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In Section 2.6 of the published paper (B. Moonen and T. Wedhorn, Discrete invariants of varieties

in positive characteristic, IMRN 2004, no. 72, 3855–3901) there is a discussion of standard F -

zips. Not only this section is very difficult to read, it also seems to contain mistakes. Probably

the only way to get all details correct is to check them in an explicit example, which in the

paper we did not do. The following comments are intended to make up for this.

1. The relative position of two parabolics (or two flags). Let G be a connected reductive

group over an algebraically closed field. Fix a borus T0 ⊂ B0 ⊂ G. The Weyl group W = WG

can be defined in many ways but our choice of a borus simply gives W = NG(T0). Writing Par∅

for the variety of Borel subgroups we have W
∼−→ G\(Par∅ × Par∅) by sending w ∈ NG(T0) to

the G-orbit of (B0,
wB0).

Let I ⊂W be the set of simple reflections (w.r.t. the chosen borus), and for J ⊂ I let PJ be

the standard parabolic of type J . Also let WJ ⊂W be the subgroup generated by the elements

in J . We have WJ =
{
w ∈ NG(T )

∣∣ wPJ = PJ

}
. Let ParJ be the variety of parabolics of type J .

Perhaps the simplest way to define the relative position of two parabolics is to use, for J ,

K ⊂ I, the bijection

WJ\W/WK
∼−→ G\

(
ParJ × ParK

)
that sends the double coset of an element w ∈ NG(T0) to the G-orbit of the pair (PJ ,

wPK). Let

us do some sanity checks: The map is well-defined, for if x ∈WJ and y ∈WK then

(PJ ,
xwyPK) = (PJ ,

xwPK) = (xPJ ,
xwPK) = x · (PJ ,

wPK) .

The inverse map is the relative position; so if P and Q are parabolics P and Q of types J

and K, respectively, then we define relpos(P,Q) ∈ WJ\W/WK as the class that maps to the

G-orbit of (P,Q). In practice it is often convenient to work with the minimal representative of

this double coset, which lives in JWK . To describe this a bit more concretely: Choose g ∈ G
such that gP = PJ and T0 ⊂ gQ. Then gQ = wPK for some uniquely determined w ∈ W/WK

and relpos(P,Q) is the class of w in WJ\W/WK . Again it is not so hard to see that this is

independent of choices, for if h ∈ G is another element with hP = PJ and T0 ⊂ hQ then h = xg

for some x ∈WJ and hQ = xwPK , so we find the same class in WJ\W/WK .

This leads to a first correction to our paper:

Correction to Section 3.6 of the paper: Given two parabolics P and Q and a maximal torus T

contained in P ∩ Q, there exists an element w ∈ NG(T ) such that w(P ) = wP and Q have a

Borel in common, and then relpos(P,Q) is the class of w in WJ\W/WK . [In the paper we took

an n ∈ NG(T ) such that P and n(Q) have a common Borel and we said that this n represents

the relative position. Correct is: the inverse of n represents the relative position.]
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In our discussion about standard F -zips, we will have G = GLn for some n and we identify W =

Sn in the usual way. We will want to calculate the relative position of two flags C• and D(∞)•

(see below). With respect to a basis e1, . . . , en of the underlying vector space, the situation will

be such that the ascending flag (0) ⊂
〈
e1
〉
⊂
〈
e1, e2

〉
· · · is a refinement of D(∞)• and that

there is a permutation u ∈ Sn such that the descending flag M ⊃
〈
eu(1), . . . , eu(n−1)

〉
⊃ · · · ⊃〈

eu(1), eu(2)
〉
⊃
〈
eu(1)

〉
⊃ 0 is a refinement of C•. In this case, we find that relpos(C•, D(∞)•)

is represented by u−1.

2. How the classification of F -zips works. In concrete terms, the classifying element of an

F -zip (M,C•, D•, ϕ•) is obtained as follows. Start with the flags C(0)• = C• and D(0)• = D•.

