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Abstract

Let NICF,, be the set of real numbers with nearest integer continued fractions with absolute value
of the partial coefficients no greater than n and let

NICF,, + NICF,, = {a + b | a € NICF,,,b € NICF,,}.

We show that

NICF5 +NICFs =R

and

NICF4 + NICF4 # R.

Let HCF,, be the set of complex numbers with Hurwitz complex continued fractions with absolute
value of the partial coefficients no greater than n and let

HCF,, + HCF, = {a+ b | a € HCF,,,b € HCF,,}.

We show that

HCF 5+ HCF s = C.






Preface

This thesis started as a subject for a small Research Seminar course based on the master thesis of
Noud Aldenhoven [IJ:

“Using two nearest integer continued fractions per axis, we know how we can write every
complex number as a sum of four bounded complex continued fractions. Is it possible
with three?”

It took a long time to find out I never saw a correct depiction of sets of bounded complex continued
fractions, but after that, I did two things:

1. T improved the bounds needed on nearest integer continued fractions.

2. I solved my main question without referring to non-complex continued fractions.

I achieved both of this in a matter of weeks, and I remember sending an email to Wieb saying:
“Ok, I'm done!”... except, I was not. This is when the work started, as it took me over a year to
write it down...
Maybe that does seem long, but I really liked the subject. It has captured my attention and focus
from the start and I am sure my friends and family have been at the receiving end of my enthusiasm
more than once.

But this long year was quite the roller-coaster ride, as some might know. And this is where I share
the wisdom I gained and thank the people who helped me. So here we go:

e “Always check your sources!”
e “Don’t just work towards a positive result.”

e “Don’t underestimate how long the writing will take.” (But did anyone expect it to take a
year! Got you! You underestimated it too!)

But also:
e “It’s OK that you came up with the result in three weeks.”

e “Maak van je scriptie hooguit een meesterwerk, niet een levenswerk.” (“This should be your
master piece, not your life’s work”)

e “Don’t be too critical, talk to people, also about your feelings.”



And T followed this advice. So, I would like to thank everyone who let me tell, scream or cry out
about my experiences writing this thesis.

Especially Wieb, for being my advisor (you must have recognised a lot of the advice I mentioned
above), someone to talk with, to brainstorm with, and my mentor. You encouraged me, and I was
so proud when you chose to present my work at a conference. I could not have asked for anyone
better. Thank you, Wieb.

Yet I did not only have one great help and supervisor, I had another: Jan. You were always
there to help me puzzle, plan and to make me take care of myself. I am sure that you recognise
some of the sage advice mentioned above too. You are an amazing friend. Thank you for everything.

Bastiaan, for letting me use his tikz templates [2] for creating the shapes involved in complex con-
tinued fractions.

Kim, not only for the mind clearing dance sessions, but also for the times we talked about my life
and problems instead of training for a competition. Thank you for always being there to listen and
to offer your caring advice.

Suzan, for my daily dose of hugs. Thank you for your protective warmth.

Vincent, for a (promise of) pie, you firmly but kindly made me make small steps towards my goal,
without letting me worry about what I had and had not achieved. Thank you for motivating me,
and being my friend.

Nienke, for believing in me, even when I didn’t. For listening to, and understanding, the vague
outlines of the proofs, even though you had little prior knowledge. Thank you for joining the fight
against my negative inner voices, and keeping me on my feet.

My parents, for never really giving up on me, no matter how long I took. I love you, thank you for
all you have done for me.

And last, but not least, my boss, Paddy, for pretty much the same reason as my parents. You
were patient and supporting no matter how long I took, and were happy to hear of intermediary
progress. I am glad and proud to work for you.
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Chapter 1

Continued fractions

A continued fraction is an expression of the form:

ag +
a +

as + I

ag+ ——
ag+
Continued fractions can be used as representations of numbers. But they can also be seen as
representations of converging sequences of good rational approximations of a number.
Definition 1. A good approximation of a real number x is a rational number g such that for every
rational number % ifq <gq, then |z — 2| < |z — %|.

Every real number g can be represented by a continued fraction as follows, recursively, starting
with k£ = 0:

e find an integer close to xj, call it ay;

e define 41 as pErR—

e continue when xj 1 # 0.

Note that, in almost all cases, x; will never be 0, in which case the continued fraction representation
will be infinite.
To better define what we mean by close to, we are going to describe this more thoroughly:

Definition 2. We call a function f: R — Z an approximation function if for all x € R:
[f(z) —z| < 1.

Given an approximation function apx, we describe an algorithm GCF(x) which returns a sequence
of integers:



GCF(x) :=
if x equals O
return []; \\empty list
else
\\ list form: head = apx(x), tail = GCF(1/(x - apx(x)))
return [apx(x) :: GCF(1/(x - apx(x)))];

or:

GCF(x) :=
while not(x equals 0) {
yield return apx(x);
x := 1/(x - apx(x));
}

yield return break;

The result will be a sequence of integers ag, a1, as, . . ., which we will call the coefficients of z. When
x € Q, the sequence will be finite. GCF(x) represents x when written as the continued fraction:

1
T =ag+ 1

ay + 1
ar
as +

as+ -

Because continued fractions take a lot of space to write in this shape, we will use the abbreviated
notation [ag; a1, as, as, a4, .. .| in this thesis.
For construction purposes, it is useful to define a shorthand for continued fractions. For every n,

we can write = [ag;a1,...,a, : p] when x = [ap;a1,...] and g = [ap41;ant2,...]. So, when for
all i, x; = [a;;ai41,...], then x = [ag : 1] = [ag;a1 : x2] = ... = [ag;a1,a2,...,an : Thy1]. Note
that this is equal to = = [ag; a1, a2, ...,a;—1: a; + fr'+1]'

1.1 Complex continued fractions

We can extend our definition of an approximation function to a complex approzimation function:

Definition 3. We call a function f: C — Z[i] a complex approximation function if for all z €
C:|f(z) —z| < 1.

In combination with the GCF algorithm, we can create complex continued fractions, in which all
the a; € Z[i].

For every x € R we know that f(x) € Z. So every complex approximation function canonically
induces a regular approximation function.
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1.2 Rational approximations

A continued fraction of a real number x can be truncated to find a rational approximation of x.
We will now take a closer look at how to calculate such an approximation.

Given x = [ag; a1, ag,...] € R, we want to find py,, ¢, € Z with
Pn
— = [ag; a1, az, ..., am)|.
an

For this we have (i > 0):

Pi = QiPi—1 + Pi—2 Qi = a;qi—1 + qi—2,

with initial values:
p—2=0, p-1=1 qg-2=1, q-1=0.

We can extend our definitions to find Gaussian rational approximations of complex numbers.

Given x = [ag; a1, ag,...] € C, we find py, ¢, € Z[i] with
p
== [ao;al,ag,...,an].
dn

The following theorems have been known for quite a time for real continued fractions, we will
extend them to complex continued fractions:

Let f be a complex approximation function, and = = [ag;a1,...] € C. Let p;,q; € Z[i] be as
described, then:

Theorem 4. For all j > —2 € Z, we have that:
Pigjr1 — pinrg; = (1)’

Proof. This proof is similar to [7, §1.1 eq 3].
We will prove this by induction over j:

e When j = —2, we have that p_2q 1 —p_1¢ 2 = —1=(—1)"1;
e Assume pjgj+1 — pj+1¢; = (—1)7T1, then we have:

Pj+10j+2 — Dj+20j+1 = Pj+1(@j4+205+1 + ¢5) — (aj42pj41 + Dj)qj+1
= pj+1¢j — Pidj+1 = —1- (=1 = (1)’ O

Yyp;+pi—1

Theorem 5. For every j > —1 € Z, when x = [ap; a1, a2, . ..,a; : y|, then x = =

Proof. This proof is similar to [7, §1.2 eq 5].
We will prove this by induction over j:

e When j = —1, we have that
Yp—1 +p—2
Yq—1+q—2

11



e Let x = [ag;ai1,az,...,a; : y|, and assume that

(aj + ;)pj—1 +pj-2

(aj + 3)gj-1 + gj—2

xTr =

Then

Pj—1

1 -
(0j+2pi1+pi2  apia+pia+ Bt pi L

(a; + i)q,jfl +qj—2  ajgi-1+ g2+ qu;l q; + qjy_l Yq; + qj-1

Theorem 6.
lim 24 —
lim = = .
J—0 Qj

Proof. This proof is based on [2, Lemma 3.38].

For every j, let x; = [aj;aj41,aj42,...], and notice that

zj+1(Pjgi—1 — Pj—14))
Pjqj—1 — Pj—194;
_ ZTjHPiqi-1 T Pj-14i-1 — Tj+1Pj-195 — Pj-145-1
Tj4+1Pjq5 + Pj—195 — Tj+1Piq5 — Pjdj—1
Tj+1P+Pj—1 .
_ Tniate o U1 T P

Tj41pi+Pi—1
ZTj1195+q5-1 4 —Pj

() _Tgj—1 — Pj-1
Tq; — Py

Tj+1 =

In (*) we used Theorem
Now

& L g1 — pj-1 rq_1 — p_1 (=1
[Losn =0 [[ = = = e = =
3=0 xrq; — Pj Tdn — Pn T4n — Pn

J=0

and therefore we have

1 1

Tdn — Pn e
dn H?:O Tj+1

an

As |z;| > 1 for j > 1, and lim;_,« |¢j| = 0o by [2, Lemma 3.36]EL we have that:

; 1 1 1
lim |z - 2| = tim |~ =~ | < || =0.
j—o0 qj J=0 | gn Hj:O Tj+1 4n
Theorem 7. If v = [ap;a1,a2,...,ay : | and y = [ag; a1, a2, ..., ay, : V], then
_ | —v|
[z —yl =

ai o+ 252 (v+ 52

!Different definitions of g, are used, but they only differ by a factor [T;=, e;, with for every j > 1, [e;| = 1.
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Proof. This proof is similar to [4, Lemma 4].

T —y (;) Dnpt + Ppn—1 _ DnV + Pn—1
Gntt + gn—1 GnV + qn—1
_ PnGn—1}t — Pndn—1V + Pn—1GnV — Pn—1qn}t
a (gnit+ gn-1)(gn¥ + gn—1)
_ i (annfl *pnfl(Jn)(/‘L - V)
gn  (p+ T+ 5
=) ()" (p-v)
B0t BT )

In (*) we used Theorem |5| and in (**) we used Theorem O

1.3 Nearest integer continued fractions

There are many types of real continued fractions, we will focus on one in particular.

Definition 8. The nearest integer continued fraction (NICF) of = € R is the result of GCF(x)
with f(y) = [yl = [y + 3]

There are a few things to point out involving the range of NICF.
For all 7 > 1:

® a; € Z \ {_1707 1}7
o if a; =2, then a;41 > 2;
e if a; = —2, then a;11 < —2.

Usually, finite nearest integer continued fractions will not end with a 2. In this thesis, we choose
to ignore this. This way every truncated infinite nearest integer continued fraction is accepted as a
finite nearest integer continued fraction. It will not lead to problems, as our proofs only use finite
continued fractions to work towards infinite continued fractions.

Note that for every z = [ap; a1, aq,...] € NICF, we have that —x = [—ag; —a1, —aq,...] € NICF.
Furthermore, there exists a bound on =% [6, p. 378]:

1 Vv5—-1

S =T (1.1)

qn—1
qn

Definition 9. NICF, is a subset of R, containing only the numbers representable by a nearest
integer continued fraction where every coefficient except possibly the first has absolute value less
than or equal to r:

NICF, = {z:2 € R |z = [ap;a1,a2,...] € NICF and Vj>i|a;| < r}

13



1.4 Hurwitz complex continued fractions

There are also many types of complex continued fractions, we will focus on one in particular which
was first defined in [5]:

Definition 10. The Hurwitz complex continued fraction (HCF) of z is the result of GCF(z) with
fla+0bi)=la] + |bli=la+ 1]+ b+ 1]i.

Remark 11. Forx € R, the Hurwitz complex continued fraction of x is equal to the nearest integer
continued fraction of x.

It is difficult to describe the range of HCF, especially when, for any j the real or imaginary part of
x; is equivalent to % modulo 1. These points are tie-breaking points of the approximation, therefore
we have difficulties determining if these points are part of the range. Therefore, for the moment, we
will only consider the range of elements where the real and imaginary part of x; is not equivalent
to % modulo 1 for all j.

Let p be the rotation function that rotates a complex number 90 degrees counterclockwise around
the origin:

pla+bi)=(a+bi) i=—b+ai.
We see that for our specific representation of elements of C:

p<x+;> zp(w)+p<;> = p(z) + ! ;

P3(y)

which leads to:

plla+bi:pl) = [pla+bi): p~ (w)] = [-b+ai: p(p)).

Definition 12. HCF, is a subset of C, containing only the numbers representable by a Hurwitz
complex continued fraction where every coefficient except possibly the first has absolute value less
than or equal to r:

NICF, = {z:2 € C |z = [ap; a1, a2,...] € NICF and V;>1|a;| <7}

1.5 Shapes

We will use shapes to describe the ways you can continue sequences of HCF. Each shape corresponds
with a set of possible continuations.

Definition 13. A shape is a connected open subset of {a +bi € C | |a|, |b| < 3}.

We will show that there are five shapes that occur as possible continuations in the construction of
HCF. Every shape, except the first, has four orientations, which we will describe using rotations.
Note that when we rotate the shape clockwise, the reciprocal shape rotates counterclockwise. By
reciprocal shape we mean the set containing the reciprocal of all elements in the corresponding
shape.

14



The shapes are called:

e S for Square;

e M for Moon;

e W for Without-a-corner;
e J for Just-a-corner;

e F for Empty.

The boundaries of the shapes are defined by the lines

1
Zp = {p’“(2 + i)

11
—_ = R
z€[-53lC }
and the circles
Cr = {x}|x—zk| :1}
and

= {x“aj— 1+ = 1}.

The rotation function p can be extended to shapes.
Let X be a shape, then:
p(X)={z-i:xz e X}.

In particular we have:

°
=
=
Il
~

e p(E)=FL.
Definition 14. S is the set of the shapes S, M, W,J and E with their rotations.
With this, we can build an automaton.

Definition 15. A deterministic automaton is a 5-tuple, consisting of:

a finite set of states Q;

a set of input symbols 33, the alphabet of the automaton;

a transition function § (Q,% — Q);

an initial state qo(€ Q);

a set of accepting states F(C Q).

15



Given a string w = ajagaz . ..a, with a; € X, we say an automaton accepts w if there exists a
finite sequence of states r; such that:

® 71 = qo-
o 0(riya;) =7rip1 for 0 <i<n.
o r, €F.
In our automaton, these will be described as follows:
e S is the finite set of states;
e the set of Gaussian integers is the alphabet;
e S (Square) is the initial state;
e the accepting states are the non-empty shapes, S\ E.

We still have to construct our transition function d: (S,Z[i]) — S. We will do this per shape.
For every shape, the left picture depicts the shape, while the right picture depicts the (pointwise)
reciprocal of the shape.

1.5.1 Square

Given the coefficient a; 4 b; - ¢, the transition function on S is defined by:
(5(5,0,]' +bj- i) =

S if |aj| > 2,

or |bj| > 2,

or |aj| =2 and |bj| = 2;
Mifa;=2 and b; = 0;

16



p(M)ifa;=0 and b; = 2;
PA(M) if aj = —2 and b; = 0;
p}(M) if a; =0 and bj = —2;

W if a; =1 and b; = 2,

or aj =2 and b; = 1;
p(W)ifa; = -1 and b; = 2,
ora; =—2 and b; = 1;
pPP(W)ifaj = —1 and b; = —2,
oraj =—2 and b; = —1;
pPPW)ifa; =1 and bj = —2,
or aj =2 and b; = —1;

Jifa; =1 and b; = 1;
p(J)if aj = —1 and b; = 1;
PA(J) if aj = —1 and b; = —1;
p*(J)ifaj =1 and b; = —1

1.5.2 Moonshaped

Given the coefficient a; 4 b; - ¢, the transition function on M is defined by:
6(M,aj +b;- i) =

S if a; > 2,
or a; >0 and [b;| > 2,
or a; =2 and |bj| = 2;

17



Mifaj=2

p(M)ifa; =0
p*(M)ifa; =0
Wita; =1

or aj =2
pPP(W)ifa; =1
ora; =2
Jifaj =1

pA(J)ifaj =1

1.5.3 Without-a-corner

and b; = 0;
and b; = 2;
and b; = —2;
and b; = 2,
and b; = 1;
and b; = -2,
and b; = —1;
and b; = 1;
and b; = —1.

Given the coefficient a; + b; - 4, the transition function on W is defined by:

5(W,aj +b;- i) =

S if |aj| > 2
oraj =2
ora; =—2

Mifa;=2
p(M)ifa; =0
ora; =—1
PA(M) if aj = —2
oraj =—2
p}(M) if aj =0
Wita;=1

or |bj| > 2,
and |bj| = 2;
and b; = —2;

and b; = 0;

and b; = 2;

and b; = 2;

and b; = 0;

and b; = 1;
and b; = —2;

and b; = 2,

18




or a; =2 and b; = 1;

p(W)ifa; =-2 and bj = 2,
p2(W) if aj = -1 and b; = —2,
ora; = —2 and b; = —1;

P (W) ifa; =1 and b; = —2,
or a; =2 and b; = —1;
Jifa;=1 and b; = 1;
p*(J) if aj = —1 and b; = —1;
p*(J)ifaj =1 and b; = —1.

1.5.4 Just-a-corner

1

—_
I L
—
—t

Given the coefficient a; 4 b; - ¢, the transition function on J is given by:
5(, aj +bj - i)=

Sifa; >2 and b; <0,
ora; >0 and b; < —2;

ora; =2 and b; = —2;
Mifa;=2 and b; = 0;
p*(M) if a; =0 and b; = —2;
pPP(W)ifa; =1 and bj = —2,
ora; =2 and b; = —1;
p*(J)ifaj =1 and b; = —1.

