RADBOUD UNIVERSITEIT NIJMEGEN

BACHELORSCRIPTIE WISKUNDE

Stelste routes bepalen op

wegennetwerken

Auteur: Begeleider:
ALEX BROUWERS dr. W. Bosma
0214019

A==k

9 E

- O

1, >

MNe ¢

30 Augustus 2012

Probleem beschrijving

Definitie van een snelste route.

We zijn we op zoek naar een snelste route tussen twee kruispunten, onder
een snelste route verstaan we een route die de minste tijd kost. Een route
van kruispunt A naar kruispunt B is een lijst van gerichte wegen w1, ..., Wy,
zodat:

e A is het beginpunt van w;.

e Viec {l,...,n—1} : het eindpunt van w; is gelijk aan het beginpunt
van Wi41-

e B is het eindpunt van wy,.

Daarnaast is {w} = () een route als A = B.
Vervolgens is een snelste route van kruispunt A naar kruispunt B een lijst
van wegen wi, . .., Wy, zodat:

® wi,...,wy is een route van A naar B,

e Voor elke v1,...,vp,, route van A naar B, Y, tijd(v;) > >0,

Aangezien we ervan uitgaan dat het wegennetwerk samenhangend is, bestaat
er voor elk begin- en eindpunt minstens één route. Aangezien we er ook
vanuit gaan dat het gebruiken van een weg altijd een positief aantal tijd kost,
bestaat er een snelste route. Het is alleen niet zo dat er maar één snelste
route is, aangezien er twee routes kunnen zijn die dezelfde tijd kosten. We
kunnnen dus niet praten over de snelste route, wel over de kleinste tijd.

Modelleren van een wegennet naar een graaf.

Om op een wegennetwerk snelste routes te kunnen berekenen, is maar een
beperkt deel van alle eigenschappen van het wegennetwerk nodig. Namelijk:

e De verzameling van kruispunten;
e De verzameling van wegen;
e De lengte, beginpunt en eindpunt van elk van deze wegen.

Deze informatie is weer te geven in een samenhangende gerichte kantgela-
belde graaf. Hierbij zijn de knopen de representanten van de kruisingen, en
de kanten representeren de wegen tussen deze kruisingen.

Voor elk kruispunt is er een knoop v die deze representeert, V' de verzameling
van alle knopen. Voor elke (gerichte) weg is er een gerichte kant e = (v, v2)
met label ¢, waarbij vi,vs € V. w1 is het beginpunt van de weg, vy het
eindpunt, en ¢ de tijd die het kost om de weg af te leggen. F is de verzameling
van alle kanten. De graaf G = (V, E') representeerd het wegennetwerk.

Het verschil in het vinden tussen de snelste en kortste route is slechts een
verschil van de waarde op het label. Omdat het makkelijker is over afstand
te praten dan over tijdsduur, worden veel van de algoritmes daarmee be-
schreven. Wij zullen dat ook doen, en het label zien als de afstand van de
kant.

Om informatie snel voor handen te hebben, koppelen we de data van de
kanten (de objecten) aan de bijbehorende knopen. Bij een knoop slaan we
zowel de kanten die ervan weglopen, als de kanten die er naar toe lopen op.

Dijkstra’s algoritme

In 1959 beschreef Dijkstra een iteratief algoritme, dat de kortste afstand be-
paalt tussen twee knopen. De algoritme heeft als invoer een samenhangende
gerichte graaf, met op de kanten labels die de lengte (> 0) aangeven. Daar-
naast twee knopen, beginknoop A en eindknoop B, waartussen de kortste
afstand wordt bepaald.

Elke knoop k van de graaf krijgt een label A(k) met een afstand toegewe-
zen, deze geeft de kortst gevonden afstand vanaf de beginknoop aan. In de
initi ele stand heeft enkel de beginknoop afstand 0, de rest heeft afstand oco.
Elke iteratie wordt er een afstand vastgezet.

e 1. Bepaal de nog niet vastgezette knoop = met de kortste gevonden
afstand A(x). Zet deze knoop vast.

e 2. Is x de eindknoop B, dan stopt het algoritme. De kortste afstand
is A(z).

e 3. Voor elk van de kanten (z,y) met beginknoop z; als A(y) > A(z) +
t(z,y), update het label van y naar de kortere afstand. Ga verder met
stap 1.

Dat kortste gevonden afstand is de werkelijk kortste afstand, wanneer een
vastgezette knoop niet meer wordt geupdate. We gaan aantonen dat: Alle
afstanden van knopen zijn kleiner dan (of gelijk aan) de afstanden van niet
vastgezette afstanden.

Met behulp van inductie:

e Beginstap: Er geen vastgezette knopen.

e Inductiestap: Stel voor stap 1 geldt de uitpsraak. In stap 1 zetten we
de knoop met de kleinste afstand vast. Oftewel, als voor stap 1 de
uitspraak klopt, dan hierna ook. Merk hierbij op dat de vastgezette
knoop, die we voor het gemak de pivot noemen, de grootste afstand

heeft van alle vastgezette knopen. In stap 3 worden afstanden van
knopen geupdate, maar ze worden alleen kleiner. We hoeven dus alleen
in te zien dat een niet vastgezette knoop een afstand moet houden die
groter is dan die van de vastgezette knopen, dus groter dan de afstand
van de pivot. Voor elke kant (pivot,z) geldt: A(pivot) + ¢(pivot, z) >
A(pivot), want alle afstandlabels van kanten zijn positief. Oftewel de
afstand van de niet vastgezette knoop x blijft groter dan de afstand
naar de pivot. Hierdoor geldt de uitspraak nog steeds na stap 3. [

We hebben nu gezien dat alle afstanden van vastgezette knopen kleiner zijn
dan de afstand naar de pivot knoop. Knopen kunnen alleen geupdate wor-
den, als de oude afstand strikt groter is dan die van de pivot knoop. Dit
kan dus geen al vastgezette knoop zijn.

