
Radboud Universiteit Nijmegen

Sums of Nearest Integer and Complex
Continued Fractions

Author:
Alex Brouwers
0214019

Supervisor:
dr. W. Bosma
Second Reader:
dr. F. Wiedijk

Mathematical Foundations of Computer Science
Master of Science Thesis

July 2019



2



Abstract

Let NICFn be the set of real numbers with nearest integer continued fractions with absolute value
of the partial coefficients no greater than n and let

NICFm + NICFn = {a+ b | a ∈ NICFm, b ∈ NICFn}.

We show that

NICF5 + NICF5 = R

and

NICF4 + NICF4 6= R.

Let HCFn be the set of complex numbers with Hurwitz complex continued fractions with absolute
value of the partial coefficients no greater than n and let

HCFm + HCFn = {a+ b | a ∈ HCFm, b ∈ HCFn}.

We show that

HCF√5 + HCF√5 = C.
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Preface

This thesis started as a subject for a small Research Seminar course based on the master thesis of
Noud Aldenhoven [1]:

“Using two nearest integer continued fractions per axis, we know how we can write every
complex number as a sum of four bounded complex continued fractions. Is it possible
with three?”

It took a long time to find out I never saw a correct depiction of sets of bounded complex continued
fractions, but after that, I did two things:

1. I improved the bounds needed on nearest integer continued fractions.

2. I solved my main question without referring to non-complex continued fractions.

I achieved both of this in a matter of weeks, and I remember sending an email to Wieb saying:
“Ok, I’m done!”... except, I was not. This is when the work started, as it took me over a year to
write it down...
Maybe that does seem long, but I really liked the subject. It has captured my attention and focus
from the start and I am sure my friends and family have been at the receiving end of my enthusiasm
more than once.

But this long year was quite the roller-coaster ride, as some might know. And this is where I share
the wisdom I gained and thank the people who helped me. So here we go:

• “Always check your sources!”

• “Don’t just work towards a positive result.”

• “Don’t underestimate how long the writing will take.” (But did anyone expect it to take a
year! Got you! You underestimated it too!)

But also:

• “It’s OK that you came up with the result in three weeks.”

• “Maak van je scriptie hooguit een meesterwerk, niet een levenswerk.” (“This should be your
master piece, not your life’s work”)

• “Don’t be too critical, talk to people, also about your feelings.”
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And I followed this advice. So, I would like to thank everyone who let me tell, scream or cry out
about my experiences writing this thesis.

Especially Wieb, for being my advisor (you must have recognised a lot of the advice I mentioned
above), someone to talk with, to brainstorm with, and my mentor. You encouraged me, and I was
so proud when you chose to present my work at a conference. I could not have asked for anyone
better. Thank you, Wieb.

Yet I did not only have one great help and supervisor, I had another: Jan. You were always
there to help me puzzle, plan and to make me take care of myself. I am sure that you recognise
some of the sage advice mentioned above too. You are an amazing friend. Thank you for everything.

Bastiaan, for letting me use his tikz templates [2] for creating the shapes involved in complex con-
tinued fractions.

Kim, not only for the mind clearing dance sessions, but also for the times we talked about my life
and problems instead of training for a competition. Thank you for always being there to listen and
to offer your caring advice.

Suzan, for my daily dose of hugs. Thank you for your protective warmth.

Vincent, for a (promise of) pie, you firmly but kindly made me make small steps towards my goal,
without letting me worry about what I had and had not achieved. Thank you for motivating me,
and being my friend.

Nienke, for believing in me, even when I didn’t. For listening to, and understanding, the vague
outlines of the proofs, even though you had little prior knowledge. Thank you for joining the fight
against my negative inner voices, and keeping me on my feet.

My parents, for never really giving up on me, no matter how long I took. I love you, thank you for
all you have done for me.

And last, but not least, my boss, Paddy, for pretty much the same reason as my parents. You
were patient and supporting no matter how long I took, and were happy to hear of intermediary
progress. I am glad and proud to work for you.

6



Contents

1 Continued fractions 9
1.1 Complex continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Rational approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Nearest integer continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Hurwitz complex continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2 Moonshaped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.3 Without-a-corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.4 Just-a-corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.5 Shape function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Cantor sets 23
2.1 Hole-decreasing Cantor sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Comparable and Dividable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Comparison with Hlavka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 NICF5 + NICF5 = R 35
3.1 Creating a gap function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Ratio calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Construction of the Cantor Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 CNICF + CNICF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 NICF4 + NICF4 6= R 51

5 HCF√5 + HCF√5 = C 55
5.1 Initial segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Transition points in HCF√5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Construction of building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Rotating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Reversing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3 Chaining mesh functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 The construction of chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 95

7



8



Chapter 1

Continued fractions

A continued fraction is an expression of the form:

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. .

Continued fractions can be used as representations of numbers. But they can also be seen as
representations of converging sequences of good rational approximations of a number.

Definition 1. A good approximation of a real number x is a rational number p
q such that for every

rational number p′

q′ if q′ ≤ q, then |x− p
q | ≤ |x−

p′

q′ |.

Every real number x0 can be represented by a continued fraction as follows, recursively, starting
with k = 0:

• find an integer close to xk, call it ak;

• define xk+1 as 1
xk−ak ;

• continue when xk+1 6= 0.

