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§1. Hodge structures and their Mumford-Tate groups.

(1.1) Representations of algebraic tori. Let T be a torus over a field k. Choose a separable closure ks. The
character group X∗(T ) and the cocharacter group X∗(T ) are defined by

X∗(T ) := Hom(Tks ,Gm,ks) , X∗(T ) := Hom(Gm,ks , Tks) .

If r is the rank of T then X∗(T ) and X∗(T ) are free abelian groups of rank r which come equipped with a
continuous action of Gal(ks/k). There is a natural perfect pairing X∗(T )×X∗(T ) −→ End(Gm,ks) = Z.

The functor

X∗( ):
(
algebraic tori

over k

)
eq
−→

(
free abelian group of finite rank

+ continuous action of Gal(ks/k)

)

is an equivalence of categories. Similarly, the functor X∗( ) gives an anti-equivalence of categories.
Let now ρ: T → GL(V ) be a representation of T on a finite dimensional k-vector space. If k = ks, so

that T ∼= Gr
m then the situation is clear: the space V decomposes as a direct sum of character spaces and this

completely determines the representation. Thus, a representation of Gr
m on a vector space V corresponds to

a Zr-grading

V =
⊕

(n1,...,nr)∈Zr

V n1,...,nr .

Sign convention: we write V n1,...,nr for the subspace of V where (z1, . . . , zr) ∈ Gr
m acts as multiplication by

z−n1
1 · · · z−nr

r . (Note the minus signs.) This is nowadays the standard sign convention in Hodge theory, see
for instance [23], Remark 3.3.

Over an arbitrary field k, all we have to do is to require that the actions of Gal(ks/k) on X∗(T ) and
on V ⊗k k

s “match”. Thus, let T be a k-torus and write Repk(T ) for the category of finite dimensional
k-representations of T . Then we have an equivalence of categories

Repk(T ) −→




finite dimensional k-vector spaces V +
X∗(T )-grading V ⊗k k

s =
⊕

χ∈X∗(T ) Vks(χ)

s.t. σ(Vks (χ)) = Vks(σχ) for all σ ∈ Gal(ks/k)


 .

(1.2) The Deligne torus. Define the torus S by

S := Res
C/R

Gm,C ,

where “Res” denotes restriction of scalars à la Weil. Thus, S is an algebraic torus over R; its character group
is generated by two characters z and z̄ such that the induced maps on points

C∗ = S(R) ⊂ S(C) −→ Gm(C) = C∗

are the identity, resp. complex conjugation. In other words: X∗(S) = Z · z + Z · z̄ with complex conjugation
ι ∈ Gal(C/R) acting by ιz = z̄, ιz̄ = z. By what was explained in (1.1), this uniquely determines S as an
R-torus.

Define the weight cocharacter w: Gm,R → S to be the cocharacter given on points by the natural
inclusion R∗ = Gm,R(R) →֒ S(R) = C∗. The norm character Nm: S → Gm,R is defined by Nm = zz̄. The
kernel of Nm is the circle group U1 = {z ∈ C∗ | |z| = 1}, viewed as an R-torus. Finally we define the
cocharacter µ: Gm,C → SC to be the unique cocharacter such that z̄ ◦µ is trivial and z ◦µ = id ∈ End(Gm,C).

(1.3) Hodge structures. A Q-Hodge structure of weight n (n ∈ Z) consists of a finite dimensional Q-vector
space V together with a homomorphism of algebraic groups over R

h: S→ GL(V )R
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such that h◦w: Gm,R → GL(V )R is given by z 7→ z−n · idV . We leave it to the reader to connect this to the
more traditional definition, using (1.1) above. By our sign convention, a point (z1, z2) ∈ C∗ × C∗ = S(C)
acts on V p,q as multiplication by z−p

1 z−q
2 .

We shall use HS as an abbreviation for “Hodge Structure”. By a Q-HS we shall mean a direct sum of pure
Q-HS. Equivalently: a Q-HS is a finite dimensional Q-vector space V plus a homomorphism h: S→ GL(V )R

such that h◦w: Gm,R → GL(V )R is defined over Q. The category QHS of all such Q-HS is Tannakian.
The automorphism C := h(i) of VR is called the Weil operator. Concretely: C acts on V p,q as multipli-

cation by iq−p. (Note that this indeed gives an endomorphism defined over R.)
The Hodge filtration of V , notation F •VC, is the one given by FmVC = ⊕p≥mV

p,q. If V is pure of weight
n then F •VC and F •VC are n-opposed in the sense of [16], meaning that F pVC ⊕ F qVC

∼
−→ VC for all p, q

with p+ q = n+ 1. Conversely, if F •VC is a filtration of VC such that F •VC and F •VC are n-opposed then
we obtain a HS by setting V p,q := F pVC ∩ F qVC.

The Tate structure Q(1) is defined to be the vector space Q(1) := 2πi · Q ⊂ C, with Hodge structure
purely of type (−1,−1). The corresponding homomorphism h is the Norm character Nm.

By a homomorphism of Hodge structures f : V1 → V2 we mean a Q-linear map f such that fR is
equivariant w.r.t. the given actions of S. (This corresponds to a morphism of type (0, 0) in the traditional
sense, i.e., a map preserving the Hodge bigrading.)

A Q-HS V of weight n is said to be polarizable if there exists a homomorphism of Hodge structures
ϕ: V ⊗ V → Q(−n) such that the bilinear form VR × VR → R given by (v, w) 7→ (2πi)n · ϕ(v ⊗ Cw) is
symmetric and positive definite. This implies that ϕ is alternating if n is odd, symmetric if n is even. An
arbitrary Q-HS is said to be polarizable if all its pure summands are. We write QHSpol ⊂ QHS for the full
subcategory of polarizable Q-HS.

(1.4) Definition. Let V be a Q-HS; write h: S→ GL(V )R for the corresponding homomorphism. We define
the Mumford-Tate group of V , notation MT(V ), to be the smallest algebraic subgroup M ⊆ GL(V ) (over
Q) such that h factors through MR.

It is immediate from the definition that MT(V ) is connected. If V is pure of weight n 6= 0 then by
looking at h◦w we find that MT(V ) contains the torus Gm,Q · idV of homotheties. (By contrast, if V is pure
of weight 0 then MT(V ) is contained in SL(V ); see also (1.11) below.)

It is easy to see that MT(V ) can also be described as the smallest algebraic subgroup M ⊂ GL(V ) such
that h◦µ: Gm,C → GL(V )C factors through MC. This description will become important later.

(1.5) Key Property. Let V be a Q-HS. For m,n ∈ Z≥0, write Tm,n := V ⊗m ⊗ (V ∗)⊗n. Let T be a finite
direct sum of spaces of the form Tm,n, viewed as a Q-HS. Consider the action of MT(V ) on T induced by
its action on V . Let W ⊆ T be a Q-subspace. Then

W ⊆ T is a Q-Hodge substructure ⇐⇒ W ⊆ T is a MT(V )-submodule .

Proof. The implication “⇐” is obvious. For “⇒”, suppose W is a Q-subHS. Consider the algebraic
subgroup M ⊆ GL(V ) consisting of those g ∈ GL(V ) which, under the induced action on T , leave the
subspace W ⊆ T stable. The assumption that W is a Q-subHS means that WR ⊂ TR is stable under
the (induced) action of S. It follows that h factors through M . The definition of MT(V ) then gives the
implication “⇒”. �

If M ⊆ GL(V ) is an algebraic subgroup then there exists a “tensor construction” T as above and a line
l ⊆ T such that M is the stabilizer of this line l. (Chevalley’s theorem, see e.g. [23], Prop. 3.1. Exercise:
describe such a line for the case M = SL(V ) ⊂ GL(V ).) It follows that the Key Property characterizes
MT(V ) uniquely.

(1.6) Definition. Let V be a Q-HS. A Hodge class in V is an element v ∈ V which is purely of type (0, 0)
in the Hodge decomposition.

In other literature a Hodge class is sometimes defined to be a rational class which is purely of some type
(p, p) in the Hodge decomposition. The connection between these two definitions is given by using a Tate
twist: if v ∈ V is a (p, p)-class then (2πi)p · v ∈ V (p) := V ⊗Q(1)⊗p is a Hodge class in our sense.
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Exercise. Show that v ∈ V is a Hodge class if and only if v is invariant under MT(V ).

(1.7) Example. Suppose V is pure of weight n and ϕ̃: V ⊗ V → Q(n) is a polarization. Write ϕ ∈ (V ∗)⊗2

for the element given by (2πi)−n · ϕ̃. Then the line spanned by ϕ is stable under the action of MT(V ), which
means that MT(V ) acts on it through some character ν: MT(V )→ Gm,Q. The conclusion is that

MT(V ) ⊆

{
GSp(V, ϕ) if n is odd;
GO(V, ϕ) if n is even.

Explanation: if V is a vector space over a field k equipped with a symplectic, resp. an orthogonal form
ϕ: V × V → k then we define the group of symplectic similitudes GSp(V, ϕ), resp. the group of orthogonal
similitudes GO(V, ϕ), by

GSp(V, ϕ) := {g ∈ GL(V ) | ∃ν(g) ∈ k∗ : ϕ(gv, gw) = ν(g) · ϕ(v, w) for all v, w ∈ V }

and, similarly,

GO(V, ϕ) := {g ∈ GL(V ) | ∃ν(g) ∈ k∗ : ϕ(gv, gw) = ν(g) · ϕ(v, w) for all v, w ∈ V } .

Associating ν(g) to g gives a character ν: GSp(V, ϕ)→ Gm,k, resp. ν: GO(V, ϕ)→ Gm,k, called the multiplier
character. The kernel of this multiplier character is the symplectic group Sp(V, ϕ), resp. the orthogonal group
O(V, ϕ).

If we want to treat the symplectic and the orthogonal case uniformly we shall write GU(V, ϕ) for the
group of automorphisms of V preserving the form ϕ up to a scalar.

Exercise. Show that the multiplier character ν: MT(V )→ Gm,Q is independent of the chosen polarization.

(1.8) Remark. Let T be a tensor construction as in (1.5). Write r: GL(V ) → GL(T ) for the canonical
homomorphism. Then MT(T ) equals the image of MT(V ) under r. To see this, let us first remark that
MT(T ) is contained in the image of MT(V ); this is immediate from the definitions. Now suppose that
MT(T ) is strictly contained in r(MT(V )). Then we can make a tensor construction T ′, built from T , and
a Q-subspace W ⊂ T ′ such that W is a MT(T )-submodule but W is not stable under MT(V ). This would
contradict the Key Property. (Compare this with [25], Prop. 2.21.)

As examples of this principle, we find that MT(V ∗) is isomorphic to MT(V ) (under the natural isomor-
phism g 7→ (g∗)−1). Also, MT(V ⊕n) (n ≥ 1) is isomorphic to MT(V ) acting diagonally on V ⊕n.

(1.9) Example. If dim(V ) = 0 then MT(V ) = {1}. If dim(V ) = 1 then V is isomorphic to a Tate structure
Q(n); if n = 0 then MT(V ) = {1}, if n 6= 0 then MT(V ) = Gm,Q.

(1.10) Tannakian formulation. In the formalism of Tannakian categories, the Mumford-Tate group can be
described as follows. Let V be a Q-HS. Write 〈V 〉⊗ ⊂ QHS for the Tannakian subcategory generated by
V . The forgetful functor defines a fibre functor ω: 〈V 〉⊗ → VecQ. Then MT(V ) = Aut⊗(ω) and we obtain
an equivalence of categories 〈V 〉⊗

eq
−→ RepQ(MT(V )). This is essentially just a fancy reformulation of the

above Key Property.

There are some possible variations on our definition of the Mumford-Tate group.

(1.11) Definition. Let V be a Q-HS of pure weight. We define the Hodge group Hg(V ) ⊆ MT(V ),
also called the special Mumford-Tate group to be the smallest algebraic subgroup H ⊆ GL(V ) such that
h|U1

: U1 → GL(V )R factors through HR.

If V has weight n and z ∈ S then the automorphism h(z) of V has determinant Nm(z)−n dim(V )/2.
(Recall that h(z) is multiplication by z−pz̄−q on V p,q.) It follows that Hg(V ) is contained in SL(V ).

The relation between MT(V ) and Hg(V ) is not so difficult to describe. Namely, if V is pure of weight
0 then we easily find that MT(V ) = Hg(V ). If V is pure of weight 6= 0 then MT(V ) contains Gm,Q (the
homotheties) and MT(V ) is the almost direct product (inside GL(V )) of Gm,Q and Hg(V ).
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Now let us look at the key property (1.5). So, let T be a tensor space constructed from V and let W ⊆ T
be a Q-subspace. Clearly, if W is a Q-subHS then it is a MT(V )-submodule, hence it is a Hg(V )-submodule.
The converse holds provided T is of pure weight. This is clear if we think of MT(V ) as being the almost
direct product of Gm,Q and Hg(V ): the assumption that T is of pure weight means that Gm,Q acts on T by
homotheties, so that the MT(V )-submodules of V are the same as the Hg(V )-submodules. To summarize:

(1.12) Key Property. (Hodge group version.) Let V be a Q-HS. For m,n ∈ Z≥0, write Tm,n := V ⊗m ⊗
(V ∗)⊗n. Let T be a finite direct sum of spaces of the form Tm,n, viewed as a Q-HS. Assume that T is of
pure weight. Consider the action of Hg(V ) on T induced by its action on V . Let W ⊆ T be a Q-subspace.
Then

W ⊆ T is a Q-Hodge substructure ⇐⇒ W ⊆ T is a Hg(V )-submodule .