19




1.5.5 Shape function

For every shape X € S, the transition function of p(X) is defined by

3(p(X),a+bi) := (p° 0 8)(X, pla+bi)) = (p° 0 0)(X, —b+ ai).

For all other values, let 6(X,a + bi) be the empty shape E; in particular for all a + bi € Z[i]:

§(E,a+bi) = E.

With this, we can create a function Shape which gives the shape corresponding to a sequence of
Gaussian integers. We use A to denote the empty sequence.

Definition 16. Let Shape: Z[i]* — S be inductively defined by:
Shape(\) := S

and
Shape(ay .. .ay) := §(Shape(ay . ..an—1), an).

The accepting function of the built automaton can now be used to determine which sequences occur
in HCF. For every sequence ag, ay, ..., a, € Z[il:

Shape(ay ...a,) # E < [agp;a1,...,a,] € HCF.

And for all infinite sequences ag, a1, ... € Z[il:

[ag; a1,...] € HCF <= V,|ap;a1,...,a,] € HCF.
Lemma 17. For a = [ag;ay,...,a,) € HCF with Shape(a; ...a,) = X we have,

o if n is even, then p(a) = [p(ao); p*(ar), plaz), ..., p*(an-1), pan)] and

Shape(p®(a1)p(az2) - .. p*(an—1)p(an)) = p(X);

o if n is odd, then p(a) = [p(ao); p*(ar1), p(az), ..., p(an-1), p*(an)] and

Shape(p®(a1)p(az) - .- plan—1)p*(an)) = p*(X).
Proof. Induction over n:
e When n = 1, we have p(a) = [p(ao); p*(a1)):
Shape(p®(a1)) = 6(Shape()), p*(a1)) = 6(S, p*(a1))
= 3(p(S), p*(ar)) = p*(6(S, a1)).

20



Induction step, n is even: a = [ag; a1, ..., ay], let b = [ag;a1,...,an—1], and let
Shape(agay . ..an—1) = Xp,

so let X = Shape(ay ...an) = 0(Xp, an). Our Induction Hypothesis tells us that

Shape(p®(a1)p(az) - .. p*(an-1)) = p*(X3).
This gives us:
Shape(p®(a1)p(az) ... p*(an-1)p(an)) = 6(p*(Xs), plan)) = p(6(Xp, an)) = p(X).

Induction step, n is odd: a = [ag; a1, ..., ay], let b = [ag;a1,...,a,—1], and let
Shape(agay . .. an—1) = Xp,

so let X = Shape(ay ...ay) = 0(Xp, an). Our Induction Hypothesis tells us that

Shape(p®(a1)p(az) . .. p(an-1)) = p(Xp).
This gives us:

Shape(p®(a1)p(az) - .. plan—1)p*(an)) = 6(p(X), p*(an)) = p*(6(X, an)) = p*(X). O
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Chapter 2

Cantor sets

A Cantor set C of real numbers is defined by an initial closed interval I; and a gap function g.

Definition 18. A gap function on a closed interval I is a function from closed subintervals of Iy
to open subintervals of Iy such that for every closed subinterval I of I, the open subinterval g(I)
is contained in I. The closed subintervals Iy, and Ir of Iy for which I\ g(I) = I, U IR are called
the left and right remainder.

Constructing the Cantor set is done iteratively by the following protocol:

1. Create a set S with only the initial interval I.
2. For every interval I; in S, remove the open subinterval (gap) g(I;).
3. Replace I; in S by I; and ;41 for respectively the left and right remainder of ;.

4. Repeat from 2.

The Cantor set (I1, g) consists of all the points not contained in a gap:
oo
(Ig) =D\ | Jo(T).
i=1

The construction of a Cantor set can be drawn in a treelike picture:

I
IQ IS
} iog(L) |
I4 I5 Iﬁ I?
——g(ly) —— ——g(I3) —
Is Iy Lo 11y Iio I3 Iy Iis
=

= H H H

Example 19. For z,y € [0, 1] with x < y define

h(z,y]) = <\/(2x+y()j(x+y)’\/(:r+2y()j(x+y)) ‘
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Because

\/(2x+xé(x+m)<\/(2x+y z+y) <\/x+2y (x +y) \/(y+2y()5(y+y>:y

we have that h is a gap function on [0, 1], and H = ([0, 1], h) is a Cantor set.

Given ay, a, € R with a; < a,, an interval A = [a;, a,] C R is defined by
A={z:q <z <a}.

The length of an interval [q;a,] is defined by

lar, ar] = ar — ay.

The length of a gap (g;, g») is defined by

~~

g1, 9r) = 9r — 9i-

Note that all the g(;) are disjoint, so > 2, g(I;) < I;. Because I; is finite, we have

lim ¢(I;) = 0.

1—00

We are going to look when the sums of multiple Cantor sets are equal to the sum of their initial
intervals (Theorem. This largely depends on the size of the gaps compared to the corresponding
remainders. We will therefore define a density ratio of a Cantor set as follows:

Definition 20. The density ratio, dr((I1,g)) is defined as:

dr((Iy, g)) = inf inUzi: Foir)
=1 9(1;)

It follows that Ip; > dr((I1,g)) - g(I;) and I 1 > dr((I1,9)) - g(I;), for all 4.

2.1 Hole-decreasing Cantor sets

Definition 21. We call a Cantor set hole-decreasing if for all i we have g(I;) > g(I2;) and
9(L;) 2 g(I2i41).

Theorem 22. For every Cantor set C, there exists a hole-decreasing Cantor set D such that D = C
and dr(D) > dr(C).

First, note that for all a,b: I C I,, if and only if there exist ki, ko,...,k, such that I, = I,
Iy =1I,,and forall t <m: ki1 =2 -kjor ki1 =2-k; + 1.
With this, we can rewrite the definition of a hole-decreasing Cantor Set:

Property 23. A Cantor set is hole-decreasing if and only if for every i, for every k such that
I, C I; we have g(I;) > g(I).

With this, we can define a n-hole-decreasing Cantor set:
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Definition 24. We call a Cantor set (I1,g) n-hole-decreasing if for every i < n, for every k such
that I, C I; we have g(1I;) > g(Ii).

The Cantor set C' is hole-decreasing if and only if C' is n-hole-decreasing for every n.

We will first prove that we can interchange (by tree-rotation) an interval with one of its remainders,
if that remainder has a larger gap. We will only prove this for the left remainder, for the proof of
the right remainder is similar.

We can create J; and

Lemma 25. Given a Cantor set (I1,g), let i be such that g(Iz;) > g(I;).
= 9(Lj), ¢'(Ji) = g(l2i), and

g such that (J1,¢') = (I1,9), and for each j < i we have ¢'(J;)
dr((J1,9')) = dr((11,9)).

Proof. We define J; and ¢ by:
Ji=1
g (J;) = g(Ix)
g (J2i1) = ¢' (Lait1 U g(L;) U Inigr) = g(I;)

For all other intervals, we let ¢'(I) = g(I), which corresponds to:

9'(Jr) = g(I1) if Jp & Ji;
9 (Jak+b) = 9(Toak+b) if Jak4p € Jos;
9 (Jak+b) = 9(Taktb— 1) if Joksp € Jaivo;
9' (Jak+b) = 9(I2k1p-2) if Jak+b © Jaiy3-
for all a,b,k € ZT.
Pictorially:
I;
I>; Iy
} - tog(l) -
1y T4
} : | g(I2:) } - |
I;
1y Lyip1 U g(1;) U Ioip
} ! g(12;) } |
Ty Is;
} 4it1 A 2i+1
Ji
J2; J2it1
} - | g (Ji) } : |
Jyit2 , Jaiv3

f 1g (JQiJrl)}—{
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For the density ratio we note that the following (in-)equalities hold:

Joi o Ly Iy
g'(Ji) g()  g(Iz)
o1 Taia Ug(li) U lpi - laiv1 _ Lain
g'(Ji) q'(Ji) g (i) g(Iz)
Joive  _ Taivr ey Lai
9'(J2i41) 9 (Jair1)  9(L)  g(12)
Jaivs D i
9'(J2i41) 9 (J2ir1)  g(Ly)

Now we have shown that for each interval for which ¢’ is defined differently from g, the ratio with
g’ is greater than or equal to the ratio of an interval with g. Therefore the density ratio of (Ji,g’)
is greater than or equal to the density ratio of (11, g). O

Proof of Theorem . Since limy, o0 g(In) = 0, we have that for every i, there exists a j with I; C I;
such that for every m with I,,, C I; we have g(I;) > g(Is). So, there exist ko, k1, ..., ky such that
I; = I, I; = I, , and for all « < n we have either k; 11 =2-k; or ki1 =2-k; + 1.

Because g([;) is bigger than every g(I,), rotations can be used to first interchange Ij,, with I, .,
without interfering with any of the other Ij,. Then we can interchange I, , with I}, ,, and so on
until we interchange I, with Ij,,. This means, we can use n rotations to interchange I; with I;.
We can therefore create a function that performs n rotations: R((I,g),i) = (J,¢') such that
(I,9) = (J,q'), for every j <i: ¢'(J;) = g(I;), and for every k with J C J;i: ¢'(J;) > ¢'(Jk)-

We will use this to create a sequence (1%, go), (I',g1), (I, g2),... such that for every i, (I,g) =
(I, g;), and (I™, g,,) is n-hole-decreasing.

(I",gn) = R((I"™", gn—1),n)

We know that for all 4,j with 0 < i < j we have I! = Iij, and g;(I}) = gj(IZ»j). With this we can
create (J, ¢'), where J = I, and for n > 1:

g/(Jn) = gn(IZLl)

This is a Cantor set, as for all 4, j with ¢ < j we have J; = Iij and ¢'(J;) = gj(IZ»j). Because (I, g,)
is n-hole-decreasing for every n, (J,¢') is hole-decreasing. O
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2.2 Intervals
We define the pointwise addition of two intervals as:
A+B={z+y:z€ A yc B}

Hence
lar, ar] + [by, by] = [a; + by, ar + by].

Trivial results:
e + is commutative: A+ B = B + A;
e + is associative: (A+ B)+C =A+ (B+C);

e A+ B=A+B.

Lemma 26. Let A and B be intervals; if A+ B > [min(ay, b;), max(a,,b,)], then AU B is an
interval, namely [min(ay, b;), max(a,, by)].

Proof. By contraposition.
Suppose that AU B is not an interval. Then since AU B C [min(ay, b;), max(a,, b, )] there exists an
x € [min(ay, b;), max(a,, by)] such that x ¢ AU B. Then A and B are disjoint and

A+ B < [min(ay, by), z] + [z, max(a,, b,)] = [min(ay, b;), max(a,, by)]. O
From this follows:

Corollary 27. For I; an interval of a Cantor set with gap function g, and J an interval, if

J > g(I)

then
(Igi + J)U (Igis1 +J) =L + J. (2.1)

Proof. Apply Lemma [26| with A = I»; + J and B = Is; 41 + J together with:

IZ'—FJ:E—FQ(IZ')—FIQZ'_H+j§[2i+J+IQi+1+J. Il

2.3 Comparable and Dividable

In this section, we will show the density requirements needed for sums of Cantor sets to ignore gaps.
This is done in a similar way as done by Hlavka in [4], with comparable and dividable intervals. We
aim to prove the following theorem:
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Theorem 28. Let C' = (I',g'),...,C" = (I", g") be hole-decreasing Cantor sets. If the density
ratios satisfy dr(C7) > z; with

> AT (2.2)
1, + 1

and

J : (zp + 1)IF, (2.3)

then . .
ZI{ = {le x; € C'}.
i=1 i=1

We will use some definitions and lemmas to prove this theorem. Up to the proof, assume we work
with hole- decreasing Cantor sets. Let Iij, be in the construction of C7, with z1,...,x, such that

dr(C7) > x;, and (2-2) and (2.3) hold:

Definition 29. We call intervals I}, I? ..., 17! comparable if

117 T12)

Vi I}, > s J 1(xk+1)gk‘(lzi).
Trivially, we see that I{,I?, ..., I? are comparable.
Lemma 30. If 131,1122, ..., I are comparable intervals, then for all k:
n n n
ZIZ']J' = Z Ii]j + IQik U Z Ii]j + IQik+1
=1 i=Lj#k i=Lij#k

Proof. We will use with Y7 2j=Lij#k Z " and IZ.’Z for respectively J and I;. Hence, what remains
to be shown is that E] itk IZ > gk( zk) Indeed,

(]
e
v
o~ =
) .
N
8
<
+|&
=
Ex
+
=
~

<1 w;j‘; 1) (zp + 1)gk(IF)
= gk (I}).
O
Definition 31. We call comparable intervals Ill1 , 1222’ ..., I j-dividable if both Ill1 , IZ22, R Igz‘]-’ e A
and Illl,Ii, .. Igl 1+ 1 are comparable intervals.
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Lemma 32. Given comparable intervals Iil1 , 17;22, o I If § s such that (x;4-1)g (IZ]]) is mazimal,
1.€.,

Vi (a2 + g/ (I)) > (a + 1gh(IF),
then I}, I2,...,I" are j-dividable.

117 712? in

Proof. Since the Cantor sets are hole-decreasing, we have that ¢/ (I%z]) < gj(Igj) and ¢J (Igi]-—i-l) <

gJ(IZJ) We still have to prove

it By > g Do)

and

c x

As both Igij > zig’ (IZ]]) and I > xig7 (Ilj]), it is sufficient to remark that:

2ij+1
— ——(zg + 1)g*(IF) xj
2igi(I]) > x99 (I} — = L (zp, + DgP(I]).
’ SNCTRS VI VED R

J

Proof of Theorem [28 We will recursively create sets Gy, on n-tuples of intervals.

GO = {<Ill7 1127 s 7I{L>}a

117 7127 Y T ln 217 7120 P

Gm+1:{<11 FE SRR ANUURN 1.3 W1 L0 - SURUY  ATOURY 1.3

’<[1 2 ... 1k I”>eGm/\Vl:xk-gk(I@-’i)Zfﬁl'm}'

919 T s Lo s Lip

Trivially, every (I}, I? ..., I') € Gy is comparable. By induction and Lemma we have that

717 7127
for every m (I}, I%,..., I') € Gy, is comparable. And therefore, for every m:

217 7120 "
U{Zlgj (L2, 10 € Gm} =Y 1.

Let gk(Ii) be a gap of C¥, then for every j there are only a finite number a; of gaps gj(Ilj) such
that gj(Ii) > i—’;gk(fi) For every a > Y aj, there will be no (I}, I7,,...,I") € G, such that
g*(I}) S I

= "t

Let us define G as:

1—00

Then for each (I}, I2,...,I") € G we have If] C C7. Therefore

117 712)

n
{Zx z; eCl} - U{Zq‘([}l,li,...,lm €GAc elgj} -3
=1

29



If we drop the condition that the Cantor sets are hole-decreasing, we have the following result:

Theorem 33. Given Cantor sets C',C?,...,C™ with density ratios greater than or equal to
T1,X2,..., Ty With
Ot 2.4
— z; + 1
i=1
Vinl] > ——(a, + 1) max g(If). (25)
j 3
Then

i]{ = {ixl x; € CZ}.
i=1 i=1

Proof. For every C7 = (17, g7), we can create a hole-decreasing Cantor set D/ = (J7, g"), such that
DJ = C7. We know the density ratio of D7 is greater than or equal to the density ratio of C7, so
x; is smaller than or equal to the density ratio of D7.

We also know that g’(Jf) = max; g(IZ])
This gives all the premises needed in this chapter:

{i:ﬁz xzeCl}:{Zn:xz xiEDi}CZJ{:ZI{. O
=1 =1

We will add one extra theorem, which is easier to use than Theorem but less general.

Theorem 34. Given Cantor sets C1,C?,...C™ with density ratios equal to x1,xa, ..., %, with

> Yo (2.6)

Vipli > —— It 2.7
IS 12+ 1] 27)

Then

znjlf = {zn:xz Lz € C'Y.
i=1 i=1

Proof. First, notice that:

I{Z =15 +9(I7;’1) +I§ik+1

21,

_ Igik, + 9(—756) + Igz’k-i-l oI5

i
Tk k
_ (I%k_}_lmkﬂ_’_l) .g([k)
k k Lk
Q(Iik) Q(Iz‘k)

> (2z), + 1)g(IF).
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Since If > I]’C for all j, max; g(IF) < 2xk+1fk
So, for all j, k:
= Zj T + 1 Tk X

I > 1 ).
L= 12z +1 ! —xj+1<$’“+ ) max g(I7)

We finish by applying Theorem

2.4 Comparison with Hlavka

We will now show that our premises are weaker than those of Hlavka, which lead to the same
conclusion. We start with definitions Hlavka uses, and continue by showing that our premises
follow from both Hlavka’s versions: for the sum of two Cantor sets, and for an arbitrary number

of Cantor sets.

Definition 35. Let Gy be the relative biggest gap of a Cantor set:

Gu((1,9)) = max g(IIZ)

Definition 36. Let Hy be the relative smallest remainder of a Cantor set:

I Is;
Hyg((1,g)) = min <min 2 min 2H_1> .

Hy(C)

From this follows that for the density ratio of C' we have dr(C) > & )

Theorem 37. [4, Theorem 3| If there exist Cantor sets (I', g') and (I?, g°) such that:

Gu((I',g")-Gu((I*,¢%) < Hu((I',g")) - Hu((I*,4%));
Gu((I',g")) - I' < I?;

GH((I2792)) I

IA
e

Then
(I g") + (1% ¢%) = I' + I

We will show that our premises follow from Hlavka’s premises.

