=f^{t} \circ \mu^{t} \circ f$. Hence $\mu=\mu^{t}$.
(ii) By Proposition (11.2) there exists a field extension $k \subset K$ and a line bundle L on Y_{K} with $\mu_{K}=\varphi_{L}$, and then $\lambda_{K}=\varphi_{f^{*} L}$. Because f is finite, L is effective if and only if $f^{*} L$ is effective.
(11.26) Corollary. Let X be an abelian variety over an algebraically closed field. Then X is isogenous to an abelian variety that admits a principal polarization.

Proof. Start with any polarization $\lambda: X \rightarrow X^{t}$. By Lemma (8.22) there exists a Lagrangian subgroup $H \subset \operatorname{Ker}(\lambda)$. (There clearly exists a subgroup $H \subset \operatorname{Ker}(\lambda)$ satisfying condition (i) of that Lemma.) By the previous Proposition, λ descends to a principal polarization on X / H.

The conclusion of the Corollary no longer holds in general if we drop the assumption that the ground field is algebraically closed. For examples, see e.g. Howe [1], [2] and Silverberg-Zarhin [1].
(11.27) Before we turn to Zarhin's trick, we recall from Exercise (7.8) some notation.

Suppose X is an abelian variety and $\alpha=\left(a_{i j}\right)$ is an $r \times s$ matrix with integral coefficients. Then we denote by $[\alpha]_{X}: X^{s} \rightarrow X^{r}$ the homomorphism given by

$$
[\alpha]_{X}\left(x_{1}, \ldots, x_{s}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 s} x_{s}, \ldots, \sum_{j=1}^{s} a_{i j} x_{j}, \ldots, a_{r 1} x_{1}+a_{r 2} x_{2}+\cdots+a_{r s} x_{s}\right)
$$

For $r=s=1$ this just gives our usual notation $[n]_{X}$ for the "multiplication by n " maps. As another example, the 1×2 matrix (11) gives the group law on X while the 2×1 matrix $\binom{1}{1}$ gives the diagonal.

If β is a $q \times r$ matrix with integral coefficients then $[\beta \cdot \alpha]_{X}=[\beta]_{X} \circ[\alpha]_{X}: X^{s} \rightarrow X^{q}$. It follows that if α is an invertible $r \times r$ matrix then $[\alpha]_{X}$ is an automorphism of X^{r}. Further, if $f: X \rightarrow Y$ is a homomorphism of abelian varieties then for any integral $r \times s$ matrix α,

$$
[\alpha]_{Y} \circ \underbrace{(f, \ldots, f)}_{s}=\underbrace{(f, \ldots, f)}_{r} \circ[\alpha]_{X}: X^{s} \rightarrow Y^{r}
$$

(11.28) Proposition. Let X be an abelian variety of dimension g.
(i) If $\alpha \in M_{r}(\mathbb{Z})$ then $[\alpha]_{X}: X^{r} \rightarrow X^{r}$ has degree $\operatorname{det}(\alpha)^{2 g}$.
(ii) Let β be an $r \times s$ matrix with integral coefficients. Then $\left([\beta]_{X}\right)^{t}=\left[{ }^{\mathrm{t}} \beta\right]_{X^{t}}$, where ${ }^{\mathrm{t}} \beta$ is the transposed matrix.