Note that, in almost all cases, xk will never be 0, in which case the continued fraction representation
will be infinite.
To better define what we mean by close to, we are going to describe this more thoroughly:

Definition 2. We call a function f : R→ Z an approximation function if for all x ∈ R :

|f(x)− x| < 1.

Given an approximation function apx, we describe an algorithm GCF(x) which returns a sequence
of integers:
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GCF(x) :=

if x equals 0

return []; \\empty list

else

\\ list form: head = apx(x), tail = GCF(1/(x - apx(x)))

return [apx(x) :: GCF(1/(x - apx(x)))];

or:

GCF(x) :=

while not(x equals 0) {

yield return apx(x);

x := 1/(x - apx(x));

}

yield return break;

The result will be a sequence of integers a0, a1, a2, . . ., which we will call the coefficients of x. When
x ∈ Q, the sequence will be finite. GCF(x) represents x when written as the continued fraction:

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. .

Because continued fractions take a lot of space to write in this shape, we will use the abbreviated
notation [a0; a1, a2, a3, a4, . . .] in this thesis.

For construction purposes, it is useful to define a shorthand for continued fractions. For every n,
we can write x = [a0; a1, . . . , an : µ] when x = [a0; a1, . . .] and µ = [an+1; an+2, . . .]. So, when for
all i, xi = [ai; ai+1, . . .], then x = [a0 : x1] = [a0; a1 : x2] = . . . = [a0; a1, a2, . . . , an : xn+1]. Note
that this is equal to x = [a0; a1, a2, . . . , ai−1 : ai + 1

xi+1
].

1.1 Complex continued fractions

We can extend our definition of an approximation function to a complex approximation function:

Definition 3. We call a function f : C → Z[i] a complex approximation function if for all x ∈
C : |f(x)− x| < 1.

In combination with the GCF algorithm, we can create complex continued fractions, in which all
the aj ∈ Z[i].

For every x ∈ R we know that f(x) ∈ Z. So every complex approximation function canonically
induces a regular approximation function.
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1.2 Rational approximations

A continued fraction of a real number x can be truncated to find a rational approximation of x.
We will now take a closer look at how to calculate such an approximation.

Given x = [a0; a1, a2, . . .] ∈ R, we want to find pn, qn ∈ Z with

pn
qn

= [a0; a1, a2, . . . , an].

For this we have (i ≥ 0):

pi = aipi−1 + pi−2 qi = aiqi−1 + qi−2,

with initial values:

p−2 = 0, p−1 = 1; q−2 = 1, q−1 = 0.

We can extend our definitions to find Gaussian rational approximations of complex numbers.

Given x = [a0; a1, a2, . . .] ∈ C, we find pn, qn ∈ Z[i] with

pn
qn

= [a0; a1, a2, . . . , an].

The following theorems have been known for quite a time for real continued fractions, we will
extend them to complex continued fractions:

Let f be a complex approximation function, and x = [a0; a1, . . .] ∈ C. Let pj , qj ∈ Z[i] be as
described, then:

Theorem 4. For all j ≥ −2 ∈ Z, we have that:

pjqj+1 − pj+1qj = (−1)j+1.

Proof. This proof is similar to [7, §1.1 eq 3].

We will prove this by induction over j:

• When j = −2, we have that p−2q−1 − p−1q−2 = −1 = (−1)−1;

• Assume pjqj+1 − pj+1qj = (−1)j+1, then we have:

pj+1qj+2 − pj+2qj+1 = pj+1(aj+2qj+1 + qj)− (aj+2pj+1 + pj)qj+1

= pj+1qj − pjqj+1 = −1 · (−1)j+1 = (−1)j+2.

Theorem 5. For every j ≥ −1 ∈ Z, when x = [a0; a1, a2, . . . , aj : y], then x =
ypj+pj−1

yqj+qj−1
.

Proof. This proof is similar to [7, §1.2 eq 5].

We will prove this by induction over j:

• When j = −1, we have that
yp−1 + p−2
yq−1 + q−2

= y.
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• Let x = [a0; a1, a2, . . . , aj : y], and assume that

x =
(aj + 1

y )pj−1 + pj−2

(aj + 1
y )qj−1 + qj−2

.

Then

x =
(aj + 1

y )pj−1 + pj−2

(aj + 1
y )qj−1 + qj−2

=
ajpj−1 + pj−2 +

pj−1

y

ajqj−1 + qj−2 +
qj−1

y

=
pj +

pj−1

y

qj +
qj−1

y

=
ypj + pj−1
yqj + qj−1

.

Theorem 6.
lim
j→∞

pj
qj

= x.

Proof. This proof is based on [2, Lemma 3.38].
For every j, let xj = [aj ; aj+1, aj+2, . . .], and notice that

xj+1 =
xj+1(pjqj−1 − pj−1qj)

pjqj−1 − pj−1qj

= −xj+1pjqj−1 + pj−1qj−1 − xj+1pj−1qj − pj−1qj−1
xj+1pjqj + pj−1qj − xj+1pjqj − pjqj−1

= −
xj+1pj+pj−1

xj+1qj+qj−1
qj−1 − pj−1

xj+1pj+pj−1

xj+1qj+qj−1
qj − pj

(∗)
= −xqj−1 − pj−1

xqj − pj
.