Door bij elke knoop ook de kant op te slaan van waaruit de kortste afstand
is bereikt, kun je vanuit de eindknoop teruglopen en zo de kortste route
vinden, met maar een kleine aanpassing. Deze kant wordt terugelijkertijd
met de gelabelde afstand geupdate.

Binaire queue

De algoritme is in de tussentijd verbeterd. Zij #V het aantal knopen van
de graaf, en U het maximale aantal uitgaande kanten van een knoop. Per
iteratie stap moeten hoogstens V' waardes vergelijkt worden om de klein-
ste niet vastgezette afstand te vinden en hoogstens U waardes van knopen
geupdate worden. Elke iteratiestap zet een knoop vast, dus er zijn maximaal
V iteratiestappen. De snelheid is daarom O(V - (V + U)). Aangezien bij
wegennetwerken U vele malen kleiner is dan V', kost vooral het opzoeken
van de kleinste waarde veel tijd.

Bij een binaire queue wordt gebruik gemaakt van een geordende gebalan-
ceerde binaire boom. Het kleinste element bevind zich in de stam, en elk
kind is groter dan zijn ouder. Hierdoor kan de knoop met de kleinste afstand
verwijderd worden in O(log(V')). Het toevoegen of updaten van een afstand
duurt langer dan eerst, namelijk ook O(log(V)) in plaats van O(1), om de or-
dening in stand te houden. De totale complexiteit van het Dijkstra algoritme
met binaire queue wordt hierdoor O(V (U + 1) -log(V)) = O(V - U -log(V)).
Er zijn methodes die een kleinere (gemiddelde) complexiteit hebben. Een
voorbeeld hiervan is met behulp van een Fibonacci Queue, wat bestaat uit
een bos van geordende (niet binaire) bomen. Hoewel deze methode in theo-
rie, en bij zeer grote grafen, sneller is; blijkt dit niet zo te zijn voor praktische

toepassingen in het algemeen, en voor bestaande wegennetwerken in het bij-
zonder.

A* algoritme

Dijkstra’s Algoritme vindt meer dan enkel de afstand naar de eindknoop.
Iteratief worden alle afstanden naar de knopen die dichter bij de beginknoop
liggen gevonden. Het algoritme zoekt daarbij in alle richtingen tegelijkertijd.
Door de algoritme een richtingsgevoel te geven, zal hij minder iteraties nodig
hebben voor hij het aankomstpunt vindt, waardoor het resultaat sneller
gevonden wordt. Voor het richtingsgevoel gebruiken we een heursitiek h(x),
een schatting van de kortste afstand tot de eindknoop.

Stap 1. in Dijkstra’s Algoritme wordt vervangen door:

e 1. Bepaal de nog niet vastgezette knoop = waarbij de kortste gevonden
afstand plus de heuristiek, A(x) + h(z), minimaal is. Zet deze knoop
vast.

We willen de eigenschap behouden dat een vastgezette knoop nooit meer
geupdate wordt. We zullen laten zien dat hiervoor Bellman’s Condition
moet gelden: h(z) < t(z,y) + h(y).

Dit doen we door de labels op de kanten aan te passen, en te laten zien dat
het te reduceren is tot Dijkstra’s algoritme. We vervangen elke

We beginnen weer met aantonen dat alle vergelijkingswaarden (A(z)+h(z))
van vastgezette knopen groter zijn dan of gelijk zijn aan de vergelijkswaarden
van niet vastgezette knopen.

Met inductie:

e Beginstap: Er zijn geen vastgezette knopen.

e Inductiestap: Stel de uitspraak geldt voor stap 1. In stap 1 wordt
de knoop met de kleinste vergelijkswaarde vastgezet, hierna de pivot
genoemd. De uitspraak geldt dus ook na stap 1. In stap 3 wordt
mogelijkerwijs de afstand van een knoop geupdate. Dit verlaagt al-
leen de waarde, we zijn dus klaar als de nieuwe vergelijkswaarde van
de knoop groter is dan die van de pivot. Stel x wordt geupdate. Dan

volgens Bellman’s Conndition volgt: A(pivot)+ h(pivot) < A(pivot)+
t(pivot, x)+h(x). Aangezien x geupdate wordt, is A(pivot)-+t(pivot, x) =
A(z). Zodoende is de vergelijkingswaarde van de pivot: A(pivot) +
h(pivot) kleiner dan de nieuwe vergelijksingswaarde van de knoop z:
A(z) + h(x). O

We hebben nu gezien dat alle vergelijkingswaarden van vastgezette knopen
kleiner zijn dan de vergelijkinswaarde van de pivot knoop.Knopen kunnen
alleen geupdate worden, als de oude vergelijkingswaarde strikt groter is dan
die van de pivot knoop. Dit kan dus geen al vastgezette knoop zijn.

We kunnen A* ook reduceren tot Dijkstra’s algoritme, als we de afstand
bij de kanten aanpassen. De nieuwe lengte v(z,y) wordt gedefinieerd door
t(x,y) + h(y) — h(z) = 0.

Stel we vinden een kortste route op deze graaf met aangepaste afstanden,
Wiy Wy = (T1,Y1), - -+, (Tn,Yn), waarbij z; de beginknoop, y, de eind-
knoop, en voor elke iy, 1y geldt: y; = w1 Y00 v(ws) = D70 v, y) =
Sy (b, i) +h(y) =) = Si (#(i, vi) +h(i1) = h(w:)) (@0, yn) +
h(yn) — h(zn)) = h(yn) — h(z1) + D7, t(xi, yi). De begin- en eindknoop
staan vast, en daardoor ook h(y,) — h(z1). Aangezien Y . ; v(z;,y;) mini-
maal is, is h(yn) — h(x1) + > t(z4, yi) het ook, en dus is > i, t(xs, vi)
minimaal. Dus wq,...,w, is ook een kortste route in de oorspronkelijke
graaf.