Proof. (i) If $\operatorname{det}(\alpha)=0$ then it is readily seen that $[\alpha]_{X}$ has infinite kernel, so by convention we have $\operatorname{deg}\left(\left[\alpha_{X}\right]\right)=0$. Now assume $\operatorname{det}(\alpha) \neq 0$, and let $\left\{e_{1}, \ldots, e_{r}\right\}$ be the standard ordered basis of \mathbb{Z}^{r}. By the theory of elementary divisors, there is an ordered basis $\left\{f_{1}, \ldots, f_{r}\right\}$ for \mathbb{Z}^{r} and a sequence of nonzero integers $\left(n_{1}, \ldots, n_{r}\right)$ such that $\alpha\left(e_{i}\right)=n_{i} \cdot f_{i}$. Let $\beta \in \mathrm{GL}_{r}(\mathbb{Z})$ be the matrix with $\beta\left(e_{i}\right)=f_{i}$, and let $\gamma=\operatorname{diag}\left(n_{1}, \ldots, n_{r}\right)$ be the diagonal matrix with coefficients n_{i}. Then $[\beta]_{X}$ is an automorphism of X^{r} and it is clear that $[\gamma]_{X}: X^{r} \rightarrow X^{r}$, which is given by
$\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(n_{1} x_{1}, \ldots, n_{r} x_{r}\right)$, has degree $\left(n_{1} \cdots n_{r}\right)^{2 g}=\operatorname{det}(\alpha)^{2 g}$. As $[\alpha]_{X}=[\gamma]_{X} \circ[\beta]_{X}$ the claim follows.
(ii) Write $\beta=\left(b_{i j}\right)$. Any line bundle L on X^{r} with class in Pic^{0} can be written as $L=$ $p_{1}^{*} L_{1} \otimes \cdots \otimes p_{r}^{*} L_{r}$, where the $p_{i}: X^{r} \rightarrow X$ are the projection maps and the L_{i} are line bundles on X with class in Pic^{0}. Because $\left(X^{s}\right)^{t} \cong\left(X^{t}\right)^{s}$ (cf. Exercise (6.2)) it suffices to know the restriction of $[\beta]_{X}^{*} L$ to each of the coordinate axes $\{0\} \times \cdots \times\{0\} \times X \times\{0\} \times \cdots \times\{0\}$. But the restriction of $[\beta]_{X}$ to the j-th coordinate axis is the map $X \rightarrow X^{r}$ given by $x \mapsto\left(b_{1 j} x, b_{2 j} x, \ldots, b_{r j} x\right)$ and the pull-back of L under this map is

$$
b_{1 j}^{*} L_{1} \otimes \cdots \otimes b_{r j}^{*} L_{r}=L_{1}^{\otimes b_{1 j}} \otimes \cdots \otimes L_{r}^{\otimes b_{r j}}
$$

This means precisely that $[\beta]_{X}^{t}:\left(X^{r}\right)^{t}=\left(X^{t}\right)^{r} \rightarrow\left(X^{s}\right)^{t}=\left(X^{t}\right)^{s}$ is the map given by the matrix

$$
\left(\begin{array}{ccccc}
b_{11} & \cdots & b_{i 1} & \cdots & b_{r 1} \\
\vdots & & \vdots & & \vdots \\
b_{1 j} & \cdots & b_{i j} & \cdots & b_{r j} \\
\vdots & & \vdots & & \vdots \\
b_{1 s} & \cdots & b_{i s} & \cdots & b_{r s}
\end{array}\right)={ }^{\mathrm{t}} \beta
$$

as claimed.
(11.29) Theorem. (Zarhin's trick) Let X be an abelian variety over a field k. Then $X^{4} \times\left(X^{t}\right)^{4}$ carries a principal polarization.

Proof. Suppose we have an abelian variety Y, a polarization $\mu: Y \rightarrow Y^{t}$, and an endomorphism $\alpha: Y \rightarrow Y$. Consider the isogeny $f: Y \times Y \rightarrow Y \times Y^{t}$ given by $\left(y_{1}, y_{2}\right) \mapsto\left(y_{1}-\alpha\left(y_{2}\right), \mu\left(y_{2}\right)\right)$. The kernel is given by $\operatorname{Ker}(f)=\{(\alpha(y), y) \mid y \in \operatorname{Ker}(\mu)\}$. In particular, $\operatorname{deg}(f)=\operatorname{deg}(\mu)$. Proposition (11.25) tells us under what conditions the polarization $\mu \times \mu:(Y \times Y) \rightarrow\left(Y^{t} \times Y^{t}\right)$ descends to a polarization on $Y \times Y^{t}$ via the isogeny f. Namely: there exists a polarization ν on $Y \times Y^{t}$ with $f^{*} \nu=(\mu \times \mu)$ if and only if
(a) $\alpha(\operatorname{Ker}(\mu)) \subseteq \operatorname{Ker}(\mu)$, and
(b) $e_{\mu}\left(\alpha\left(y_{1}\right), \alpha\left(y_{2}\right)\right) \cdot e_{\mu}\left(y_{1}, y_{2}\right)=1$ for all (scheme valued) points y_{1}, y_{2} of $\operatorname{Ker}(\mu)$.