One iterates a procedure that replaces the given flags C(n)• and D(n)• by refinements C(n+1)•

and D(n+ 1)•. In each step we first refine the C(n)•-flag using D(n)•, and then transfer this to

the D-side using the ϕi. Note that in this process we only care about the flags, not about their

numbering. Refinement of C• using D• means that we replace C• by the flag that consists of

all terms (Ci ∩Dj) + Ci+1. Transfer to the D-side means that if Ci ⊃ V ⊃ Ci+1 is one of the

terms that has been added then in the D•-flag we add the subspace Di−1 ⊂ V ′ ⊂ Di such that

V ′/Di−1 is the image of V/Ci+1 under ϕi: griC
∼−→ grDi .

Iterate this until you get flags C(∞)• and D(∞)•. Let D̃(∞)• be any refinement of D(∞)• to

a full flag. Then take relpos(C•, D̃(∞)•) ∈WJ\W , which does not depend on how the refinement

D̃(∞)• is chosen. (You can also just take the minimal representative of relpos(C•, D(∞)•) ∈
WJ\W/WK(∞), where K(∞) is the type of D(∞)•.)

3. Standard F -zips—corrections to our paper. As in Section 2.6 of the paper, fix n > 1

and a type τ . Let i1 > i2 > · · · > ir be the support of τ . (See Remark 4 for more on the

numbering scheme we use.) Let nj = τ(ij), so that J = (n1, n2, . . . , nr) is an ordered partition

of n. Write mj = n1 + · · · + nj , with the convention that m0 = 0. Let W = Sn ⊃ WJ =

Sn1
× Sn2

× · · · × Snr
. To an element u ∈ JW we want to associate a standard F -zip of type u.

Let x ∈ JW be the inverse of the minimal representative of the class [w0] ∈ WJ\W , where

w0 ∈W is the longest element. Explicitly (see (2.4) of the paper), x(i) = i+ n−mj −mj−1 if

mj−1 < i 6 mj .

Given u ∈ JW the associated standard F -zip Mu is the following:

— The underlying vector space is Mu = Fn
p with basis e1, . . . , en.

— The filtration D• is the unique ascending filtration of type τ such that the standard flag

0 ⊂
〈
e1
〉
⊂
〈
e1, e2

〉
⊂ · · · is a refinement of the associated flag.

— The filtration C• is the unique descending filtration of type τ such that the standard flag

0 ⊂
〈
eu−1(1)

〉
⊂
〈
eu−1(1), eu−1(2)

〉
⊂ · · · is a refinement of the associated flag.

— Finally, if j = is then

ϕj : gr
j,(p)
C =

〈
eu−1(ms−1+1), . . . , eu−1(ms)

〉 ∼−→ grDj =
〈
en−ms+1, . . . , en−ms−1

〉
is given by the permutation matrix associated with x · u.

For concreteness: if Supp(τ) = {0, 1, . . . , r − 1} then we have

D−1 = 0 ⊂ D0 =
〈
e1, . . . , en−mr−1

〉
⊂ D1 =

〈
e1, . . . , en−mr−2

〉
⊂ · · ·

· · · ⊂ Dr−2 =
〈
e1, . . . , en−m1

〉
⊂ Dr−1 = M
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and

C0 = M ⊃ C1 =
〈
eu−1(1), . . . , eu−1(mr−1)

〉
⊃ C2 =

〈
eu−1(1), . . . , eu−1(mr−2)

〉
⊃

· · · ⊃ Cr−1 =
〈
eu−1(1), . . . , eu−1(m1)

〉
⊃ Cr = 0 .

To summarize: the changes with respect to Section 2.6 of our paper is that we use the base

vectors eu−1(i) in the description of the C-filtration, and that the Frobenii ϕj are described by

x · u, instead of the x−1u−1 that we had in the paper.

4. Remark. We have chosen to number the support of the function τ as i1 > i2 > · · · > ir,

so if we think of the numbers nj = τ(ij) as the “Hodge numbers”, it means we are reading the

Hodge numbers from right to left. At first glance this may not seem very natural. However,

what really matters is the stabilizer of a flag, and this does not see the difference between a

descending and an ascending flag. Moreover, with our numbering the subgroup WJ ⊂ W = Sn

becomes Sn1 × Sn2 × · · · × Snr , which is convenient.