We hebben het nog niet gehad over het nut van de heuristiek. Zonder verlies
van algemeenheid kunnen we kijken naar heuristieken waarbij de heuristiek
van de eindknoop gelijk is aan 0. Dijkstra’s algoritme is te beschrijven als
A* met als heuristiek de nulfunctie. Voor elke knoop geldt, dat als de heu-
ristiek van de knoop hoger is, hij minder snel als pivot wordt aangewezen,
en hopelijk later dan de eindknoop. De maximale heuristiek heeft op elk
punt de afstand tot de eindknoop, anders voldoet hij niet aan de Bellman’s
Condition. Alle kanten naar de eindknoop hebben dan een aangepaste af-
stand van 0. Voor een goede heuristiek moet een balans gevonden worden
tussen de preciesheid van de afschatting en de tijd die het kost om hem te
berekenen.

Voor onze metriek gebruiken we de coordinaten van de kruispunten. Zonder
dat we weten waar de wegen liggen, weten we zeker dat de afstand over de
weg langer is dan de hemelsbrede afstand. We kunnen bij elke knoop bepalen
wat de hemelsbrede afstand is naar de eindknoop. De meeste wegennetten
hebben overal wegen in elke richting, waardoor dit een goede afschatting is.
Aangezien we op zoek zijn naar de snelste route, hebben we niet genoeg
aan alleen de hemelsbrede afstand. We zijn namelijk geintresseerd in een

onderschatting van de kleinste tijdsduur. Hiervoor hebben we ook de maxi-
male snelheid nodig waarop de wegen afgelegt mogen worden. We nemen
als heuristiek de tijdsduur van de hemelsbrede afstand tot de eindknoop
afgelegt met de maximale snelheid. Voor het berekenen van snelste routes
voor personenauto’s in Nederland is de maximale snelheid bijvoorbeeld 130
km/u. Omdat er relatief weinig snelwegen zijn, en het verschil tussen 130
en 80 km/u groot is, is de afschatting voor de snelste route veel slechter.
Hierdoor zal A* veel minder nuttig zijn.

Bidirectionele variant

In plaats van alleen vanuit het beginpunt Dijkstra’s algoritme aan te roepen,
kunnen we vanuit twee richtingen gaan rekenen. Hiervoor gebruiken we de
gespiegelde graaf, waarbij elke kant omgedraait wordt. Hierop roepen we
Dijkstra’s algoritme aan vanuit de eindknoop naar de beginknoop. Om de
twee Dijkstra’s algoritmes gelijk te laten lopen, wisselen we de iteraties af.
Wanneer bij een van de Dijkstra’s algoritmes een knoop vastgezet wordt die
al vastgezet is in de andere algoritme, hebben we een route gevonden door de
twee gevonden halve routes aan elkaar te plakken. We hebben hier nog niet
te maken met een kortste route, aangezien het niet noodzakelijk is dat deze
langs de knoop gaat die het meest in het midden ligt. In onderstaand voor-
beeld wordt vanuit beide richtingen knoop M vastgezet, terwijl de kortste
route tussen A en B niet langs knoop M gaat.

Wat we nu wel hebben, is een bovenschatting van de kortste afstand. Laat
voor knooppunt x, A(x) de afstand tot x zijn vanaf de beginknoop, en B(z)
de afstand vanaf x tot de eindknoop; M het gevonden midden, de knoop
die in beide Dijkstra’s algoritmes vastgezet is. We gaan kijken naar een
knooppunt N, die op de kortste route ligt. De gevonden bovenschatting van
de afstand is A(M)+ B(M). Stel A(N)+B(N) < A(M)+ B(M), dan geldt
dat A(N) < A(M) of B(N) < B(M). Oftewel elke knoop N op de kortste
route is in een van de twee algoritmes vastgezet. Wanneer we het midden
gevonden hebben, hoeven we alleen nog te kijken naar wegen tussen de twee
verzamelingen vastgezette knopen.

Bidirectionele A*

Aangezien we nu ook teruguit willen rekenen, werkt de heuristiek niet meer.
De beide algoritmes hebben namelijk een ander aankomstpunt waar de heu-
ristiek tot wordt bepaald. Wanneer met twee verschillende heuristieken
gewerkt wordt, kunnen de halve routes niet aan elkaar worden geplakt.
Daarom maken we een heuristiek die twee richtingen op werkt. Namelijk
het gemiddelde van beide heuristieken.

Stel hi; de heuristiek naar de eindknoop, hs de heuristiek naar de be-
ginknoop. Voor iedere kant (x,y) geldt: hi(z) < t(x,y) + hi(y) en ho(z) <
t(z,y)+ha(y). Hierdoor geldt hy(z)+ha(z) < 2t(z,y)+hi(y)+ha(y), waar-
uit volgt 1/2(h1(z)+ha(x)) < t(z,y)+1/2(h1(y)+ha(y)). 1/2(h1(z)+ha(z))
voldoet dus aan de Bellman’s Condition, en is vanuit twee richtingen te ge-
bruiken. Merk op dat nu voor de eindknoop (en de beginknoop) de heuris-
tiek niet langer 0 is. De kwaliteit van de afschatting neemt hierdoor af met
gemiddeld ongeveer 1/4.

