
COMPUTING DISCRETE INVARIANTS OF
VARIETIES IN POSITIVE CHARACTERISTIC

Notes about the Magma implementation

Ben Moonen

This note provides documentation for the Magma implementation of the method described in
the paper Computing discrete invariants of varieties in positive characteristic, I: Ekedahl–Oort
type of curves. We refer to this paper by the acronym CDI1.

For the time being, there is only an implementation for the case of a (non-singular) plane
curve C. Such a curve is given by an equation f = 0 with f ∈ k[X0, X1, X2] irreducible and
homogeneous of some degree d. The goal of the program is to calculate the Ekedahl–Oort type
of C, which is represented by a permutation in S2g, where g = g(C) = (d − 1)(d − 2)/2. It is
assumed that p > d ≥ 3, where p is the characteristic of the base field k.

The code is available in a file EOType, which should be loaded into Magma. The user
should define a field k and a homogeneous polynomial, say f , in three variables. After this, the
user can invoke the command EOType(k,f), which returns a permutation that represents the
Ekedahl–Oort type of the plane curve C = Z (f) ⊂ P2. An error message is returned if f is not
homogeneous, if d < 3 or p ≤ d, or if C is singular.

Acknowledgement. The Magma implementation has been realised with much help from Wieb
Bosma, who in fact wrote most of the code. I would like to express my sincerest thanks to Wieb
for his patient help.

1. Overview of the method

The following situation is assumed:

• k is a field of characteristic p ≥ 5.
• σ : k → k is the absolute Frobenius, i.e., the map x 7→ xp. In CDI1 the field k is assumed

to be perfect, which means that σ is invertible. The Magma code is written in such a way
that σ−1 is never used.
• f ∈ k[X0, X1, X2] is homogeneous of degree d with 3 ≤ d < p such that the subscheme
C ⊂ P2 defined by f = 0 is a smooth curve over k.

After checking if the above conditions on f and C are satisfied, the function EOType suc-
cessively calls three further functions HWtriple, DieudMod, and WeylGrElt, which correspond to
the main steps in the calculation. The Magma code for these functions is reviewed in detail in
the next sections; here is a quick summary of what we are doing.

As explained in CDI1, we can associate to C a “Hasse–Witt triple”, which is a triple (Q,Φ,Ψ)

consisting of a finite dimensional k-vector space, a σ-linear map Φ: Q → Q, and a σ-linear
bijective map Ψ: Ker(Ψ)→ Coker(Φ)∨. The function HWtriple computes the Hasse–Witt triple
associated with C, following the Theorem that is stated in the Introduction of CDI1.

As a next step, we need to convert the Hasse–Witt triple into a Dieudonné module, following
the method explained in Section 2 of CDI1. This is what the function DieudMod does.

1

Finally, we need to compute the Weyl group coset that represents the isomorphism class of
the Dieudonné module, under the bijective correspondence given in Theorem 2.3 of CDI1. This
is done in WeylGrElt.

Some issues arising in the Magma implementation are the following.

• In CDI1, σ-linear maps play an important role. In the Magma code these are represented by
ordinary matrices, with respect to some chosen bases for the spaces involved. For instance,
APhi and APsi refer to matrices that represent the maps that in CDI1 are called Φ, resp. Ψ.
• In CDI1, the Hasse–Witt triple associated with C is described using certain subspaces of

the graded k-vector space
T := k[X±10 , X±11 , X±12]/L , (1.1)

where L is the k-linear span of all monomials Xe = Xe0
0 X

e1
1 X

e2
2 for which at least one of the

exponents ei is non-negative. Elements of T can be represented by Laurent polynomials,
but at several steps in the Magma code this turns out to be inconvenient, for instance
because Magma functions such as MonomialCoefficient are not available for Laurent
polynomials. The solution we use is to multiply Laurent polynomials by a sufficiently high
power of (X0X1X2) to ensure that we obtain ordinary polynomials.

2. The function HWtriple

Inputs:

• A field k.
• An integer d ≥ 3.
• A homogeneous polynomial f of degree d with coefficients in k.

Outputs:

• A string s.
• A matrix A(Φ) of size g × g, where g = (d− 1)(d− 2)/2.
• A basis κ = {κ1, . . . , κh} of the kernel of the k-linear map kg → kg given by A(Φ).