Loosely speaking we might say that Hg(V ) contains the same information as MT(V ), except that it is
not able to “see” the weight of a Hodge structure. For instance, if T is of pure weight and w ∈ T then w
is a Hg(V )-invariant if and only if it is a Hodge (p, p)-class for some p. This also explains why we have to
require that T is of pure weight. Namely, suppose we can make two tensor spaces T1 and T2 and non-zero
classes w1 ∈ T1 of type (p1, p1), and w2 ∈ T2 of type (p2, p2). Now set T := T1⊕T2, and let l ⊂ T be the line
spanned by (w1, w2). Clearly, if p1 6= p2 then l is not a Q-subHS of T . But l is invariant under the action
of Hg(V ). That l is not stable under the action of MT(V ) is due to the action of the central torus Gm,Q.

(1.13) The Hodge group of a product. Let V1 and V2 be Q-HS. Write V := V1 ⊕ V2. It readily follows from
the definitions that Hg(V ) ⊆ Hg(V1)×Hg(V2) and that the two projections Hg(V )→ Hg(Vi) are surjective.
In general the Hodge group Hg(V ) need not be equal to the product group Hg(V1)×Hg(V2). For instance,
if V1 = V2 then Hg(V ) is the diagonal subgroup of Hg(V1)×Hg(V2); see (1.8). We shall see more interesting
examples of this later.

For the Mumford-Tate group similar statements hold, but note that MT(V ) is almost never equal to
MT(V1) ×MT(V2). This is because the central factor Gm (“keeping track of the weight”) is counted twice
in MT(V1)×MT(V2), unless one of the Vi has weight 0.

(1.14) The extended Mumford-Tate group. Another possible variant is to consider the Tannakian subcate-
gory 〈V,Q(1)〉⊗ ⊂ QHS generated by V and Q(1). Let ω: 〈V,Q(1)〉⊗ → VecQ be the forgetful functor, and

write M̃T(V ) := Aut⊗(ω). Concretely, this M̃T(V ) can be described as the smallest algebraic Q-subgroup
M ⊂ GL(V ) × Gm,Q such that h × Nm: S → GL(V )R × Gm,R factors through MR. The projection onto

GL(V ) gives a surjective homomorphism M̃T(V )→→ MT(V ), which is an isogeny if V has weight n 6= 0 and
an isomorphism if V is polarizable of weight ±1. See also [23] and [48].

One possible reason for working with this “extended” Mumford-Tate group M̃T(V ) is that it allows to
include arbitrary Tate twists in all considerations. We leave it to the reader to formulate a version of the
Key Property for M̃T(V ). (Consider tensor spaces of the form Tm,n,p := V ⊗m⊗ (V ∗)⊗n⊗Q(p).) Note that
MT(V ), for V polarizable of weight n, only has a natural action on Tate twists Q(r · n) for r ∈ Z. (The
action on Q(−n) is given by the multiplier character ν as in (1.7).)

(1.15) Polarizable HS. Let V be a pure Q-HS of weight n, and let ϕ: V ⊗ V → Q(−n) be a polarization.
Write Q: VR × VR → R for the symmetric positive definite form given by (v, w) 7→ (2πi)n · ϕ(v ⊗ Cw).

If T is a tensor space constructed from V as in (1.5) then T inherits a polarization from V . Similarly,
if W ⊆ V is a Q-subHS then the restriction of ϕ to W ⊗ W is a polarization of W . Now consider the
Q-subspace

W⊥ := {x ∈ V | ϕ(x,w) = 0 for all w ∈ W} .

Note that W⊥ is a Q-subHS of V ; writing V → V ∗(−n) for the morphism given by v 7→ ϕ(v,−) we can in
fact also define W⊥ as the kernel of the composite morphism V → V ∗(−n)→→ (V ∗/W ∗)(−n). As WR ⊂ VR

is stable under the Weil operator C, we have

(W⊥ ⊗ R) = {x ∈ VR | ϕ(x,w) = 0 for all w ∈WR}

= {x ∈ VR | Q(x,w) = 0 for all w ∈WR} .
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It follows that V = W ⊕W⊥ as Q-HS.

(1.16) Theorem. The category QHSpol is a semi-simple Tannakian category. If V is a polarizable Q-HS
then Hg(V ) and MT(V ) are reductive Q-groups.

Proof. The first assertion follows from what was said in (1.15). The second claim is a general statement
in the theory of Tannakian categories: if G is a connected group scheme over a field k of characteristic 0
then Repk(G) is semi-simple if and only if G is pro-reductive. (See [25], Prop. 2.23.) In fact, in the case
that we are interested in it suffices to see that M := MT(V ) is reductive, as Hg(V ) is a normal subgroup of
MT(V ). We have RepQ(M)

eq
−→ 〈V 〉⊗, which is semi-simple. In particular, the tautological representation

M → GL(V ) is faithful and semi-simple. It is then a standard result in the theory of algebraic groups (over
a field of characteristic 0) that M is reductive. (Loc. cit., Lemmas 2.24, 2.25 and 2.27.) �

Exercise. (i) Let V be a Q-vector space of finite dimension. Show that giving V a Q-HS of type (−1, 0) +
(0,−1) is equivalent to giving an endomorphism C ∈ End(VR) (the Weil operator) with C2 = −id.

(ii) Let V be a polarizable Q-HS of weight n. Choose a polarization ϕ: V ⊗ V → Q(−n) and write
d 7→ d† for the associated involution on D := EndQHS(V ). (So, d 7→ d† is the involution determined by the
rule that ϕ(dv ⊗ w) = ϕ(v ⊗ d†w) for all v, w ∈ V and d ∈ D.) Show that the set of polarizations is in
natural bijection with an open cone in the vector space {d ∈ D | d† = d}.

(iii) Let V1 and V2 be polarizable Q-HS of type (−1, 0) + (0,−1). Write C1 ∈ End(V1,R) and C2 ∈
End(V2,R) for the Weil operators. Suppose that EndQHS(V1) = Q = EndQHS(V2). Show that

ExtQHS(V2, V1) ∼= {A ∈ Hom(V2,R, V1,R) | C1A+AC2 = 0}/Q∗ .

(iv) Assume that V1 6∼= V2. Let W be an extension of V2 by V1 which corresponds to a non-zero class in
ExtQHS(V2, V1). (I.e., W 6∼= V1 ⊕ V2.) Show that W is not polarizable.

(v) Show that the category QHS is not semi-simple, e.g. by proving that there exist examples as in (iv).

(1.17) Compact real forms. Let V be a polarizable Q-HS of weight n. There is another way of proving
that H := Hg(V ) is reductive. (Although essentially it of course boils down to the same.) Namely, consider
the Weil operator C = h(i) ∈ H(R). As C2 = (−idV )n, the inner automorphism σ := Ad(C) of HR is an
involution. Now consider the inner form H(σ) of H defined by this involution σ. Concretely: having a real
group HR means that we have a complex group HC with a comlex conjugation x 7→ x̄. Then the inner form
H(σ) is given by the same C-group HC but with x 7→ σ(x̄) as complex conjugation.

Let ϕ: V ⊗ V → Q(−n) be a polarization. Write Ψ: VC × VC → C for the symmetric, positive definite
hermitian form (v, w) 7→ (2πi)nϕ(v ⊗ Cw̄). We claim that the real group H(σ) is a subgroup of the unitary
group U(VC,Ψ) and is therefore compact. This is now a simple computation: let x ∈ H(σ)(R), so that
x̄ = σ(x) = C−1xC}. Then

Ψ(xv, xw) = (2πi)n · ϕ(xv ⊗ Cx̄w̄)

= (2πi)n · ϕ(xv ⊗ xCw̄) = (2πi)n · ϕ(v ⊗ Cw̄) = Ψ(v, w) .

This shows that HR is an inner form of a compact group. Now

H(σ) is compact =⇒ H(σ) is reductive⇐⇒ H
(σ)
C = HC is reductive⇐⇒ H is reductive .

(1.18) Remark. Let V be a polarizable Q-HS of weight n. From the fact that C ∈ Hg(V )(R) defines a
Cartan involution we can deduce some further conclusions. For this, decompose HR := Hg(V )R as HR =
H0 · H1 · · ·Hq, the almost direct product of the connected center H0 and a number of R-simple factors
H1, . . . , Hq. Write pj : HR →→ H ′

j for the quotient of HR modulo H0 · · ·Hj−1 ·Hj+1 · · ·Hq and let Cj be the
image of C in H ′

j(R), which is again a Cartan involution.
The first remark is that each of the factors Hj is absolutely simple. In fact, we have seen that the

Cartan involution σ = Ad(C) defines a compact inner form H
(σ)
j . Then the compactness of H

(σ)
j implies

that Hj,C = H
(σ)
j,C is simple.
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Further we conclude that:
(i) the center of Hg(V ) is compact over R,
(ii) if Hi(R) is not compact then h|U1

: U1 → Hg(V )R has a nontrivial component in the factor Hi,
(iii) if Hi(R) is compact then C lies in the (finite) center of Hi.

In general it is not true that h|U1
has a trivial component in the compact factors. For later use, let us

record here, however, that this is the case if V has level ≤ 1. By this we mean that either n is even and
V is purely of type (n/2, n/2) or n = 2p + 1 is odd and V is of type (p, p + 1) + (p + 1, p); see also (2.22)
below. So, we claim that if V has level ≤ 1 then h|U1

has a trivial component in the factor Hj if and only if
Hj is compact. To see this, take a compact factor Hj and consider the action of U1 on Lie(H) ⊆ End(V ).
The assumption that the level is ≤ 1 implies that in End(V ) only the Hodge types (−1, 1), (0, 0) and (1,−1)
occur. Together with (iii) above it follows that Lie(Hj) ⊂ End(V )R is purely of type (0, 0). This means that
pj ◦h|U1

factors through the finite center of H ′
j , so the Hj-component of h|U1

is indeed trivial.

Exercise. Construct a polarizable Q-HS V such that Hg(V )(R) is compact. Also try to construct such an
example such that Hg(V ) is not a torus.

(1.19) Albert’s classification. Let D be a simple Q-algebra with a positive (anti-)involution ι: d 7→ d†. Such
algebras have been classified by Albert; the result is explained in [53], §21. (What is a positive involution is
also explained for instance in [43], §2.) The result is that D is of one of the following types; here we write
F = Cent(D), F0 = {a ∈ F | a† = a} and e0 = [F0 : Q], e = [F : Q], d2 = [D : F ].

Type I(e0): e = e0, d = 1; D = F = F0 is a totally real field. The involution ι is the identity.

Type II(e0): e = e0, d = 2; D is a quaternion algebra over a totally real field F = F0; D splits at all
infinite places. The involution ι is different from the canonical involution on D (i.e., the one
given by d 7→ d∗ = trD/F (d) − d); there exists an element a ∈ D with a∗ = −a such that

d† = ad∗a−1.

Type III(e0): e = e0, d = 2; D is a quaternion algebra over a totally real field F = F0; D is inert at all
infinite places. The involution ι is the canonical involution on D.

Type IV(e0, d): e = 2e0; F is a CM-field with totally real subfield F0; D is a division algebra of rank d2 over
F . The involution ι is such that under a suitable isomorphism D ⊗Q R

∼
−→ Md(C) × · · · ×

Md(C) (e0 factors) it coresponds to the involution (A1, . . . , Ae0) 7→ (A∗
1, . . . , A

∗
e0

), where

A∗
i := tAi. In particular, ι is complex conjugation on F .

(1.20) Remark. As we have seen above, the category QHSpol of polarizable Q-HS is semi-simple. If V is a
simple polarizable Q-HS then its endomorphism algebra D := EndQHS(V ) is a division algebra over Q. Let
n be the weight of Q and let ϕ: V ⊗V → Q(−n) be a polarization. There is an involution d 7→ d† determined
by the rule ϕ(dv ⊗ w) = ϕ(v ⊗ d†w) for all v, w. By definition of a polarization, the form Q: VR × VR → R

given by Q(v, w) = (2πi)n ·ϕ(v⊗Cw) is symmetric and positive definite. Notice that d ∈ D commutes with
the Weil operator C, so that Q(dv, w) = Q(v, d†w). We conclude that d 7→ d† is a positive involution and
that D is an algebra of the type considered above.