In (*) we used Theorem 5.
Now

n∏
j=0

xj+1 = (−1)n+1
n∏
j=0

xqj−1 − pj−1
xqj − pj

= (−1)n+1xq−1 − p−1
xqn − pn

=
(−1)n

xqn − pn
,

and therefore we have ∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣xqn − pnqn

∣∣∣∣ =

∣∣∣∣∣ 1

qn

1∏n
j=0 xj+1

∣∣∣∣∣ .
As |xj | ≥ 1 for j ≥ 1, and limj→∞ |qj | =∞ by [2, Lemma 3.36]1, we have that:

lim
j→∞

∣∣∣∣x− pj
qj

∣∣∣∣ = lim
j→∞

∣∣∣∣∣ 1

qn

1∏n
j=0 xj+1

∣∣∣∣∣ ≤
∣∣∣∣ 1

qn

∣∣∣∣ = 0.

Theorem 7. If x = [a0; a1, a2, . . . , an : µ] and y = [a0; a1, a2, . . . , an : ν], then

|x− y| = |µ− ν|

q2n

(
µ+ qn−1

qn

)(
ν + qn−1

qn

) .
1Different definitions of qn are used, but they only differ by a factor

∏n
j=1 ej , with for every j ≥ 1, |ej | = 1.
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Proof. This proof is similar to [4, Lemma 4].

x− y (∗)
=
pnµ+ pn−1
qnµ+ qn−1

− pnν + pn−1
qnν + qn−1

=
pnqn−1µ− pnqn−1ν + pn−1qnν − pn−1qnµ

(qnµ+ qn−1)(qnν + qn−1)

=
1

q2n

(pnqn−1 − pn−1qn)(µ− ν)

(µ+ qn−1

qn
)(ν + qn−1

qn
)

(∗∗)
=

(−1)n+1(µ− ν)

q2n(µ+ qn−1

qn
)(ν + qn−1

qn
)
.

In (*) we used Theorem 5 and in (**) we used Theorem 4.

1.3 Nearest integer continued fractions

There are many types of real continued fractions, we will focus on one in particular.

Definition 8. The nearest integer continued fraction (NICF) of x ∈ R is the result of GCF(x)
with f(y) = bye = by + 1

2c.

There are a few things to point out involving the range of NICF.
For all i ≥ 1:

• ai ∈ Z \ {−1, 0, 1};

• if ai = 2, then ai+1 ≥ 2;

• if ai = −2, then ai+1 ≤ −2.

Usually, finite nearest integer continued fractions will not end with a 2. In this thesis, we choose
to ignore this. This way every truncated infinite nearest integer continued fraction is accepted as a
finite nearest integer continued fraction. It will not lead to problems, as our proofs only use finite
continued fractions to work towards infinite continued fractions.
Note that for every x = [a0; a1, a2, . . .] ∈ NICF, we have that −x = [−a0;−a1,−a2, . . .] ∈ NICF.
Furthermore, there exists a bound on qn−1

qn
[6, p. 378]:∣∣∣∣qn−1qn

∣∣∣∣ ≤ 1

ϕ
=

√
5− 1

2
. (1.1)

Definition 9. NICFr is a subset of R, containing only the numbers representable by a nearest
integer continued fraction where every coefficient except possibly the first has absolute value less
than or equal to r:

NICFr = {x : x ∈ R | x = [a0; a1, a2, . . .] ∈ NICF and ∀j≥1|aj | ≤ r}
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1.4 Hurwitz complex continued fractions

There are also many types of complex continued fractions, we will focus on one in particular which
was first defined in [5]:

Definition 10. The Hurwitz complex continued fraction (HCF) of x is the result of GCF(x) with
f(a+ bi) = bae+ bbei = ba+ 1

2c+ bb+ 1
2ci.

Remark 11. For x ∈ R, the Hurwitz complex continued fraction of x is equal to the nearest integer
continued fraction of x.

It is difficult to describe the range of HCF, especially when, for any j the real or imaginary part of
xj is equivalent to 1

2 modulo 1. These points are tie-breaking points of the approximation, therefore
we have difficulties determining if these points are part of the range. Therefore, for the moment, we
will only consider the range of elements where the real and imaginary part of xj is not equivalent
to 1

2 modulo 1 for all j.
Let ρ be the rotation function that rotates a complex number 90 degrees counterclockwise around
the origin:

ρ(a+ bi) = (a+ bi) · i = −b+ ai.

We see that for our specific representation of elements of C:

ρ

(
x+

1

y

)
= ρ(x) + ρ

(
1

y

)
= ρ(x) +

1

ρ3(y)
,

which leads to:

ρ([a+ bi : µ]) = [ρ(a+ bi) : ρ−1(µ)] = [−b+ ai : ρ3(µ)].

Definition 12. HCFr is a subset of C, containing only the numbers representable by a Hurwitz
complex continued fraction where every coefficient except possibly the first has absolute value less
than or equal to r:

NICFr = {x : x ∈ C | x = [a0; a1, a2, . . .] ∈ NICF and ∀j≥1|aj | ≤ r}

1.5 Shapes

We will use shapes to describe the ways you can continue sequences of HCF. Each shape corresponds
with a set of possible continuations.

Definition 13. A shape is a connected open subset of {a+ bi ∈ C | |a|, |b| < 1
2}.