(2.8)
(2.9)
(2.10)

Lemma 38. Given Cantor sets (I',g'), (I% g°), let us write G for Gu((I',g")) and H® for
Hy((I',g")) If Hlavka’s premises (@, and hold, then also and hold,

e., there exists x1 and xo smaller than or equal to the density ratios of respectively (I',g') and

(I%,4%) such that:

1. Zz 1 ml—l-l — 17’

2. V10 > 5 (vg + 1) max; g (IF).
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Proof. Let

H!. G2
=\ gt g2
H?.GY
T9 o
Notice that
T - x9 = 1.
Then it follows that:
o z1 < dr((I',g")) and x5 < dr((12%, ¢?)):

G1.G2
gz < 1 So:

AsG'-G?> < H'- H? 1) we know

(2.11)

n=\ G = ar Ve < g S ey
T2 = G2 Hl a2 VH . 2 < S5 <dr((I7,97))
le —|—mJrl > 1: Hence in fact
T1 i T2 _$1$2+$1+$1$2+$2|2:_:|]1
r1+1  =xo+1 T2 + 21 + 22 + 1 ’
o 2> = +1(x1—|—1)mang (Il) and I1 > le(mg—i—l)mang (I )
Since max; gL(I!) < G - I' and max; g2(I2) < G? - I2, we have:
L2 To+ X122 ) =B 4 7 2d—
1 Il <= E2G - IVE=G T L 12
:1:2+1($1+ )maxg( ) < o F 1
and
_ P10
(3 + 1) max (1) < <t MT2 0 R e R

r1+1 r1+1

> :cj:il (z; + 1) max; g7 (I} ):

This follows directly from the definition of the density ratio of (I7,g7) as for every i we have

Hence, Theorem [37] follows from Theorem
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Theorem 39. [4) Theorem 10] If there exist Cantor sets (I', g'), (I, g?), ..., (I", g") such that for
alli,5 < n:

Gu((I',g") + Hu((I',g") <> _ Hu((I*,4")) (2.12)
k
Hp((I',g")) - IV < T (2.13)
Then . .
Z(Ii,gi) _ ZIz
=1 =1

Lemma 40. Given Cantor sets (I',g'), (I?,¢2),...,(I", g"), let us write G* for Gy ((I',¢%)) and

H for Hy((I',g¢")). If Hlavka’s premises and (-) hold, then then also and

hold, i.e., there exist x1,x2, ..., xy, such that Vz x; < dr((I%, ¢%)) and:
1 ZZ 1 33@‘1'1 = 1"

2. V10 > 5 (vg + 1) max; g (IF).

Proof. For each i, let .

H’L

Ti = -

(CpHY) — H
Then for every i and j:

o z; < dr((I,g")):
As for each i, G < (32, H¥) — H', we have:
B _H
QR HY) —H' = G~

€Tr; =

d ZZ x; +1 -
Notice that: i
xT; _ ((Zka)_Hi) _ Hi

. - HFE - k*
T e 2

So:

T, i

e For all i <mn: Ii > (fﬁj-i-l)maxkgj(lj)

— :t:erl
Using maxy ¢7(I]) < G7 - TJ, and G7 < (3, H) — HY:

T (41 (I k G I
xi+1<%+ Jmax g7 (I};) < S HF (S, HF) — HI
H G Ti<H . Ti<T. 0

< ————
T (e HY) - H
Hence, Theorem [39] follows from Theorem [33] as well.
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Chapter 3

NICFs + NICFs = R

In this chapter we are going to prove that every real number can be represented as a sum of two
nearest integer continued fractions with coefficients that have absolute value less than or equal to
five. First, recall Definition [9] with r = 5.

Definition. NICFj is a subset of R, containing only the numbers representable by a Nearest Integer
Continued Fraction where every coefficient except possibly the first has absolute value less than or
equal to 5:

NICF5 = {z : x € R| x = [ag; a1, aq,...] € NICF and V;>1]a;| <5}

We create a Cantor set, Cnicr, and prove it is equal to NICF; \Q, with NICF} a subset of NICF5.
With the results of the previous chapter, we are able to show Cnicr + Cnicr 2 [%, %], which will
lead to:

Theorem 41. NICF5+ NICF5 = R, that is, for each x € R there exist a,b € NICF5 such that
a+b=zx.

NICF5 has the following rules (Definition [8):
For every x = [ag; a1, ag,...] € NICF we have x € NICFj; if and only if for all ¢ > 1:

e a;, € {—5,—-4,-3,-2,2,3,4,5};

e if a; = 2, then a;41 € {2,3,4,5};

o if a; = —2, then a;41 € {—2,-3,—4,—5}.
We will look at a subset of NICFs5:

Definition 42. NICF} is the subset of NICF5 N[0, 1] containing only the numbers representable by
a Nearest Integer Continued Fraction where every coefficient except possibly the first with absolute
value 5 is not followed by a coefficient with the same sign.
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NICF} has five extra rules in addition to the ones of NICF5:
For every x = [ag; a1, a2, ...] € NICF5 we have x € NICF} if and only if for all ¢ > 1:

e if a; =5, then a;41 € {—2,-3,—4,—5};
e if a; = —5, then a;41 € {2,3,4,5};

e ap € {0,1};

e if ap =0, then a; € {2,3,4,5};

e if ap =1, then a; € {-2,—-3,—4, —5}.

It easily follows that for all z € Z, and all x € NICF;, we have z + € NICF}5.
We will show that NICF; \Q can be described as a Cantor Set, with density ratio greater than 1,
and an initial interval with size greater than %

Definition 43. We define y1 € NICF5 as [5;=5,5] = 5 — L = 2521 > 479128,

We have —pp = —1 - [5;—5,5] = [-5;5,—5|. This satisfies all the rules of NICF5, and therefore
—u € NICFs5.

Lemma 44. The smallest value in NICFE is [0 : p] = 5_27‘/5 < 0.20872, and the largest value in
NICF} is [1: —p] = Y21=2 > 0.79128.

Proof. Both [0 : p] and [1 : —p] correspond to all the rules of NICF:. We are going to prove
y=10: u] = [yo;y1, Y2, ... is the smallest value in NICF}. Let x = [z¢;x1,z2,...] be the smallest
value in NICF;. Then z < %, so xg = 0. Suppose = # ¥y, let n be smallest integer such that
Ty # Yn- This leads to the following contradictions:

e If nis odd, y, = 5. If x,, <5, then

1
T > [$0;$17x27"'7xn71 :lin+ 5] Z [$0§$1,3327-~-,513n71 15— 5] Z Y.
If , > 5, then = ¢ NICF3.

e If nisodd, y, = —5. If x,, > —5, then

1
T 2 [00; 21, L2,y Tn1 t T — 5] 2 0321, T2y Bn1 1 5+ ] >y
If , < —5, then x ¢ NICF}.
The proof that [1 : —u] is the largest value in NICF} follows a similar pattern. O

Definition 45. Let ag,aq,...,a, € Z,
if k€ {—5,—4,-3,2,3,4} such that [ap; a1, ...,an, k] € NICFE, we define

P+ ([ag, a1, ..., a,]) :=[ao; a1, ..., an, k : u] (€ NICF})
and if k € {—4,-3,-2,3,4,5} such that [ag;a1,...,an, k] € NICF}, we define

P.—([ag,a1,...,ay]) :==lao;a1,...,an, k : —p] (€ NICF%).
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With these, we can define intervals:

Definition 46. For allag,ay,...,an, € Z and allu € {—5,—4,-3,2,3,4} andv € {—4,-3,-2,3,4,5}
such that w < v and [ag; a1, ..., an,u], [ao;a1,...,an,v] € NICF:, we define T, ,([ag, a1, ...an]) as
the interval with endpoints P+ ([ag, a1, ..., ay]) and P,—([ag, a1, ..., an]).

If n is odd, then P,+([ao, a1, ..., an]) < Py-(lao, a1, .., an)),
while if n is even, then P+ ([ag,a1,...,a]) > Py-([ag,a1,...,ay]).

3.1 Creating a gap function

With the intervals defined in Definition [46] we are going to create a Cantor set. The initial interval

will be [[0;5,—5], [1;—5,5]], which we will call Tp;. Our gap function g will create remaining
intervals of the following types:

o T 1;

i Tb,b+1([a0; agy ..., an])’ with b € {_57 —4,-3,2, 334}a

o Th5(lao; a1, ..., an));
o T55(lao; a1, - - -, an));
o T 5 _o(lap; a1, - .-, an));
o T 5 _3([ag;a1,...,an)).

For each of these types of interval we describe the function g, and will show that the remainders
again are of the described types. We will also calculate the lower bound of the ratio between the
remainders and the size of the gap. Later, we will use this to derive a lower bound for the density
ratio of the Cantor set we are creating.

3.1.1 Ratio calculation

Let [ag;ai,...,a, : I"] and [ag;ai,...,a, : IT] be the endpoints of an interval T, and let
[ag;ai,...,an : C7| and [ap;a1,...,a, : CT] be the endpoints of the corresponding gap, such
that I~ < C~ < C*T < I'". With the theorem about the approximation of rationals (Theorem ,

and with w defined as w = qz;l, we know that the sizes of the remainders are
|- —C™| d It —CT|
an ,
G +w)(C™ +w) G +w)(CT+w)
while the gap has size
c™ —CF|

@0~ +w)(Ct +w)’
So the density ratio of this particular interval is the minimum of
[Im = C7| (CT +w) and [T —CT| (C7 4+ w)
|C— = CH| (I~ +w) |IC— —C*| (It +w)’

Recall that, because all endpoints are elements of NICF5; C NICF, we know that |w| < ‘/52_1

according to (1.1]).
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To,

’

Our first type consists of one interval, which can not be described in the fashion of Definition
but for consistency will be called Tp ;. It has size [1; —5,5]—[0;5, —5] = @ — 5*27‘/5 =+21—4 >
0.58256.
The corresponding gap will be g(7p,1) = ([0;2 : p], [1; =2 : —p]), which has size: 0.54725—0.45275 <
0.09451.
The remaining intervals are T3 5([0]) and T"5 _5([1]), which both have size > 0.24403.
The density ratio corresponding with our initial interval is 8:(2)3‘3?‘3 > 2.58205.

L

Toa

S N
I I3
T5,5([0]) T5,—2([1])

Tb,b+1([a0; Qgeooy Cl,n]), b € {—5, —4, —3, 2, 374}

For Ty py1([ao; at, ..., ayn]), the gap g(Tppt1([ao; at, ..., ay])) is defined as the open interval with
endpoints P+ ([ag; a1, ..., an,b]) and P_s—([ag; a1, ..., an, b+ 1]). With the remaining intervals are
TQ;,([CL(); A1y...,0pn, b]) and T_57_2([CL0; A1y ...,0p, 0+ 1])

Here, the density ratio can be calculated using I~ =[b: pu], C~ =[;2: pu], CT =[b+1;-2: —p],
and IT =[b+1:—pul.

We will now calculate bounds for the corresponding density ratio, for each b:

e When b equals 2:

T2,5([ao; a1, - - -, an, 2))| 2:p] =22 0] (13-2:—pl+w)

l9(T2,3([aos a1, - . -, an)))| - I2;2: 0] — [3;—2: —p]|  ([2:p] +w) > 2.89191
and
‘T75,72([a0;a1, ey n, 3))| B 13:—p] = [3:=2: —p| ([2:2: p] +w) |
9(Tos([av;ars - an)))| 1220 — 32 | (B: -] +w) 2.18031;
e When b equals 3:
To5([aoi a1, .-y an,3])]  |B:p)—[3:2:p) (4-2:—p)+w)
l9(Ts4(Jag; a1, ...y an)))|  |[3;2: 0] — [45-2:—p]|  ([3:p] +w) > 2.81108
and
T (loviar. . oan AD| _ [ —p) = =2 —p] (3:2: ] + ) .
9(Tsa(faosat, - an))| 1352 ] — -2 ] (A: -] tw) 2.30709;
e When b equals 4:
T25(laoa, .. an Dl (M4l =424 (552 —pl+w) o oo

19(Tus([ao;ars - yan]))| 4200 = [5-2: =g ([4:p] +w)
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and

s o(lagiar, .. an 5D |15 —) = [5:—2 ] ([4:2 - ] +w) |
9Tas(avian an))| 142 a5 -2 )] (Bl tw) ootk
e When b equals -3:
|T55([ao; a1, - - -, an, =3 |[=3:pl = [=32: )] ([-25-2: —p] +w)
(Ts o(aoar, . an))] 32— 22— (3:atw) o0

and

[Ts,—2(laos a1, - s an, =2D)| _ |[=2: —p) = [=25 =22 —p| ([=3;2: p] + )

9T s o(a0ar, —anD)] =32 = 22 )] (2 ] tw) ~ o000
e When b equals -4:
T2 5([ao; a1, - - - an, =4 |[-4:pl = [=42:p]] (=32 —p] +w)
(T _s(avian, - an))] A2 p] — [3i-2: ] (depltw) = o070
and
T-5,—2([ao; ax, - an 4])|  [[=3:—p] —[=3; -2 —p]| (=42 p] + w) ,
o Toallian—an)) 152 g = [3 -2 —pl (3 ] +w) o0

e When b equals -5:

[T 5([ao; at, - - ., an, —5])
19(T—5,—4([ao; a1, - . ., an))

[=5:pu] = [=52:p]]  ([-4-2:—pl+w)

= [=5;2: ) — [4;—2: —pu]|  ([-5:p]+w) > 2.37311

~— | —

and

75, 2(la0s a1, am, =AD] _ (=40 =] = [=4 =22 =] (552 ] 4 @) o

9(T5,—a([a0; a1, - an]))| - |[=5:2: p) = [=4; =2 —pl| ([-4: —p] + @)

e ™~
Iy; It
T2,5([a0; Aly...,0np, b]) T,5,,2([a0; A1y ..y Qn, b + 1])

When n is even:

I;
Ty pt1([ao; a1, .. ., an))
e ™~
Iy Iyit1
T,57,2([a0;a1,...,an,b—i—1}) T2’5([CLO;(11 ..... an,b])



T2’5([Cl,0; Afgeos
For T275([a0; ai, ...
points P ([ag; a1, . .
and T375([a0; at, ..

s Qn))

,an]), the gap g(T25([ao; ay, - -
.y ap)]) and Ps+ ([ag; aq, . - .

-y Gp)).

.,ap])) is defined as the open interval with end-
, @p]), with the remaining intervals 75 3([ag; a1, . . ., ap))

Now the density ratio can be calculated using I~ = [2: p], C~ = [3: —p], CT = [3 : p], and

It =1[5:—p
To 3([ao; a1, - - -, an])| 2: 0] = [B: =4 ([3: p] +w)
] = > 1.88937
19(T25([aos ar, - - an]))l B —p] = B pl ([2: 4] +w)
and
T5,5([ao; a1, - - ., an))| 15 —p] = [B: ]| ([3: —p] +w)
J — > 1.97434
19(T25(Jaos a1, ..y an]))| |3+ —p] = [3:p]| ([5: —p] +w)
When n is odd:
I;
Ty 5(lao; at, . .., an])
~ N
Ip; Iyiq
Ty 3([ao; a1, . .., an)) T 5(lao; at, ..., an))
When n is even:
I;
Ty 5(lao; at, . .., an])
~ N
Ip; Iyiq
T375([a0;a1,...,an]) T273([a0;a1,...,an])
T3,5([a,0; Afgeesy an])

For T3 5([ag; a1, ...
points Py— ([ag; a1, . .
and Ty 5([ao; a1, . .

., ap]) and Py+([ao; a1, - - -

Sy an)).

,an]), the gap g(T35([ao; a1, ...,ay])) is defined as the open interval with end-
, an)), with the remaining intervals T3 4([ag; a1, . . ., ap])

In this case, the density ratio can be calculated using I~ = [3: u|, C~ =[4: —u|, CT = [4: p,
and I = [5: —p]

and

|T3,4([a0§a1, o ,an])| B |[3 . M] _ [4 . _M]| ([4 : H] +w)
l9(T35([ao; a1, - - -, an)))| A A (B +w) > 1.76035
Tas((agiar, - yanD] |5 —p] = [4: ] ([4: —p] +w)
9T 5((aosan, - anl)] ] — [l (B ]+ w) ~ OO
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When n is odd:
I;

T375([a0; at, ...

e
Iy;
T3,4([a0; ALy ey an])

When n is even:
I;

T375([a0; at, ...

e
Io;
Tus(lao; at, ..., an))

T_5.—2([ao; a1, ..., an])

70%])

AN
Ipiq

Ty5(lao; at, . ..

70%])

AN
Ipiq

T374([a0; ai, ...

,Qn))

,Qn))

For T_5 _s([ag; a1, ..., ay]), the gap g(T—5 —2([ap; a1, ..., an]))
endpoints P_sz-([ag; a1, ...,a,]) and P_sz+([ag; a1, ..., an]).

The remaining intervals are 75 _3([ao; a1, . . .

T 5, 3([ao; a1, - .., an])|

T 5([—ao; —ar,

is defined as the open interval with

,an]) and T_37_2([a0; ALy ey an]).

> 1.97434

lg(T—5 —2([ao; a1, - -

and

T3 _2([ag; a1, - . ., an))

Lan)))

lg(To5([—ao; —a1,

T5 3([—ao; —ar,

)

|
-y —an]))]

> 1.88937

|
19(T—5,—2([ao; a1, - .., an]))|

When n is odd:
I;

T 5 _o([ao;ai,...,an))

e
Ip;
T—5,—3([a0; ai, ... )aTLD

When n is even:
I;

N
1941

T_3_2(lags a1, ...

T_5-2([ao; a1, - - -, an])

e
Io;
T 3 o([ao;a1,...,as])

N
1911

T_5._3([ags a1, ...

lg(To5([—ao; —a1,

uan])

uan])
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T_5,_3([ao; a1, ... ,az])

For T_5 _3([ag; a1 ..., ayn]), the gap g(T—5 _3([ap;ai,...,ay])) is defined as the open interval with

endpoints P_y—([ao; a1, .., ay]) and P_y+([ao; a1, - .., an)).
The remaining intervals are T_5 _4([ao; a1, ..., ay]) and T4 _3([ao; a1, - - ., an)).