Note that if such a descended polarization ν exists then it is principal.
Condition (a) means that there exists an endomorphism $\beta: Y^{t} \rightarrow Y^{t}$ such that $\beta \circ \mu=\mu \circ \alpha$. By (ii) of Proposition (11.21),

$$
e_{\mu}\left(\alpha\left(y_{1}\right), \alpha\left(y_{2}\right)\right)=e_{\mu \circ \alpha}\left(y_{1}, \alpha\left(y_{2}\right)\right)=e_{\beta \circ \mu}\left(y_{1}, \alpha\left(y_{2}\right)\right)=e_{\mu}\left(y_{1}, \beta^{t} \alpha\left(y_{2}\right)\right),
$$

so (b) is equivalent to the condition that $e_{\mu}\left(y_{1},\left(1+\beta^{t} \alpha\right)\left(y_{2}\right)\right)=1$ for all y_{1}, y_{2} in $\operatorname{Ker}(\mu)$. As e_{μ} is a pefect pairing on $\operatorname{Ker}(\mu)$, this is equivalent to the condition that $\left(1+\beta^{t} \alpha\right) \in \operatorname{End}(Y)$ kills $\operatorname{Ker}(\mu)$.

We now apply this with $Y=X^{4}$. Choose any polarization λ on X, and take $\mu=\lambda^{4}$ (so $\mu=\lambda \times \lambda \times \lambda \times \lambda$). For α we take the endomorphism $[\alpha]_{X}$ given by a 4×4 matrix α with integral coefficients. As $\lambda^{4} \circ[\alpha]_{X}=[\alpha]_{X^{t} \circ} \lambda^{4}$, condition (a) is automatically satisfied, and we have $\beta=[\alpha]_{X^{t}}$ in the above. Using (ii) of Proposition (11.28) we find that the only condition that remains is that $\left[\operatorname{id}_{4}+{ }^{\mathrm{t}} \alpha \alpha\right]_{X}$ kills $\operatorname{Ker}(\mu)=\operatorname{Ker}(\lambda)^{4}$, where id_{4} is the 4×4 identity matrix.

Choose an integer m such that $\operatorname{Ker}(\lambda) \subset X[m]$. We are done if we can find an integral 4×4 matrix α such that $\mathrm{id}_{4}+{ }^{\mathrm{t}} \alpha \alpha \equiv 0 \bmod m$. To see that such a matrix can be found we use the
fact that every integer can be written as a sum of four squares. In particular there exist integers a, b, c, d with $a^{2}+b^{2}+c^{2}+d^{2}=m-1$. Now take

$$
\alpha=\left(\begin{array}{cccc}
a & -b & -c & -d \tag{4}\\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

for which we have $\mathrm{id}_{4}+{ }^{\mathrm{t}} \alpha \alpha=m \cdot \mathrm{id}_{4}$.
(11.30) Remarks. (i) The choice of the matrix α can be explained as follows. Consider the Hamiltonian quaternion algebra $\mathbb{H}=\mathbb{R} \cdot 1+\mathbb{R} \cdot i+\mathbb{R} \cdot j+\mathbb{R} \cdot k$, which is a central simple algebra over \mathbb{R}. For $x=a \cdot 1+b \cdot i+c \cdot j+d \cdot k$ we define its complex conjugate by $\bar{x}=a \cdot 1-b \cdot i-c \cdot j-d \cdot k$. The reduced trace and norm of \mathbb{H} over \mathbb{R} are given by

$$
\operatorname{Trd}_{\mathbb{H} / \mathbb{R}}(x)=x+\bar{x}=2 a \quad \text { and } \quad \operatorname{Nrd}_{\mathbb{H} / \mathbb{R}}(x)=x \bar{x}=a^{2}+b^{2}+c^{2}+d^{2}
$$