(1.21) An upper bound for the Mumford-Tate group. Let V be a polarizable Q-HS. We can decompose V
as V = V m1

1 ⊕· · ·⊕Vmr

r , where V1, . . . , Vr are simple, mutually non-isomorphic Q-HS and m1, . . . ,mr ∈ Z≥1.
Write D := EndQHS(V ), Di := EndQHS(Vi). The Di are division algebras of the type discussed above and
D = Mm1(D1)× · · · ×Mmr

(Dr). If V is simple then we shall say it is of type I (type II, etc.) if D is of the
corresponding type in the Albert classification.

We have
D = EndQHS(V ) = {Hodge classes in EndQ(V )}

= MT(X)-invariants in EndQ(V )

= Hg(X)-invariants in EndQ(V ).

This means that MT(V ) is contained in the algebraic group GLD(V ) of D-linear automorphisms of V .
Choosing a polarization ϕ̃ of V and combining the previous with what we found in (1.7) we get

MT(V ) ⊆ GUD(V, ϕ) , Hg(X) ⊆ UD(V, ϕ) ,
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where GUD(V, ϕ) and UD(V, ϕ) denote the centralizers of D inside GU(V, ϕ) resp. U(V, ϕ). Here we recall
that GU(V, ϕ) is our uniform notation for the group GSp(V, ϕ) (if V has odd weight, so that ϕ is symplectic),
resp. GO(V, ϕ) (if V has even weight, so that ϕ is orthogonal).

Exercise. Show that this centralizer GUD(V, ϕ) does not depend on the chosen polarization.

(1.22) Classical groups. Let us make the group UD(V, ϕ) a little more explicit in the situation that D is a
field. (In particular, V must be simple.) There are two cases to consider.

First suppose that D = F is a totally real field. Then there is a unique F -bilinear form ψ: V × V → F
with the property that ϕ = trF/Q(ψ). We have an algebraic group UF (V, ψ) over F and the centralizer
UF (V, ϕ) of F inside U(V, ϕ) is the group ResF/Q UF (V, ψ). We shall usually simply write UF (V, ψ) for this
group, assuming it is understood that we view it as an algebraic group over Q. If V has even weight then ψ
is symmetric and we have UF (V, ψ) = OF (V, ψ); if V has odd weight then UF (V, ψ) = SpF (V, ψ).

The other possibility is that D = F is a CM-field. Write F0 ⊂ F for its totally real subfield and x 7→ x̄
for the complex conjugation on F .

First assume that the weight of V is even, so that ϕ is symmetric. Then there exists a unique F -
hermitian form ψ: V × V → F with ϕ = trF/Q(ψ). (So, ψ is F -linear in the first variable, F -anti-linear in

the second variable, and ψ(w, v) = ψ(v, w) for all v, w.) Now the unitary group UF (V, ψ) is an algebraic
group over F0 and the centralizer SpF (V, ϕ) of F inside Sp(V, ϕ) is the group ResF0/Q UF (V, ψ). Again we
shall usually simply write UF (V, ψ) for this group.

If the weight of V is odd then essentially the same works. Imitating the previous would lead us to work
with an anti-symmetric F -hermitian form ψ but we can modify this to a symmetric F -hermitian form using
an imaginary element in F . More precisely: choose an element a ∈ F with ā = −a. Then there exists a
unique F -hermitian form ψ: V × V → F with ϕ = trF/Q(a · ψ). Now again UF (V, ψ) is an algebraic group
over F0 and the centralizer SpF (V, ϕ) of F inside Sp(V, ϕ) is the group ResF0/Q UF (V, ψ).

If D is not a field the previous still works but has to be phrased in terms of D-hermitian forms. In each
case we find that UD(V, ψ) is obtained by restriction of scalars from a classical group over the field F0. (For
algebras with involutions, hermitian forms and algebraic groups, see for instance the appendix of [69], [9],
section 23, or [41]).

(1.23) The center of the Mumford-Tate group. Let V be a polarizable Q-HS. Decompose V = V m1
1 ⊕ · · · ⊕

V mr

r as in (1.21). We have

D = [EndQ(V )]MT(V ) = [EndQ(V )]Hg(V ) . (1.23.1)

Write ZM = Z(MT(V )) for the connected center of the Mumford-Tate group. Then we see from (1.23.1)
that ZM is contained in the algebraic group D∗ (viewed as an algebraic group over Q). Now again applying
(1.23.1) we find that even ZM ⊆ TF := ResF/Q Gm, where F is the center of D.

By taking a polarization into account we can further sharpen this. First assume that V is simple, say
of weight n, and let d 7→ d† be the Rosati involution on D associated to a polarization ϕ: V ⊗ V → Q(−n).
This involution induces complex conjugation on the center F . (The identity if F is totally real.) Write ZH

for the connected center of the Hodge group. If V has weight 0 then ZM = ZH ; otherwise ZM is isogenous
to Gm,Q×ZH . The form ϕ is preserved by the Hodge group: we have ϕ(hv⊗hw) = ϕ(v⊗w) for all v, w ∈ V
and h ∈ Hg(V ). On the other hand, ϕ(dv ⊗ w) = ϕ(v ⊗ d†w) for d ∈ D. We conclude that ZH is contained
in U0

F , where UF is the Q-group of multiplicative type given by

UF := {x ∈ TF | xx̄ = 1} .

On character groups TF and UF are described as follows: if ΣF is the set of embeddings F → Q then
X∗(TF ) is the free abelian group on ΣF , with its natural action of Gal(Q/Q). The character group X∗(UF )
is the quotient of X∗(TF ) by the submodule generated by all elements σ+ σ̄, where the bar denotes complex
conjugation.

Now drop the assumption that V is simple. In this case the center F is a product of totally real fields
and CM-fields, say F = F1 × · · · × Fr. Set TF := TF1 × · · · × TFr

and UF := UF1 × · · · ×UFr
. Using what

was said in (1.13) we again find that ZH is contained in U0
F .
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(1.24) Proposition. (See [88], Lemma 1.4.) Let V be a polarizable Q-HS. Assume V has no simple factors
of type IV. Then Hg(V ) is semi-simple.

Proof. This is clear from the previous, as the assumption implies that F is a product of totally real
fields, so that UF is finite. �

Next we look at the opposite extreme.

(1.25) Definition. A Q-HS is said to be of CM-type if V is polarizable and MT(V ) is a torus.

If V is of CM-type then Hg(V )(R) is compact, by (1.17). Conversely, if V is a Q-HS such that Hg(V )
is a torus and Hg(V )(R) is compact then one can show that V is polarizable; see [70], Chap. 1, §6.1.

(1.26) Description of HS of CM-type. Let V be a polarizable Q-HS. Decompose V = V m1
1 ⊕ · · · ⊕ V mr

r as
in (1.21). By what we have seen in (1.13), V is of CM-type if and only if each Vi is of CM-type.

Now assume that V is simple and of CM-type. Let F be the center of D := EndQHS(V ). Let d :=
dimF (V ). In (1.23) we have seen that Hg(V ) ⊆ TF . This gives that Md(F ) ⊆ D. But D is a division
algebra, so d = 1 and for dimension reasons we then can only have D = F . By the Albert classification,
either F is totally real or F is a CM-field.

If F is totally real then (1.23) gives Hg(V ) = {1}. Then F = EndQ(V ) and we must have dim(V ) = 1
and F = Q. We conclude that V ∼= Q(n) for some n. These are indeed of CM-type.

Next suppose F is a CM-field. If ϕ is a polarization of V then the associated Rosati involution on
F is complex conjugation. We know that Hg(V ) ⊆ UF . For the Mumford-Tate group this means that
MT(V ) ⊆ GUF , where GUF ⊆ TF is the subtorus generated by UF and Gm,Q · id. On character groups:
X∗(GUF ) is the quotient of X∗(TF ) (= the free abelian group on ΣF ) by the relations σ+ σ̄ = τ + τ̄ for all
σ, τ ∈ ΣF . The homomorphism h: S→ GUF can now easily be described on character groups: it is given by
a function

Φ: ΣF → Z2 , say σ 7→ (mσ, nσ)

such that (mσ̄, nσ̄) = (nσ,mσ) and such that the function σ 7→ mσ + nσ is constant (=the negative weight).
Such a function Φ may be seen as a generalization of the classical notion of a CM-type (the case where
mσ, nσ ∈ {0, 1} for all σ, with weight equal to 1.) For the Hodge structure V this means the following. As
dimF (V ) = 1 we may identify V = F as an F -vector space. Then

V ⊗Q C
∼
−→

⊕

σ∈ΣF

C .

Then the summand C(σ) is of Hodge type (−mσ,−nσ). As C(σ̄) is the complex conjugate of C(σ), the
conditions on the function Φ ensure that this indeed gives a Hodge structure on V , of weight mσ + nσ. By
construction this Hodge structure is simple and of CM-type.

(1.27) Question. (“Converse problem.”) Which algebraic groups can occur as the Hodge group of a
polarizable Q-HS? In (1.16) and (1.18) we have found some conditions that such a group must satisfy;
are these sufficient conditions? Although I have no complete answer, it seems to me that this question is
manageable. More interesting, and much more difficult is the question whether every “reasonable” group
occurs as Hg(V ) for V a Q-HS “coming from geometry”. Here I have really no idea of what comes out. For
further discussion see for instance [35], [34] and [80]. Notice that there are many polarizable Q-HS which do
not come from geometry; see [36], second footnote on page 300. (It would be very interesting to work out
this footnote in greater detail.)

(1.28) Remark. Let X be a smooth proper variety over C, say of dimension d. For 0 ≤ n ≤ 2d, let
Hgn(X) be the Hodge group of Hn(X,Q). Write Hg(X) for the Hodge group of H•(X,Q) := ⊕nH

n(X,Q).
Then Hg(X) is a subgroup of

∏
n Hgn(X), projecting surjectively to each factor (cf. (1.13)). In some cases,

for instance if X is an abelian variety, it is easy to describe the relation between Hg(X) and the Hgn(X).
In general this is not so easy, but it helps to consider the decomposition of the cohomology into primitive
pieces. There is a very natural generalization of this, which was proposed only recently in the paper [47]
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by Looijenga and Lunts. The basic remark is this: the primitive decomposition depends on the choice of
an ample class in H2. It can be viewed as giving H•(X,Q) the structure of a module under sl2, where
the primitive decomposition corresponds precisely to the decomposition of H•(X,Q) into irreducible sl2-
representations. Now in general there is more than one ample class (up to multiples), and a different choice
may lead to a different primitive decomposition. Taking all, or several, ample classes in H2 simultaneously,
one constructs a Lie algebra g (generally bigger than sl2) acting on H•(X,Q) and decomposing it into a sum
of sub-Hodge structures. This decomposition can be finer than the usual primitive decomposition associated
to one ample class.

Further reading. There are many further ideas and constructions that we have not yet touched upon.
Among them mixed Hodge structures, variation of Hodge structure, period domains, ... For those who want
to read more, Deligne’s papers [16], [17], [18], [19], [20], [21], [22] and [23] are a must. Other references of
great interest are (a fairly random selection): [25] and [68] (Tannakian categories), [14], [32], [33], [60], [86]
(variation of Hodge structure), [31] and [13] (overviews of various developments; the first more geometrically
oriented, the second more abstract), [2], [12], [61] (Mumford-Tate groups of mixed HS; in [2] we find a very
interesting result on the relation with algebraic monodromy groups; the other two references deal with mixed
Shimura varieties). For papers containing interesting examples see also the suggestions at the end of the
next section.

§2. Mumford-Tate groups of abelian varieties.

(2.1) Abelian varieties. In this section we shall mainly look at Mumford-Tate groups of abelian varieties.
There are several reasons why Mumford-Tate groups are particularly effective in this case. For one thing,
if X is a complex abelian variety then H•(X,Q) ∼= ∧

•H1(X,Q) as Hodge structures, so that the whole
cohomology of X , and even of all powers of X , is determined by H1(X,Q). Now H1(X,Q) is a polarizable
Hodge structure of level 1, by which we mean that hp,q = 0 if |p − q| > 1. As we shall see later, this
puts interesting restrictions on MT(V ). In the sequel, if X is a complex abelian variety we shall write
MT(X) := MT(H1(X,Q)) and Hg(X) := Hg(H1(X,Q)).

Another thing that is special about abelian varieties is that we have a very strong “Torelli” result:

(2.2) Theorem. The functor X 7→ H1(X,Z) gives an equivalence of categories

(
abelian varieties

over C

)
eq.
−→

(
polarizable torsion-free Z-HS

of type (−1, 0) + (0,−1)

)
.

As variants of this equivalence: polarized abelian varieties correspond to polarized HS, abelian varieties
up to isogeny correspond to polarizable Q-HS of type (−1, 0) + (0,−1), and families of abelian varieties
correspond to polarizable variations of Hodge structures.

Notice that the duality X 7→ Xt := Pic0
X/C of abelian varieties corresponds to the duality V 7→ V ∗(1)

of Hodge structures. Furthermore, the notions of a polarization correspond: if λ: X → Xt is a polarization
of the abelian variety X then the induced morphism ϕ = H1(λ): H1(X,Z)→ H1(X,Z)∗(1) is a polarization
of the Hodge structure H1(X,Z) and vice versa. The form (2πi)−1 · ϕ is usually referred to as the Riemann
form of the polarization.