T 5 _ : .. T, [

[Tos,—a(laos a1, s an])| _  |Tas([=ao;—ar, ..., —an])| S 1.06122

l9(T-5,—3(laos a1, ..., an]))|  [9(T55([—ao; —a1, ..., —an]))|

and

T 4_ : .. T: —a0; — A1y, —

’ 4; 3([0’070’17 70/7’74])’ — ’ 3,4([ a07 0/1, ) an})’ > 176035

19(T-5,—3(laos a1, ..., an]))|  [9(T55([—ao; —a1, ..., —an]))|
When n is odd:
I;
T 5 3(laosa1...,an])
e AN
Iy; Iitq
T_5-a(lao;ar,...,an])  T-s-3([acsa1,. .., an])
When n is even:
I;
T 5-3(lags a1 ..., a,])
e AN
Iy; Iit1
T_4-3([ao;a1,---,an])  T-5-4([ag;a1,...,an])

3.2 Construction of the Cantor Set

By describing the interval types and the corresponding gaps, we can now create a Cantor set:

Definition 47. We define the Cantor set Cnicr = (T0,1,9). The size of the initial interval Ty 1 is
at least 0.58256 and the density ratio is at least 1.06122.

We will prove Cnicr = NICF; \Q, which will take some lemmas.

Lemma 48. For the intervals I; in the construction of Cxicr, for every n > 1, if [ag; a1,. .., ay] €
NICF} with ay, € {—5,—4,—3,2,3,4}, then there exists some i > 4™ such that

Ii = Tan,an+1([a0; Aty ... 7an71])-
We also have the following lemma:

Lemma 49. For the intervals I; in the construction of Cxicr, for every n > 1, if [ag; a1,...,ay] €
NICF} with ay, € {—4,—3,—2,3,4,5}, then there exists some i > 4™ such that

I = Ta,—14,([a0; a1, . . ., an—1]).
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The proofs of Lemma (4§ and Lemma [9] are intertwined. We prove them using one induction
argument and when proving the (n + 1)-case, we use both induction hypotheses. Since they show
such similarity, this is a nice way to prove these lemmas.

Proof of Lemma[[§ and Lemma[{9. By induction on n.
Base case: n = 1:

I
To1
/ \
I I3
T5,5((0]) T-5,-2([1])
/ AN / AN
Iy I Ig I7
T3,5((0]) 13,3([0]) T_3-2([1]) T-s5-3([1])
/ AN / AN
Ig Ig I4 II5
T,5(10]) T5,4([0]) T_4—3([1])  T-5-4([1])

If a; € {—5,—4,—3,—2} then qp = 1 and:
o I15 =T 5 _4([1]);
o [14=T_4 3([1]);
o [ =T_35 5([1]).

If a; € {2,3,4,5} then ap = 0 and:

o I5 =T,3([0]);
® Ig :T374([0]);
o Ig :T475([0])

Induction Hypothesis: Given n > 1, for all [ag;ay,...,a,] € NICF} with a, € {-5,—4,-3,2,3,4}
there exists an i > 4" such that I; = T, 4,,+1([ao; a1, ..., an—1]). And if a,, € {—4,-3,-2,3,4,5}
there exists an ¢ > 4™ such that I; = T, —1 4, ([a0; a1, ..., an—1]).

Induction step, we need to prove: for all [ag; a1, ..., an, ant+1] € NICFE, if ap4q € {—5,—4,-3,2,3,4}
then there exists an i > 4" such that I; = T, an.1+1([a0; a1, ..., ay)), and if

ant1 € {—4,—3,-2,3,4,5} then there exists an i > 4! such that I; = T, | _1,a,,, ([@0; a1, ..., an)).
Let [ag; a1, ..., Gn, ant1] € NICFE, so apt+1 € {—5,—4,-3,-2,2,3,4,5}.

We make case distinctions whether an+1 € {—5,—4,—3,—2} or any1 € {2,3,4,5}, and whether n
is odd or even.

Case 1: If ap4q € {—5,—4, -3, -2}, then a, € {—4,—3,-2,3,4,5}, so with the Induction Hypoth-
esis there exists j > 4" such that I; = T,, 1.4, ([ao; a1, ..., an—1]).
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Case la: If n is even:

I
Tanfl,an({ao; Qg ...y anfl])
~ ™~
Io; Ipj1
T2,5([a0; A1y eeey Ay — 1]) T,57,2([6L0; Ay eeey an])
e ™~
I4j40 Iyjis
T_3,_2([a0; Ay eeny an]) T_5,_3([a0; Ay eney an])
e AN
Isjte Isj7
T_47_3([CL0; Ay .eny an]) T_57_4([a0; Ay eeey an])
From this we can conclude:
o Igji7 =T 5_4([ao;a1,...,a,));
® Igj+6 = T_47_3([a0; Ay enny an]);
[ ] I4j+2 = T_37_2([a0; Ay enny an])
Case 1b: If n is odd:
I
T, 1,0, ([a0; a1, ..., an-1])
e ~
I>; Iy
T_5.2([aos a1, ..., an]) Ty 5(lags at, ..., an — 1])
e ™~
1y I4j41
T,57,3([a0; Ay eeny an]) T,'g,’,Q([ao; Ay eeny CLTJ)
e AN
Ig; Igjt1
T 5 _4([aosar,...,an]) T-a_3([ao;ai, ..., an])

From this we can conclude:

o Iyj =T 5_4([ao; a1, ..., an]);
o Igji1 =T 4 3([ao; a1, ..., an]);
o Iyji1 =T 3 s([ao;a1,...,an]).

Case 2: If any1 € {2,3,4,5}, then a, € {—5,—4,-3,2,3,4}, so with the Induction Hypothesis
there exists j > 4" such that I; = Ty, q,+1([ao; a1, ..., an—1]).
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Case 2a: If n is even:

I
Ton.an+1(l00; 01, ...s an—1])
~ N
Igj IQj-‘rl
T2,5([a0; Ay, ..., an]) T,5,,2([a0; al,y ..., Gy + 1])
~ N
I4j I4j+l
T3,5([a0;a1,...,an]) T273([a0;a1,...,an])
e AN
Is; Igji1
T475([a0;a1,...,an]) T374([a0;a1,...,an])
From this we can conclude:
o Iyj1 =T 3([aos a1, ..., anl);
[ ] Igj = T3,4([a0; Ay enny an]);
L] Igj+1 = T475([a0; Ay eeey an]).
Case 2b: If n is odd:
I
Tan,an_;,_l([a(); Ay eeny an_l])
~ N
Io; Iy
T_57_2([a0; A1y .eey O + 1]) T275([a0; Ay enny an])
~ N
Iyjio Iyji3
T2,3([a0;a1,...,an]) T375([a0;a1,...,an])
e AN
Isjve Isji7
T374([a0;a1,...,an]) T4’5([a0;a1,...,an])

From this we can conclude:
o Iyj1o =T 3([ao;ai, ..., an));
o Igjr6 = T34([ao;ai, ..., an));
o Igji7 = Tys([ao; a1, .., an)).

This concludes our proof.
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Theorem 50. NICF; \Q C Cnicr

Proof. For every x = [ag; a1, ...] € NICFE\Q we have [0: pu] <z <[1:—p],soz e Tp;.
We continue by showing that there exists no 7 such that = € g(I;).

Proof by contradiction: Suppose that there exists an i such that = € g(I;). Take n > 2 such
that 4" > i. We know that [ag;ai,...,an+1] € NICF;. We make a case distinction whether
an+1 € {2,3,4,5} or ap4+1 € {—5,—4,-3,—2}.

Case 1: If apy1 € {2,3,4,5}, then a,, € {—5,—4,-3,2,3,4}. So by Lemma {8| there exists some
Jj > 4" > i such that I; = Tg, 4,+1([aos a1, ...,a, — 1]), with € I;. Because j > i, we have
g(I;) N I; = . Contradiction.

Case 2: If apy1 € {—5,—4,—3,—2}, then a, € {—4,-3,-2,3,4,5}. So by Lemma [49 there exists
some j > 4" > i such that I; = T,, 1.4, ([ao; a1, ...,an, — 1]), with € I;. Because j > ¢, we have
g(I;) N I; = (. Contradiction. O

A first step towards proving Cnicrp € NICF: \Q (Theorem is proving that for every
x ¢ NICF; \Q we have x ¢ Tj; or there exists an 4 such that x € g(I;).
For x ¢ NICF} at least one of the following rules must be true (logical negation of x € NICF%):

1. ap ¢ {0,1};

2. ag =0 and a1 < 0;

3. ag =1 and a1 > 0;

4. for some i > 1, |a;| > 6;

5. for some ¢ > 1, a; = 5 and a;4+1 > 0;

6. for some ¢ > 1, a; = —5 and a;4+1 < 0.
Theorem 51. Given x = [ag;a1,...,Gp—1 : an + 7], with 0 < z < 1 and |r| < i If for each
i <n, |[a;;ai11,0i42,... 0 an + ]| < p, then: [ag;ai,...,an—1,a,] € NICF: and if n > 1, then

an € {—4,-3,-2,2,3,4}.

Proof. We will write r; (remainder) as z; — a; in the construction of NICF, so r; = L ] and

lait1;ai42,...
x = [ag;a1,...,a;—1 : a; + r;]. Note that for every i we have |r;| < %
Proof by contradiction: suppose that x ¢ NICFZ. By a case distinction, it then leads to (at least)

one of the following contradictions:

1. ag ¢ {0,1}: either ap < —1, such that x = ag +rg < —% < 0, or ag > 2, such that
:UI(L()—I-?“QZ%>1;

2. ap=0and a; <0: 719 < 0,80 x =ag+ 19 <O0;

3.ap=1anda; >0: 70 >0,s0 z=ag+ 71y > 1;

4. Fi<i<y with |a;| > 6 [[aiaig1, .., an)] > ail =1 > 6 — 3 >
5. Ji<icn with a; =5 and a;41 > 0: 73 > 0 and [ai; aiq1, ..., an] > 5> 1
6. Ji<icn with a; = =5 and a;41 < 0: 7 <0 and [a3; aiy1,...,a0n] < =5 < —p.
Furthermore, if |a,| = 5, then (take i = n) |[a, + ]| > 5 — i = . O

46



Theorem 52. If x = [ap;a1,...,a,] € NICF; with n > 1 and a,, € {—4,-3,-2,2,3,4}, then for
y = lao;a1,...,an_1: an + 7] with |r| < %, there exists some i such that y € g(I;).

Proof. Note that, by construction of NICF, |a,, +r| > 2.

If n =1 and a1 € {2,3,4}, then ap = 0. Since [0: 4+ 3] < y < [0;2], we know that y € I,
and that y ¢ Is:

— a1 =2:y>[0;2: u] = P+ ([0]), so y ¢ Iz, thus y € g(I1);

— a1 =3:[0;3:pu] <y<[0;3:—pul,soy e g(l2);

— a1 =4 [0;4:p] <y <[0;4:—pl, soy € g(ls).
If n=1and a; € {—4,-3,—2}, then ap = 1. Since [1;-2] <y < [1: —4 — 1], we know that
y € I, and that y ¢ I»:

—a1=-2y<[;-2:—pl =Py ([1]),s0y ¢ I, thus y € g(I1);

—a1=-3:[1;=-3:p] <y <[l;=3:—pul,soy e g(l3);

—ap=—4 [L;—4:pl<y<[l;—4:—p],soy € g(I7).
If n > 1, n even and a1 € {2,3,4}, then a,—1 € {—5,—4,-3,2,3,4}, thus there exists
an ¢ such that I; = T,, | 4. 1+1([ao;a1,...,an—2]). Since [ag;ai,...,an—1 : 4+ %] <y <
[ag; a1, ..., an—_1,2], we know that y € I; and that y ¢ I9;1:

- a1 = 2: [aﬂ;alv v 7an—172 : /’L] <y< [ao;ala .. '7an—172]7 SO0y ¢ 12i7 thus Yy € g<IZ)7

— a1 =3: [ag;a1,...,an—1,3: p] <y <lao;ai,...,an—1,3: —pj, so y € g(I2;);

—a; =4: lagsar,...,an-1,4: p| <y <lag;ai,...,an—1,4: —ul, soy € g(ly).
Ifn > 1,noddand ay € {2,3,4}, then a,,_1 € {-5,—4,—3,2,3,4}, thus there exists an i such
that I; = T, a,_1+1([ao; a1, ..., an—2]). Since [ag;a1,...,an-1,2] <y < [ap;a1,...,a0n-1 :
4 + %], we know that y € I; and that y ¢ Iy;:

— a1 =2: [ap;ay,...,an-1,2] <y <lao;ai,...,an—1,2: p, s0 y & Izi11, thus y € g(L;);

— a1 =3: [ag;a1,...,an-1,3: —p] <y <laog;a1,...,an-1,3: p), so y € g(I2i41);

— a1 =4 [agsar, ... an—1,4: —pul <y <lap;ai,...,an—1,4: ul, soy € g(lyits).

If n > 1, n even and a; € {—4,—3,—2}, then a,—; € {—4,—-3,—-2,3,4,5}, thus there exists
an ¢ such that I; = Ty, 1.4, ,([a0;a1,...,an—2]). Since [ap;a1,...,ap—1 1 =4 — %} <y<

[ap; a1, ..., an—1,—2], we know that y € I; and that y ¢ Iy;:
—a; = =2 [ag;a1,...,an-1,—2 : —p| <y < [ag;a1,...,an-1,—2], so y & Izi+1, thus
y € g(L);
— a1 = —3: [ag; a1,...,an—1,—3: p] <y <l[ag;a1,...,an—1,—3: —p], 50y € g(l2iy1);
— a1 = —4: lag;ar,...,an—1,—4: pl <y <lap;ai,...,an—1,—4: —pul, soy € g(Lg;13).
If n > 1, n odd and a1 € {—4,-3,—2}, then a,—1 € {—4,-3,-2,3,4,5}, thus there ex-

ists an 4 such that I; = Ty, 1.4, ,([ao;a1,...,an—2]). Since [ag;a1,...,an—1,—-2] <y <
[ag; a1y ... ,ap—1: —4 — %], we know that y € I; and that y ¢ I;4q:
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—a; = =2 [ag;ai,...,an-1,—2] < y < lag;a1,...,apn-1,—2 : —pl, so y ¢ Iy, thus

— a1 = =3 [ag; a1,...,an-1,—3: —p] <y <l[ag;ai,...,an—1,—3: u}, 50 y € g(Iz);
— a1 = —4: [ag;a1,. .. an—1,—4: —p] <y <[ap;a1,...,an—1,—4: p, 50y € g(ly). O

Theorem 53. If z = [ap;a1,...] € R\ (QNNICF}) then x < 0 or x > 1 or there exists ann > 0
such that |[an; an+1, anta,-..]| > p.

Proof. Take x = [ag;a1,...] € R\ (Q N NICF}), then, because ¢ NICF}, (at least) one of the
following arguments is true:

1. ap ¢ {0,1}: either ay < —1, such that x = ag + 19 < —% < 0, or ag > 2, such that
r=ap+ro>3>1;

2. ap=0and a; <0: 719 < 0,80 x =ag+ 19 <O0;

3.ap=1landa; >0: rg > 0,0 x =ag+19 > 1;

4. ngign with |a1] 2 6: Hai;ai-&—lv v ,an” > ’az‘ - > 6 — % > 1
5. Ji<icn with a; =5 and a;41 > 0: 7 > 0 and [a;ait1, ..., an] > 5 > u;
6. Ji<icn with a; = =5 and a;41 < 0: 7, < 0 and [a3; aiy1, ..., a0n] < =5 < —p. d

Theorem 54. Cnicr C NICF; \Q

Proof. We will prove that for every z € R, if 2 ¢ NICF; \Q, then = ¢ I = T ; or there exists an ¢
such that =z € g(I;).

If £ <0orx>1then x ¢ I, so let us assume 0 < x < 1. First we are going to show that there
exists some n such that x = [ap;a1,...,an—1: ap + 7] and |r| < i:

e Suppose that z € Q. Then there exists an n such that x = [ag; a1, ..., a,] = [ao; a1, ... : ap+7]
where r = 0.

e Suppose that = ¢ Q, say = = [ag;a1,...]. So z € R\ (Q N NICF}). With Theorem
there exists some n > 0 such that |[an; ant1, anyo,...]| > p. Let r = m, then
x = [ag;a1,...,an—2: ap—1 +r] and |r| < i
We can define k as the smallest n such that z = [ag;a1,...,an-1 : an + ] with |r,| < i
Now we know that x = [ag;a1,...,ax—1 : ax + ] and |rg| < % and, when we represent = as
[ag; a1, ... ,a;—1 : a; + 1], because |r;| < %, we have [aj11;a149,...,a05_1 : ag + 7] > p.

e Suppose that k =0: We have x =ag+7r,s0 x <0+ poraz>1—p,s0x ¢ .

e Suppose that k& > 0, with Theorem we know that [ag;ai,...,ax—1,ar] € NICF; and
ar € {—4,-3,-2,2,3,4}. Then, with Theorem we know that there exists an ¢ such that
x € g(L;). O
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3.3  COnicr + Onicr

Theorem 55. For every x € RN [%, 2 — %], there exist a,b € Cnicr such that a +b = z.

Proof. Cnicr is a Cantor set with initial interval [i, 1-— i], and has a density ratio bigger than 1.
We can now use Theorem as ﬁrl > % if x > 1, and ITl = I? O

Theorem 56. For every x € RN [%, %], there exist a,b € NICF5 such that a +b = x.