We will show that there are five shapes that occur as possible continuations in the construction of
HCF. Every shape, except the first, has four orientations, which we will describe using rotations.
Note that when we rotate the shape clockwise, the reciprocal shape rotates counterclockwise. By
reciprocal shape we mean the set containing the reciprocal of all elements in the corresponding
shape.

14



The shapes are called:

• S for Square;

• M for Moon;

• W for Without-a-corner;

• J for Just-a-corner;

• E for Empty.

The boundaries of the shapes are defined by the lines

Zk =

{
ρk(

1

2
+ xi)

∣∣∣∣x ∈ [−1

2
,
1

2
] ⊂ R

}
,

and the circles

Ck =
{
x
∣∣∣|x− ik| = 1

}
and

C′k =
{
x
∣∣∣|x− (1 + i)k| = 1

}
.

The rotation function ρ can be extended to shapes.
Let X be a shape, then:

ρ(X) = {x · i : x ∈ X}.

In particular we have:

• ρ(S) = S;

• ρ4(M) = M ;

• ρ4(W ) = W ;

• ρ4(J) = J ;

• ρ(E) = E.

Definition 14. S is the set of the shapes S,M,W, J and E with their rotations.

With this, we can build an automaton.

Definition 15. A deterministic automaton is a 5-tuple, consisting of:

• a finite set of states Q;

• a set of input symbols Σ, the alphabet of the automaton;

• a transition function δ (Q,Σ→ Q);

• an initial state q0(∈ Q);

• a set of accepting states F (⊆ Q).
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Given a string w = a1a2a3 . . . an with ai ∈ Σ, we say an automaton accepts w if there exists a
finite sequence of states ri such that:

• r1 = q0.

• δ(ri, ai) = ri+1 for 0 < i < n.

• rn ∈ F .

In our automaton, these will be described as follows:

• S is the finite set of states;

• the set of Gaussian integers is the alphabet;

• S (Square) is the initial state;

• the accepting states are the non-empty shapes, S \ E.

We still have to construct our transition function δ : (S,Z[i]) → S. We will do this per shape.
For every shape, the left picture depicts the shape, while the right picture depicts the (pointwise)
reciprocal of the shape.

1.5.1 Square

i

1

−i

−1

i

1

−i
−1

Given the coefficient aj + bj · i, the transition function on S is defined by:
δ(S, aj + bj · i) =

S if |aj | > 2,

or |bj | > 2,

or |aj | = 2 and |bj | = 2;

M if aj = 2 and bj = 0;

16



ρ(M) if aj = 0 and bj = 2;

ρ2(M) if aj = −2 and bj = 0;

ρ3(M) if aj = 0 and bj = −2;

W if aj = 1 and bj = 2,

or aj = 2 and bj = 1;

ρ(W ) if aj = −1 and bj = 2,

or aj = −2 and bj = 1;

ρ2(W ) if aj = −1 and bj = −2,

or aj = −2 and bj = −1;

ρ3(W ) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

J if aj = 1 and bj = 1;

ρ(J) if aj = −1 and bj = 1;

ρ2(J) if aj = −1 and bj = −1;

ρ3(J) if aj = 1 and bj = −1.

1.5.2 Moonshaped

i

1

−i

−1

i

1

−i
−1

Given the coefficient aj + bj · i, the transition function on M is defined by:

δ(M,aj + bj · i) =

S if aj > 2,

or aj ≥ 0 and |bj | > 2,

or aj = 2 and |bj | = 2;

17



M if aj = 2 and bj = 0;

ρ(M) if aj = 0 and bj = 2;

ρ3(M) if aj = 0 and bj = −2;

W if aj = 1 and bj = 2,

or aj = 2 and bj = 1;

ρ3(W ) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

J if aj = 1 and bj = 1;

ρ3(J) if aj = 1 and bj = −1.

1.5.3 Without-a-corner

i

1

−i

−1

i

1

−i
−1

Given the coefficient aj + bj · i, the transition function on W is defined by:

δ(W,aj + bj · i) =

S if |aj | > 2 or |bj | > 2,

or aj = 2 and |bj | = 2;

or aj = −2 and bj = −2;

M if aj = 2 and bj = 0;

ρ(M) if aj = 0 and bj = 2;

or aj = −1 and bj = 2;

ρ2(M) if aj = −2 and bj = 0;

or aj = −2 and bj = 1;

ρ3(M) if aj = 0 and bj = −2;

W if aj = 1 and bj = 2,
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or aj = 2 and bj = 1;

ρ(W ) if aj = −2 and bj = 2,

ρ2(W ) if aj = −1 and bj = −2,

or aj = −2 and bj = −1;

ρ3(W ) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

J if aj = 1 and bj = 1;

ρ2(J) if aj = −1 and bj = −1;

ρ3(J) if aj = 1 and bj = −1.

1.5.4 Just-a-corner

i

1

−i

−1

i

1

−i
−1

Given the coefficient aj + bj · i, the transition function on J is given by:

δ(J, aj + bj · i) =

S if aj > 2 and bj ≤ 0,

or aj ≥ 0 and bj < −2;

or aj = 2 and bj = −2;

M if aj = 2 and bj = 0;

ρ3(M) if aj = 0 and bj = −2;

ρ3(W ) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

ρ3(J) if aj = 1 and bj = −1.
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1.5.5 Shape function

For every shape X ∈ S, the transition function of ρ(X) is defined by

δ(ρ(X), a+ bi) := (ρ3 ◦ δ)(X, ρ(a+ bi)) = (ρ3 ◦ δ)(X,−b+ ai).