(The integer h is not known a priori).
• A matrix A(Ψ) of size g × h.

Before this function is called, it has been tested if k, d and f define a situation as described at
the beginning of Section 1. (If not, an error message is given.)

The purpose of the string s is only to avoid unnecessary calculations: it will be assigned
one of the values ordinary, superspecial or interesting. In the first two cases (which are
detected as soon as we have the Hasse–Witt matrix A(Φ)), no further work is required and we
can directly output the Ekedahl–Oort type.

In the Theorem that is stated in the Introduction of CDI1 the following notation is used:

• S = k[X0, X1, X2] with its natural grading
• T = ⊕m≤−3 Tm is the space defined in (1.1) with its natural grading.
• Q = T−d
• Q′ =

{
ξ ∈ T−2d

∣∣ ∂f
∂Xj
· ξ = 0 in T−d−1, for all j = 0, 1, 2

}
• U =

{
ξ ∈ T−3d+3

∣∣ ∂f
∂Xj
· ξ = 0 in T−2d+2, for all j = 0, 1, 2

}

2

The space U is 1-dimensional, and if we choose a generator 0 6= u ∈ U we have an isomorphism
Sd−3

∼−→ Q′ by g 7→ g · u. The bilinear map Q × Q′ → k that sends (q, g · u) to the coefficient
of (X0X1X2)

−1 in g · q is a perfect pairing. Let θ : Q′
∼−→ Q∨ be the associated isomorphism.

The Hasse–Witt triple that we want to compute is the triple (Q,Φ,Ψ), where Φ: Q → Q

and Ψ: Ker(Φ)→ Q∨ are given by

Φ[A] =
[
fp−1 ·Ap

]
, Ψ[A] = θ

[
fp−2 ·Ap

]
.

A basis for the space Q is given by the classes of the monomials m−1i · (X0X1X2)
−1, where

m1, . . . ,mg are all monomials in k[X0, X1, X2] of degree d− 3. These monomials mi are stored
in a sequence called Md.

Next the Hasse–Witt matrix A(Φ) with respect to this basis is calculated. First we store
F = fp−2. (For A(Φ) we need fp−1; but we again need fp−2 later.) The matrix coefficient A(Φ)ij
is the coefficient of mp

j · (X0X1X2)
(p−1) in fp−1 · mi = f · F · mi. If A(Φ) is either invertible

(ordinary case) or zero (superspecial case), we can immediately stop.
If we are not in the ordinary or superspecial case, we go on to store a basis κ = {κ1, . . . , κh}

of the kernel of the linear map A(Φ): kg → kg. For later use, note that kg represents the space Q
through the chosen basis of Q, and that a basis of the kernel of the σ-linear map Φ: Q → Q is
given by the vectors τκj , where τ = σ−1.

Next we store bases for the spaces T−2d+2 and T−3d+3. As explained above, we want to
work with ordinary polynomials instead of Laurent polynomials; for this reason, the elements
that we use are in fact (X0X1X2)

3d−3 times a basis.
Then we calculate the partial derivatives ∂f/∂Xi and we compute the matrix Multdf which

represents the linear map T−3d+3 → T⊕3−2d+2 given by

ξ 7→
(∂f

∂X0
· ξ, ∂f

∂X1
· ξ, ∂f

∂X2
· ξ
)
.

By definition, U is the kernel of this map. We choose a generator; but for the same reason as
above, what we store is not a generator u of U but rather ũ = (X0X1X2)

3d−3 · u, which in the
code is called utilde. The elements mi · u form a basis of the space Q′ ∼= Q∨ which is dual to
the chosen basis {m−1i · (X0X1X2)

−1} of Q.
The final step of HWtriple is the calculation of the g × h matrix A(Ψ). If we write κj as

κj =


κ
(j)
1
...

κ
(j)
g

 ,

the jth column of the matrix A(Ψ) is obtained by solving

A(Ψ)1j ·m1 ·u+ · · ·+A(Ψ)gj ·mg ·u = fp−2 ·
(
κ
(j)
1 ·m

−p
1 ·X

−p·1 + · · ·+κ(j)g ·m−pg ·X−p·1
)
. (2.1)

(This is an equation in T−2d, and X−p·1 means (X0X1X2)
−p. Note that the jth column of the

matrix A(Ψ) is the vector Ψ(τκj); as Ψ: Ker(Φ) → Q′ is given by [A] 7→ [fp−2 · Ap], this leads
to equation (2.1) for the coefficients of A(Ψ).)