(2.3) The results of §1 for V = VX . Let X be a complex abelian variety. A first consequence of (2.2)—and
this is really special about abelian varieties—is that the endomorphism algebra ofX equals the endomorphism
algebra of VX :

End0(X)
∼
−→ EndQHS(VX) ,
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where we set End0(X) := End(X) ⊗Z Q. (That D := End0(X) is a semi-simple Q-algebra with a positive
involution is in fact true over an arbitrary field. Given g := dim(X), there are some numerical restrictions
on what D can be. See [53], §21, [59], [81].)

Up to isogeny (notation ∼) we can decompose X as

X ∼ Y m1
1 × · · · × Y mr

r ,

where Y1, . . . , Yr are simple, mutually non-isogenous, abelian varieties and m1, . . . ,mr ∈ Z≥1. Write Vi :=
H1(Yi,Q) and Di := End0(Yi). Then VX = V m1

1 ⊕ · · · ⊕ V mr

r is a decomposition of VX as a direct sum of
simple Q-HS and D = Mm1(D1)× · · · ×Mmr

(Dr). If r = 1 then we say that X is elementary. If X is simple
(i.e., r = 1 and m1 = 1) then we say that X is of type I (type II, etc.) if D is of the corresponding type in
the Albert classsification.

Let λ: X → Xt be a polarization of X . As explained above, it corresponds to a polarization ϕ: VX ⊗
VX → Q(−1) of VX . In (1.21) we have seen that

MT(X) ⊆ GSpD(VX , ϕ) , and D = [End(VX)]MT(X) .

From the description given in (1.26) we easily see that X is of CM-type (in the sense of abelian varieties) if
and only if VX is of CM-type, i.e., iff MT(X) is a torus. This was first proven by Mumford, [52]. If X has
no simple factors of type IV then Hg(X) is semi-simple.

(2.4) Let X be a simple abelian variety over C. Set g := dim(X). As remarked above, there are some
numerical restrictions on what D := End0(X) can be. Most of these can be derived by remarking that
V := H1(X,Q) is a 2g-dimensional Q-vector space on which D acts and such that there exists a symplectic
form ϕ with ϕ(dv, w) = ϕ(v, d†w) for all v, w,∈ V and d ∈ D. Writing e := [F : Q] and d2 := [D : F ] we
find that e|g if X has type I, that 2e|g if X has type II or III and that ed2|2g if X has type IV.

There are some further invariants associated to the action of D on V . The ones we shall need can be
described as follows. Write ΣF for the set of embeddings of F into C. Then V ⊗Q C = V −1,0 ⊕V 0,−1 is free
of rank 2g/e over

F ⊗Q C =
∏

σ∈ΣF

C .

Moreover, the action of F ⊗Q C respects the Hodge decomposition of VC. Therefore we can write

V ⊗Q C =
⊕

σ∈ΣF

V −1,0(σ)⊕ V 0,−1(σ) ,

where V i,j(σ) = {v ∈ V i,j | f(v) = σ(f) · v for all f ∈ F}. We shall write

nσ := dimC V
−1,0(σ) .

Note that dim V −1,0(σ)+dim V 0,−1(σ) = 2g/e for all σ. Also, writing σ̄ for the complex conjugate of σ, the
summand V −1,0(σ̄) is complex conjugate to V 0,−1(σ). This gives the relation

nσ + nσ̄ = 2g/e for all σ ∈ ΣF .

The integers nσ are often referred to as the multiplicities of the action of F on the tangent space of X ; notice
that V −1,0 is indeed naturally isomorphic to the tangent space of X at the origin.

(2.5) Comment. How succesful we are in describing, or computing, the Mumford-Tate group of an abelian
variety strongly depends on how we play the game. By this we mean the following. If we take an “abstract”
abelian variety, we can decompose it (up to isogeny) as a product of powers of simple ones. Then, using the
Albert classification, we find a finite list of possibilities for the endomorphism algebra. In each of the possible
cases we can try to determine the Mumford-Tate group, possibly after taking into account further “discrete”
invariants, such as the type of the action on the tangent space. In many cases this leads to interesting results,
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and we shall see that sometimes it even allows to prove the Hodge conjecture for our abelian variety. Usually,
however, the abelian variety itself remains “invisible” in this game; it is not a concrete geometric object.
What we are really studying are abstract Q-Hodge structures satisfying certain properties. By contrast, if
we start with an abelian variety as coming from some geometric situation, e.g., as the Jacobian of some
other variety, then it is often very hard to determine its Mumford-Tate group.

(2.6) Example. Let E be an elliptic curve over C. We know that the Hodge group Hg(E) is a reductive
subgroup of Sp(V, ϕ) = SL2,Q. A priori there are therefore only three possibilities: either (a) Hg(E) = {1},
or (b) Hg(E) = SL2,Q, or (c) Hg(E) is a maximal torus of SL2,Q. On the other hand, we know that either
End0(E) = Q or End0(E) = k is an imaginary quadratic field. This rules out case (a). The remaining
options are now easily matched:
(i) if End0(E) = Q then Hg(E) is semi-simple so we must have Hg(E) = SL2,Q.
(ii) if End0(E) = k is an imaginary quadratic field then Hg(E) is a torus contained in Uk = {z ∈ k∗ | zz̄ = 1};

see (1.23). Since Uk has rank 1 we have Hg(E) = Uk.

(2.7) Example. Let X be a simple abelian surface. For D := End0(X) we have the following four possi-
bilities:
(i) D = Q,
(ii) D = F is a real quadratic field,
(iii) D is an indefinite quaternion algebra over Q,
(iv) D = F is a CM-field of degree 4 over Q which does not contain an imaginary quadratic field.
(Note that for dim(X) = 2 we cannot have that End0(X) is an imaginary quadratic field; see [81].)

We claim that in each of these cases we have Hg(X) = SpD(V, ϕ). We first do case (ii). We know that
Hg(X) is semi-simple and contained in SpF (V, ψ) = SLF (V ) ∼= ResF/Q SL2,F . Write H for this group. Then

HC
∼= SL2 × SL2. Writing St(1) resp. St(2) for the standard respresentation of the first (resp. second) factor

SL2 we have VX ⊗Q C ∼= St(1) ⊕ St(2) as a HC-module. Now assume that Hg(X) 6= SpF (V, ϕ). As Hg(X) is
semi-simple we must have Hg(X)C

∼= SL2 −֒→ HC = SL2 × SL2. Since

End(VX,C)Hg(X)C = [End(VX)Hg(X)]⊗ C = F ⊗ C ∼= C× C (2.7.1)

the projections of Hg(X)C to the two factors SL2 are both surjective. Now remark that SL2 has only one
irreducible 2-dimensional representation, up to isomorphism. It follows that VX,C

∼= St⊕2 as a representation
of Hg(V )C. As this contradicts (2.7.1) we conclude that Hg(X) = SpF (V, ψ) = SLF (V ).

Case (iii) is quite easy. We know that Hg(X) is semi-simple and contained in SpD(V, ϕ). The latter
group can be described as follows. Let Dopp be the opposite of the algebra D and write d 7→ d∗ for its
canonical involution. Then SpD(V, ϕ) ∼= UDopp , the algebraic Q-group given on points by

UDopp = {d ∈ (Dopp)∗ | dd∗ = 1} ,

which is a Q-form of SL2. By rank considerations we must have Hg(X) = UDopp .
Case (iv) is also not difficult. In this case Hg(X) is contained in the torus UF , which has rank 2. Using

that F does not contain an imaginary quadratic field, one checks that UF does not contain any nontrivial
Q-subtorus. (This is done using the explicit description of X∗(UF ) given in (1.23).)

Finally, suppose we are in case (i). Then Hg(X) is semi-simple, contained in SpQ(V, ϕ) ∼= Sp4,Q, and
VX,C is an irreducible representation of Hg(X)C. Suppose that Hg(X) 6= Sp(V, ϕ). By rank considerations
we must have Hg(X)C

∼= SL2 and VX,C
∼= Sym3(St). (Notice that SL2 × SL2 does not have an irreducible

faithful symplectic representation of dimension 4. Also notice that −id ∈ Z(Hg), so Hg(X)C could also not
be PSL2.) If T ⊂ Hg(X)C is a maximal torus and t is a generator of the character group X∗(T ) then the
weights of T that occur are

t−3 t−1 t t3

• • • •

Let T̃ ⊂ MT(X)C be the maximal torus generated by Gm · id and T . (We are still assuming that Hg(X)C
∼=

SL2.) Then X∗(T̃ ) ∼= Z2 and the 4 weights of T̃ on VX,C lie on a line (not through the origin). At this
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point we use a little extra information about the Hodge structure VX,C. Namely, consider the cocharacter
h◦µ: Gm,C → MT(X)C. Letting Gm act on VX,C through this cocharacter we know that the weights that

occur are z 7→ z−1 and z 7→ 1. We can choose our T̃ such that h◦µ factors through it. On character groups
this gives a Z-linear map X∗(T̃ ) → X∗(Gm) = Z such that the 4 weights of T̃ map onto the 2 weights of
Gm. This is clearly impossible. We conclude that Hg(X) = Sp(V, ϕ).

(2.8) Remark. Let X be a complex abelian variety. Let T̃ ⊂ MT(X)C be a maximal torus. Assume that
End0(X) = Q, which means precisely that VX,C is an irreducible representation of MT(X)C. The weights of

T̃ in VX,C form a finite subset (with multiplicities) Supp(VX,C) ⊂ X∗(T̃ ) ∼= Zr. The arguments used in case

(i) above can be visualized by saying that there exists a Z-linear map X∗(T̃ ) → Z such that the image of
Supp(VX,C) consists of two elements. In other words: the weights that occur lie in two parallel hyperplanes

inside X∗(T̃ ). This restriction comes from the fact that only two types occur in the Hodge decomposition
of VX and puts strong restrictions on the representations that can occur. Similar arguments can be applied
to arbitrary Hodge structures; we shall study this in §3.

(2.9) The Hodge conjecture. We shall use Mumford-Tate groups to prove the Hodge conjecture in certain
cases. Let us first set up some notations and recall the statement of the conjecture.

Let X be a nonsingular proper variety over C. We write Bn(X) ⊆ H2n(X,Q)(n) for the subspace of
Hodge classes. Then B

• := ⊕nBn(X) is a commutative graded Q-algebra, called the Hodge ring of X . If Z
is an algebraic cycle on X of codimension n then there is an associated cohomology class cl(Z) ∈ Bn(X). We
in fact have a homomorphism of graded Q-algebras cl : CH

•

Q(X)→ B
•(X). The (special) Hodge conjecture

is the following:
HC(X,n) : the map cl : CHn

Q(X)→ B
n(X) is surjective.

In other words, the conjecture says that every Hodge class in H2n(X,Q)(n) is a Q-linear combination of
algberaic classes cl(Z). Let us also write HC(X) for the statement “HC(X,n) holds for all n”.

Although the Hodge theorem (which gives rise to the Hodge structure on H2n(X,Q)) works for compact
Kähler manifolds, not necessarily projective, it is known that the Hodge conjecture is definitely false for
general compact Kähler manifolds. For an example, see [46], ??.

The Hodge conjecture was originally formulated by Hodge with Z-coefficients. In the paper [5] by
Atiyah and Hirzebruch it was shown however, that H2n(X,Z)(n) may contain torsion classes which are not
algebraic. But not only torsion phenomena force us to work with Q-coefficients: it may also happen that
H2n(X,Z)(n) contains elements ξ which are not torsion, such that some multiple m · ξ is the class of an
algebraic cycle but ξ itself is not; see for instance [6].

(2.10) Divisor classes. It is a theorem of Lefschetz that HC(X, 1) holds for every (proper, nonsingular)
X . So, B1(X) ⊂ H2(X,Q)(1) is generated by the divisor classes. Now set D1(X) := B1(X), and write
D

•(X) ⊆ B
•(X) for the Q-subalgebra generated by D1(X). In other words: D

•(X) consists of all Q-linear
combinations of cup-products of divisor classes. Clearly all classes in D

•(X) are algebraic; in particular, if
D

•(X) = B
•(X) then the Hodge conjecture is true for X .

In general it is quite easy to cook up examples where D
•(X) 6= B

•(X), taking X to be a (suitable)
hypersurface in some Pn for instance. For abelian varieties the situation is different. We shall find many
cases where D

•(X) = B
•(X), and it is not so easy to produce examples where this actually does not hold.

We shall further go into this below.

(2.11) The basic strategy. Let us now explain a strategy that was already hinted at in (2.5). Take an
abelian variety X . We want to prove HC(X), or at least we want to find out if D

•(X) = B
•(X).

Assume we know D := End0(X). In any case, knowing X , and possibly the way X decomposes into
simple factors, the Albert classification gives us a finite number of possible “types” for D, which we can try
to deal with one by one. Now we have

MT(X) ⊆ GSpD(V, ϕ) , and D = [End(VX)]MT(X) .