For all other values, let δ(X, a+ bi) be the empty shape E; in particular for all a+ bi ∈ Z[i]:

δ(E, a+ bi) = E.

With this, we can create a function Shape which gives the shape corresponding to a sequence of
Gaussian integers. We use λ to denote the empty sequence.

Definition 16. Let Shape: Z[i]∗ → S be inductively defined by:

Shape(λ) := S

and

Shape(a1 . . . an) := δ(Shape(a1 . . . an−1), an).

The accepting function of the built automaton can now be used to determine which sequences occur
in HCF. For every sequence a0, a1, . . . , an ∈ Z[i]:

Shape(a1 . . . an) 6= E ⇐⇒ [a0; a1, . . . , an] ∈ HCF .

And for all infinite sequences a0, a1, . . . ∈ Z[i]:

[a0; a1, . . .] ∈ HCF ⇐⇒ ∀n[a0; a1, . . . , an] ∈ HCF .

Lemma 17. For a = [a0; a1, . . . , an] ∈ HCF with Shape(a1 . . . an) = X we have,

• if n is even, then ρ(a) = [ρ(a0); ρ
3(a1), ρ(a2), . . . , ρ

3(an−1), ρ(an)] and

Shape(ρ3(a1)ρ(a2) . . . ρ
3(an−1)ρ(an)) = ρ(X);

• if n is odd, then ρ(a) = [ρ(a0); ρ
3(a1), ρ(a2), . . . , ρ(an−1), ρ

3(an)] and

Shape(ρ3(a1)ρ(a2) . . . ρ(an−1)ρ
3(an)) = ρ3(X).

Proof. Induction over n:

• When n = 1, we have ρ(a) = [ρ(a0); ρ
3(a1)]:

Shape(ρ3(a1)) = δ(Shape(λ), ρ3(a1)) = δ(S, ρ3(a1))

= δ(ρ(S), ρ3(a1)) = ρ3(δ(S, a1)).
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• Induction step, n is even: a = [a0; a1, . . . , an], let b = [a0; a1, . . . , an−1], and let

Shape(a0a1 . . . an−1) = Xb,

so let X = Shape(a1 . . . an) = δ(Xb, an). Our Induction Hypothesis tells us that

Shape(ρ3(a1)ρ(a2) . . . ρ
3(an−1)) = ρ3(Xb).

This gives us:

Shape(ρ3(a1)ρ(a2) . . . ρ
3(an−1)ρ(an)) = δ(ρ3(Xb), ρ(an)) = ρ(δ(Xb, an)) = ρ(X).

• Induction step, n is odd: a = [a0; a1, . . . , an], let b = [a0; a1, . . . , an−1], and let

Shape(a0a1 . . . an−1) = Xb,

so let X = Shape(a1 . . . an) = δ(Xb, an). Our Induction Hypothesis tells us that

Shape(ρ3(a1)ρ(a2) . . . ρ(an−1)) = ρ(Xb).

This gives us:

Shape(ρ3(a1)ρ(a2) . . . ρ(an−1)ρ
3(an)) = δ(ρ(Xb), ρ

3(an)) = ρ3(δ(Xb, an)) = ρ3(X).
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Chapter 2

Cantor sets

A Cantor set C of real numbers is defined by an initial closed interval I1 and a gap function g.

Definition 18. A gap function on a closed interval I1 is a function from closed subintervals of I1
to open subintervals of I1 such that for every closed subinterval I of I1, the open subinterval g(I)
is contained in I. The closed subintervals IL and IR of I1 for which I \ g(I) = IL ∪ IR are called
the left and right remainder.

Constructing the Cantor set is done iteratively by the following protocol:

1. Create a set S with only the initial interval I1.

2. For every interval Ii in S, remove the open subinterval (gap) g(Ii).

3. Replace Ii in S by I2i and I2i+1 for respectively the left and right remainder of Ii.

4. Repeat from 2.

The Cantor set (I1, g) consists of all the points not contained in a gap:

(I1, g) = I1 \
∞⋃
i=1

g(Ii).

The construction of a Cantor set can be drawn in a treelike picture:

I1

I2 I3
g(I1)

I4 I5
g(I2)

I6 I7
g(I3)

I8 I9 I10 I11 I12 I13 I14 I15

...
...

Example 19. For x, y ∈ [0, 1] with x < y define

h([x, y]) =

(√
(2x+ y)(x+ y)

6
,

√
(x+ 2y)(x+ y)

6

)
.
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Because

x =

√
(2x+ x)(x+ x)

6
<

√
(2x+ y)(x+ y)

6
<

√
(x+ 2y)(x+ y)

6
<

√
(y + 2y)(y + y)

6
= y

we have that h is a gap function on [0, 1], and H = ([0, 1], h) is a Cantor set.

Given al, ar ∈ R with al ≤ ar, an interval A = [al, ar] ⊂ R is defined by

A = {x : al ≤ x ≤ ar}.

The length of an interval [alar] is defined by

[al, ar] = ar − al.

The length of a gap (gl, gr) is defined by

(gl, gr) = gr − gl.