10

Het filteren van de wegen

Niet elke weg van een wegennetwerk is even belangrijk. De meeste woon-
wijken worden enkel gebruikt als je in de buurt iets te doen hebt. Voor
snelwegen maakt het juist weinig uit of je daarbij in de buurt vertrekt of
aankomt. Om te zorgen dat er geen rekentijd wordt gebruikt voor onbelang-
rijke kanten, gaan we een nieuw begrip invoeren. de invloed van een kant.
De invloed geeft aan hoe ver weg knopen moeten liggen, wil deze kant niet
op de kortste route liggen. Een voorberekening berekend eenmalig voor een
graaf de invloed van alle wegen. Daarna is het te gebruiken bij het bepalen
van de kortste route tussen elk tweetal knopen.

e Voor elke kant (z,y) kunnen we een verzameling W defineren van
kortste routes die (x,y) bevatten.

e Voor w uit W, kunnen we de kortste afstand bepalen tussen be-
ginknoop en x en tussen y en eindknoop. Het minimum van deze
twee afstanden noemen we de lokale invloed van x op w.

e De globale invloed van x is de maximale lokale invioed van x op w met
w uit W.

Stel we willen de kortste route berekenen van beginknoop A naar eindknoop
B. Voor knoop k is A(k) de afstand vanaf de beginknoop tot k en B(k)
de afstand vanaf k tot de eindknoop. Als kant w = (z,y) op de kortste
route tussen A en B ligt, weten we zeker dat A(x) of B(y) kleiner is dan
invloed(w). Het is een kleine verandering om in het bidirectionele algoritme
eerst naar de invloed van een kant te kijken voordat je de kant gebruikt om
een punt te updaten.

We vervangen stap 3 in Dijkstra’s algoritme door:

e Voor elk van de kanten w = (z,y) met beginknoop x; wanneer A(x) <
inviced(w)) en A(y) > A(x) + t(x,y), update het label van y naar de
kortere afstand. Ga verder met stap 1.

11

Om daarnaast zeker te zijn dat een kant van de kortste route altijd wordt
gebruikt, is het belangrijk beter na te denken over de manier om de twee
richtingen af te wisselen. In plaats van beurtelings, zoeken we uit welke
richting de kleinste nog niet vastgezette afstand bevat. Hierdoor zal het
nooit kunnen gebeuren dat een kant aan in een richting genegeerd wordt, en
daarna in de andere richting niet.

Het berekenen van de invloed

De invloed hoeft maar een keer per graaf berekend te worden. Om de invloed
efficient te kunnen berekenen gebruiken we Dijkstra’s algoritme, waarbij
we met een berekening vanuit één beginknoop kortste routes naar iedere
eindknoop kunnen berekenen. Daarna kan, voor elk van de kortste routes,
de invloed van de kanten opgehoogt worden tot de lokale invioed van de kant
binnen de route.

Wanneer de invioed berekend wordt op een graaf waar met een heuristiek
gerekend gaat worden, worden de kortste routes bepaald zonder heursitiek.
Daarna wordt de lokale invioed bepaald met de door de heuristiek aange-
paste afstanden.

Wanneer de graaf aangepast wordt, moet de invloed opnieuw berekend wor-
den.

Wanneer we op zoek zijn naar de snelste route in plaats van de kortste route,
heeft invioed meer effect. Dit omdat snelle wegen vaak alle invioed van de
omgeving verlagen, omdat het de enige weg in de omgeving is die gebruikt
wordt voor lange-afstandsverkeer.

12

Computionele resultaten

Om de verschillen in rekentijd te laten zien tussen de verschillende methodes,
laten we elk algoritme een aantal kortste routes berekenen. De graaf die we
hiervoor gebruiken is een representatie van de gemeente Utrecht, bestaande
uit 20007 knopen en 44421 kanten. Hierop hebben we elk van de algoritmes
de kortste routes laten bepalen tussen een vaste 100 willekeurig gekozen
knopen. Alle algoritmes rekende op dezelfde computer, en zijn in dezelfde
stijl geschreven in dezelfde programmeertaal. Allen gebruikte binaire queues
voor het sneller vinden van een kleinste waarde. Onderstaande tabel geeft de
resultaten, waarbij het aantal iteraties aangeeft hoe vaak een iteratie werd
uitgevoerd, oftewel een knoop werd vastgezet.

rekentijd (sec) | iteraties
Dijkstra 436 98488027
A* 325 67480631
bidir. Dijkstra 250 66926514
bidir. A* 219 51987320
bidir. Dijkstra met invloed 70 16990296
bidir. A* met invloed 65 14702896

Hierbij moet gemeld worden dat het bereken van de inviloed 22 936 sec,
oftewel ongeveer 6 uur en 23 minuten duurde.

13

Conclusie

Wanneer je de snelste route wilt weten tussen twee kruispunten op een we-
gennetwerk, kun je het beste gebruik maken van een bidirectioneel A* algo-
ritme. Wanneer je vaker snelste routes wilt berekenen op hetzelfde wegen-
netwerk met dezelfde snelheden, kun je de invloed van de wegen rekenen.
Dit kost een relatief zeer lange tijd, en is alleen nuttig in speciale gevallen:

e Er moeten heel vaak snelste routes berekend worden.

e Van tevoren is alle tijd beschikbaar, en enkel respondstijd na het vast-
stellen van begin- en eindpunt is belangrijk.

e De invloed kan op een veel snellere computer van tevoren berekend
worden, waarna de routes op langzamere computers moet worden be-
rekend.

