Hand-in Assignment 1

Milan Lopuhaä

To be handed in October 11^{th} , 2016

All vector spaces are over \mathbb{C} and finite-dimensional.

- 1. Let V be a semisimple representation of a group G.
 - (a) Show that every quotient representation of V is again semisimple.
 - (b) Show that every subrepresentation of V is also semisimple.
- 2. Let $V = \mathbb{C}^3$, let ρ be the representation

$$\rho \colon \mathbb{G}_{m}^{2} \to \operatorname{GL}(V)$$

$$(x,y) \mapsto \begin{pmatrix} \frac{4xy^{2}-x^{2}}{3y} & \frac{2(x^{2}-xy^{2})}{3y} & \frac{4(x^{2}-xy^{2})}{3y} \\ \frac{2(x^{2}-xy^{2})}{3y} & \frac{2x^{2}+xy^{2}}{3y} & \frac{2(xy^{2}-x^{2})}{3y} \\ \frac{2(xy^{2}-x^{2})}{3y} & \frac{x^{2}-xy^{2}}{3y} & \frac{5x^{2}-2xy^{2}}{3y} \end{pmatrix}$$

and let φ be the algebraic homomorphism

$$\varphi \colon \mathbb{G}_m^3 \to \mathbb{G}_m^2$$
$$(a, b, c) \mapsto \left(\frac{a}{b}, \frac{b^2}{c}\right)$$

Determine the characters of \mathbb{G}_m^3 present in the representation $(V, \rho \circ \varphi)$ and give a basis of each character space.

- 3. Let $V = \mathbb{C}^2$, considered as the standard representation of $G = \mathrm{SL}_2$. Let W be the representation $V^{\otimes 3}$ of G. We let the group S_3 act on W by permutation of the factors.
 - (a) Let $(i \ j)$ be a transposition in S_3 . Let W_{ij} be the subspace of W defined as

$$W_{ij} = \{ w \in W : (i \ j)w = -w \}$$

Show that W_{ij} is a subrepresentation of W and that $W_{ij} \cong V$ as representations of G.

(b) Show that $W \cong \text{Sym}^3(V) \oplus V \oplus V$ as representations of G.