Note that all the g(Ii) are disjoint, so
∑∞

i=1 g(Ii) ≤ I1. Because I1 is finite, we have

lim
i→∞

g(Ii) = 0.

We are going to look when the sums of multiple Cantor sets are equal to the sum of their initial
intervals (Theorem 28). This largely depends on the size of the gaps compared to the corresponding
remainders. We will therefore define a density ratio of a Cantor set as follows:

Definition 20. The density ratio, dr((I1, g)) is defined as:

dr((I1, g)) =
∞
inf
i=1

min(I2i, I2i+1)

g(Ii)
.

It follows that I2i ≥ dr((I1, g)) · g(Ii) and I2i+1 ≥ dr((I1, g)) · g(Ii), for all i.

2.1 Hole-decreasing Cantor sets

Definition 21. We call a Cantor set hole-decreasing if for all i we have g(Ii) ≥ g(I2i) and
g(Ii) ≥ g(I2i+1).

Theorem 22. For every Cantor set C, there exists a hole-decreasing Cantor set D such that D = C
and dr(D) ≥ dr(C).

First, note that for all a, b: Ib ⊆ Ia, if and only if there exist k1, k2, . . . , kn such that Ia = Ik1 ,
Ib = Ikn , and for all i < n : ki+1 = 2 · ki or ki+1 = 2 · ki + 1.
With this, we can rewrite the definition of a hole-decreasing Cantor Set:

Property 23. A Cantor set is hole-decreasing if and only if for every i, for every k such that
Ik ⊆ Ii we have g(Ii) ≥ g(Ik).

With this, we can define a n-hole-decreasing Cantor set:
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Definition 24. We call a Cantor set (I1, g) n-hole-decreasing if for every i ≤ n, for every k such
that Ik ⊆ Ii we have g(Ii) ≥ g(Ik).

The Cantor set C is hole-decreasing if and only if C is n-hole-decreasing for every n.
We will first prove that we can interchange (by tree-rotation) an interval with one of its remainders,
if that remainder has a larger gap. We will only prove this for the left remainder, for the proof of
the right remainder is similar.

Lemma 25. Given a Cantor set (I1, g), let i be such that g(I2i) > g(Ii). We can create J1 and
g′ such that (J1, g

′) = (I1, g), and for each j < i we have g′(Jj) = g(Ij), g
′(Ji) = g(I2i), and

dr((J1, g
′)) ≥ dr((I1, g)).

Proof. We define J1 and g′ by:

J1 = I1

g′(Ji) = g(I2i)

g′(J2i+1) = g′(I4i+1 ∪ g(Ii) ∪ I2i+1) = g(Ii)

For all other intervals, we let g′(I) = g(I), which corresponds to:

g′(Jk) = g(Ik) if Jk 6⊂ Ji;
g′(Jak+b) = g(I2ak+b) if Jak+b ⊆ J2i;
g′(Jak+b) = g(Iak+b−1) if Jak+b ⊆ J4i+2;

g′(Jak+b) = g(Ia
2
k+b−2) if Jak+b ⊆ J4i+3.

for all a, b, k ∈ Z+.
Pictorially:

Ii

I2i I2i+1
g(Ii)

I4i I4i+1
g(I2i)

...
...

...

Ii

I4i I4i+1 ∪ g(Ii) ∪ I2i+1
g(I2i)

I4i+1 I2i+1
g(Ii)

...
...

...

Ji

J2i J2i+1
g′(Ji)

J4i+2 J4i+3
g′(J2i+1)

...
...

...
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For the density ratio we note that the following (in-)equalities hold:

J2i

g′(Ji)
=

I4i

g′(Ji)
=

I4i

g(I2i)

J2i+1

g′(Ji)
=

I4i+1 ∪ g(Ii) ∪ I2i+1

g′(Ji)
>

I4i+1

g′(Ji)
=

I4i+1

g(I2i)

J4i+2

g′(J2i+1)
=

I4i+1

g′(J2i+1)
=
I4i+1

g(Ii)
>

I4i+1

g(I2i)

J4i+3

g′(J2i+1)
=

I2i+1

g′(J2i+1)
=
I2i+1

g(Ii)

Now we have shown that for each interval for which g′ is defined differently from g, the ratio with
g′ is greater than or equal to the ratio of an interval with g. Therefore the density ratio of (J1, g

′)
is greater than or equal to the density ratio of (I1, g).

Proof of Theorem 22. Since limn→∞ g(In) = 0, we have that for every i, there exists a j with Ij ⊆ Ii
such that for every m with Im ⊆ Ii we have g(Ij) ≥ g(Im). So, there exist k0, k1, . . . , kn such that
Ii = Ik0 , Ij = Ikn , and for all i < n we have either ki+1 = 2 · ki or ki+1 = 2 · ki + 1.

Because g(Ij) is bigger than every g(Iki), rotations can be used to first interchange Ikn with Ikn−1 ,
without interfering with any of the other Iki . Then we can interchange Ikn−1 with Ikn−2 , and so on
until we interchange Ik1 with Ik0 . This means, we can use n rotations to interchange Ii with Ij .

We can therefore create a function that performs n rotations: R((I, g), i) = (J, g′) such that
(I, g) = (J, g′), for every j < i: g′(Jj) = g(Ij), and for every k with Jk ⊆ Ji: g′(Ji) ≥ g′(Jk).
We will use this to create a sequence (I0, g0), (I

1, g1), (I
2, g2), . . . such that for every i, (I1, g) =

(Ii, gi), and (In, gn) is n-hole-decreasing.