The first gives an “upper bound” for MT(X), the second says that MT(X) cannot be too much smaller
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than GSpD(V, ϕ). Using this, combined with various facts from the theory of reductive groups, we can try
to determine (a finite list of possibilities for) MT(X) and its representation VX .

Once we know (a candidate for) MT(X) we can turn things around: the Hodge ring B
•(X) is the space

of Hg(X)-invariants in ∧•VX , and is therefore (at least in principle) easy to compute. (Note that for the
computation of invariants we can extend scalars to C, which is sometimes helpful.) In any case, the question
whether D

•(X) = B
•(X) now becomes a problem in invariant theory.

(2.12) Some results from invariant theory. Almost all we shall need from invariant theory can be reduced
to one of the following cases.

(C) Symplectic groups. Let W be a C-vector space equipped with a non-degenerate symplectic form ϕ.
Let m ∈ Z≥1. Then the graded C-algebra

[

•∧
(W⊕m)]Sp(W,ϕ)

is generated by its elements in degree 2.
(A) Unitary groups. Let W be a C-vector space equipped with a non-degenerate hermitian form ϕ. Let

m ∈ Z≥1. Then the graded C-algebra

[

•∧
(W⊕m)]U(W,ϕ)

is generated by its elements in degree 2.

(2.13) Example. Suppose X is simple and End0(X) = F is a totally real field. Suppose furthermore that
MT(X) = GSpF (V, ϕ), so Hg(X) = SpF (V, ϕ). Let ΣF = {σ1, . . . , σe} be the set of embeddings of F into
C and set d = dimF (VX). Then VX,C is free of rank d over F ⊗Q C = C(1) × · · · × C(e), so it decomposes
as VX,C = W(1) ⊕ · · · ⊕W(e). The symplectic form ϕ on VX,C decomposes as a sum of symplectic forms
ϕ(j): W(j) ×W(j) → C(j). (Exercise: show this, using that the Rosati involution on F is trivial.) We then
have SpF (VX , ϕ)⊗ C = Sp(W(1), ϕ(1))× · · · × Sp(W(e), ϕ(e)) and

B
•
(Xm) = [

•∧
(V ⊕m

X,C )]Sp
F

(VX ,ϕ)⊗C = [

•∧
(W⊕m

(1) )]Sp(W(1),ϕ(1)) ⊗ · · · ⊗ [

•∧
(W⊕m

(e) )]Sp(W(e),ϕ(e)) .

Applying (2.12), case (C), we find that this algebra is generated by its elements in degree 2, which just
means that D

•(Xm) = B
•(Xm) for all m.

Similar arguments, now working with unitary groups, work in case F is a CM-field and Hg(X) =
UF (VX , ϕ).

Let us now give a number of results on Mumford-Tate groups of abelian varieties and applications to
the Hodge conjecture. For the proofs of these results we refer to the literature. First we have a result of
Hazama [37] and Murty [54]. The proof heavily uses invariant theory of the kind indicated above.

(2.14) Theorem. Let X be a complex abelian variety. Set D := End0(X), let V := H1(X,Q) and let ϕ be
the Riemann form of a polarization. Then

B
•
(Xn) = D

•
(Xn) for all n ≥ 1 ⇐⇒

(
X has no factors of type III
and Hg(X) = SpD(V, ϕ)

)
.

The next result, and especially its corollary, is perhaps surprising if you see it for the first time. After
all, a priori most people would probably not expect simple abelian varieties of dimension 31, say, to be much
simpler than ones of dimension 32, say. But if we think of abelian varieties (up to isogeny) just as being
special kinds of Hodge structures then it is already much more plausible that numerical conditions on the
dimension could make a big difference for what possibilities may occur.

The corollary is due to Tankeev [89], although it seems that several cases were done independently by
Ribet and Serre. The theorem as we state it includes generalizations due to Ribet [67]. We refer to this very
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readable paper for the proof. Some of the technical results needed in the paper are discussed in the next
section. (See for instance (3.14) where we prove a special case of statement (i).) In the statement we use
the notations as explained in (1.22) and (2.4).

(2.15) Theorem. Let X be a complex abelian variety. Set g := dim(X).
(i) Suppose End0(X) = F is a totally real field such that the integer g/[F : Q] is odd. Then Hg(X) =

SpF (V, ψ).
(ii) Suppose End0(X) = k is an imaginary quadratic field such that nσ and nσ̄ are relatively prime.

Then Hg(X) = Uk(V, ψ).
(iii) Suppose g is prime and End0(X) = F is a CM-field of degree 2g over Q. Then Hg(X) = UF (V, ψ) =

UF .

(2.16) Corollary. Let X be a simple abelian variety of prime dimension. Then Hg(X) = SpD(V, ϕ)
(notations as in (2.14)) and B

•(Xn) = D
•(Xn) for all n. In particular, the Hodge conjecture is true for all

Xn.

To get the corollary from the theorem note that if X is simple of prime dimension g, the endomorphism
algebra End0(X) can only be Q, or a totally real field of degree g over Q, or an imaginary quadratic field,
or a CM-field of degree 2g over Q. All these cases are covered by (2.15). Note also that X is not of type III,
so that (2.14) applies. (In fact, in all cases that occur the implication “⇐” in (2.14) can be proven by hand;
(2.14) in its full strength was proven later than (2.15) and (2.16).)

There are many more cases where it is proven that Hg(X) = SpD(V, ϕ); see for instance [38], [50], [49],
[55], [62] or the many references given in [30].

(2.17) Weil classes. Let us now explain a construction that leads to examples where B
•(X) 6= D

•(X). The
first such example (with X an abelian variety) was given by Mumford; see [64]. The construction given here
is due to Weil [94], who remarked that there is one ingredient in the example constructed by Mumford which
is essential. For more details we refer to [51].

Start with a Q-HS V , a (commutative) field k and a homomorphism k → EndQHS(V ) sending 1 to idV .
Set d := dimk(V ). Then ∧d

kV is a 1-dimensional k-vector space and there is a canonical Q-linear surjection

p = pV :
d∧

Q

V →→
d∧

k

V .

It is not difficult to show that Ker(p) is a Q-subHS of ∧d
QV . By the semi-simplicity of QHS is follows that

there is a unique Q-subHS

Wk ⊂

d∧

Q

V

which maps isomorphically to ∧d
kV under p. Alternatively, as we are working over a ground field of charac-

teristic 0 the natural Q-linear map (∧d
QV )∗ → [∧d

Q(V ∗)] is an isomorphism and we may define Wk ⊂ ∧
d
QV

by dualizing pV ∗ . We refer to Wk as the space of Weil classes w.r.t. the given action of k.
Let us now specialize this to the case of abelian varieties, taking V = H1(X,Q). In this case Wk is a

subspace of Hd(X,Q) and one can show ([51], sections 2–6) that the following conditions are equivalent:
(i) the space Wk contains a non-zero Hodge class,
(ii) the space Wk consists entirely of Hodge classes,
(iii) for all embeddings σ: k → C we have, using the notations introduced in (2.4), nσ = nσ̄,
(iv) the Hodge group Hg(X) ⊂ GLk(V ) is contained in SLk(V ).

For instance, if X has no factors of type IV then Hg(X) is semi-simple and (iv) is automatically satisfied.
Notice that the four equivalent conditions can only be satisfied if V has even dimension as a k-vector space.

Now suppose that Wk consists of Hodge classes. Then the next question is whether these classes lie in
D

•(X). In loc. cit. we find a complete answer to this questions, purely in terms of the given action of k on
X . Here we shall only give some examples.
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Exercise. The multiplicative group k∗ acts on V . It also acts on Wk. Describe how the two actions are
related. Show that (i) and (ii) above are equivalent. Also show that if there is one non-zero class in Wk

which lies in D
•(X) then Wk is fully contained in D

•(X).

(2.18) Example. Suppose that X is simple and that End0(X) = k is an imaginary quadratic field. This
implies that X has even dimension, say dim(X) = 2d. Suppose furthermore that the multiplicities of the
action of k on the tangent space of X at the origin satisfy nσ = nσ̄ = 2d. Then Wk ⊂ H2d(X,Q) is a
2-dimensional subspace consisting of Hodge classes. But the Picard number of X (:= the dimension of
B1(X)) is 1. So Wk could impossibly be contained in Dd(X). ˚e conclude that Wk consists of exceptional
Hodge classes, i.e., Hodge classes which do not lie in D

•(X).

(2.19) Example. Suppose that X is simple of type III. Recall that this means that D := End0(X) is a
quaternion algebra over a totally real field F such that D is inert at all infinite places. Notice that for every
element α ∈ D \ F the subfield F (α) ⊂ D is a CM-field. Take k = F (α) for such an α. As remarked above,
the semi-simplicity of Hg(X) implies that Wk consists of Hodge classes. In fact, with a construction as in
(1.22) we find that the Hodge group is contained in a special unitary group SUk(V, ψ). Next one shows
that all divisor classes are invariant under the full unitary group Uk(V, ψ) and that this group acts on Wk

as multiplication by the k-linear determinant detk: Uk(V, ψ) → k∗. Again it follows that Wk consists of
exceptional Hodge classes. (For more details see e.g., [50], especially section 3.)

(2.20) Example. As a final example, suppose that X is a product of two abelian varieties, say X = Y1×Y2.
Set di := 2 dim(Yi)/[k : Q], so that d = d1 + d2. Then Wk = Wk(X) ⊂ Hd(X,Q) may be identified with the
subspace Wk(Y1)⊗Wk(Y2) of the Künneth component Hd1(Y1,Q)⊗Hd2(Y2,Q) ⊂ Hd(X,Q). Suppose then
that Wk(X) consists of Hodge classes. It follows that these Hodge classes can lie in D

•(X) only if Wk(Y1)
and Wk(Y2) are contained in D

•(Y1) resp. D
•(Y2). But this is clearly only possible if d1 and d2 are even.

To make this more concrete, suppose Y1 is an elliptic curve such that End0(Y1) = k is imaginary
quadratic, and suppose Y2 is a simple abelian threefold such that there exists an embedding k → End0(Y2).
Put X = Y1 × Y2. We can choose an embedding k → End0(X) such that Wk ⊂ H4(X,Q) consists of
Hodge classes. (Exercise: check this, using condition (iii) in (2.17) above. You need to know that the
multiplicities of the k-action on Y2 are either (nσ, nσ̄) = (2, 1) or (nσ, nσ̄) = (1, 2), see [81], Prop. 14.) As
Wk(Y1) = H1(Y1,Q) and Wk(Y2) ⊂ H

3(Y2,Q) can obviously not consist of divisor classes we find once again
an example where B

•(X) 6= D
•(X).

(2.21) Remark. In all the examples discussed here one is now faced with the task of finding algebraic cycles
giving rise to the exceptional Hodge classes found. This is usually very hard; the desired cycles are known
to exist only in some very special cases. See Shioda [82] (an example of the type discussed in (2.20), with
dim(X) = 4), Schoen [71], [73] and van Geemen [93], [92] (examples of the type discussed in (2.18), with
dim(X) = 4 and an action of either Q(i) or Q(ζ3)). As already commented on in (2.5), the first difficulty is
that the abelian varieties in question are not constructed in a (projective) geometrical way. Indeed, in all
examples referred to, the story begins with a more geometrical description of the abelian variety, either as a
projective variety defined by some special equation, or as a Prym variety associated to a covering of curves,
or through a study of theta functions.

As the last topic in this section, let us indicate how in some cases Mumford-Tate groups can even be
used to tackle the general Hodge conjecture. First some preparations.

(2.22) Definition. Let V be a Q-HS. Then the level of V is defined to be the minimum of |p − q| for all
(p, q) ∈ Z2 with V p,q 6= 0.

For instance, Hn(X,Q) has level at most n.

(2.23) Sub-HS defined by algebraic subvarieties. Let X again be a proper, nonsingular variety over C.
If i: Z →֒ X is an algebraic subvariety of codimension p, Deligne’s mixed Hodge theory (see [20]) gives
the following. Consider a resolution of singularities π: Z̃ → Z and write ĩ = i◦π. Let d = dim(X). If
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ĩ!: H
m−2p(Z̃,Q)(−p) → Hm(X,Q) denotes the transpose under Poincaré dualtiy of ĩ∗: H2d−m(X,Q) →

H2d−m(Z̃,Q) then we have an exact “Gysin” sequence

Hm−2p(Z̃,Q)(−p)
ĩ!−→ Hm(X,Q) −→ Hm(X − Z,Q) .

Now define a filtration, the so-called arithmetic filtration F ′• on Hm(X,Q) by

F ′pH2n(X,Q) :=



ξ ∈ H

2n(X,Q)

∣∣∣∣∣

there exists a Zariski-closed Z ⊂ X
with codX(Z) ≥ p such that
ξ maps to zero in H2n(X − Z,Q)



 .

Since ĩ! is a morphism of Hodge structures, F ′pHm(X,Q) is a sub-Q-HS of Hm(X,Q) which is contained in
F pHm(X,C) ∩Hm(X,Q). In particular, F ′pHm(X,Q)(n) has level ≤ m− 2p.