Let c = (2d − 1)(2d − 2)/2, which is the number of monomials in k[X0, X1, X2] of degree
2d− 3, and let M1, . . . ,Mc be those monomials. Because Magma’s default is to let matrices act
from the right, (2.1) is written as the matrix equation

tA(Ψ) ·B = κ · C , (2.2)

3

where B and C are the matrices of size g× c whose rows express the mi ·u (resp. the fp−2 ·m−pi ·
(X0X1X2)

−p) as vectors with respect to the basis {M−1j ·(X0X1X2)
−1}j=1,...,c of T−2d, and where

κ now is the matrix of size h×g whose rows give the vectors κj . Concretely, Bji is the coefficient
of (X0X1X2)

3d−4 inMi ·mj · ũ, and Cji is the coefficient of (X0X1X2)
p−1 ·mp

j in f
p−2 ·Mi. (Recall

that F = fp−2 has been calculated before and that we have stored ũ = (X0X1X2)
3d−3 ·u.) Then

(2.2) is solved using Magma’s function IsConsistent.

3. The function DieudMod

Inputs:

• A field k and a positive integer d.
• A matrix A(Φ) of size g × g, where g = (d− 1)(d− 2)/2.
• A basis {κ1, . . . , κh} of the kernel of the k-linear map kg → kg given by A(Φ).
• A matrix A(Ψ) of size g × h.

Output:

• A matrix A(F) of size 2g × g whose columns are linearly independent.

3.1 Steps that are carried out.
(1) Find a subset I = {i1, . . . , ig−h} ⊂ {1, . . . , g} such that Span(ei; i ∈ I) is a complement of
{κ1, . . . , κh} inside kg.

(2) To obtain the jth column of the matrix A(F), write the standard base vector ej in the form

ej =

g−h∑
µ=1

aµ · eiµ +
h∑
ν=1

bν · κν . (3.1)

Then

A(F)rj =


∑g−h

µ=1 aµ ·A(Φ)r,iµ r = 1, . . . , g∑h
ν=1 bν ·A(Ψ)2g+1−r,ν r = g + 1, . . . , 2g.

3.2 Technical comments. The above is based on section 2.5 of CDI1. Let e1, . . . , eg be the
standard basis of kg. The goal is to give the matrix of F : M → M , where M = Q ⊕ Q∨.
However, F factors through the projection M → Q, so we only need to give the first g columns.
We are identifying Q with kg via the basis {m−1i · X−1}i=1,...,g. The dual vector space Q∨ is
identified with Q′ as in the paper (choice of 0 6= u ∈ U), and the dual basis of Q′ is {mi ·u}i=1,...,g.
However, as a preparation for the next step we want to use e1, . . . , eg, ěg, . . . , ě1 (note the order!)
as a basis for M = Q⊕Q∨.

We are choosing I ⊂ {1, . . . , g} in such a way that R0 = Span(ei)i∈I is a complement
of σR1 := Span(κ1, . . . , κh) inside kg. Then R0 is also a complement of R1 = Ker(Ψ) =

Span(τκ1, . . . ,
τκh). With notation as in (3.1),

ej =

g−h∑
µ=1

τaµ · eiµ +
h∑
ν=1

τ bν · τκν .

is the decomposition of ej corresponding to kg = R0 ⊕ R1. So the top half (first g coefficients)
of the jth column of A(F) is given by the vector

Φ
(g−h∑
µ=1

τaµ · eiµ
)

=

g−h∑
µ=1

aµ ·A(Φ)∗,iµ .

4

Similarly, the lower half (last g coefficients) of the jth column of A(F) is given by putting the
vector

Ψ
(h∑
ν=1

τ bν · τκν
)

=

h∑
ν=1

bν · ·A(Ψ)∗,ν

upside down (because we now use the order ěg, . . . , ě1).

4. The function WeylGrElt

Input:

• A field k and a positive integer d.
• A matrix A(F) of size 2g × g whose columns are linearly independent.

Output:

• An element w ∈ S2g (symmetric group on 2g letters).