Further, taking $\{1, i, j, k\}$ as a basis of \mathbb{H}, left multiplication by x is given precisely by the matrix (4). The map $h: \mathbb{H} \rightarrow M_{4}(\mathbb{R})$ sending x to this matrix is an injective homomorphism of \mathbb{R}-algebras, and we have $h(\bar{x})={ }^{\mathrm{t}} h(x)$ and $\operatorname{Nrd}_{\mathbb{H} / \mathbb{R}}(x)=\operatorname{det}(h(x))$. Further it is clear that h maps the subring $\mathbb{Z} \cdot 1+\mathbb{Z} \cdot i+\mathbb{Z} \cdot j+\mathbb{Z} \cdot k$ into $M_{4}(\mathbb{Z})$. In sum, we can think of α as being the (left) multiplication by $a \cdot 1+b \cdot i+c \cdot j+d \cdot k$, where a, b, c, d are chosen such that $a^{2}+b^{2}+c^{2}+d^{2}=m-1$.
(ii) In general there is no positive n such that for any abelian variety X the nth power X^{n} admits a principal polarization. To see this we go back to the example in (11.24). We start with an abelian variety Y of dimension $g \geqslant 2$ over a field $k=\bar{k}$ such that $\operatorname{End}(Y)=\mathbb{Z}$ and such that Y does admit a principal polarization; see ?? for the existence. Any homomorphism $Y^{n} \rightarrow\left(Y^{t}\right)^{n}$ is of the form $\lambda^{n} \circ[\alpha]_{Y}=[\alpha]_{Y^{t}} \circ \lambda^{n}$ for some $\alpha \in M_{n}(\mathbb{Z})$, and it easily follows from (ii) of Proposition (11.28) that this homomorphism is symmetric if and only if $\alpha={ }^{\mathrm{t}} \alpha$. Now choose a prime number ℓ different from $\operatorname{char}(k)$, and choose a subgroup $H \subset Y$ of order ℓ, generated by a point of order ℓ. Let $\pi: Y \rightarrow X:=Y / H$ be the quotient.

Let μ be any polarization on X^{n}. By what was just explained we have $\left(\pi^{n}\right)^{*} \mu=\lambda^{n} \circ[\alpha]_{Y}$ for some $\alpha \in M_{n}(\mathbb{Z})$. Moreover, $H \times \cdots \times H \subset \operatorname{Ker}\left([\alpha]_{Y}\right)$, which readily implies that α is divisible by ℓ, say $\alpha=\ell \cdot \beta$. Further we have $\operatorname{deg}(\mu) \cdot \ell^{2 n}=\operatorname{deg}\left([\alpha]_{Y}\right)=\ell^{2 n g} \cdot \operatorname{det}(\beta)^{2 g}$, so $\operatorname{deg}(\mu)=\ell^{2 n(g-1)} \cdot \operatorname{det}(\beta)^{2 g}$. In particular, X^{n} does not carry a principal polarization.

Exercises.

(11.1) Let $f: X \rightarrow Y$ be a homomorphism of abelian varieties with finite kernel. If $\mu: Y \rightarrow Y^{t}$ is a polarization, show that $f^{*} \mu:=f^{t} \circ \mu \circ f$ is a polarization of X.
(11.2) Let X be an abelian variety over a field k. Suppose there exists a polarization $\lambda: X \rightarrow X^{t}$ with $\operatorname{deg}(\lambda)=m$ odd.
(i) Show that there exist integers a and b with $1+a^{2}+b^{2} \equiv 0 \bmod m$. [Hint: Use the Chinese remainder theorem. First find a solution modulo p for any prime p dividing m. Then use the fact that the curve $C \subset \mathbb{A}^{2}$ given by $1+x^{2}+y^{2}=0$ is smooth over $\mathbb{Z}_{p}(p \neq 2!)$ to see that the solutions can be lifted to solutions modulo arbitrarily high powers of p.]
(ii) Adapting the proof of Zarhin's trick, show that $X^{2} \times\left(X^{t}\right)^{2}$ admits a principal polarization.
(11.3) Let L be a line bundle on an abelian variety X over a perfect field k. Write $Y:=K(L)_{\text {red }}^{0}$, which is an abelian subvariety of X, and let $q: X \rightarrow Z:=X / Y$ be the quotient.
(i) Show that $\varphi_{L}: X \rightarrow X^{t}$ factors as $\varphi_{L}=q^{t} \circ \psi \circ q$ for some homomorphism $\psi: Z \rightarrow Z^{t}$.
(ii) Show that there is a finite separable field extension $k \subset K$ and a line bundle M on Z_{K} such that $\psi_{K}=\varphi_{M}$.
(iii) With K and M as in (ii), conclude that the class of $L \otimes q^{*} M^{-1}$ lies in $\operatorname{Pic}_{X / k}^{0}(K)$.