5. Example. Take n = 8. We are going to consider 8-dimensional F -zips with type τ given by

τ(0) = 1 , τ(1) = 2 , τ(2) = 5 , τ(i) = 0 if i /∈ {0, 1, 2}.

So

n1 = 5 , n2 = 2 , n3 = 1 and m0 = 0 , m1 = 5 , m2 = 7 , m2 = 8 .

We have J = (5, 2, 1),

x =

[
1 2 3 4 5 6 7 8

4 5 6 7 8 2 3 1

]
.

and WJ = S5 × S2 × S1 ⊂W = S8.

We take

u =

[
1 2 3 4 5 6 7 8

1 2 8 6 3 4 5 7

]
,

which gives

u−1 =

[
1 2 3 4 5 6 7 8

1 2 5 6 7 4 8 3

]
and x · u =

[
1 2 3 4 5 6 7 8

4 5 1 2 6 7 8 3

]
.

Let e1, . . . , e8 be the standard basis of Mu = F8
p. To simplify notation, if a, b, c, . . . are

indices then we write
〈
a, b, c, . . .

〉
instead of

〈
ea, eb, ec, . . .

〉
, and we use a–b to indicate a range

a, a+ 1, . . . , b. The filtrations C(0)• = C• and D(0)• = D• on Mu are given by

C0 = M ⊃ C1 =
〈
1, 2, 4–8

〉
⊃ C2 =

〈
1, 2, 5, 6, 7

〉
⊃ C3 = 0

and

D−1 = 0 ⊂ D0 =
〈
1
〉
⊂ D1 =

〈
1, 2, 3

〉
⊂ D2 = M .

The maps ϕi are the Frobenius-linear maps given by

ϕ0: e3 7→ e1 , ϕ1:

{
e4 7→ e2

e8 7→ e3
, ϕ2:



e1 7→ e4

e2 7→ e5

e5 7→ e6

e6 7→ e7

e7 7→ e8

.
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To check that this is correct, we calculate by hand what happens in the refinement-transfer

procedure that was described in point 2 above. After the first iteration, we obtain the flags

C(1) : M ⊃
〈
1, 2, 4–8

〉
⊃
〈
1, 2, 5, 6, 7

〉
⊃
〈
1, 2
〉
⊃
〈
1
〉
⊃ 0

D(1) : 0 ⊂
〈
1
〉
⊂
〈
1, 2, 3

〉
⊂
〈
1–4
〉
⊂
〈
1–5
〉
⊂M .

At the next stage we get

C(2) : M ⊃
〈
1, 2, 4–8

〉
⊃
〈
1, 2, 4–7

〉
⊃
〈
1, 2, 5, 6, 7

〉
⊃
〈
1, 2, 5

〉
⊃
〈
1, 2
〉
⊃
〈
1
〉
⊃ 0

D(2) : 0 ⊂
〈
1
〉
⊂
〈
1, 2
〉
⊂
〈
1–3
〉
⊂
〈
1–4
〉
⊂
〈
1–5
〉
⊂
〈
1–6
〉
⊂M .

After one more iteration :

C(3) : M ⊃
〈
1, 2, 4–8

〉
⊃
〈
1, 2, 4–7

〉
⊃
〈
1, 2, 5, 6, 7

〉
⊃
〈
1, 2, 5, 6

〉
⊃
〈
1, 2, 5

〉
⊃
〈
1, 2
〉
⊃
〈
1
〉
⊃ 0

D(3) : 0 ⊂
〈
1
〉
⊂
〈
1, 2
〉
⊂
〈
1–3
〉
⊂
〈
1–4
〉
⊂
〈
1–5
〉
⊂
〈
1–6
〉
⊂
〈
1–7
〉
⊂M .

As these are complete flags, the procedure stops here. As explained above we find that the

relative position of C(0) and D(3) = D(∞) is represented by the permutation u that we started

with, because u applied to C(0) gives a flag of which D(∞) is a refinement.
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