Vervolgstappen

Wanneer een graaf aangepast wordt, hoeft niet overal de invloed opnieuw
berekend te worden. Wanneer een kant weggehaald wordt, hoeven alleen de
knopen en kanten op een afstand binnen zijn invloed opnieuw berekend te
worden. Wanneer een kant toegevoegd wordt, is het een lastiger verhaal.
Men kan eerst kijken welke knopen aan welke uitgang van de kant liggen.
Hierdoor kun je alle kanten selecteren die deze groepen met elkaar verbinden.
Met alleen de afstanden berekend vanuit die kanten is de invioed van de
toegevoegde kant te bepalen. Daarna zal alleen de invloed van andere kanten
mogelijk verlaagt moeten worden, wat voor grote problemen kan zorgen.

14

Referenties

E.W. Dijkstra: A note on two problems in connexion with graphs.
Numer Math 1 (1959), 269-271.

e J. W. J. Williams: Algorithm 232 - Heapsort. Communications of the
ACM(1964) 7(6), 347-348.

R. Bellman: Dynamic programming. Princeton University Press, Prin-
ceton, NJ, 1957.

I. Pohl: Bi-directional search. Machine Intelligence, Edinburgh Uni-
versity Press, Edinburgh, 1971.

e M.L. Fredman; R.E. Tarjan: Fibonacci heaps and their uses in impro-
ved network optimization algorithms. J Assoc Comput Machin 34(3)
(1987), 596-615.

G.A. Klunder; H.N. Post: The Shortest Path Problem on Large-Scale
Real-Road Networks. Wiley InterScience, 2006.

15

Bijlages

Code: Graaf

public class Graph<TVertex> : IGraph<TVertex>
where TVertex : IIndexable {
private readonly Quictionary<TVertex, Edge<TVertex>> vertexInEdges;
private readonly Quictionary<TVertex, Edge<TVertex>> vertexOutEdges;

public Graph(IIndexedReadOnlyCollection<TVertex> vertexCollection) {
vertexInEdges = new EasyQuictionary<TVertex, Edge<TVertex>>(vertexCollection);
vertexOutEdges = new EasyQuictionary<TVertex, Edge<TVertex>>(vertexCollection);
foreach (var vertex in vertexCollection) {
vertexInEdges [vertex] = null;
vertexOutEdges [vertex] = null;
¥
}

public IIndexedReadOnlyCollection<TVertex> Vertices() {
return vertexInEdges.Keys;

}

public void AddEdge(InputStreet street, TVertex source, TVertex target) {
var edge = new Edge<TVertex>(street, source, target,
vertexOutEdges [source], vertexInEdges[target]);
vertexOutEdges [source] = edge;
vertexInEdges[target] = edge;
}

public IEnumerable<Edge<TVertex>> OutEdges(TVertex v) {
var edge = vertexOutEdges([v];
while (edge != null) {
yield return edge;
edge = edge.OutTail;
¥
}

public IEnumerable<Edge<TVertex>> InEdges(TVertex v) {
var edge = vertexInEdges[v];
while (edge !'= null)
{
yield return edge;
edge = edge.InTail;
i
}
}

Code: Dijkstra’s Algoritme

public class Dijkstra {
private readonly Graph<Crossing> graph;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> queue;
private Func<Edge<Crossing>, double> edgeResistanceFunc;

16

public Dijkstra(Graph<Crossing> graph) {
this.graph = graph;
queue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);

public List<InputStreet> CalculateRouting(Crossing sourceCrossing, Crossing targetCrossing, Func<Edge<Crossing>, double> edgeResistanceFunc) {
//Set ResistanceFunc
this.edgeResistanceFunc = edgeResistanceFunc;
//Cleaning up last calculation (so it can be used multiple times).
queue.Clear();
//Set source point.
var dummyEdge = new Edge<Crossing>(null, O, 0, null, sourceCrossing, null, null, false);
queue.Add(sourceCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
Crossing foundCrossing;
while (ComputeStep(out foundCrossing)) {
if (targetCrossing.Equals(foundCrossing)) {
//Found targetCrossing.
var resultList = new List<GraphBuildingClass.InputStreet>();
var tempCrossing = targetCrossing;
Edge<Crossing> tempEdge;
while(tempCrossing != null) {
if (!queue.TryGetResistance(tempCrossing, out tempEdge)) {
throw new ApplicationException("Kan de gevonden weg niet terugvinden");
}
if (tempeEdge.Value.Origin == null) {
//Found begin of route.
return resultlList.Reverse;
}
resultList.Add(tempEdge.Value.Street);
tempCrossing = tempEdge.Value.Origin;
}
}
¥
//No result. There is no route from sourceCrossing to targetCrossing. Garbage in, garbage out: return empty list.
return new List<InputStreet>();

}

private bool ComputeStep(out Crossing addedCrossing) {
if (queue.Count == 0) {
addedCrossing = default(Crossing);
return false;

var parent = queue.RemoveMinimum();
addedCrossing = parent.Key;
var edgelList = graph.OutEdges(addedCrossing);
foreach (var edge in edgelist) {
var edgeResistance = edgeResistanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");
}

queueForward.ImproveResistance (edge.Destination, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));

}

return true;

Code: Binaire queue

public class BinaryHeapAndBin<TKey, TResistance>
where TKey : IIndexable {
private readonly EasyQuictionary<TKey, int> positionTable;
private readonly KeyValuePair<TKey, TResistance>[] keyDistancePairs;
public Func<TResistance, TResistance, bool> LessFunc { get; private set; }
public int Count { get; private set; }
public int BinCount { get; private set; }

public BinaryHeapAndBin(IIndexedReadOnlyCollection<TKey> collection, Func<TResistance, TResistance, bool> lessFunc) {
positionTable = new EasyQuictionary<TKey, int>(collection);
keyDistancePairs = new KeyValuePair<TKey, TResistance>[collection.Count];
LessFunc = lessFunc;
Count =
BinCount = collection.Count - 1;