Proof. Because [%, %] C [%, 2 — %], we can apply Theorem |55, so there exist a,b € Cnicr such that
a+ b= z. Because Cnicr = NICF; \Q and (NICF;\Q) C NICF5, we have a,b € NICF5. O

Now we can prove our main result of this chapter:

Proof of Theorem [[1. We can write x as y+n withn € Z and y € [%, %] We know that there exist

a,b € NICF5 such that a +b =y, so (a + n) + b =z, with a + n and b in NICF5. O
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Chapter 4

NICF, -+ NICF, # R

In this chapter, we are going to give a counterexample to NICF4+ NICF4 = R. First, recall
Definition [0 with r = 4.

Definition. NICFy is a subset of R, containing only the numbers representable by a Nearest Integer
Continued Fraction where every coefficient except possibly the first has absolute value less than or
equal to 4:

NICFy = {z : x € R| x = [ap; a1, ag,...] € NICF and V;>1]a;| < 4}

Lemma 57. For every x,y € NICFy there exists ' and y' in NICF4 with integer part 0 such that
¥ +y =x+y mod 1.

Proof. Let x,y € NICFy4, set 2/ =z —|z] and y = y— |y], then z+y = |z]|+ |y|+2'+y = 2"+

mod 1. As z,y € [—%7 %), their integer part is 0. O

Definition 58. Let

11
and
11
NICFg = NICF4N [-5,5)N Q.

We will show that:
1. (NICF\g + NICF\g) N ([-0.627705, —0.627695] U [0.372295,0.372305]) = 0;
2. NICFg + NICFq is a countable set;
3. NICF\qg + NICFq has a Lebesgue measure of 0.

Lemma 59. [0;4,2] is the smallest value above zero in NICF\q, and [0;2,4] is the largest value
below % in NICF\q.
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Proof Suppose x and y are respectively the smallest value above zero and the largest value below
5 in NICF\g. We know both z and y start with a zero, followed by a positive number. For

[0,a1,a9,...] € NICF\q with a; > 0 we know that

1
a1+%

S [O,CLl,CLQ,. o

Also

[0,(11,&2, .. ] =

sor=[0:44yland y=[0:2+ z].

aj + [0;az,as,...]’

O

Definition 60. The set NICFy(ay,...,an) is the subset of NICF\q in which the first n+ 1 coeffi-

cients are equal to 0,a1,...,an:

NICF4({a1, ..., an) = {x € NICF\q [Jy,z = [0; a1, . ..

The infimum of NICF({ay,...,a,) is

[0;a1,...,an,4,2] if a, = 2;

[0;a1,...,an, —2,—4] otherwise.

The supremum of NICFy(ay,...,a,) is

[O;CLlu < oey Uny, _47 _2] if ap = _27

[0;a1,...,an,2,4] otherwise.

We can now fill a table with NICF4(a1,...,a,

intervals.

) for different values of (ay, ...

,an), see Table

Every element of NICF\q is included in one of these sets, and therefore lies in one of the covering

The sum of each combination of two covering intervals does not overlap with either of the intervals
[—0.627705, —0.627695] and [0.372295,0.372305]. We only show the combinations of intervals that
are most relevant. For each combination of intervals I,.J there exists a sum I’ +.J' in the list below

such that I’ > T and J' > J,or I' < I and J' < J.
The sums closest to [—0.627705, —0.627695]:

(=2, —4) + (4) = [—0.44949, —0.43827] +

(—2,-2) + (—4,—2) = [~0.41524, —0.40824] +
(—3,2,4,2) + (—4, 4,4> = [~0.39208, —0.39201] +
(—3,2,4,4) 4 (—4, —4, —4) = [~0.39181, —0.39170] +
(—3,2,4, —4) + (—4, -4, —2) = [-0.39086, —0.39073] +
(—3,4, —4) + (—4,4,2) = [~0.36616, —0.36561] +
(—3,4,4) + (—4,4,4) = [—0.36189, —0.36147] +
(—3,4,2) + (—4,4, —4) = [—0.36061, —0.36032] +
(—3,—4) + (=3, —4) = [-0.31011, —0.30472] +

The sums closest to [0.372295, 0.372305]:

(—4,-2) + (2) = [~0.22685, —0.22474]
(4) + (4) = [0.22474,0.28165]
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+[0.40824, 0.44949] =
+[0.22474, 0.28165] =

[0.22474,0.28165

—0.22685, —0.22474
—0.23448, —0.23425
—0.23621, —0.23603
—0.23671, —0.23658

[
[
[
[
[f
[
[
[

0.26504, —0.26488

—0.26573, —0.26550
—0.26803, —0.26772
—0.31011, —0.30472

]
]
]
]
]
]
]
]
]

[—0.22475, —0.15662
[—0.66356, —0.64278
[—0.62656, —0.62626
[—0.62802, —0.62773
[_

[—0.63120, —0.63049
[—0.62762, —0.62697
[—0.62864, —0.62804
[—0.62022, —0.60944

]
]
]
]
0.62757, —0.62731]
]
]
]
]

[0.18139, 0.22475]
[0.44948, 0.56330]



Lemma 61. NICFg + NICFg N([—0.627705, —0.627695] U [0.372295, 0.372305]) = ()
Proof. Let I be the union of intervals in the above table. NICFg is a subset of I, and

I+ IN([-0.627705,—0.627695] U [0.372295,0.372305]) = . O
Lemma 62. NICF\q has Lebesgue-measure 0.

Proof. There exists an € > 0 such that for each z,y € R, with < y, there exist 2’ and 3’ such
that © <2’ <y <y, [¢/,y/] "NICF\g = 0 and yy:ﬁ > e. We also know that NICF\q is a subset
of the interval [—%, %] This lets us create a sequence of sets of intervals S, such that the measure
of S; < (1 —¢)" and NICF\g C S;. Let

11
5= {51
and
Siv1 = {[x,l‘/], [y/my] : [J;?y] = Sivxlay/ as above}. o

Remark 63. NICFq is a countable set.
Lemma 64. The set {x +y |z € NICFq,y € NICF\q} has Lebesgue-measure 0.
Proof. NICF\q has Lebesgue-measure 0 and there are only a countably infinite number of elements
in NICFgq. Because of the subadditivity of Lebesgue-measure, we have
u(NICFg+NICF\g) <pu( | J #+NICF\g)< > u(NICFg) =0. O
JTENICFQ ZGNICFQ
Lemma 65. NICFg + NICFq has Lebesgue-measure 0.
Proof. NICFg + NICFq is a subset of Q + Q = Q, which is a countable set. Every countable set
has Lebesque measure 0. 0

Theorem 66. NICF, +NICF; # R

Proof. Proof by contraposition. Suppose for every x € R there exists a,b € NICF4 such that
a+b=z. By Lemma we have that for each z € R, there exists a’,b" € NICF\g UNICFgq such
that '+ = 2 mod 1. Thus {a’ + mod 1 |a',1’ € NICF\g UNICFq} has Lebesgue measure 1.
We will split this set in 3 parts:
o {d’+V mod1]|d,b € NICF\g}:
Because NICF\g C [—3, 3), and Lemma we know that {a’40" mod 1 |a',1’ € NICF\g}N
[0.372295, 0.372305] = (), thus the Lebesgue measure of {a’ + 8 mod 1| a/,b" € NICF\g} is
smaller than or equal to 0.99999.
e {a'+0 mod1|a" € NICFq,V € NICF\g}:
By Lemma (64, the Lebesgue measure of {a’ 40" mod 1| a’ € NICFq, " € NICF\g} is 0.
o {d/+0 mod1|d,b eNICFg}:
By Lemma [65, {a’ + & mod 1| da’,b' € NICFg} has Lebesgue measure 0.
The union of these 3 parts has Lebesgue measure at most 0.99999. Which leads to a contradiction

with: {a’ +b" mod 1| a’,b' € NICF\g UNICFg} has Lebesgue measure 1.
Therefore, NICF4 + NICF,4 # R. ]
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fixed coeff.

Table 4.1:

minimum

0;-3,2,4,3,=2, —4
0;-3,2,4,4, =2, —4
0;—3,2,4, —4, =2, —1]
0;-3,2,4, -3, -2,
0;-3,2,4,—2,-2, —4]
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|
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SR=N=)
[CIICINS
N
s

Specific cases of NICF4(aq, ...

maximum

0, —35 25 ﬂ]
07 _37 37 ﬂ]

0;,-3,4,—-2,—

0;—3,4, —4, =2, 1|
0;-3,4,4, -2, —
0;—3,4,3,-2, —4

0;—4,4,-3,-2,—4
0;—4,4,—4, -2, —4]
0;—4,4,4,-2,—4
0;—4,4,3, -2

0; _4747ﬂ]
0;—4,—-4,-2,

0; —4,—4, -3,

0; —4, —4, —4,
0;—4,—-4,4,—
0;—-4,-4,3,—
0;—4,-4,2,4
0;—4,-3,2,4

0; —4, —2, —4]
0;4, -2, —4]
0;3,—2,—4]

0; 2, 4]
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o

[\

o

[\)

W

[\)

\V)

|
N

covering interval
—0.44949, —0.43827]
—0.43671, —0.41804]
—0.41524, —0.40824]
—0.39208, —0.39201]
—0.39199, —0.39181]
—0.39181, —0.39170]
—0.39086, —0.39073]
—0.39072, —0.39049]
—0.39046, —0.39036]
—0.39013, —0.38730]
—0.38689, —0.38583]
—0.38345, —0.36898]
—0.36788, —0.36743]
—0.36727, —0.36623]
—0.36616, —0.36561]
—0.36189, —0.36147]
—0.36142, —0.36070]
—0.36061, —0.36032]

0.31011, —0.30472]
—0.30397, —0.29480]
—0.29341, —0.28989]
—0.28165, —0.27841]
—0.27717,—0.26953]
—0.26894, —0.26870]
—0.26862, —0.26800]
—0.26803, —0.26772]
—0.26573, —0.26550]
—0.26548, —0.26508]
—0.26504, —0.26488]
—0.23671, —0.23658]
—0.23654, —0.23623]
—0.23621, —0.23603]
—0.23448, —0.23425]
—0.23422, —0.23379]
—0.23374, —0.23355]
—0.23311, —0.22768]
—0.22685, —0.22474]

[0.22474,0.28165]

[0.28989, 0.39208]

[0.40824, 0.44949]

,ap) to include every element of NICF\q



Chapter 5

HCF\/B%—HCF\@:(C

In this chapter, we are going to define a simple closed curve in HCF 5, and show that it encloses

{a+bi|a,be[-3, 3] C R} Together with the following lemma, this will enable us to show that

every element of C is the sum of two elements of HCF . First, recall Definition |12 with r = V5.

Definition. HCF j is a subset of C, containing only the numbers representable by a Hurwitz
complex continued fraction where every coefficient except possibly the first has absolute value less
than or equal to \/5:

HCF 5 = {x cx € C| o =lap;a1,a2,...] € HCF and Vj>1|a;| < \/5}

HCF N with first coeflicient zero.
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Lemma 67. For every simple closed curve B € C, Let X be the region enclosed by B, then for all
a,b e X there exist c,d € B such that a + b equals c + d.

Proof. Let X’ be the closed region defined as X mirrored in the point “T'H’, with boundary B’, the

simple closed curve defined by the mirror image of B in “TH’. We write ¢y € C as the image of y € C

while mirrored in GTH’. Note that for ally € C, ¢/ +y = a+0b. Also note a’ =b € X, s0 X NX' # ().
Case distinction:

e Case 1, X’ = X: Then B = B’. For every ¢ € B there exists d € B such that d’ = ¢, now
c+d=d+d=a+0b.
e Case 2, X' # X:
Let B” be the boundary of X U X’ with B” € BUB’. As X N X' # (), B” is connected.
Because X’ # X, either:
— there exists y € X \ X/, then 3/ € X"\ X; or
— there exists z € X'\ X, then 2/ € X \ X'.

We can conclude X ¢ X’ and X' ¢ X, thus B” ¢ B and B” ¢ B'.

Because B” is connected, there exists ¢ € B U B’ such that for all € > 0, there exists § € B
and &’ € B’ such that both |6 — ¢| < € and |§' — ¢| < e. By continuity of the curves B and B’,
we have c € BN B'.

Let d= ¢, withd € BNB. Thenc,de€ Bandc+d=c+c =a+0b. O
We start by defining a transition function d sz on the known set S, using the same names for Shapes
as before in Section [1.5] For every shape, the left picture depicts the shape in HCF, where the

first coefficient is bounded by v/5. The right picture depicts the (pointwise) reciprocal of the left
picture.
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Square in HCF s

—_

Given the coefficient a; + b; - 4, the transition function d z on S is defined by:

6\/5(S,aj+bj-i):

MHCF if aj; = 2 and bj = 0;
,O(MHCF) if aj =0 and bj = 2;

p?(Myucr) if a; = —2 and b; = 0;
p3(MHCF) if a; = 0 and bj = —2;

WHCF if aj; = 1 and bj = 2,
or a; =2 and b; = 1;
p(WHCF) if aj = —1 and bj = 2,

or a; = —2 and b; = 1,

p*(Wher) if a; = —1 and b; = —2,

or aj = —2 and b; = —1;

p3(WHCF) if aj; = 1 and bj = —2,

ora; =2 and b; = —1,;
Jucr if aj =1 and b; = 1;
p(Jucr) if aj = —1 and b; = 1;
p*(Jucr) if aj = —1 and b; = —1;
p*(Jucr) if aj = 1 and b; = —1.
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Moonshaped in HCF s

—_—t

Given the coefficient a; + b; - 4, the transition function 4 z on M is defined by:

6\/5(M,aj+bj-i) =

Mpyucr if a; =2 and bj = 0;

p(Mucr) if a; = 0 and b; = 2;
pS(MHCF) if a;j =0 and b; = —2;

Wher if aj = 1 and b; = 2,

or a; =2 and b; = 1;
p*(Wacr) if a; = 1 and bj = 2,
ora; =2 and b; = —1;

Jucr if aj =1 and b; = 1;
P3(Jucr) if a; = 1 and b; = —1.

Without-a-corner in HCF N

Given the coefficient a; 4 b; - ¢, the transition function § 5 on W is defined by:

05(W,a; +bj-i) =

Mycr if a; = 2 and b; = 0;
p(Myucr) if a;j =0 and b; = 2;

ora; = —1 and b; = 2;
pQ(MHCF) if aj; = —2 and bj = 0;
or a; = —2 and b; = 1;

Whcr if aj = 1 and b; = 2,
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or aj =2 and b; = 1;
p*(Wacer) if aj = —1 and b; = —2,

or a; = —2 and b; = —1;
p*(Wacr) if a; = 1 and b; = —2,
or aj = 2 and b; = —1;

Jucr if aj =1 and b; = 1;
pz(JHCF) if a; = —1 and bj = —1;
p*(Jucr) if aj = 1 and b; = —1.

Just-a-corner in HCF\/g
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Given the coefficient a; + b; - ¢, the transition function § V5 on J is defined by:
o 5(J,aj+bj-i) =
Mycr if aj = 2 and b; = 0;
p*(Mycr) if a; = 0 and b; = —2;
p*(Whacr) if aj = 1 and b; = —2,
ora; =2 and b; = —1;
p*(Jucr) if aj = 1 and b; = —1.

Just like for HCF, we define
6 5(p(X,a -+ bi) = (5 08 5)(X, pla -+ bi)):
For all other values, let ¢ \/5(X ,a + bi) be the empty shape. In particular for all a + bi € Z[i]:

5\/5(EHCF7 a—+ bZ) = Fxcr.

We can now define a function Shape s which gives the shape corresponding to a sequence of
Gaussian integers.

Definition 68. Let Shape s : Z[i]* — S be inductively defined by:

Shape, /5(A) = Sucr

and
Shape\/g(al cellp) = (5\/5(Shape\/g(aga1 ceelp—1),ap).
We have for all ag, ay,...,a, € Z[i]:
Shape (a1 ...an) # Eucr <= [ao;a1,...,ap—1] € HCF .
And for all infinite sequences ag, ay, ... € Z[i]:

lag; ay,...] € HCF gz <= Vylag;ay,...,a,] € HCF .

5.1 Initial segments

In this section, we are going to look at initial segments of HCF.

Definition 69. Given [xo;x1,...] € HCF, we define x | n to be the initial segment of length n+ 1:

[zo;21,...] [ n:i=[zo;21,...,2p).
With this, we can define partial bounds on HCF.
Definition 70. We call [xo;x1,...] € HCF n-bounded if [xo;x1,...] [ n € HCF 5.

Trivially, if z is n-bounded, then for all m < n we have that x is m-bounded. Also, z € HCF v if
and only if  is n-bounded for every n.
We can also define equivalence relations between points in HCF.
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Definition 71. We call x = [xo;x1,...] and y = [yo; y1,-..] € HCF n-equal if and only if x [ n =
y | n, i.e., when
(205215 -+ Tn] = [Y05 Y15 - -+ 5 Ynl-
We will write this as
T =mY-
With these definitions we are going to create rules for our simple closed curves.
Definition 72. A curve (in C) is a continuous function from [0,1] to C.

Definition 73. A curve f is a simple closed curve if f(0) = f(1) and f is injective on [0, 1).

Definition 74. We call a curve f n-bounded if for every t € [0,1] we have that f(t) is n-bounded,
when seen as an element of HCF = C.

We will start by defining transition points.

Definition 75. A point x € HCF 5 is called an n-transition point if for each € there exists y € C
with |y| < € such that

T4y Fmp .

As we can see, n-transition points lie on the edge of the range of two different initial segments.
But as with every point in C, n-transition points have a value that has only one representation in
HCF. We therefore would like a non unique representation for these transition points so we can
define them to be n-equal to both adjacent constant intervals.

Definition 76. Given ag,ai,as,... € Z[i], such that for each n, lag;a1,...,a,] € HCF we write
lag; a1, a9, .. .| with

Lao;al,ag,...} =ag + 1

at

ag + ——

as+ -
As intended, this representation has many similarities with continued fractions. Instead of having
a construction from a complex number to a sequence of Gaussian integers, we accept limit points
of finite HCF representations. Just like with continued fractions, we will also define a shorthand

version.