(2.24) The general Hodge conjecture. After these preparations we can recall the statement of the general
Hodge conjecture. Again we start with a proper nonsingular variety X over C. Then the general Hodge
conjecture says:

GHC(X,m, p) : if V ⊂ Hm(X,Q) is a sub-HS of level ≤ m− 2p then V ⊂ F ′pHm(X,Q).

The strategy that we shall try to explain is based on the following lemma, which we copy from Schoen’s
paper [72].

(2.25) Lemma. Let X be a smooth proper variety over C. Let V ⊆ Hn(X,Q) be a Q-subHS contained in
F kHn(X,C). Suppose there exists a smooth proper variety Y such that (i) V (k) is isomorphic to a Q-subHS
of Hn−2k(Y,Q) and (ii) the Hodge (p, p)-conjecture is true for Y ×X . Then V ⊆ F ′kHn(X,Q).

Proof. Set d = dim(Y ), e = dim(X). We assume that V 6= (0). Choose a morphism of Q-HS
ϕ: V (k) →֒ Hn−2k(Y,Q). Since Hn−2k(Y,Q) is a polarisable Q-HS we can choose a decomposition (as
Q-HS) Hn−2k(Y,Q) = Im(ϕ)⊕ V ′. Consider the composition

ξ: Hn−2k(Y,Q)
pr
−→ Im(ϕ)

ϕ−1

−→ V (k) →֒ Hn(X,Q)(k) .

By the Künneth formula and Poincaré duality we have,

H2d+2k(Y ×X,Q)(d+ k) ∼=

2d+2k⊕

i=2k

Hom
(
Hi−2k(Y,Q), Hi(X,Q)(k)

)
.

Thus we see that ξ gives a Hodge class in H2d+2k(Y × X,Q)(d + k). By assumption (ii) there exists an
algebraic cycle Z ⊂ Y ×X of codimension d+ k such that cl(Z) is an integer multiple of ξ.

Write p1 := prY : Y × X → Y and p2 = prX : Y × X → X . In terms of the cycle Z the map
ξ: Hn−2k(Y,Q)→ Hn(X,Q)(k) is given by

ξ: η 7→ p2,∗(p
∗
1(η) ∪ cl(Z)) ,

which can be rewritten as
ξ: η 7→ D

(
p2,∗(p

∗
1(η) ∩ [Z])

)
,

where [Z] ∈ H2(e−k)(Y ×X,Q) is the fundamental class of Z and where D: H2e−n(X,Q)→ Hn(X,Q) is the
Poincaré duality isomorphism. (Here we are being sloppy about Tate twists.)

Write Z = p2(Z). Then we have a diagram

Z
i
−→ Y ×X

p′
2

y
yp2

Z −→
j

X
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and p2,∗(p
∗
1(η) ∩ [Z]) is equal to (j ◦p′2)∗

(
D′(i∗p∗1(η))

)
, where D′: Hn−2k(Z,Q) → H2e−n(Z,Q) is Poincaré

duality. Hence ξ factors through H2e−n(Z,Q). If Z → Z is not a birational morphism then the map ξ
is zero, contradicting our assumption that V 6= (0). Therefore, we have dim(Z) = dim(Z) = e − k and
codimX(Z) = k. This shows that V ⊆ F ′kHn(X,Q), as claimed. �

Exercise. Do not read any further! Take an abelian variety X , write V = H1(X,Q) and assume that
MT(X) = CSp(V, ϕ). (In particular, End0(X) = Q.) Try to prove the GHC for all powers of X .

From this lemma a clear strategy emerges for trying to prove GHC(X), at least in some cases. Namely,
suppose we know HC(Xn) for all n ≥ 1, for instance because we know that Hg(X) = SpD(V, ϕ) and X
has no factors of type III. Let V ⊂ Hn(X,Q) be a Q-subHS contained in F kHn(X,Q). Without loss of
generality we may assume V to be simple. In order to show that V ⊂ F ′kHn(X,Q) it would suffice, by the
lemma, to find a non-zero Hg(X)-equivariant homomorphism V → Hn−2k(Xm,Q) for some m. But just as
in (2.11) this becomes a problem in representation theory.

The following theorem summarizes how far this method has been pushed, at present. It collects the
main results of the papers [91] by Tankeev, [39] by Hazama and [1] by Abdulali. (In some special cases the
result was already known.) There are further examples that can be dealt with, see for instance [72] or the
overview paper [30].

(2.26) Theorem. Let X be a complex abelian variety.
(i) Suppose that either (a) X has only simple factors of type I and II and Hg(X) = SpD(V, ϕ), or (b) X

is a product of elliptic curves. Then GHC(Xn,m, p) holds for all n, m and p.
(ii) Suppose that X has no simple factors of type IV and that Hg(X) = SpD(V, ϕ). Suppose furthermore

that for every simple factor Y of type III the integer 2 dim(Y )/[End0(Y ) : Q] is odd. If the Hodge conjecture
is true for all powers of X then also the general Hodge conjecture is true for all powers of X .

Further reading. The most relevant papers concerning Mumford-Tate groups of abelian varieties were
already mentioned in the text. Good overview papers are [30] and [92]. (Some more recent results can be
found in [49].) For more general surveys of the Hodge conjecture and the general Hodge conjecture, see [46],
[83] and [87]. These also contain many references to papers that deal with the Hodge conjecture for special
classes of varieties.

§3. Levels of Hodge structures and lengths of representations.

(3.1) The material in this section is entirely based on Zarhin’s paper [99]. We shall make free use of the
theory of semi-simple Lie algebras and their representations. In this we shall follow the notations of Bourbaki
[10], [11]. More precisely, we use the following notation.

K an algebraically closed field of characteristic 0
g a semi-simple K-Lie algebra
h a Cartan subalgebra of g;

set h∗ := Hom(h,K) and write 〈 , 〉: h× h∗ → K for the canonical pairing
R ⊂ h∗ the root system of g with respect to h

R∨ ⊂ h the dual root system
B = {α1, . . . , αℓ} a basis of R

set B∨ := {α∨ | α ∈ B}, which is a basis of R∨

P = P (R) ⊂ h∗ the weight lattice
̟1, . . . , ̟ℓ the fundamental dominant weights
P++ ⊂ P the dominant weights (Z≥0-linear combinations of the ̟j)

≥ the partial ordering on P ⊗Q defined by B, i.e., λ1 ≥ λ2 iff λ1 − λ2 ∈
∑

Q≥0 · αi,
(Note: P++ is in general strictly contained in P+ := {λ ∈ P | λ ≥ 0})

α̃, β̃∨ the maximal roots in R, resp. R∨
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W the Weyl group of R
w0 ∈W the longest element (w.r.t. the chosen basis B)

λ 7→ λ′ := −w0(λ) the opposition involution on h∗

V (λ) the irreducible g-module with highest weight λ (for λ a dominant weight)

(3.2) Let λ be a dominant weight. We can write

λ =
∑

α∈B

cα · α =

ℓ∑

i=1

ci · αi =

ℓ∑

i=1

mi ·̟i ,

where ci = cαi
∈ Q≥0 and mi ∈ Z≥0 for all i. If ni,j := n(αi, αj) := 〈αi, α

∨
j 〉 are the coefficients of the

Cartan matrix then αi =
∑ℓ

j=1 ni,j̟j, so that mj =
∑ℓ

i=1 cini,j .

(3.3) Lemma. We have cα + cα′ ∈ Z≥0 for all α ∈ B.

Proof. If w ∈ W then w(λ) can be written as

w(λ) = λ−
∑

α∈B

aα · α , with aα ∈ Z≥0 .

Taking w = w0 gives

−
∑

α∈B

cα′ · α = −λ′ = w0(λ) =

(
∑

α∈B

cα · α

)
−

(
∑

α∈B

aα · α

)
,

hence cα + cα′ = aα ∈ Z≥0 for all α ∈ B. �

(3.4) Definition. Notation as above. Assume R to be irreducible (corresponding to simple g). We define

s(λ) =
∑

α∈B

〈λ, α∨〉 =

ℓ∑

i,j=1

ni,jci =

ℓ∑

i=1

mi ,

depth(λ) = 〈λ, β̃∨〉 = max
α∈R
〈λ, α∨〉 ,

length(λ) = min
α∈B

cα + cα′ .

(3.5) Proposition. The functions s, depth and length take integral values and have the following properties.
(i) length(λ) ≥ depth(λ) ≥ s(λ) ≥ 0,
(ii) s(λ) ≥ 1 if λ 6= 0,
(iii) s(λ′) = s(λ), depth(λ) = depth(λ′), length(λ′) = length(λ),
(iv) s(λ1 + λ2) = s(λ1) + s(λ2), depth(λ1 + λ2) = depth(λ1) + depth(λ2),
(v) length(λ1 + λ2) ≥ length(λ1) + length(λ2), length(mλ+ nλ′) = (m+ n) · length(λ) for m,n ∈ Z≥0.

Proof. Properties (ii), (iii), (iv) and (v) are clear. That depth(λ) ≥ s(λ) follows from the fact that
β̃∨ ≥ α∨

i for all αi ∈ B, so that 〈̟i, β̃
∨〉 ≥ 1 for all i. Next consider a positive root γ =

∑
α∈B eα · α (with

eα ∈ Z≥0 for all α) and write wγ ∈ W for the associated reflection. As in (3.3) we have

−λ′ = w0(λ) = λ−
∑

α∈B

aα · α , with aα = cα + cα′ ∈ Z≥0

and
wγ(λ) = λ− 〈λ, γ∨〉 · γ = λ−

∑

α∈B

〈λ, γ∨〉 · eα · α .
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As wγ(λ) ≥ w0(λ) we find the estimate

cα + cα′ ≥ 〈λ, γ∨〉 · eα for all α ∈ B .

Taking γ = β̃ we have eα ≥ 1 for all α ∈ B and this gives that length(λ) ≥ depth(λ). �

Given an irreducible root system R, and given an expression for λ as a linear combination of basis vectors
(or a linear combination of fundamental dominant weights), the numbers s(λ), depth(λ) and length(λ) are
easily computed. For the length function the result is listed in Table 1 (p. 26), taken from [99].

(3.6) Example. Suppose R is an irreducible root system. In [11], Chap. VIII, §7.3, the notion of a miniscule
weight is defined. One possible definition is that a dominant weight λ is miniscule if and only if 〈λ, α∨〉 ∈
{−1, 0, 1} for all α ∈ R. The miniscule weights are easily listed (see Table 3, p. 27); they only occur among
the fundamental dominant weights, and for R of type E8, F4 or G2 there are no miniscule weights at all.
With this terminology we have

s(λ) = 1⇐⇒ λ is a fundamental dominant weight ,

depth(λ) = 1⇐⇒ λ is a miniscule weight ,

length(λ) = 1⇐⇒ λ is a miniscule weight and R is of classical type.

(By “R is of classical type” we mean that R is of one of the types Aℓ, Bℓ, Cℓ or Dℓ.)
For later use, we list in Table 3 (p. 27) all pairs (R, λ) where R is an irreducible root system and λ is a

miniscule weight. (We assume that a basis of R is chosen.)

The following proposition gives the properties of depth(λ) and length(λ) that are crucial for the appli-
cation to Mumford-Tate groups. Recall that an arithmetic progression of rational numbers q0, q1, . . . , qr is
said to have length r (not r + 1).

(3.7) Proposition. Notation as in (3.1). Assume g to be simple, so that R is an irreducible root system.
Let λ be a dominant weight and consider the smallest R-saturated subset X ⊂ P (R) containing λ. (I.e., X

is the support of the irreducible g-module V (λ) with highest weight λ.)
(i) If ϕ: P (R)→ Q is a nonzero homomorphism then ϕ(X ) contains an arithmetic progression of length

equal to depth(λ).
(ii) We have

length(λ) = min

{
n
∣∣∣
there exists a nonzero homomorphism ϕ: P (R)→ Q such that

ϕ(X ) is contained in an arithmetic progression of length n

}

= min

{
n
∣∣∣
there exists a nonzero homomorphism ϕ: P (R)→ Q

such that ϕ(X ) has cardinality n+ 1

}

Proof. If λ = 0 the proposition is clear, so we may assume that V (λ) is a faithful representation.
Let ϕ: P (R) → Q be a nonzero homomorphism. Replacing ϕ by a nonzero multiple does not change the
cardinality of ϕ(X ) or the lengths of the arithmetic progressions involved. Possibly after such a replacement
there exists a weight γ ∈ P (R) such that ϕ is given by ̟ 7→ 〈̟, γ∨〉. As X ⊂ P (R) is stable under the
action of the Weyl group W and as every W -orbit in P (R) meets P++(R) we may further assume that
γ ∈ P++(R), γ 6= 0.