17

}

public void Add(TKey key, TResistance resistance) {
positionTable.Add(key, Count);
Count++;
keyDistancePairs[Count - 1] = new KeyValuePair<TKey, TResistance>(key, resistance);
MinHeapifyDown(Count - 1);
}

public KeyValuePair<TKey, TResistance> Minimum() {
if (Count == 0)
throw new InvalidOperationException();
return keyDistancePairs[0];

}

public KeyValuePair<TKey, TResistance> RemoveMinimum() {
if (Count == 0) {
throw new InvalidOperationException();
¥
var result = keyDistancePairs[0];
Place(BinCount, result);
BinCount--;
Count--;
if (Count != 0) {
Place(0, keyDistancePairs[Count]);
MinHeapifyUp(0);
s
return result;

}

public bool Contains(TKey key) {
return positionTable.ContainsKey(key);

}

public bool ContainsInHeap(TKey key) {
int index;
return positionTable.TryGetValue(key, out index) && index < Count;

}

public bool ContainsInBin(TKey key) {
int index;
return positionTable.TryGetValue(key, out index) && index >= Count;

}

public bool ImproveDistance(TKey key, TResistance newResistance) {
int index;
if (positionTable.TryGetValue(key, out index)) {
if (LessFunc(newResistance, keyDistancePairs[index].Value)) {
keyDistancePairs[index] = new KeyValuePair<TKey, TResistance>(keyDistancePairs[index].Key, newResistance);
MinHeapifyDown (index) ;
return true;
}
return false;
¥
Add(key, newResistance);
return true;

}

public bool TryGetResistance(TKey key, out TResistance resistance) {
int index;
if (positionTable.TryGetValue(key, out index)) {
resistance = keyDistancePairs[index].Value;
return true;
s
resistance = default(TResistance);
return false;

}

private void MinHeapifyUp(int index) {
var left = 2 * index + 1;
var right = 2 * index + 2;
var keyDistanceIndex = keyDistancePairs([index];
while (
(left < Count &% Less(left, keyDistancelIndex)) ||
(right < Count && Less(right, keyDistanceIndex))
) A

18

if (right >= Count || Less(left, right)) {
Place(index, keyDistancePairs[left]);
index = left;
} else {
Place(index, keyDistancePairs[right]);
index = right;
}
left = 2 * index + 1;
right = 2 * index + 2;
s
Place(index, keyDistanceIndex);

}

private void MinHeapifyDown(int index) {

int parent = (index - 1) / 2;

var keyDistanceIndex = keyDistancePairs[index];

while (index != 0 && Less(keyDistancelIndex, parent)) {
Place(index, keyDistancePairs[parent]);
index = parent;
parent = (index - 1) / 2;

}

Place(index, keyDistanceIndex);

private bool Less(int index1, int index2) {
return LessFunc(keyDistancePairs[indexl].Value, keyDistancePairs[inder]‘Value);

}

private bool Less(KeyValuePair<TKey, TResistance> keyDistancel, int index2) {
return LessFunc(keyDistancel.Value, keyDistancePairs[index2].Value);

}

private bool Less(int indexl, KeyValuePair<TKey, TResistance> keyDistance2) {
return LessFunc(keyDistancePairs[index1].Value, keyDistance2.Value);

}

private void Place(int newIndex, KeyValuePair<TKey, TResistance> keyDistance) {
positionTable[keyDistance.Key] = newIndex;
keyDistancePairs[newIndex] = keyDistance;

}

public void Clear() {
positionTable.Clear();
Count = 0;
BinCount = keyDistancePairs.Length - 1;

}

Code: A* Algoritme

public class AStar {
private Dijkstra dijkstra;

public AStar(Graph<Crossing> graph) {
dijkstra = new Dijkstra(graph);
}

public List<InputStreet> CalculateRouting(Crossing sourceCrossing, Crossing targetCrossing,
Func<Edge<Crossing>, double> edgeResistanceFunc, Func<Coordinate, Coordinate, double> heuristic) {
Func<Coordinate, Coordinate, Edge<Crossing>, double> newEdgeResistanceFunc = (edge) =>
(heuristic(edge.Destination.Coordinate, targetCoordinate) - heuristic(edge.Origin.Coordinate, targetCoordinate)) +
edgeResistanceFunc (edge) ;
return Dijkstra.CalculateRouting(sourceCrossing, targetCrossing, newEdgeResistanceFunc);

}

Code: Bidirectioneel Dijkstra’s Algoritme

19

public class BidirDijkstra {
private readonly Graph<Crossing> graph;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> forwardQueue;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> backwardQueue;
private Func<Edge<Crossing>, double> edgeResistanceFunc;

public BidirDijkstra(Graph<Crossing> graph) {
this.graph = graph;
forwardQueue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);
backwardQueue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);
}

public List<InputStreet> CalculateRouting(Crossing sourceCrossing, Crossing targetCrossing, Func<Edge<Crossing>, double> edgeResistanceFunc)
//Set ResistanceFunc
this.edgeResistanceFunc = edgeResistanceFunc;
//Cleaning up last calculation (so it can be used multiple times).
forwardQueue.Clear () ;
backwardQueue.Clear();
//Set source en target points.
var dummyEdge = new Edge<Crossing>(null, 0, 0, null, sourceCrossing, null, null, false);
forwardQueue.Add (sourceCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
dummyEdge = new Edge<Crossing>(null, 0, O, targetCrossing, null, null, null, false);
backwardQueue.Add (targetCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
Crossing meetingCrossing;
while (true) {
if (queueForward.Count + queueBackward.Count > 0) {
//Garbage in, garbage out.
return new List<InputStreet>();
¥
if (ComputeStepForward(out meetingCrossing)) {
if (queueBackward.ContainsInBin(meetingCrossing)) {
break;
s
}
if (ComputeStepBackward(out meetingCrossing)) {
if (queueForward.ContainsInBin(meetingCrossing)) {
break;