There are three parts in this procedure. In the first part (steps (1)–(3)) we are going to (partially)
fill a table, whose initial state is the following:

i 0 1 2 · · · g − 1 g g + 1 · · · 2g

Basis(i) ∅ the g columns of A(F) {e1, . . . , e2g}
f(i) 0 g

If Basis(i) is defined, it consists of a set of i linearly independent vectors in k2g, and if f(i) is
defined, it is an integer with 0 ≤ f(i) ≤ i. (In the initial state, {e1, . . . , e2g} denotes the standard
basis of k2g.) The calculation involves finding the perpendiculars of certain subspaces W ⊂ k2g

with respect to the symplectic form on k2g that is represented by the matrix (in block form)(
0 J

−J 0

)

where J denotes the anti-diagonal matrix

J =


1

. .
.

1


of size g × g.

In the second part (step (4)), we are going to define f(i) for all i. In the third part (step (5))
we are going to convert the sequence f into a permutation.

4.1 Steps that are carried out.
(1) Create a table as above.
(2) Search for the first index i such that Basis(i) is defined, but f(i) is not yet defined. If there

is no such i (in the range 1, . . . , 2g), go to step (4). If Basis(i) = {b1, . . . , bi}, calculate the
vectors A(F)

(
σbj
)
(j = 1, . . . , i), and let f(i) be the dimension of their k-linear span. Store

the value f(i) in the table.
(3) If Basis

(
f(i)

)
is already defined, again do step (2). If Basis

(
f(i)

)
is not yet defined, do the

following:

5

• Among the vectors A(F)
(
σb1
)
, . . . , A(F)

(
σbi
)
, find a maximal linearly independent

subset, say {β1, . . . , βf(i)}, and store this collection as Basis
(
f(i)

)
.

• Find a basis for the space

Span
(
β1, . . . , βf(i)

)⊥
=
{
y ∈ k2g

∣∣∣ tβj ·(0 J

−J 0

)
· y = 0 for all j = 1, . . . , f(i)

}
,

and store this as Basis
(
2g − f(i)

)
.

After this, return to step (2).
(4) If f(i) is defined for all i, go to step (5). Otherwise, find the first value a for which f(a)

is still undefined, and let b be the next value for which f(b) is defined. Now assign the
values f(a), . . . , f(b − 1) as follows: it will be true that either f(a − 1) = f(b) or that
f(b) = f(a − 1) + (b − a + 1); in the first case, set f(a), f(a + 1), . . . , f(b − 1) all equal to
f(a−1), in the second case define f(i) for a ≤ i < b by the rule f(i) = f(a−1)+(i−a+1).
Now repeat this step.

(5) Let j1 < j2 < · · · < jg be the values in {1, 2, . . . , 2g} with the property that f(j) = f(j−1).
(There will be precisely g such values.) Let i1 < i2 < · · · < ig be the remaining values.
Define a function w : {1, 2, . . . , 2g} → {1, 2, . . . , 2g} by w(jm) = m and w(im) = g + m.
Now output the message: The Ekedahl-Oort type of the curve is given by the Weyl
group element [

1 2 · · · g g + 1 · · · 2g

w(1) w(2) · · · wg) w(g + 1) · · · w(2g)

]
(Further details in the output to be added.)

Note. In the Magma implementation, the index i in our table runs from 1 to 2g+1, rather than
from 0 to 2g. So everything is shifted by 1.

4.2 Technical comments. In the table we keep track of the so-called canonical flag, as out-
lined in CDI1, Section 2.2. We build it using the operations F and ⊥, so we avoid using the
Verschiebung. (The result is the same.)

For the conversion to a Weyl group element, we follow [GSAS], Section 3.6. Note that the
condition f(j) = f(j − 1) is equivalent to saying that the sequence η that is considered in loc.
cit. jumps at j.

5. References

[GSAS] B. Moonen, Group schemes with additional structures and Weyl group cosets. In:
Moduli of Abelian Varieties (C. Faber, G. van der Geer and F. Oort, eds.), Progress
in Math. 195, Birkhäuser, Basel, 2001, 255–298.

[CDI1] B. Moonen, Computing discrete invariants of varieties in positive characteristic,
I. Ekedahl-Oort types of curves. Preprint, April 2020.

b.moonen@science.ru.nl
Radboud University Nijmegen, IMAPP, Nijmegen, The Netherlands

6

	Overview of the method
	The function HWtriple
	The function DieudMod
	The function WeylGrElt
	References