(I0, g0) = (I, g)

(I1, g1) = R((I0, g0), 1)

(I2, g2) = R((I1, g1), 2)

...

(In, gn) = R((In−1, gn−1), n)

We know that for all i, j with 0 < i < j we have Iii = Iji , and gi(I
i
i ) = gj(I

j
i ). With this we can

create (J, g′), where J = I, and for n ≥ 1:

g′(Jn) = gn(Inn )

This is a Cantor set, as for all i, j with i ≤ j we have Ji = Iji and g′(Ji) = gj(I
j
i ). Because (In, gn)

is n-hole-decreasing for every n, (J, g′) is hole-decreasing.
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2.2 Intervals

We define the pointwise addition of two intervals as:

A+B = {x+ y : x ∈ A, y ∈ B}.

Hence
[al, ar] + [bl, br] = [al + bl, ar + br].

Trivial results:

• + is commutative: A+B = B +A;

• + is associative: (A+B) + C = A+ (B + C);

• A+B = A+B.

Lemma 26. Let A and B be intervals; if A + B ≥ [min(al, bl),max(ar, br)], then A ∪ B is an
interval, namely [min(al, bl),max(ar, br)].

Proof. By contraposition.
Suppose that A∪B is not an interval. Then since A∪B ⊆ [min(al, bl),max(ar, br)] there exists an
x ∈ [min(al, bl),max(ar, br)] such that x /∈ A ∪B. Then A and B are disjoint and

A+B < [min(al, bl), x] + [x,max(ar, br)] = [min(al, bl),max(ar, br)].

From this follows:

Corollary 27. For Ii an interval of a Cantor set with gap function g, and J an interval, if

J ≥ g(Ii)

then
(I2i + J) ∪ (I2i+1 + J) = Ii + J. (2.1)

Proof. Apply Lemma 26 with A = I2i + J and B = I2i+1 + J together with:

Ii + J = I2i + g(Ii) + I2i+1 + J ≤ I2i + J + I2i+1 + J.

2.3 Comparable and Dividable

In this section, we will show the density requirements needed for sums of Cantor sets to ignore gaps.
This is done in a similar way as done by Hlavka in [4], with comparable and dividable intervals. We
aim to prove the following theorem:
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Theorem 28. Let C1 = (I1, g1), . . . , Cn = (In, gn) be hole-decreasing Cantor sets. If the density
ratios satisfy dr(Cj) ≥ xj with

n∑
i=1

xi
xi + 1

≥ 1; (2.2)

and

∀j,k Ij1 ≥
xj

xj + 1
(xk + 1)Ik1 , (2.3)

then
n∑
i=1

Ii1 = {
n∑
i=1

xi : xi ∈ Ci}.

We will use some definitions and lemmas to prove this theorem. Up to the proof, assume we work
with hole-decreasing Cantor sets. Let Ijij be in the construction of Cj , with x1, . . . , xn such that

dr(Cj) ≥ xj , and (2.2) and (2.3) hold:

Definition 29. We call intervals I1i1 , I
2
i2
, . . . , Inin comparable if

∀j,k Ijij ≥
xj

xj + 1
(xk + 1)gk(Ikik).

Trivially, we see that I11 , I
2
1 , . . . , I

n
1 are comparable.

Lemma 30. If I1i1 , I
2
i2
, . . . , Inin are comparable intervals, then for all k:

n∑
j=1

Ijij =

 n∑
j=1;j 6=k

Ijij + Ik2ik

 ∪
 n∑
j=1;j 6=k

Ijij + Ik2ik+1

 .

Proof. We will use (2.1) with
∑n

j=1;j 6=k I
j
ij

and Ikik for respectively J and Ii. Hence, what remains

to be shown is that
∑n

j=1;j 6=k I
j
ij
≥ gk(Ikik). Indeed,

n∑
j=1;j 6=k

Ijij ≥

 n∑
j=1;j 6=k

xj
xj + 1

 (xk + 1)gk(Ikik)

=

 n∑
j=1

xj
xj + 1

− xk
xk + 1

 (xk + 1)gk(Ikik)

(2.2)

≥
(

1− xk
xk + 1

)
(xk + 1)gk(Ikik)

= gk(Ikik).

Definition 31. We call comparable intervals I1i1 , I
2
i2
, . . . , Inin j-dividable if both I1i1 , I

2
i2
, . . . , Ij2ij , . . . , I

n
in

and I1i1 , I
2
i2
, . . . , Ij2ij+1, . . . , I

n
in

are comparable intervals.
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Lemma 32. Given comparable intervals I1i1 , I
2
i2
, . . . , Inin. If j is such that (xj+1)gj(Ijij ) is maximal,

i.e.,

∀k : (xj + 1)gj(Ijij ) ≥ (xk + 1)gk(Ikik),

then I1i1 , I
2
i2
, . . . , Inin are j-dividable.

Proof. Since the Cantor sets are hole-decreasing, we have that gj(Ij2ij ) ≤ gj(Ijij ) and gj(Ij2ij+1) ≤

gj(Ijij ). We still have to prove

∀k : Ij2j ≥
xj

xj + 1
(xk + 1)gk(Ikik)

and
∀k : Ij2j+1 ≥

xj
xj + 1

(xk + 1)gk(Ikik).