For the proof of the proposition we use two facts. First, that X is saturated implies (by definition)
that for every α ∈ R it contains the arithmetic progression

λ, λ− α, · · · , λ− 〈λ, α∨〉 · α

of length 〈λ, α∨〉. Assertion (i) now follows taking α = α̃, noting that 〈α̃, γ∨〉 6= 0.
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The second fact we use is that for every µ ∈X there exists a sequence λ = µ0, µ1, . . . , µn = µ of elements
of X such that each µj+1 is of the form µj+1 = µj − α for some α ∈ R. (See [11], Chap. 8, §6, Ex. 2.) We

apply this with µ = w0(λ). As in (3.2) above, write λ =
∑ℓ

i=1 ci ·αi =
∑

α∈B cα ·α. In the proof of (3.3) we
have seen that w0(λ) = λ−

∑
α∈B aα ·α, where aα = cα + cα′ . In the chain µ0 = λ, µ1, . . . , µn = w0(λ) there

are therefore precisely aα indices j such that µj+1 = µj − α. Given ϕ = 〈−, γ∨〉, we can choose α ∈ B with
〈α, γ∨〉 6= 0 (as γ 6= 0), in which case we find that ϕ(X ) has at least cardinality 1 + aα. This shows that

for all nonzero homomorphisms ϕ: P (R)→ Q we have 1 + length(λ) ≤ card(ϕ(X )). (1)

Now we choose α = αj ∈ B such that aα = aj = length(λ). Consider the dual root α∨ = α∨
j and the

associated dual fundamental dominant weight ̟∨
j . Consider the homomorphism ϕ = ̟∨

j (−):
∑
bi ·αi 7→ bj .

Applying the previous with this ϕ we find that ϕ(X ) is the set cα, cα − 1, . . . , cα − aα. Thus,

there exists a nonzero homomorphisms ϕ: P (R)→ Q such that
ϕ(X ) is an arithmetic progression of length equal to length(λ).

(2)

Combining (1) and (2) the proposition follows. �

We may visualize this as saying that 1 + length(λ) is the mimimum number of “layers” in which X =
Supp(V (λ)) is contained. We illustrate two examples in Figure 1 (p. 20).

(3.8) We shall apply the above to the study of Mumford-Tate groups. As we shall later use the same
arguments in a different context, we use the following notation.

k a field of characteristic zero
K an algebraically closed field containing k
G a connected reductive algebraic group over k

ρ: G→ GL(V ) a faithful, finite dimensional representation over k

There is a canonical decomposition (up to permutation of the factors) GK = Z(G)K ·G1 · · ·Gq of GK as an
almost direct product of its center Z(G)K and its simple factors Gj (1 ≤ j ≤ q). Write pj : GK →→ G′

j for
the quotient of GK modulo the subgroup Z(G)K ·G1 · · ·Gj−1 ·Gj+1 · · ·Gq.

We write c = Lie(Z(G))K and g = Lie(Gder)K , so that Lie(G)K = c × g. We keep the notations
introduced in (3.1). Also we write g = g1 × · · · × gq, with gj = Lie(Gj). The Cartan subalgebra h ⊂ g is a
product h = h1 × · · · × hq, where hj is a Cartan subalgebra of gj. The root system R is the direct sum of
root systems Rj .

The Lie algebra c is canonically isomorphic to X∗(Z(G)K)⊗Z K. We write P0 := X∗(Z(G)K) ⊂ c∗; it
is the “toral” analogue of the weight lattice P (R) ⊂ h∗.

Suppose we have a cocharacter γ: Gm,K → GK . We say that γ has a non-trivial component in the
simple factor Gj if the composition pj ◦γ is non-trivial. The K-linear map γ̇: K → Lie(G)K induced by γ on
tangent spaces can be written as γ̇ = (γ̇0, γ̇1, . . . , γ̇q), where γ̇0 is its component in c and γ̇j (1 ≤ j ≤ q) is
its component in gj . We may, and shall, assume that γ̇ factors through c× h. (This is the case if we replace
h by a conjugate, which we may do.) Dualizing, we obtain a K-linear map ϕ = ϕγ := γ̇∗: h∗ → K with the
property that ϕ(P0 × P (R)) ⊂ Z.

We shall work in a situation where we know something about the weights of ρ◦γ: Gm,K → GL(V )K .
(That is, we know something about the image under ϕ of the set of weights of h in VK .) Our goal is to
deduce from this information about the simple factors Gj and their action on VK .

Let W ⊂ VK be an irreducible GK-submodule. As a representation of Lie(G)K we can decompose W
as

W = χ⊠ ρ0 ⊠ · · · ⊠ ρq ,

where χ is a character of c and where ρj is an irreducible representation of gj . Let λj be the highest weight
of the representation ρj w.r.t. the Cartan subalgebra hj ⊂ gj and the chosen basis of the root system. Let
Xj ⊂ P (Rj) be the support of ρj . The support of W is the set

X := Supp(W ) = χ+ X1 + · · ·+ Xq = {χ+ µ1 + · · ·+ µq | µj ∈ Xj} ⊂ c∗ × h∗1 × · · · × h∗q .
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Root system B2;

α̃ = 2̟2, β̃ = ̟1.
Take λ = 3̟1 +̟2;
dim(V (λ)) = 64.
The numbers in brackets
are multiplicities of the
corresponding weights. (Each
weight is conjugate to
one of the labeled ones
under W ∼= D4.)

The β̃-string through λ
consists of 6 weights.
The minimal number of “layers”
in which Supp(V (λ))
is contained is 6.

s(λ) = 4,
depth(λ) = 5,
length(λ) = 5.

Root system G2;

α̃ = ̟2, β̃ = ̟1.
Take λ = ̟2

(adjoint representation);
dim(V (λ)) = dim(G2) = 14.
The weights of V (λ) are the
12 roots (multiplicity 1)
and 0 (multiplicity 2).

The β̃-string through λ
consists of 4 weights.
The minimal number of “layers”
in which Supp(V (λ))
is contained is 5.

s(λ) = 1,
depth(λ) = 3,
length(λ) = 4.

Figure 1. Examples of depths and lengths of dominant weights.
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If A and B are finite subsets of Q then the set A+B := {a+ b | a ∈ A , b ∈ B} has cardinality at least
card(A) + card(B) − 1. Phrased differently: [card(A + B) − 1] ≥ [card(A) − 1] + [card(B) − 1]. Now we
consider the image of X under ϕ: P0×P (R)→ Q. Combining the previous with (3.7) we find the following
result.

(3.9) Theorem. Let N + 1 be the number of weights in W w.r.t. the cocharacter ρ◦γ: Gm,K → GL(V )K .
Suppose that γ has a non-trivial component in the simple factors G1, . . . , Gr (r ≤ q). Then

length(λ1) + · · ·+ length(λr) ≤ N .

In particular, if for 1 ≤ i ≤ r we set Mi := card{j ≤ r | j 6= i, λj 6= 0} then

length(λi) ≤ N −Mi ≤ N .

(3.10) Let us now specialize the previous to the case where G is a Mumford-Tate group. We consider a
polarizable Hodge structure V of pure weight n, given by h: S→ GL(V )R.

We apply the previous with

k = Q , K = C , G = MT(V ) ,

with

ρ: MT(V )→ GL(V ) the tautological representation,

and we take

γ := h◦µ: Gm,C → MT(V )C .

The weights of ρ◦γ in VC are precisely the cocharacters z 7→ z−p where p is an integer with V p,n−p 6= 0.
In particular, the number of such weights is at most the level of V plus 1.

We have GC = MT(V )C. Let W ⊂ VC be an irreducible GC-submodule. We keep the notations
introduced above. In particular we decompose W as W = χ⊠ ρ1 ⊠ · · · ⊠ ρq, where χ is a character of c and
where ρj is an irreducible representation of gj . The highest weight of ρj we call λj .

(3.11) Theorem. Assumptions and notations as above. Let N + 1 be the number of integers p such that
V p,n−p 6= 0. Then length(λj) ≤ N ≤ level(V ) for all j.

Proof. Suppose Gj is one of the simple factors of GC in which γ := h◦µ has a non-trivial component.
(Notice that it is equivalent to say that h|U1

has a non-trivial component in Gj .) That length(λj) ≤ N is
then an immediate application of (3.9).

Next we want to extend this to arbitrary simple factors of GC. We use that there is a G(C)-conjugate of
γ which is defined over Q. So, there exists a δ: Gm,Q → G

Q
such that δC is G(C)-conjugate to γ. Consider

cocharacters of the form τ δ: Gm,C → G
Q
, where τ ∈ Gal(Q/Q). Let Gj1 , · · · , Gjt

be the simple factors of G
Q

in which some conjugate τ δ has a non-trivial component. Then G′
Q

:= Z
Q
·Gj1 · · ·Gjt

is a normal algebraic

subgroup of G
Q

which is defined over Q and such that γ := h◦µ factors through G′
C. By definition of the

Mumford-Tate group this implies that G′
Q

= G
Q
. In other words, if Gj is any of the simple factors of G

Q
then

we can find τ ∈ Gal(Q/Q) such that τ δ has a non-trivial component in Gj . The estimate length(λj) ≤ N
now follows by applying (3.9) with this cocharacter τ δ. �

(3.12) Sharpening of the result. We have seen in (1.18) that in the present situation we can say more
about the number of simple factors Gj in which γ is non-trivial. Namely, consider the decomposition
MT(V )R = ZR · G1,R · · ·Gq,R of MT(V )R as the almost direct product of its center ZR and a number of
R-simple factors Gj,R. As we have seen, the factors Gj,R are absolutely simple (which justifies our notation
Gj,R) and γ has a non-trivial component in each of the non-compact factors.
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As in (3.9) let G1, . . . , Gr be the simple factors of GC = MT(V )C in which γ has a non-trivial component.
Then

length(λ1) + · · ·+ length(λr) ≤ N

and writing M := min(1, card{j ≤ r | λj 6= 0}) we find the (generally sharper) estimate

length(λj) ≤ N + 1−M ≤ N for all j.

Note that this last estimate holds for all λj , not only those with 1 ≤ j ≤ r. (We argue as in the proof of
(3.11).)

(3.13) Corollary. Let X be a complex abelian variety. Decompose MT(X)R = ZR · G1,R · · ·Gq,R as the
almost direct product of its center ZR and its R-simple factors Gj,R. Then all Gj,R are of classical type. Let
W ⊂ VX,C = H1(X,C) be an irreducible MT(X)C-submodule, and write W = χ⊠ ρ1 ⊠ · · · ⊠ ρq as above. If
ρj is non-trivial then its highest weight λj is miniscule. Furthermore, there is precisely 1 non-compact factor
Gj such that ρj is non-trivial.

Proof. As explained in (1.18), the fact that VX has level 1 implies that γ is non-trivial precisely on the
non-compact factors Gj,R. In particular, it cannot be the case that only compact factors of MT(X)R act
non-trivially on W , as this would mean that W is purely of type (0, 0), which does not occur in VX . Now
the corollary is clear from the theorem, using (3.5) and (3.6). �

(3.14) Example. To illustrate the use of the above results, we prove a special case of (2.15). Namely, let X
be a complex abelian variety of odd dimension g with End0(X) = Q. The claim is that MT(X) = GSp(VX , ϕ).

Consider simple classical Lie algebras g with a miniscule weight λ. From Table 3 on p. 27 we read off
the following two facts:
(i) if V (λ) is self-dual then its dimension is even,
(ii) if V (λ) is symplectic with dim(V (λ)) ≡ 2 mod 4 then g is of type Cℓ with ℓ ≥ 1 odd and λ = ̟1 (the

standard representation of sp2ℓ).
With these facts at hand, let us prove the claim. We know that MT(X) is contained in GSp(VX , ϕ).

The assumption that End0(X) = Q implies that VC is still an irreducible MT(X)C-module. As V is a faithful
representation, every factor Gj (notations as above) acts non-trivially. All highest weights occuring therefore
have length 1. Furthermore, each of the representations ρj is self-dual (i.e., orthogonal or symplectic) and
the number of symplectic factor is odd (as the total representation is symplectic). As dim(V )/2 = dim(X)
is odd, fact (i) implies that there is only 1 simple factor, i.e., q = 1. Fact (ii) then proves the claim.

The general case of (i) of (2.15) is not very much harder. The only essential new ingredient is the
so-called Goursat lemma, see [66], pp. 790–91.

(3.15) There is one further remark to be made, which so far we have ignored. Namely, consider the situation
of (3.10), write X = Supp(W ) ⊂ P0 ⊕ P (R), and write ϕ: P0 ⊕P (R)→ Q for the homomorphism obtained
by dualizing γ̇ (as in (3.8)). Suppose V has weight n and let p be the smallest integer with V p,n−p 6= 0.
(So V has level n − 2p.) Then we find that there is an arithmetic progression ap, ap+1, . . . , an−p in Q such
that ϕ(X ) ⊂ {ap, . . . , an−2p and such that the cardinality of ϕ−1(aj) is at most dim(V j,n−j). The following
example shows that this can give further useful restrictions on MT(V ), especially if one of the Hodge numbers
is small.

(3.16) Example (Following [98].) To conclude this section we shall look at an example that uses all ideas
encountered above, including (3.15).

