Problems for Representations of Linear Algebraic Groups

Milan Lopuhaä

October 4th, 2016

- 1. Show that \mathbb{G}_m and \mathbb{G}_a are not isomorphic as algebraic groups, but their Lie algebras are isomorphic as Lie algebras.
- 2. Let $f: G_1 \to G_2$ be an algebraic homomorphism.
 - (a) Show that f induces a homomorphism of Lie algebras Lie $f: \operatorname{Lie} G_1 \to \operatorname{Lie} G_2$.
 - (b) Suppose that f is surjective. Proof that Lie f is surjective. Hint: Show that $f^* : \mathcal{O}(G_2) \to \mathcal{O}(G_1)$ is injective.
 - (c) Consider the map $f: \mathbb{G}_{\mathrm{m}} \to \mathbb{G}_{\mathrm{m}}$ given by $f(z) = z^2$. Show that f is not injective, but Lie f is.
- 3. Let J_n be the $n \times n$ -matrix given by $J_{n,i,j} = \delta_{n+1-i,j}$, i.e. J_n is the matrix with 1 on the antidiagonal and 0 on all other entries. For an $n \times n$ -matrix X, define $X^{\dagger} = JX^TJ$; notice that this is the reflection of X in the antidiagonal.
 - (a) Let $V = \mathbb{C}^n$, and let $\varphi \colon V \times V \to \mathbb{C}$ be the symmetric bilinear form given by J_n . Show that

$$\mathfrak{o}_n := \operatorname{Lie} \mathcal{O}(V, \varphi) = \{ X \in \mathfrak{gl}(V) : X^{\dagger} = -X \}.$$

(b) Let $V = \mathbb{C}^{2n}$, and let $\varphi \colon V \times V \to \mathbb{C}$ be the antisymmetric bilinear form given by $\begin{pmatrix} 0 & J_n \\ -J_n & 0 \end{pmatrix}$. Show that

$$\mathfrak{sp}_{2n} := \operatorname{Lie}\operatorname{Sp}(V,\varphi) = \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \mathfrak{gl}(V) : A = -D^{\dagger}, B = B^{\dagger}, C = C^{\dagger} \right\},$$

where A, B, C, D are $n \times n$ -blocks.

4. Show that $\mathfrak{sp}_2 \cong \mathfrak{sl}_2 \cong \mathfrak{o}_3$ as Lie algebras.