Definition 77. For all n and every x = |ag;a1,...|, if y = |ant1; ani2, - - - |

lag;ai,ag,...,an Y| =2 =ap+ T

Of course, we have that

if z = [ag;a1,...] € HCF, then |ag;aq,...] = =.
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5.2 Transition points in HCF

We are going to create transition points in HCF V5. We start by defining four edge points, these
are on the boundary of the range.

EL:2_2\ﬁ—;i =[0;—1+4i:1—2i+ Ep]

=[0;=T+i,1—2i,—1+14,-2+1;
ED——;+22\ﬁi —=[0;—14i:—2+4i+ Ey)

=[0; =T+, —2+4,—1+4,1— 2i;
ER—ﬁ2_2—;i =[0;14i:—2i + Ep]

—[0;1 4, —2i,—1+i,—2+4,—1 +4,1 — 2i;
EU:—%-F ﬁ2—2i —=[0;=1—i: -2+ Ey)

=[0;—1—i,-2,=1+i,1—2,—1+4,-2+4.

To remove the need for quotation marks, we will write a||b for the concatenation of the Gaussian
integers a and b.

Remark 78. We ignored edges in our Shape s function. So for the first coefficients of Er, we
have:
Shape (=1 +[[1 — 2i)
=0 /5(Shape 5(—1+1),1 — 24)
=0, 5(p(Jucr), 1 — 2i)
= (pod,5)(Jucr, —2 — 1)
=F.

The reason for this is that all the numbers whose HCF j-presentation start with [0; —1 + 4,1 — 24
are on the line —% + bi, which has an empty internal part.

When rotating these edge points, we find four more points. Here, we notice that the HCF NG
representation doesn’t start with a zero, but can be described as a limit of points represented in
HCF /5 starting with a zero. Therefore, we call these points limit points:

LL:2_2ﬁ+;i =i+ EL = li;—1+i:1—2i+ Ep];
LD—;+2_2\ﬁ’i =1+FEp= [1;—14i:—2+i+ Erl;
LR—ﬁ2_2+;i =i+ ER= [i;1+1i: —2i + Ep;
LU—;JFWQ_% =1+ Ey = [1;-1—i: -2+ Ey).
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—1 \ y 1
Equ i.,v\_\ § - OLD
Ey Ep
it
For these points, we have the following rotations

p(EL) = Lp p(ER) = Ly
p(Lp) = Lg p(Ly) =Ly
p(Lr) = Ey p(LL) = Ep
p(Ey) = Er p(Ep) = Eg

These rotations also show other ways to describe the limit points, in our extended non-unique way.
This is done by rotating per coeflicient.

Lp=10;—1-14,2i,T—4,2—4,1—4,—-1+2];
Lp=101+442T—4 -1+2,1—1,2—i;
Lrp=10;1—4,—-1+2i,1—4,2—4];
Ly=10T—40,2—i,1—1i,—1+2i.

and we can also describe the edge points in the same way:

|—i;—1—4,2i,1—0,2—4,1 —4,—1 + 2i];
Ep=|-1;14421—i-1+2,1—1,2—1i;

I

I

—i 1=, —1+2,1—4,2—1|;
13, T—0,2—i,1—1,—1+2i].
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Circle points

With these edge-points, we can define 16 Circle points:

We will make use of the fact that the following points lie in the interior of the corresponding shapes:

o (',..

Cy=1[0:2+ Ep] =[0
Cy=1[0:2—1i+ Ep| =[0
C3=1[0:1—1i+ ER| =[0
Cy=1[0:1-2i+ Ep] =[0
C5=[0:—-2i+ Ep] =[0
Ce=1[0:—-1—i+ Ey] =[0
C7Z[O:—1—i+ED] :[O
Cs=1[0:—-2+ Ef] =[0
Cy=1[0:-2+4i+ Ey] =[0
Cio=[0:—-1+1i+ Ey] =[0
Ci1=1[0:—1+2i+ Ep] =[0
Cia = [0: 2i + Ey] =[0
Ciz=1[0:142i+ Ey] =[0
Cia=1[0:142i+ ER| =[0
Ci5=[0:241i+ Ey] =[0
016:[O:2+i+ER] :[O

.,01665;

° 01,02,015, and 016 € M,

o Cl,..

. ,06,015, and 016 e W;
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:2—i+ Lg =p(C13);
:1—1i+ Lp] =p(C14);
:1—2i+ Lg] =p(C15);
: —2i + Lp] =p(C16);
1 —1—2i+ Lp| =p(Ch);
c—=1-2i+ L] =p(C2);
1 =2 —i+ Lp] =p(C3);
:—2—1+ Lp] =p(Cly);
t =2+ L) =p(C5);
:—2+i+ Lyl =p(Cs);
:—1+i+ L] =p(Cr);
:—1+42i+ Lp) =p(Cs);
2+ L] —p(Co);
c14di+ Ly =p(C1o);
:1+1i+ Ly] =p(C11);
: 2+LR] Zp(Clg).




o (',...,Cy € J.

With these, we can describe the edge points in terms of circle points:

Er=10:—-1+1i+ C4 Er=[0:1+1i+C5]
EU:[O:—l—i+Cg] ED:[O:—1+i+Cg]

We can use the rotation rules to describe the limit points in terms of circle points.

LL:LOZ—l—i+013—| LR:LO:l—i+Clg—|
LU:L(]:l—i—I—Cﬂ LD:L011+i+016—|

Example 79. We start with [co;c1, ..., ¢,] € HCF sz with Shape z(coct ... cn) = p(Mucr).

We know Cj lies in p(Mycr), for C; lies in Mycr, and p(C1) = Cs.

We therefore have two ways to describe this point, as an edge point starting with [co; 1, .. ., ¢, —21]
or as a limit point starting with [co;c1, ..., ¢n, —1 — 2i]. Both will have one way to describe them
as limit of finite sequences in HCF s, as they lie on the edge.

[cosc1,...en + C5) € HCF g

with Shape\/g(cl .. cn) = p(Myucr)
=lco;c1y...,0n 1 —2i + Ep]

with Shape z(c1...cn —2i) = p3(Mycr)
=lco;C1y. vy 0ny—2i 1 =1+ 1+ Cy)

with Shape s(c1...cpll — 2il| =1 +4) = p(Jucr)
=lco;C1y.vyCny—20,—1+i: =241+ Ef)
=lco;c1y. vy Cny =20, —1+i: =2+ L]

with Shape z(c1...cn| —2i| =1+ —2) = p*(Myucr)
=|co;Cly.vyCny =26, =144, —2+7i: -1 —i+ Ci3]

with Shape z(c1...cpl —2i] =1+ =2 =1 —14) = P (Jucr)
—C0;Cly ey Cpy—20,—1 40,2+ 0,1 —i:1+2i+ Ey)
=lco;c1y. vy Cny—2i,—1+4,—2+1d,—1 —i:2i+ Ly]

with Shape sz(c1...cpll — 2i| = 1+l — 2[| — 1 —i[|2d) = p(Mucr)
=|co;c1y - yCny =20, —1+4,—2+1d,—1—4,2i: 1 —i+ Cy]

with Shape z(c1...cn|l —2if| =1 +d| — 2| = 1 —d[[24[[1 —4) = P (Jucr)
—[coiCly s Cny—20,—1 44, —244,—1—4,2i,1 —i:2+ Eg]

with Shape /(c1...cnll — 2| = 1+l — 2| = 1 —3]|2i||1 —i[[2) = Mucr
—C0;Cly s Cny—20,—1 40,240, —1—0,2i,1—0,2: 147+ C5]
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with Shape s(c1...cpll = 2i]| = 1 +[| — 2| = 1 —[|24]|1 — i[[2[|1 + i) = Jucr
=lco;e1ye vy Cny =20, —1 44, —24+4,—1—4,2i,1 —4,2,1+1: —2i+ Ep]|

with Shape s(ci...cpll = 2il| = 1 +[| — 2| = 1 —[|24]|1 — @[|2[|1 +i]| — 2i) = p*(Mrcr)
=lco;crye ey Cny =20, —1+4,—2+4,—1 —4,2i,1 — 4,2, 1 + 1]

and:

[co;c1y ... cn+C5) € HCF 5

with Shape\/g(cl ...cp) = p(Myucr)
=lco;c1y...y0nt —1 —2i+ Lp]

with Shape z(c1...cn| —1—2i) = 0*(Wecr)
=|co;Cly .y Cny—1—2i: 140+ Cig]

with Shape /z(c1...cull =1 —2i[|1 +14) = Jucr
=|co;Cly.evyCny—1—2i,1410:2+i+ ER]
=[co;Clynnscny—1—2i,14+4:2+ Lg]

with Shape z(c1...cnl —1 = 2i[|1 +i]|2) = Mpucr
—[eo:Ctynnyony—1—2i,144,2:1— i+ O]

with Shape /g(c1...cull — 1 —2i[|1 +d[[2[|1 — 1) = P (Jucr)
=|co;c1y .y Cny—1—2i,144,2,1—10:2i+ Ey|

with Shape /(c1...cnll — 1 — 2|1 +[[2[|1 — i]|2i) = p(Mucr)
—lcosctynyeny—1—2i,144,2,1—,2i: =1 — i + C]

with Shape /(c1...cnll =1 —2i[|1 + 2|1 —3]|2i]| — 1 —4) = 0*(Jucr)
—lcoictye e —1—2i,140,2,1—4,2i,—~1 —i: -2+ Er]

with Shape sz(c1...cnl — 1 — 2|1 +3]|2]|1 —@||2¢]| — 1 —if| —2) = p*(Mycr)
=lco;cry e yCny—1—2i,14+4,2,1 — 4,26, —1 — 4, —2: =1+ i+ Cy]

with Shape sg(c1...cnll =1 — 2|1 +4[[2[|1 —i]|2i|| — 1 — ]| = 2] = 1+ i) = p(Jucr)
=lco;ery e y0ny—1—20, 144,21 —4,2,—1—4,—2,—1+4i:1—2i+ Ep]
=lco;cry e yCny—1—20,14+4,2,1 —4,2i,—1 —4,—2,—1+1i:—2i+ Lp]

with Shape /(c1...cnll =1 = 2|1 +d[[2[]1 —@]|2i)| — 1 —if| = 2 = 1+ || — 2i) = p*(Mycr)
=lco;cry . yCny—1 =20, 144,21 — 4,26, —1 — 4, =2, —1+14,—2i: 1 + i+ Cig|

with Shape sg(c1...cnll — 1= 2i[|1 +d[2[|1 —a]|2i|| — 1 —i[| — 2| = 1 4[| — 2i[[1 +4) = JucF
—lcoicty e —1— 20T 54,2,1 4,21, 14,2, 141, 2]
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5.3 Construction of building blocks

Definition 80. We call a quadruple of

e a base [cp;c1,¢0,...,0n] € HCFNQ;

an interval [p, q] with p,q € R;

a starting point T, € C;
e an endpoint T, € C,

with |co;c1,¢,.. ., Ccno1: Cn +Tp| and |cosc1,ca, ..., Ccn_1 : ¢y + Ty| n-transition points,
a building block, written as ([co; c1,c¢2, ..., ¢nl, [P, ql, Tp, Ty)-

Definition 81. The type of a building block ([co;c1,¢2, ..., ¢nl, [P, 4], Tp, Tg) is:

< Shape s(coct - .- cn), Tp, Ty >

We will describe six types of building blocks, These types can be rotated and reversed, for a total
of 48 subtypes.

® < Mwucw, Lr, Er >;
o < Wher, Ev, Er >;
e < Jucr,Lr, Ly >;
* < Jucr, Cs, C16 >;
o < Jucr, Cs, Ly >;
e < Jucr, Lr,Cie >.
The aforementioned rotations and reversion are defined as follows.
Definition 82. The reverse of a building block type < X,T,, Ty > is defined as:
< X, T, T, > '=< X, T,, T, > .
Definition 83. The rotation of a building block type < X,T,, Ty > is defined as:
p(K X, Ty, Ty >) =< p(X), p(Tg), p(Tp) > .
It is easy to see that
o (KX, T, T,> Y=< X,T,, T, >;
o M < X, T, T, >) =< X, T,, T, >;

o (p(« X, Tp, Ty >)7! = p(< X, Ty, Ty >,

67



Definition 84. We call a sequence of building blocks [Xo, X1,...,Xp] (where each X, is of the
form ([cd; ¢, ..., 2], [p9,¢%), T3, Ty ) a chain of depth n if:

1. for all g <m: n9 =n;

2. for all g,h > m: if g # h, then [c);c],...,clq] # [cg;c}f7 R czh];
3. forall g < m: ¢9 =pI+l;
4. forallg<m: |cf;cf,...: s+ T = chH g+1, o 9;11 + TQHW

Definition 85. We define the function curve from a building block to a function (p,q) — C as

—t t—
(q T, + p

).
q—p q—p o)

curve(([co; c1, €2, - - -, enl; [Py ], Ty, Tg) ) (t) = [cosc15C2,- - Cn1 o +

Definition 86. There exists a function mesh from a building block X = ([co; c1, ..., ¢nl, [P, ql, Tp, Ty)
of a described type to a finite sequence of building blocks [Yo, ..., Y] (with each Yy of the form
(et ... e, [p9,¢9), 15, T§)) such that

o [Yo,...,Y] is a chain of depth n + 1;

For each g <m and k < n we have ci =cq;

e p' =pand ¢" = g;

e For each g < m there exists c € {1,...,16} such that
1
[co;Cly . yon i Cel = |coscr,y v cn ng+1 +TI1(= [cos ety scn flj_l —|—T9+11)
where C, is one of the Clircle points.
o |coici,. .. 0n ch_l—i—Tﬂ = lcoicty ...t en+Tp);
o |cojcryeenscn ety TV = [eojer, .t en + Ty

For each of the types of building blocks, we will show curve is well defined, and give the definition
for the function mesh for that specific type.
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First type: < Mycr, Lgr, Er >

Given building block B = ([cop; ¢1,¢2, . .
then curve(B) is defined as

t—p

q—1
(
q—p

curve(B)(t) = [co; 1,62, -y Cp1 : Cp + Lp+

. 7cn]7 [p7 q]7 LR7 ER> of the type < MHCF7 LR: ER >>7

ER)].

e
= s
i

i

[

|

—_—t

By definition |co;c1,...: ¢, + Lg| and |co;ci,

.Icn—i-LR—l I_C();Cl,...

|co; 1,y - -

and

lcoscty. ..t en+ ER| = |coca,. ..

,Cn:l—i—i-clg—‘

JCnt L+i+Csl.

...:Cp + ER] are transition points. Notice that

As C9,Cq,C16 and Ci5 are elements of Mycr, the following points are (n + 1)-transition points:

[co;c1y.. e+ O =[co;e1y...y0n 0 1 —i+ Lp] =[co; 1, - -
[co;c1y. ..t en+C1 = [co;c1,y ... ¢n 2 —i+ Lg] =[co;c1, ...
[co;c1y ... e+ Crg]l = [cosc1y .. Cn 2+ LR| =[co; ey ..
[co;cl,...:cn+C’15] Z[Co;cl,...,anQ—i-i—l—EU] :[CO;Cl,...
Let us define mesh(B) when B has type < Mycr, Lr, Er > as
) 4p +
[([003017~--:Cn;1_2]7[177 %]70127[/[))7
4 A4p+q 3p+2
<[CO;Clv"'7CTZ72_Z]7[ p5 q7 P 5 q]7ED7LR>7
3p+29 2p+3
([60;617'”767“2]7[ p 5 qa P 5 q]aER7LR>7
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:2—i+ Ep
:2+4 ER|

:2+41i+ ER|
:1+4+i+ Ly]



20+ 3q p+4q

Er, E
5 3 5 ]7 R» U>a

([coscty.vyen, 241,

. +4
<[CO;017 « oy Cpy 1 + Z]v [p 5 an]7LU705>]'
With the types:
[p*(< Jucr, Lr, Ci )1,
p* (< Wucr, By, Er )1,
< Mycr, Lr, Er >,
1

< Wher, By, Er >,

< Jucr, Cs, Ly >71.

—_

—7+

Second type: < Wycr, Eu, Eg >

Given building block B = ([co; c1,¢2, ..., ¢nl, [P, ql, Lr, ER) of the type < Wycr, Ey, Er >,
then curve(B) is defined as

q—t t—p
curve(B)(t) = [co;c1,02, -y Cne1 : Cp + ( Ey + ER)].
q—D q—Dp
By definition |co;c1,...: ¢, + Ey] and |co; e, ... : ¢, + ER| are transition points. Notice that

lco;ciy ... ien+ Lr| = |cosc1y.voyen s —1 — i+ Cy]

and
lcoscty .. ien+ ER| = |cose1y- .o yen i 14+14Csl.
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As Cg,C5,C4,C3,C9,C1,Ch6 and Ci5 are elements of Wycr, the following points are (n + 1)-

transition points:

[co;cty .. ien+Cgl =cosery..yen:—1—i+Ep] =lco;ery.. 0t —1—2i+ Ly
[co;cly ..t en+C5] =lcosc1y...yen: —1 —2i+ Lp] = [co;c1,...,0n : =20 + Ep]
[co;Cy ... en+ Cy]l =co;c1,y. ..yt =20+ Lp| = [cosc1y. .. 0n 0 1 — 20+ Ep]
[coicty ...t e+ Cs]l =lcosc1y. . 01 —2i+ Lg| =[co;c1y...,0n 01 — i+ ER]
[co;cty ...t cn+Co] =lcosc1y...,cn: 1 —i+ Lp) =[co;c1,...,¢n 2 —i+ Ep|
[co;c1y.v.ien+ Ch] =cosc1y- - ven 2 —i+4 Lg| = [co;e1y... ¢ : 2+ ER]

[co;c1y .- cn+ Crg)l = [cosc1y-ooycn i 2+ Ll =[co;c1y. .. yen: 240+ ER]
[co;cty .. ien+Cis] =cosery.voven 240+ Ey| = co;e1,y ..o ¢t 1+1i+ Ly

Let us define mesh(B) when B has type < Wycr, Ey, Er > as

{leosen, - en—1 — . Ip, L30), Gy, B,
<[c0;cl,...,cn,1—2i],[8p;—q,7p;2q],LL,LD),
(levicx, v en 2, [ 2020 ) ),
<[c0;cl,...,cn,1—211,[61’;’3‘1,5p+4‘-’] En, Lp),
([co;cl,...,cn,l—z],[5p;4q,4p+5q] En Lp),
<[c0;cl,...,cn,2—z],[4”;’5‘1,3p+6q] Ep, Ly,

(e, em 2, 2200, 22T gy,

9 ?
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2p+7q p+38q
9 7 9

+ 38
b q:Q]LU705>]-

<[CO;017"'7Cn,2+i],[

]7ER7EU>a

<[CO;Cla"'7cn71+i]7[

With the types:
[p2(<< JHCFa LRa C116 > 1

2 1

)
p (< Wacr, By, Eg >) 7,
p* (< Mucr, Lr, Er >)7",
p*(< Wacr, Ev, Br )",
p* (< Jucr, Lg, Ly =),
p*(< Wacr, Ev, Br )",
< Mycr, Lr, Er >"1,
< Wucr, Eu, Er >,

< JHCF7 057 LU >>_1].