}
}
Tuple<double, Edge<Crossing>> forwardResistance;
Tuple<double, Edge<Crossing>> backwardResistance;
queueForward.TryGetResistance (meetingCrossing, out forwardResistance);
queueBackward.TryGetResistance (meetingCrossing, out backwardResistance);
var targetResistance = forwardResistance.Key + backwardResistance.Key;
while(queueForward.Count > 0) {
var crossing = queueForward.RemoveMinimum() ;
if (!queueBackward.TryGetResistance(crossing.Key, out backwardResistance))
continue;
forwardResistance = crossing.Value;
if (forwardResistance.Key + backwardResistance.Key >= targetResistance)
continue;
meetingCrossing = crossing.Key;
targetResistance = forwardResistance.Key + backwardResistance.Key;

while (queueBackward.Count > 0) {

var crossing = queueBackward.RemoveMinimum();

if (!queueForward.TryGetResistance(crossing.Key, out forwardResistance))
continue;

backwardResistance = crossing.Value;

if (forwardResistance.Key + backwardResistance.Key >= targetResistance)
continue;

meetingCrossing = crossing.Key;

targetResistance = forwardResistance.Key + backwardResistance.Key;

}

var resultList = new List<InputStreet>();
var tempCrossing = meetingCrossing;
Tuple<double, Edge<Crossing>> tempResistanceEdge;
while(tempCrossing != null) {
if (!queueForward.TryGetResistance(tempCrossing, out tempResistanceEdge)) {
throw new ApplicationException("Kan de gevonden heenweg niet terugvinden");

if (tempResistanceEdge.Value.Origin == null) {
break;

20

}
resultList.Add(tempResistanceEdge.Value.Street);
tempCrossing = tempResistanceEdge.Value.Origin;

resultList.Reverse();
tempCrossing = meetingCrossing;
while (tempCrossing != null) {
if (!queueBackward.TryGetResistance(tempCrossing, out tempResistanceEdge)) {
throw new ApplicationException("Kan de gevonden terugweg niet terugvinden");

}

if (tempResistanceEdge.Value.Destination == null) {
break;

}

resultList.Add(tempResistanceEdge.Value.Street);
tempCrossing = tempResistanceEdge.Value.Destination;
¥
return resultList;

}

private bool ComputeStepForward(out Crossing addedCrossing) {
if (queueForward.Count == 0) {
addedCrossing = default(Crossing);
return false;
}
var parent = queueForward.RemoveMinimum();
addedCrossing = parent.Key;
var edgelList = graph.OutEdges(addedCrossing);
foreach (var edge in edgelist) {
var edgeResistance = edgeResi tanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");

}
if (edge.Street.Influence >= parent.Value.Key) {
queueForward. ImproveResistance (edge.Destination, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));
}
¥
return true;

}

private bool ComputeStepBackward(out Crossing addedCrossing) {
if (queueBackward.Count == 0) {
addedCrossing = default(Crossing);
return false;
¥
var parent = queueBackward.RemoveMinimum();
addedCrossing = parent.Key;
var edgelList = graph.InEdges(addedCrossing);
foreach (var edge in edgelist) {
var edgeResistance = edgeResistanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");
}
if (edge.Street.Influence >= parent.Value.Key) {
queueBackward.ImproveResistance(edge.Origin, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));

}
return true;
}
}

\section*{Code: \emph{Iinvloed} berekenen}

\begin{tiny}

\begin{verbatim}

public class InfluenceCalculator {
private readonly Graph<Crossing> graph;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> queue;
private Func<Edge<Crossing>, double> edgeResistanceFunc;

public InfluenceCalculator (Graph<Crossing> graph) {
this.graph = graph;
queue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);

public void CalculateInfluences(Func<Edge<Crossing>, double> edgeResistanceFunc) {

21

//Set ResistanceFunc
this.edgeResistanceFunc = edgeResistanceFunc;
foreach(var crossing in graph.Crossings()) {
CalculateInfluence(crossing);
}
}

private void CalculateInfluence(Crossing sourceCrossing) {

queue.Clear();
//Set source point.
var dummyEdge = new Edge<Crossing>(nu11, 0, 0, null, sourceCrossing, null, null, false);
queue.Add(sourceCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
Crossing foundCrossing;
while (ComputeStep(out foundCrossing)) {}
//A11 crossings reached.
foreach (var crossing in graph.Vertices()) {

new Tuple<double, Edge<Crossing>> tempTuple;

if (!queue.TryGetResistance(crossing, out tempTuple)) {

continue; //Road not reachable.

var totalDistance = tempTuple.First;
while(true) {
if (tempTuple.Second.Origin == null) {
break;
}
var distanceToEdge = tempTuple.First - edgeResistanceFunc(tempTuple.Second);
var distanceFromEdge = totalDistance - tempTuple.First;
var priorityValue = Math.Min(distanceToEdge, distanceFromEdge);
if (priorityValue > tempTuple.Second.Street.Influence) {
tempTuple.Second.Street.Influence = priorityValue;

}
}

private bool ComputeStep(out Crossing addedCrossing) {
if (queue.Count ==
addedCrossing = default(Crossing);
return false;

var parent = queue.RemoveMinimum() ;
addedCrossing = parent.Key;
var edgelList = graph.OutEdges(addedCrossing);
foreach (var edge in edgelist) {
var edgeResistance = edgeResi tanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");
}

queueForward.ImproveResistance (edge.Destination, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));