Let X be a smooth projective variety over C with the property that h2,0 := dimH0(X,Ω2
X/C

) = 1.

Decompose the Q-HS H2(X,Q) as H2(X,Q) = B1(X) ⊕ V . (Remember that B1(X) is the Q-subspace of
H2(X,Q) spanned by the divisor classes. Further note that the decomposition B1(X)⊕ V is unique, grace
to the semi-simplicity of QHSpol.) The Hodge structure V may be referred to as the “transcendental part”
of H2(X,Q).

Choose a polarization ϕ: V ⊗V → Q(−2). The claim is now that the Hodge group (or the Mumford-Tate
group) is “as big as possible”. The result is due to Zarhin, [98]; see also the last section of [99].
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(3.17) Theorem. Let X be a nonsingular proper variety over C with h2,0 = 1. Write H2(X) = B1(X)⊕V .
Set F := EndQHS(V ) and let ϕ be a polarization of V . Then V is an irreducible Q-HS, F is a commutative
field and Hg(V ) = SOF (V, ψ), the centralizer of F inside SO(V, ϕ).

The first claim is that

V is irreducible and F is a commutative field.

Indeed, if V = V1⊕V2 in QHS then only one of V1 and V2 can have V 2,0
i 6= 0, as dim V 2,0 = 1. But then the

other Vj is purely of type (1, 1), meaning that it is fully contained in B1(X). By definition of V this implies
Vj = 0. Hence V is irreducible and F is a division algebra. Now notice that F acts on VC, preserving the
Hodge decomposition. Hence there exists a ring homomorphism F → EndC(V 2,0) = C, which shows that F
is a field.

We know that F is either a totally real field or a CM-field. As our only goal is to illustrate the method,
we shall sketch the proof only for the case that F is totally real. The arguments in the case that F is a
CM-field are very similar; the notation and bookkeeping are slightly more involved but the argument itself
is at one point even simpler.

So, assuming F to be totally real, we have seen in (1.22) that the centralizer of F inside SO(V, ϕ) can
be described as the group

SOF (V, ϕ) = Res
F/Q

SOF (V, ψ) ,

where ψ: V × V → F is the unique F -bilinear symmetric form with trF/Q(ψ) = ϕ.
We can yet further exploit the assumption that h2,0 = 1. First let us analyze the situation a bit

further. Write ΣF = {σ1, . . . , σe} for the set of embeddings of F into R. The real algebraic group
[ResF/Q SOF (V, ψ)]⊗Q R is a product

[Res
F/Q

SOF (V, ψ)]⊗Q R = SO(V(1), ψ(1))× · · · × SO(V(e), ψ(e)) ,

where V(j) = {v ∈ V ⊗Q R | f(v) = σj(f) · v for all f ∈ F}. Our assumption that h2,0 = 1 then implies that
there is precisly one summand V(j), say V(1), which is not purely of Hodge type (1, 1).

Now we can do business again. We claim that Hg(V ) comes from an algebraic group over F ; more
precisely:

there exists an algebraic subgroup H ⊂ SOF (V, ψ) over F
such that Hg(V ) = ResF/QH −֒→ ResF/Q SOF (V, ψ).

(∗)

To see this, look at the algebraic subgroup H ′
R ⊂ Hg(V )R given by

H ′
R := [Hg(V )R ∩GL(V(1))]× · · · × [Hg(V )R ∩GL(V(e))] . (∗′)

As the representation Hg(V ) → GL(V ) is defined over Q we easily find that H ′
R is defined over Q, i.e., we

have an algebraic subgroup H ′ ⊂ Hg(V ) with H ′
R = (H ′)⊗R. Furthermore, the definition of H ′ in (∗′) tells

us precisely that H ′ is of the desired form H ′ = ResF/Q H . Now the fact that V(2), . . . , V(e) are purely of
type (1, 1) in the Hodge decomposition means that the composition

U1

h|U1−−→ Hg(V )R −֒→ GL(V(1))× · · · ×GL(V(e))

factors through [Hg(V )R ∩GL(V(1))]. By definition of Hg(V ) it then follows that Hg(V ) = H ′, proving (∗).
Note that to prove the theorem it now suffices to show that H ⊗F,σ1 R is the full group SO(V(1), ψ(1)).

Step by step we are getting more grip on Hg(V ). Our next weapon is to use (3.12) and (3.15). As
in (3.12), we can decompose Hg(V )R (which in the present case we know to be semi-simple) as Hg(V )R =
G1,R · · ·Gr,R · Gr+1,R · · ·Gq,R, where the Gj,R are the R-simple factors. We choose the numbering in such
a way that h◦µ: Gm,C → MT(V )C has a non-trivial component in the simple factors G1, . . . , Gr. Then
G1, . . . , Gr act trivially on V(2), . . . , V(e); as the total representation Hg(V )→ GL(V ) is faithful, they must
act non-trivially on V(1). Also remark that the V(j) are absolutely irreducible representations of Hg(V )R.
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We use Lie-algebra notations as set up in (3.8) and (3.10), applied to the module W = V(1),C. In
particular we set g = Lie(MT(V )C) and gi = Lie(Gi,C), and we write X ⊂ P0⊕P (R) for the support of W .
Applying (3.12) we find that there are two possibilities:
(a) r = 2 and the g1 × g2-module V(1),C is of the form ρ1 ⊠ ρ2 where ρi (i = 1, 2) is an irreducible represen-

tation of gi with highest weight λi of length 1;
(b) r = 1 and V(1),C is an irreducible g1-module with highest weight λ of level ≤ 2.

Next we exploit (3.15). What we have found there means, in the present situation, that there exists a
nonzero Q-linear map ϕ: P0 ⊕ P (R) → Q (once again using the notations set up in (3.8) and (3.10)) with
ϕ(X ) contained in an arithmetic progression a0, a1, a2 of length 2, such that ϕ−1(a0) and ϕ−1(a2) consist
of a single element:

•

• •

• • • ←−X := Supp(V(1))
• • • •

• • •

• •

•

P0 ⊕ P (R)

yϕ

• • • Q

1 m 1

This brings us in a situation where the representation theory of semi-simple Lie algebras (much in the
style of the first half of this section) leaves us with rather few possibilities. In fact, what possibilities are left
was analyzed by Zarhin in [99], from which we copy the following result.

(3.18) Lemma. Let g be a semi-simple Lie algebra over an algebraically closed field of characteristic 0. Let
W be a faithful irreducible g-module. Suppose there exists a nonzero homomorphism ϕ: P (R) → Q such
that ϕ(Supp(W )) is contained in an arithmetic progression a0, a1, a2 of length 2 and such that ϕ−1(a0) and
ϕ−1(a2) consist of at most 1 element. Then all simple factors of g are of the same classical type Aℓ, Bℓ, Cℓ

or Dℓ, and there are only the following possibilities.
(i) g ∼= slℓ+1 (type Aℓ) and W is the standard representation or its dual;
(ii) W is the adjoint representation of g ∼= sl2 (note: sl2 ∼= so3);
(iii) g ∼= so2ℓ+1 (type Bℓ) and W is the standard representation;
(iv) g ∼= sp2ℓ (type Cℓ) and W is the standard representation;
(v) g ∼= so2ℓ (type Dℓ) and W is the standard representation.

With this lemma at hand we can finish the proof of (3.17) (still assuming F to be totally real). Namely,
we find that (a) is only possible if g1 × g2

∼= sl2 × sl2 with representation St⊠ St (where “St” denotes
the standard 2-dimensional representation). This can be rewritten as the standard representation of so4

∼=
sl2 × sl2, case (v) of the lemma. If we are in case (b) then it follows from the lemma that g1 is isomorphic
to so(V(1), ψ(1)). (Note that we are dealing with an orthogonal representation.) This shows that H ⊗F,σ1 R

is the full group SO(V(1), ψ(1)) which proves (deep breath) the claim of (3.17).

Exercise. Let V be as in (3.17). Suppose that V is of CM-type. Give a complete description of the CM-type
Φ (see (1.26)) and the Hodge group. Prove (3.17) in this case.

Note. In the second part of my course I intend to discuss how similar techniques as above can be
applied to the study of Galois representations associated to algebraic varieties over a number field. We shall
follow [62]. Basic results on Galois representations can be found in (a selection) [7], [8], [15], [23], [27], [29],
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[44], [45], [58], [63], [64], [66], [76], [79], [77], [78], [74], [75], [80], [97]. Other references related to what I
intend to discuss are [3], [4], [24], [42], [57], [56], [65], [84], [85], [90], [95], [96], [100], [101], [102], [103].
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λ =
ℓ∑

i=1

mi ·̟i

Type of g length(λ) depth(λ)

Aℓ

ℓ∑
i=1

mi

ℓ∑
i=1

mi

Bℓ mℓ + 2
ℓ−1∑
i=1

mi mℓ + 2
ℓ−1∑
i=1

mi

Cℓ min(S1, S2), where m1 + 2
ℓ∑

i=2

mi

S1 := 2
ℓ∑

i=1

mi , S2 :=
ℓ∑

i=1

imi

Dℓ min(S1, S2), if ℓ is odd, m1 +mℓ−1 +mℓ + 2
ℓ−2∑
i=2

mi

min(S1, S3, S4), if ℓ is even, where

S1 := mℓ−1 +mℓ + 2
ℓ−2∑
i=1

mi

S2 := (ℓ−1)(mℓ−1+mℓ)
2 +

ℓ−2∑
i=1

imi

S3 := ℓmℓ−1+(ℓ−2)mℓ

2 +
ℓ−2∑
i=1

imi

S4 := (ℓ−2)mℓ−1+ℓmℓ

2 +
ℓ−2∑
i=1

imi

E6 2m1 + 2m2 + 3m3 + 4m4 m1 + 2m2 + 2m3 + 3m4

+3m5 + 2m6 +2m5 +m6

E7 min(S1, S2), where 2m1 + 2m2 + 3m3 + 4m4

S1 := 2m1 + 3m2 + 4m3 +3m5 + 2m6 +m7

+6m4 + 5m5 + 4m6 + 3m7,

S2 := 4m1 + 4m2 + 6m3

+8m4 + 6m5 + 4m6 + 2m7

E8 4m1 + 6m2 + 8m3 + 12m4 2m1 + 3m2 + 4m3 + 6m4

+10m5 + 8m6 + 6m7 + 4m8 +5m5 + 4m6 + 3m7 + 2m8

F4 4m1 + 6m2 + 4m3 + 2m4 2m1 + 4m2 + 3m3 + 2m4

G2 2m1 + 4m2 2m1 + 3m2

Table 1. Length and depth of the dominant weights in the simple root sytems.
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Root system weights of length 1 weights of length 2

Aℓ ̟i (1 ≤ i ≤ ℓ) ̟i +̟j (1 ≤ i ≤ j ≤ ℓ)

Bℓ ̟ℓ ̟i (1 ≤ i ≤ ℓ− 1), 2̟ℓ

Cℓ ̟1 2̟1, ̟i (2 ≤ i ≤ ℓ)

Dℓ ̟1, ̟ℓ−1, ̟ℓ 2̟1, 2̟ℓ−1, 2̟ℓ, ̟ℓ−1 +̟ℓ,
̟i (2 ≤ i ≤ ℓ− 2)
if ℓ = 4 also ̟1 +̟3 and ̟1 +̟4

E6 ̟1, ̟2, ̟6

E7 ̟1, ̟7

E8

F4 ̟4

G2 ̟1

Table 2. Weights of length 1 and 2.

The next table lists all pairs (R, λ) where R is an irreducible root system and λ is a miniscule weight. We
describe the corresponding representation V (λ), and we give its dimension and the autoduality: − stands
for a symplectic representation, + for an orthogonal representation and 0 means that V (λ) is not self-dual.
The information given in this table is obtained combining the list of [11], Chap. VIII, page 129 with the
information given in op. cit., Tables 1 and 2.

Root system miniscule weight representation dim autoduality

Aℓ (ℓ ≥ 1) ̟j (1 ≤ j ≤ ℓ) ∧j(Standard)
(
ℓ+1

j

)
(−1)s if ℓ = 2s− 1

0 if ℓ is even

Bℓ (ℓ ≥ 2) ̟ℓ Spin 2ℓ + if ℓ ≡ 0, 3 mod 4

− if ℓ ≡ 1, 2 mod 4

Cℓ (ℓ ≥ 2) ̟1 Standard 2ℓ −

Dℓ (ℓ ≥ 3) ̟1 Standard 2ℓ +

̟ℓ−1, ̟ℓ Spin−, resp. Spin+ 2ℓ−1 + if ℓ ≡ 0 mod 4

− if ℓ ≡ 2 mod 4

0 if ℓ ≡ 1 mod 2

E6 ̟1 27 0

̟6 27 0

E7 ̟7 56 −1

Table 3. Miniscule weights in irreducible root systems.
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tirage). Masson, Paris, 1990.

[12] Brylinski, J.-L. “1-motifs” et formes automorphes (théorie arithmétique des domaines de Siegel). In
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