—7+
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Third type: < Jycr, Lg, Ly >

Given building block B = ([co; c1,¢2, ..., ¢nl, [p,ql, Lr, Er) of the type < Jucr, Lr, Ly >,
then curve(B) is defined as

curve(B)(t) = [co; 1,62, .-y Cn1 : Cp + (q L+ pLU)].

q—7p q—p
Z'Ak
Lgr
\ O\fLU i
: — : 1 : % J
~1 - 1 ~1 1
it o'j
_ZLV
By definition |co;c1,...: ¢y + Lr| and |co;c1, ... : ¢, + Ly | are transition points. Notice that

lco;c1y .. i en+ LR = lcosc1yvoyen i 1 —i+ Cha]

and
lco;c1y ... ten+ Lyl = |cosery. . yen s 14+10+ Ch.

Let us define mesh(B) when B has type < Jucr, Lr, Ly > as
[([CO; Cly.--,Cn, 1-—- 7’]7 [p) q]a 0125 C]-)]

With the type:

[0°(< Jucr, Cs, Cre >) 7'
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Fourth type: < Jycr, Cs, Cig >

Given building block B = ([co; c1,¢2, ..., ¢nl, [P, ql, Lr, ER) of the type < Jucr, Cs, C16 >,
then curve(B) is defined as

curve(B)(t) = [co;c1,¢2, ...y Cn_1 : Cp + (q Cs + pC]_G)].
q—Dp q—Dp

By definition |cp;ci,...:cn +Cs] and |co;cq,. .. @ ¢ + Cig] are transition points. Notice that
LCo;CL... I Cp +C5] = LCo;CL...,Cn : —27;—|—ED-|

and
lco;c1y ...t en+ Cigl = [cosc1,. .. 0n 0 24+ LR].
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As Cy,C3,Cy and C are elements of Jycr, the following points are (n + 1)-transition points:

[co;Cly ...t cn+Cq]l =lcosc1y. . 0n: —2i+ Lp| = [co;e1y...yen 21— 20+ Ep

]

[co;cty ...t en+C3) =lcosc1y.. .y 1 —2i+ Lg] =[co;c1y...,0n 0 1 — i+ ER]
[co;cly.. i cn+Co] =[cosc1y..ycn: 1 —i4+ Lpl =[co;¢1,.--,6n 12— i+ Ep]
]

[co;cty .. ien+Ch] =[cose1y. - yn:2—i+ Lg| =[co;c1,...,¢n: 2+ ER

Let us define mesh(B) when B has type < Jucr, Cs, C16 > as

Ueoser, .. en—2i], p, 41’5* 9, Ep, Lp),
(s 1y cmy 1 — 21, [4p5+ q 3p—g2q],ED,LR>,
(cosctrn s om 1 — i, [3?’;24’, 2p;3q],ER,LD>,
([cosers . scny2 =1, [2p;3q,pz4q]»ED,LR>,

(eoenrem 2l P23 g1 B L))

With the types:

[0*(< Mucr, Lr, Er )",
p* (< Wacr, Eu, Er >) ",
p* (< Jucr, Lg, Ly =),
p* (< Wher, Eu, Eg >)7,

< Mucr, Lg, Er >7").
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Fifth type: < JHCF; 05, Ly >

Given building block B = ([cp; ¢1,¢2, ..., ¢nl, [, ql, Lr, ER) of the type < Jucr, Cs, Ly >,
then curve(B) is defined as

curve(B)(t) = [co;c1,¢2, ... Cn—1 : Cp + (q Cs + P

Ly)].
q—p q—p

By definition |co;ci1,...:cp +Cs] and |co;cq,. .. @ ¢ + Lyy| are transition points. Notice that
LCo;CL... I Cp +C5] = LCo;CL...,Cn : —27;—|—ED-|

and
lco;c1,y ... ten+ Lyl = |cosery. .o yen: 1 —i+ Ch.
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As Cy and Cj5 are elements of Jycr, the following points are (n + 1)-transition points:

[co;cty ...t en+Cy]l =lcosc1y. . 0n: —2i+ Lp| = [co;c1y. .. 0n 2 1 — 20+ Ep]
[co;cty ...t en+C3) =lcosc1y.. .y 1 —2i+ Lg] =[co;c1y...,0n 0 1 — i+ ER]

Let us define mesh(B) when B has type < Jucr, Cs, Ly > as

. 2p +
[<[COQCI7---70m_22]7[Pa p3 q]7ED7LD>7
4 2D+ + 2
<[CO;017~--7C7171_27’]7[ p3 q7p 3 q]7ED7LR>7
L p+2
<[60;C]_,...,Cn,1—l],[p an]7ER7cl>]

With the types:

[0*(< Mucr, Lr, Er >) 7",
p* (< Wacr, Eu, Eg >)7",
p*(< Jucr, Cs, Ly >) ]
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Sixth type: < Jucr, Lg, Cig >

Given building block B = ([co; c1,¢2, .., ¢nl, [P, 4], Lr, ER) of the type < Jucr, Lr, C16 >,
then curve(B) is defined as

—t
curve(B)(t) = [co;¢1,C2, - -y Cn—1 : Cn + (q Lr+

Il Il L
T
—1 el 1 —1 1
Cie p
it o
,Ob‘
_it
By definition |co;c1,...: ¢n + Lg| and |co;c1, ... : ¢, + Cig| are transition points. Notice that

lco;c1y ...t en+ LR = |cosc1y.voyen i 1 — i+ Cha]

and
lco;cly ...t en+ Cig| = [cosc1y. .. yen 2 24+ LR].

As C5 and C1 are elements of Jycr, the following points are (n + 1)-transition points:

[co;c1y ...t en+ Co]l =[co;c1,y ... cn i 1 —i+ Lpl = [co;¢1,...,¢n: 2 — 1+ Ep]
[co;cl,...:cn—i—C'l]:[co;cl,...,cn:2—z'+LR]:[co;cl,...,cn:2+ER]

Let us define mesh(B) when B has type < Jucr, LrCi6 > as
2p+q

[<[CO;017"-acnal_i]v[pv ]7C12’LD>7
4 2P+ + 2
<[CO;CI7"'7cn72_Z]7[ P qap q]aEDaLR>7
3 3
p+2q
<[CO;617~--acna2]7[ 3 7Q];ER7LR>]

With the types:
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[0*(< Jucr, Lr, Ci6 ),
p* (< Wucr, By, Er )1,
< Mucr, Lr, Er >7").

—_—t

5.3.1 Rotating
We are going to extend the rotation function p to building blocks:

Definition 87. Given a building block X = ([co;c1, ..., cnl, [P, 4, Tp, Ty), of type < S, T, Ty > we
define the rotation of X depending on n.

(X) = {<P3([c?501,---,cn]),[p, al, p(Tp), p(Ty)) z:fn z:s odd;
<p([CO? Cly-- ) Cn])7 D, Q]a Tp)gp(Tq» if n is even.

When n is odd, we have
p(lcosers - senl) = [p(co); p7(c1), plea), -, p7(en)]
and by Lemma
Shape, 5 (6% (1)p(ca)o*(c3) .. 0% (en)) = p* (Shape s (creacs .. cn)) = p*(5).
When n is even, we have

,0([60; Cly- -+ Cn]) = [p(CO); pg(cl)’p(CZ)v e ,p(Cn)]
and by Lemma [T7}

Shape_ (P2 (c1)ple2)p®(c3) ... plen)) = p(Shape s (cicacs ... cn)) = p(95).
In both cases the type of p(X) is < p(5), p(T}), p(Ty) >= p(K S, Ty, Ty >).
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Lemma 88. Let X = ([co;c1,...,¢nl, [, q], Tp, Ty), when n is odd we have:
curve(p(X)) = (p? o curve)(X),

and when n is even:
curve(p(X)) = (p o curve)(X).

Proof. When n is odd, we have:

curve(p(([co; 1, - - -, enl, [Py Q]’Tvaq») = Curve(<p3([00; Cly- s cnl), [Py Q]’p(TP)vp(TQ)> =

q
q—p q—p
t—>k(m%Mq%~-p@w+p<q_t%>+0<t_pﬂ>]=
q—p q—p
t%[ﬁ@®m®m~-p(%+q_t%+t_p%>}=
—p q—p
t—>p3<[co;cl,...:cn+q_tTp—i—t_qu]> =
q—p q—p

t — p3(curve(X)).

When n is even, we have:

curve(p({[co; c1, - - -, enl, [P, gl 1, Tq))) = curve((p([co; c1, - - -, cnl); [p: gl p(Tp)v p(TQ)> =

> ol e, plen) + T 1)+ LRy =
0= [otespe).ens pten) +o (200, )] + (E221,) -

q—7p q—p

t— [p(co);pg’(cl),... p(cn—i- qitTp—F tquﬂ =
- P q—p
t%p([eo;ch .:cn—i—q_ Tp—i—t_qu}):
q—p q—p
t — p(curve(X)). O

Definition 89. We extend the definition of the rotation p to chains. Let [Xo, X1,...,Xm] be a
chain of depth n, then:
p([Xo, X1, ..., Xim]) = [p(Xo0), p(X1), ..., p(Xim)]

Lemma 90. Let [Xg, X1,...,X] be a chain of depth n, then p([Xo, X1,...,Xn]) is a chain of
depth n.

Proof. Let Xy = ([cd; ¢, ..., cq), 7, ¢%), T, T3). Because for all g: n = n9, we have that p(X,)
equals
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aal)s [p?, @%), p(13), p(TY))
where

[0°(c§): p(cd), P°(c3), -, ple)]

when n is odd.

(p([cg; e, 5, D), 0%, ¢, p(T), p(T))

where

p([cg;cf e, ... c8]) = [p(c); (<)), p(cd), - ., plc)]

when n is even.

We will check each property of a chain:

1. The number of coefficients does not change with rotations.

2. Forall g,h > m with g # hand s € {1,3}, we have p*([c}; ¢f, 3, . ..
because p*~*(p*([cd; ¢, 5, ..., ch])) # p** (p*([cf; e, b, - .. ,cZ]))

3. For each g < m we have ¢ = p9™1, so p(¢9) = p(p9™1).
4. For each g < m,

e When n is odd, we have:

(ng+1 + )]

p(cf;in + p(TI)]

a

), pleng) + p(T)]
p(cns +T7)]

chl) # p°([eg; et b,

Definition 91. Let X = ([co;c1, .

- Cn]? [p7
mesh(p(X))

);p3(0§“) p( 3“),--.

cn +T91)

g+1
: n9+1

+ T

g+1
n9+1

+ T8
L) + p(TIHh)]

q], Tp, Ty), with type Xo =< X, T,, T, >. We define:

= p®(mesh(X)).

:p(c

:po( O
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We will prove this definition is sound, by checking the properties of mesh:
Let mesh(X) = [Yp, Y1,..., Y] where Yy = ([cg; ], ..., ch, e 1], 07,49, T3, TY).
By the properties of mesh (Definition we know:

1. [Yo,Y1,...,Y,] is a chain of depth n + 1;
2. For each g <m and k <n, ¢] = ¢;
3. p" =pand ¢" =g
4. For each g < m there exists an s € {1,...,16} such that
Co=10: ¢y +TJ1(=10: iy +TEH);
5 e ch;c?,...7c2:cg+1+T]§)1 = |cosc1,... i cn+Tp], 80 T = LO:CTOH_I-FTI?],
o [cghclt, . e iepty +T(}”1 = |cosct, ..t en + Ty, 50 Ty = |0 : ey —i—T;ﬂ,

and by definition
p3([}/07Y13 R 7Ym]) = [p3(Yb)7p3(Y1)v cee ’pg(Ym)]

We will distinguish between whether n is odd or n is even.

e When n is odd, we have

with
p*([coser, -y eal) = [P (co); pler), - - plen)]
And
pg(ytq) = <p3([cg, C{, 1 Cns ng+1])7 r?,¢%, Pg(Tj?)v PS(Tg»
with

pP(edicls e al) = [P2(G)i (), s p(ed), p° (4],
We check the properties of mesh
1. By Lemma p2([Yo, Y1,...,Y:m]) is a chain of depth n + 1.

2. For each ¢ < m and k < n we have
— when k is odd: p(c]) = p(ck);
— when k is even: p3(c]) = p*(ci).
3. p" =pand ¢™ =q.
4. For each g < m we have that there exists Cs such that

Cs=10:¢), +T7].
There exists an s’ such that Cy = p(Cy), then
Oy = p(Cs) = p([0: )y +TI) = [0: p°(ch iy + T = 02 p°(chp) + P2 (T].
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5. — Because T, = [0: ¢) | + T} we have p(Tp) = [0: p*(ch ., +T})]. So
()5 (D), () P () + P (TD)] =
0P (), - LR 5 Py + T0)] =
10 (co)i pler), -, plen) = PP (Ehiy + T

10 (co); p(er), -+ plen) + p(Tp)]-
— Because Ty = [0 : c;' + 17| we have p(Ty) = [0 p3(cm + 7). So

Lo (g p(el)s -+ s plen) = pP(Ein) + PP (T7M)] =
0P () (), s p(E) = P (etey + T3] =
Lo*(co)s pler), - s plen) = pP(cptq +T3")] =
10%(co); pler), - = plen) + p(Ty)]-

e When n is even, we have

with
p([co; c1, ,Cn]) = [p(Co);P3(C1), oy plen)]
And
PP (Yy) = (e e, e ) [, ¢%0, p° (), 0 (T))
with
Pl ennl) = plegi el e a]) = [p(cd); 0P (), s pleh), (4]

We check the properties of mesh

1. By Lemma p2([Yo, Y1,...,Ym]) is a chain of depth n + 1.
2. For each ¢ < m and k < n we have

— when k is odd: p(cf) = p3(ck);

— when k is even: p(c]) = p(ck)-
3. p" =pand ¢™ =q.
4. For each g < m we have that there exists Cs such that

Cs=10:¢),, +T71.
There exists an s’ such that Cy = p(Cy), then
Oy = p(Cs) = p([0: g +TY) = [0 p° (¢ + T = [0: (e 4q) + (TP
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5. — Because T, = [0: %, | + T2] we have p(T},) = [0 : p3(c) ., +T2)]. So

[p(Q); (), p(en) : PP () + PP (T)] =
[o(c3); P*()s -+ p(en) = P + T =
Lo(co); p*(c1), -, plen) : PP (Eh iy + T =

Loco); p4(en)s - - plen) + p(T)].
— Because T, = |0 : €,y + T7] we have p(Ty) = [0 : p¥(cyy + T0™)]. So
Lo(ei); (), - s ple) = pP(eitn) + 0P (T])] =

(e ); PP (), s p(E) = P (enty + T3] =

Lo(co); p(er)s -+ plen) = > (ciy + T3] =

[p(co); 7*(er)s - = plen) + p(T)]-

So the definition is sound.

5.3.2 Reversing

Lemma 92. Let X = ([co;c1,...,¢nl, [P, q], Tp, Ty), we have

curve(X 1) (t) = curve(X) (¢ +p — t)

Proof. We know X1 = ([co;c1,- .., cul, [P, ql, Ty Tpp), SO

— q—t t—0p
curve(X (¢ :[co;cl,...:c + —T, +T}
(X)) R s TR

+p—t— —q—ptt
[co;cl,...:cn—i—q P qu+q a—p Tp]:
q—p q—p
tp—t)— —(q+p—t
[Co;ch__.:cwr(q p—t) Py (g +p )Tp}:
q—p q—p
curve(X)(¢ +p —1t). O
Definition 93. We extend the definition of reversed to chains: Let [Yo,Y1,...,Yn] be a chain,
then
Yo,Y1,..., Y b= [V, v Y.
Lemma 94. If [Xo, X1,...,Xy] is a chain of depth n, where X, = ([c}; ..., A, [p?, ¢9], 13, 1Y)

Of tf‘/pe < Sg7T]§]7Tg > Let
Yg <[CS1 Y qun gv"'ﬂc:?_g]v[pg7qg]’T;1_g’TI:n_g>'

which has type < S™ 9, T, 9 Ty 9 >=< S™ 9. T, 9 T, >~1. Then [Xo, X1,..., Xt =
[Yo,Y1,...,Y,] is a chain of depth n.
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Proof. We will show that the properties of a chain (Definition hold.
1. For each g < m, Y, has a base with the same number of coefficients as X,,_,.

2. For all g,h < m, if g # h, we have m — g # m — h. Because [Xo, X1,..., X;»] is a chain there
exists a k < n such that CZI_Q =+ c’,:b_h. So the base of Y} is not equal to the base of V},.