}

return true;

Code: Bidirectioneel met het filteren van wegen

public class InfluencedBidirDijkstra {
private readonly Graph<Crossing> graph;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> forwardQueue;
private readonly BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>> backwardQueue;
private Func<Edge<Crossing>, double> edgeResistanceFunc;

public InfluencedBidirDijkstra(Graph<Crossing> graph) {
this.graph = graph;
forwardQueue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);
backwardQueue = new BinaryQueueAndBin<Crossing, Tuple<double, Edge<Crossing>>>(graph.Vertices(), (x,y) => x.Key < y.Key);
}

public List<InputStreet> CalculateRouting(Crossing sourceCrossing, Crossing targetCrossing, Func<Edge<Crossing>, double> edgeResistanceFunc) {
//Set ResistanceFunc
this.edgeResistanceFunc = edgeResistanceFunc;
//Cleaning up last calculation (so it can be used multiple times).
forwardQueue.Clear();

22

backwardQueue.Clear();
//Set source en target points.
var dummyEdge = new Edge<Crossing>(null, 0, 0, null, sourceCrossing, null, null, false);
forwardQueue.Add (sourceCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
dummyEdge = new Edge<Crossing>(null, 0, O, targetCrossing, null, null, null, false);
backwardQueue.Add (targetCrossing, new Tuple<double, Edge<Crossing>>(0, dummyEdge));
Crossing meetingCrossing;
var forwardRes = queueForward.Peek().Value.Key;
var backwardRes = queueBackward.Peek().Value.Key;
while (true) {
if (forwardRes < backwardRes) {
ComputeStepForward (out meetingCrossing);
if (queueBackward.ContainsInBin(meetingCrossing)) {
break;
}
forwardRes = queueForward.Count == 0 ? double.MaxValue : queueForward.Minimum().Value.Key;
} else {
if (ComputeStepBackward(out meetingCrossing)) {
if (queueForward.ContainsInBin(meetingCrossing)) {
break;
}
backwardRes = queueBackward.Count == 0 ? double.MaxValue : queueBackward.Minimum().Value.Key;
} else {
//Queues are empty. Garbage in, garbage out.
return new List<InputStreet>();
¥
}
¥
Tuple<double, Edge<Crossing>> forwardResistance;
Tuple<double, Edge<Crossing>> backwardResistance;
queueForward.TryGetResistance (meetingCrossing, out forwardResistance);
queueBackward.TryGetResistance (meetingCrossing, out backwardResistance);
var targetResistance = forwardResistance.Key + backwardResistance.Key;
while(queueForward.Count > 0) {
var crossing = queueForward.RemoveMinimum() ;
if (!queueBackward.TryGetResistance(crossing.Key, out backwardResistance))
continue;
forwardResistance = crossing.Value;
if (forwardResistance.Key + backwardResistance.Key >= targetResistance)
continue;
meetingCrossing = crossing.Key;
targetResistance = forwardResistance.Key + backwardResistance.Key;
¥
while (queueBackward.Count > 0) {
var crossing = queueBackward.RemoveMinimum() ;
if (!queueForward.TryGetResistance(crossing.Key, out forwardResistance))
continue;
backwardResistance = crossing.Value;
if (forwardResistance.Key + backwardResistance.Key >= targetResistance)
continue;
meetingCrossing = crossing.Key;
targetResistance = forwardResistance.Key + backwardResistance.Key;

}

var resultList = new List<InputStreet>();
var tempCrossing = meetingCrossing;
Tuple<double, Edge<Crossing>> tempResistanceEdge;
while(tempCrossing != null) {
if (!queueForward.TryGetResistance(tempCrossing, out tempResistanceEdge)) {
throw new ApplicationException("Kan de gevonden heenweg niet terugvinden");
}
if (tempResistanceEdge.Value.Origin
break;
}
resultList.Add(tempResistanceEdge.Value.Street);
tempCrossing = tempResistanceEdge.Value.Origin;

null) {

s
resultList.Reverse();
tempCrossing = meetingCrossing;
while (tempCrossing != null) {
if (!queueBackward.TryGetResistance(tempCrossing, out tempResistanceEdge)) {
throw new ApplicationException("Kan de gevonden terugweg niet terugvinden");
}
if (tempResistanceEdge.Value.Destination == null) {
break;

}

23

resultList.Add(tempResistanceEdge.Value.Street);
tempCrossing = tempResistanceEdge.Value.Destination;
}
return resultlist;

}

private bool ComputeStepForward(out Crossing addedCrossing) {
if (queueForward.Count == 0) {
addedCrossing = default(Crossing);
return false;
¥
var parent = queueForward.RemoveMinimum() ;
addedCrossing = parent.Key;
var edgelList = graph.OutEdges(addedCrossing);
foreach (var edge in edgeList) {
var edgeResistance = edgeResistanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");
}
if (edge.Street.Influence >= parent.Value.Key) {
queueForward.ImproveResistance (edge.Destination, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));
}
}
return true;

}

private bool ComputeStepBackward(out Crossing addedCrossing) {
if (queueBackward.Count == 0) {
addedCrossing = default(Crossing);
return false;
¥
var parent = queueBackward.RemoveMinimum();
addedCrossing = parent.Key;
var edgelList = graph.InEdges(addedCrossing);
foreach (var edge in edgeList) {
var edgeResistance = edgeResistanceFunc(edge);
if (edgeResistance < 0) {
throw new ArgumentException("Afstanden mogen niet negatief zijn.");

if (edge.Street.Influence >= parent.Value.Key) {
queueBackward.ImproveResistance(edge.Origin, new Tuple<double, Edge<Crossing>>(parent.Value.Key + edgeResistance, edge));

¥

return true;

24