3. For all g < m, the interval of Y, equals the interval of Y},.
4. We know for all h < m that we have
Lchsch . och 4 T;ﬂ = |t ch g TZ?‘H]
Substituting g = m — h + 1, we get what we need: For all g < m =

R B P R B L o il et

Definition 95. Let X = ([co;c1,. .., ¢nl, [P, ql, Tp, Ty), with type X0 =< X, T, T, >. We define:
mesh(X 1) = (mesh(X))™L.

We will prove that this definition is sound, by checking the properties of mesh:
Let mesh(X) = [Yp, Y1,..., Y] where Yy = ([c§; ¢f, ..., ¢, e 1], 07, @9, T, ).
By the properties of mesh we know:

1. [Yo,Y1,...,Y,,] is a chain of depth n + 1.
2. For each g <m and k < n, ¢] = ¢.
3. p =pand ¢"™ =¢q
4. For each g < m there exists s € {1,...,16} such that
Co= 10+ ey +T1(= 10553 + 7371,
5. e e e+ T = cosers i en+ Tyl 50 Ty = [0 ch ) + 1]
o [cfhiclts et ey F T = cosery i en + Tyl 50 Ty = [0 ety + T

Recall that
X1 = ([cose, .- enls (s ql, Ty, Th)-

and [Yo,Y1,..., Y| = [Zo, Z1, ..., Zp) with
Zg=(lcg %", L 6L T T ).
We check the properties of mesh
1. By Lemma [Yo,Y1,...,Y,] ! is a chain of depth n + 1.
2. For each h < m and k < n we have, by substituting m — h = g, that cznf

m—m

3. ¢ % =gandp =p.
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4. For each g < m, we have m — (g + 1) < m, so there exists an s such that
Cy=10: n+1(g+1) + Tm (g+1) +11 0 Cn+1 + Tm 2

5. e Because T, = [0: ¢}, + T,"], we have

m— 0 m 0 m—0 . m—0 m—07 __
Lo oo Cy ey F T =

L0 0 0 T =
LCO;Cl,...:Cn—I—Tq—‘

e Because T = |0: )| + 1], we have

L e T T+ T =
[T AT T =

lcoscty ..t en+Tp]

So the definition is sound.

5.3.3 Chaining mesh functions

Lemma 96. Let [Xo, X1,...,X,] be a chain of depth n, and let mesh(X,) = [Y{, Y7, ..., Y,9,].
Then [YQ, Y, ... 7YWgO,YOl,Y'll7 . ,Yﬂl@l,Yf7 ..., Y] is a chain of depth n + 1.

y - mm

Proof. Let Let g,h < m and k < mgy, I < my,. We will write

Xg=(leg el ) 7, ), T, T)

and
Xh:<[cg;clf7“'7 n} [p q ]7T£7Th>

With Y)Y € mesh(X,) and Y}" € mesh(X},), which we will write as:
Vi =it el [, 6", T 1Y)

and
Yih = <[C%)U;Ciuv c ,C:ZU_H], [pw’qw]’T;u7T;u>‘

We will prove all the properties of a chain:

1. As [Xo,X1,...,X,,] is a chain of depth n, for each g, we have that mesh(X,) is a chain of
depth n 4+ 1, and so every building block Y has a base that has quotients up to n + 1.

2. We want to prove that if g # h or k # [, then the base of [cf;c{, ..., e 1] # [cgi e, .., ]

e Let g = h. Then we have that Y}/ and Y}" are an element of mesh(X,). Because mesh(X,)
is a chain, we know that when k # I, we have [c{j;c{,... cp 4] # et ... eyl
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e Let g # h. [Xo,X1,..., X is a chain, so we have that [c];c],...,ch] # [ch;ch, ..., ch].

rn
Thus, there exists an r» < n such that ¢} # CQ. From the properties of mesh, we know

u 9 h _ w U. U U w. LW w
cp=cl For=cf. Solcgict, .. cp ] F eyt ep)
3. We have three possibilities:

e g =m and kK = m,,. We don’t have to prove anything in this situation.

e g<mandk=mgy Let h=g+1and =0, then Y is followed by Y[)h. We will have
to prove ¢% = p*.
Because [Xg, X1,. .., X, is a chain, we know ¢9 = p”. Combined with the properties of
the mesh function, we have ¢% = ¢9 = p" = p¥.

e g<mandk < mg. Let h =gandl =k+1, then Y is followed by Y,?. Because
mesh(X,) is a chain, we have ¢" = p*.

4. We have three possibilities:

e g =m and k = m,,. We don’t have to prove anything in this situation.
e g<mandk=my. Let h =g+ 1and [l =0, then Ykg is followed by Yoh. We will have

to prove |cg;ct, ...y T = [egscls ey + T
Because [Xo, X1, . .., X;n] is a chain, we know |c¢f;cf,...: ch+TJ] = [cl;ch, ... CZ—i—th—‘.
Combined with the properties of the mesh function, we have |cf;cf,...: ch 4 + Tlﬂ =
lcsc], ..o+ T3] = |chsch, ... cﬁ—i—Tm = et ety ey T

e g<mandk < myg. Let h=gandl = k+1, then Y/ is followed by Y. Because
mesh(X,) is a chain, we have [cf;ct,... 1 cpq +T0'] = [cfs et ... iy + T O

Lemma 97. For each building block X = ([co;c1,...,cnl, [, q], Tp, Ty), we have:

lg?curve(X)(t) = |cosc1,. .. cp + 1]
p

and

lti%ncurve(X)(t) = lco;ct, ...t en + T4
q

Proof. For each t € (p,q),

q—t t—p
curve(X)(t) = |co;c1,¢C2, ..., Cn—1 : Cp + T, + T
(X)) =1 n—1:Cn (q_pp i q)]
q-—t t—p
= |cp;€C1,C2y -y Cn_1:Cn+ (—T, + ——T,)]|.
L vt (AT 4 22T,
Because y ;
. q— - P
lim T, + Ty) =T,,
up(q—p P g—-p =T
we have
ltlfn curve(X)(t) = [co;c1, ...t cn + Tp].
p
And because ; ’
lim( . Tp + qu) =Ty,

ttq q—p q—p
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we have

ltiTmcurve(X)(t) = |cosc1,... 0 + 1) O
q

Definition 98. Let curve be the function from a building block X = ([co;ci, ..., ¢nl, D, q), Tp, Ty)
to a function from [p,q| to C, defined by:

lcosct, ... ien+ Ty ift=p
curve(X)(t) = < curve(X)(t) ift € (p,q)
{CO;Cl,...:Cn—i-Tq—l ift=q

By Lemma for every building block X of our described types, curve(X) is a continuous function
on [p, q.

Definition 99. We extend the function curve to chains. Let [Xo, X1,...,Xm] be a chain with
Xg= Al et enls [p9, 0%, T3, T7) . Let

curve([Xo, X1, ..., X)) (t) = carve(Xy)(t) if t € [p?,¢7).

We will show curve([Xo, X1, ..., X)) is a well defined function on the interval [p°, ¢™].

Note that we can create the list T'([Xo, X1, ..., X;»]) which contains all the endpoints of the building
blocks, by T([Xo, X1, ..., Xm]) = P, 0%, ..., p™, ¢™], and it is equal to [p°,¢", ..., ¢™ L, ¢™].
Because T([Xg, X1, ..., Xp]) is strictly increasing, we have that for each t € [p°, ¢™], either

t € T([Xo, X1,...,Xm]), or there exists exactly one m such that t € (p™, ¢™).

o Let t € T([Xo, X1,...,Xm]). We have either ¢t = p' or t = ¢"™ which are defined uniquely, or
there exists a g such that t = p9™! = ¢9. Because [Xo, X1, ..., Xy, is a chain,
led;e, ...+ T8 = chH; C‘(lHl, LT Tt

o Let ¢t ¢ T([Xo, X1,...,Xm]). There exists a unique g such that t € (p?, ¢9), and

curve([Xo, X1, ..., X)) (t) = curve(X,)(1).

Lemma 100. For every n, for every building block X = ([co;ci,...,cnl, [P, q], Tp, Ty), for every
t € (p,q) we have:

curve(X)(t) =pp—1 [cosc1, - .-, Cn)
Proof. By definition
q—t l—p
curve(X)(t) = [co;c1y .- o 1 Cn + T, + Ty =pn—1 [cosct1, - - -y Cnatl. O

q—7p q—p
Lemma 101. For every n, for every building block X = ([co;ci, ..., ¢, D, 4], Tp, Ty),
curve(X) =p,—; curve(mesh(X))

Proof. Let mesh(X) = [Yo,Y1,...,Y,,] with Y, = ([¢{; ¢f, ..., ¢l 4], [p9. ¢%), T}, T¢)).
Let T([Yo, Y1,. .., Ym]) = [p%p', ..., p™, ¢™]. We will prove, for every t € [p, q] that

curve(X)(t) =pp—1 curve(mesh(X))(t).
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e When t ¢ T([Yo, Y1,...,Yn]), there exists exactly one g such that t € (pg, qy).
Let t € (pg,qp), because (pg,qp) C (p,q), we have using Lemma and Definition

in—1lcos €1, -+, Cn—1]
in—1 curve(X)(t)
e eTEE(X)(1)

e When t = p, we have

carve(X)(p)
=|cojc1y-- o+ Ty
=|co;Cly ...y Cn C?ﬁ-l + Tl'?1
=curve(mesh(Y)))(p)
=curve(mesh(X))(p)

e When t = g, we have

curve(X)(q)
=lco;c1,. ..t e+ Tyl
=[co;C1,-. . Cn iy +an11
=curve(mesh(Y;,))(q)
=curve(mesh(X))(q)

e Whent € T([Yo, Y1,...,Ym]), t # p and t # q, there exists a g < m such that t = ¢9(= p9™1).
By definition of the mesh function, there exists an s such that Cs = [0: ¢ | +T§], thus for
every g < m there exists an s:

curve(mesh(X))(q?)
=curve(mesh(Yy))(¢?)
:l_co;cl, ceyCp CZ+1 +qu—|
=|co;c1,. .. en + Cs|
:[CO; Cly...:Cp+ Cs]
=p—1fcosct, .5 Cnat]
= EEE(X) (¢%) .

Lemma 102. For each chain [Xo, X1,...,Xm] of depth n
curve([Xo, X1, ..., X)) =pn—1 curve(mesh([Xo, X1,..., Xn)))
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Proof. Let X9 = ([cd;c,...,chl,[p9,¢%), T, T3), we are going to show that for each t € [p°, ¢™]
curve([Xo, X1,. .., X)) (t) =pn—1 curve(mesh([Xo, X1,..., Xn]))(?).

For every t there exists a g such that t € [py,, ¢n]. With Lemma we have:

curve([Xo, X1,..., Xm])(t)
=curve(X,)(t)
in—1curve(mesh(X))(¢)
=curve(mesh([Xo, X1,..., X)) () H

5.4 The construction of chains

We are going to describe an infinite sequence of chains of depth g, Chain,. We start by describing
Chain; explicit.

Definition 103. Let Chainy be

40052 1) [0, 3]s L B}, 1051 = 1), [, 721, L, Ei),
42 3 3 4

<[0;1_21]7[E7E]7LR7ED>7<[O; QZ]’[E’ELLD’ D>a
(101~ 20], [, 2], Lo, La), (05 =1 = il [2=, 7], B, Ep),
<[07 —2 Z]? [166> 16]3LD7LL>7 <[07 _2]7 [116’ 186]7EL7LL>a

(1024 i) [, 2] B b, (0 -1+, [, 101, B, L),
(101 -+ 21, [1g, 1gb B L), (021 15, 121 B, L),
(01 +21), 5. 12 B, B, (051 + 1) [ 1) L L),
(0:2+ ], 112 10], Bor, B (0:2], (12,1, L, Ei)

Let us write Chainy as [Xo, ... X15] with Xj, = ([0;cs], [, %],T;,T@ Then

LO : Ch—I—T;—| =Chy1 = LO : Ch_,_l—i-T;H_l—‘.

The types of the elements of Chain; are:

(< p*(Wacr), Lr, Ep >= p*(< Wacr, Eu, Er ),

< p*(Jucr), Lp, Er >= p*(< Jucr, Lr, Ly ),
< p*(Wucr), Lr, Ep >= p*(< Wacr, Ev, Er >>),
< p*(Mucr), Lp, Ep >= p*(< Mucr, Lr, Er >),
< p*(Wuer), Lp, L, >= p*(< Wucr, Eu, Eg >),
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< pQ(JHCF), E;, Ep >= p3(<< Jucr, Lr, Ly >>)7
< p*(Wacr), Lp, L1, >= p*(< Wacr, Eu, Er >),
< p*(Mucr), Er, L1, >= p*(< Mycr, Lr, Er >),
< p(Wucr), Er, Ly >= p*(< Whcr, Eu, Eg ),
< p(Jucr), Eu, Ly >= p*(< Jucr, Lr, Ly >),
< p(Waer), Er, Ly >= p*(< Wxcr, Fu, Er >),
< p(Mucr), Eu, Ly >= p*(< Mucy, Lr, Er >>),
< Wycer, Ey, Er >,

< Jucr, Lr, Ly >,

< Wycer, Ey, Eg >,

< Mycr, Lr, Er >

Definition 104. For all g > 1 we define Chain, inductively by:
Chaing;1 = mesh(Chainy).

By Lemma we can prove by induction that for every g, Chaing is a chain of depth g.
With these chains, we can describe closed curves:

Definition 105. For every g > 1 we define
curve, = curve(Chaing).
Theorem 106. [3, Theorem 2| For the Hurwitz Complex Continued Fraction, we have

qn+2
qn

>3
-2

Lemma 107. There exists a simple closed curve in HCF 5 which surrounds the square with the
corners :I:% + %i.

Proof. This will only be a concept of the proof. As a result of Lemma Definition [86] and the
fact that for every g, curve,y(0) = curvey(1), we have that for every g, curve, is a closed curve.
By Theorems and [7| we have that for every z,y € C with =, y, we have:

V2
sl - ve)

With the use of induction and Lemma [102] we can see that for all g, h € N,

lz -yl <

CUIVey =jpin(g,h)—1 CUTVE}, .
So, the sequence (curvey) en+ is a Cauchy sequence, and we can define curvey, as

curves, = lim curvey .
g*)OO
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First, we are going to show that for every k € N,

CUIvep ] =pj CUl'Vess .
While we know that for all & > k

Curveg =jr—1 curvey,

this does not follow immediately. So we have quite some work to do:

Let Xy = ([cf; cf,....cl], [p9,¢%), T, T§) be a building block in Chaing, let Y be the set of all points
y € HCF such that y =1 [¢]; ], ..., c]]. We will use pictures to show that for every k' > k + 1,
for every t in (p9,q9), curvey (t) is not near the edge of Y. We can formulate this as:

3eVie(po,q9)¥s : [0] <min(t —p?,¢7 —t)- € = curvep(t) + 0 =p_1 [cf; ], ..., ]l

For every type of building block | X, T},, T}, |, we show the confinements of curve(mesh” (([0], [0, 1], T},, T3;)))
while pretending Shape () = X. A bigger value of n is represented by a darker gray.

< Mycy, Lr, Eg > < Wycr, Eu, Er > < Jucr, Lgr, Ly >

AN

< Jucr, Cs, C16 > < Jucr, Cs, Ly > < Jucr, Lr, C16 >
We continue with properties of curves.
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For every h, curvep; is h-bounded as the base of every building block is an element of HCF ,
and we have Lemma [100 u Let us assume curveo(t) = [co;c1,. . .| ¢ HCF g, so there exists a k such

that |cx| > /5. For every k' > k, curvey (t) is k-bounded and
curvey (t) =i, curves ().

Contradiction, thus for every ¢

curves(t) € HCF .

Our mesh splits the interval of building blocks in at least three parts of the same size, except when
the type is (a rotation or reverse of) < Jucr, Lr, Ly >>. In that case, the result is a chain of
one building block, of type p*(< Jucr, Cs, C1 >)~!. After performing two mesh functions, the
individual intervals are at least divided in three pieces. From this follows that for each building
block X9 = ([c§;cf,....c}], [p9,¢%), Ty, T§) in Chainj we have:

l¢? —p?| < (%)k

We use this to prove that curves, is injective on [0, 1).

Suppose z,y € [0,1) with

x #y and curves(x) = curveso(y).

(&)

Let ([ck; ek, ... ,c'g“], [p*, ¢¥], T]f,Tk> and ([ch; el ... ,clg} [, ],T;,,Tl> in curve, such that = € [p¥, ¢*]
and y € [p!,¢']. Because of our choice of g, we know that = ¢ [p',¢!] and y ¢ [p¥,¢*]. By the

definition of a Chain, we know there exists a h < g such that cﬁ =+ cﬁl. Thus for each ¢’ > g we have

Let g be chosen such that

CUrvey T =jg CUIVey 1T Z g CUIVey 1Y =g CUIVey Y.

This results to
CUI'Veoo T Z g CUI'Vess U,

which leads to a contradiction. We conclude that curves, is injective on [0, 1).

Because the sequence curve, converged uniformly, curvey, is continuous, and curve,, (0) = curves (1),
from which we can conclude curve., is a simple closed curve.

We use a picture to show that curve,, surrounds the square with corners :l:% + %i.
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Theorem 108. For every v = a+ bi € C, there exist ¢,d € HCF sz such that c+d =z
Proof. Let @’ = |a] and b/ = |b], then o’ + Vi € Z[i]. Let 2/ =z — (a/ + Vi), then %/ lies inside the
square with corners :I:A—l1 + %i and thus inside curve,, by Lemma
By Lemma [67] there exist t.,tq € [0,1] such that
curves (te) + curves (tg) = 2.
Because for every t € [0, 1], curves(t) € HCF s, we let

¢ = a' +b'i 4 curveso(t.) € HCF

and
d = curves(tq) € HCF .

Then ¢+ d = a' + Vi + 2’ = x concludes our proof. O
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