As both Ij2ij ≥ xjg
j(Ijij ) and Ij2ij+1 ≥ xjgj(I

j
ij

), it is sufficient to remark that:

xjgj(I
j
ij

) ≥ xjgj(Ijij )
(xk + 1)gk(Ikik)

(xj + 1)gj(Ijij )
=

xj
xj + 1

(xk + 1)gk(Ikik).

Proof of Theorem 28. We will recursively create sets Gm on n-tuples of intervals.

G0 = {〈I11 , I21 , . . . , In1 〉};

Gm+1 =
{
〈I1i1 , I

2
i2 , . . . , I

k
2ik
, . . . , Inin〉, 〈I

1
i1 , I

2
i2 , . . . , I

k
2ik+1, . . . , I

n
in〉∣∣∣〈I1i1 , I2i2 , . . . , Ikik , . . . , Inin〉 ∈ Gm ∧ ∀l : xk · gk(Ikik) ≥ xl · gl(I lil)
}
.

Trivially, every 〈I1i1 , I
2
i2
, . . . , Inin〉 ∈ G0 is comparable. By induction and Lemma 32, we have that

for every m 〈I1i1 , I
2
i2
, . . . , Inin〉 ∈ Gm is comparable. And therefore, for every m:⋃{∑

Ijij

∣∣∣〈I1i1 , I2i2 , . . . , Inin〉 ∈ Gm} =
∑

Ij1 .

Let gk(Ikik) be a gap of Ck, then for every j there are only a finite number aj of gaps gj(Ijl ) such

that gj(Ijlj ) ≥
xk
xj
gk(Ikik). For every a ≥

∑
aj , there will be no 〈I1i1 , I

2
i2
, . . . , Inin〉 ∈ Ga such that

gk(Ikik) ⊆ Ikik .
Let us define G as:

G = lim
i→∞

Gi.

Then for each 〈I1i1 , I
2
i2
, . . . , Inin〉 ∈ G we have Ijij ⊂ C

j . Therefore{
n∑
i=1

xi

∣∣∣∣∣xi ∈ Ci
}
⊆
⋃{∑

cj

∣∣∣〈I1i1 , I2i2 , . . . , Inin〉 ∈ G ∧ cj ∈ Ijij} =
∑

Ij1 .
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If we drop the condition that the Cantor sets are hole-decreasing, we have the following result:

Theorem 33. Given Cantor sets C1, C2, . . . , Cn with density ratios greater than or equal to
x1, x2, . . . , xn with

n∑
i=1

xi
xi + 1

≥ 1; (2.4)

∀j,kIj1 ≥
xj

xj + 1
(xk + 1) max

i
g(Iki ). (2.5)

Then
n∑
i=1

Ii1 =

{
n∑
i=1

xi

∣∣∣∣∣ xi ∈ Ci
}
.

Proof. For every Cj = (Ij , gj), we can create a hole-decreasing Cantor set Dj = (J j , g′j), such that
Dj = Cj . We know the density ratio of Dj is greater than or equal to the density ratio of Cj , so
xj is smaller than or equal to the density ratio of Dj .

We also know that g′(J j1) = maxi g(Iji ).
This gives all the premises needed in this chapter:{

n∑
i=1

xi

∣∣∣∣∣ xi ∈ Ci
}

=

{
n∑
i=1

xi

∣∣∣∣∣ xi ∈ Di

}
⊆
∑

J j1 =
∑

Ij1 .

We will add one extra theorem, which is easier to use than Theorem 33, but less general.

Theorem 34. Given Cantor sets C1, C2, . . . Cn with density ratios equal to x1, x2, . . . , xn with

n∑
i=1

xi
xi + 1

≥ 1; (2.6)

∀j,kIj1 ≥
xj

xj + 1

xk + 1

2xk + 1
Ik1 . (2.7)

Then
n∑
i=1

Ii1 = {
n∑
i=1

xi : xi ∈ Ci}.

Proof. First, notice that:

Ikik = Ik2ik + g(Ikik) + Ik2ik+1

=
Ik2ik + g(Ikik) + Ik2ik+1

g(Ikik)
· g(Ikik)

=

(
Ik2ik

g(Ikik)
+
Ik2ik+1

g(Ikik)
+ 1

)
· g(Ikik)

≥ (2xk + 1)g(Iki ).
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Since Ik1 ≥ Ikj for all j, maxi g(Iki ) ≤ 1
2xk+1I

k
1 .

So, for all j, k:

Ij1 ≥
xj

xj + 1

xk + 1

2xk + 1
Ik1 ≥

xj
xj + 1

(xk + 1) max
i
g(Iki ).

We finish by applying Theorem 33.

2.4 Comparison with Hlavka

We will now show that our premises are weaker than those of Hlavka, which lead to the same
conclusion. We start with definitions Hlavka uses, and continue by showing that our premises
follow from both Hlavka’s versions: for the sum of two Cantor sets, and for an arbitrary number
of Cantor sets.

Definition 35. Let GH be the relative biggest gap of a Cantor set:

GH((I, g)) = max
i

g(Ii)

Ii
.

Definition 36. Let HH be the relative smallest remainder of a Cantor set:

HH((I, g)) = min

(
min
i

I2i

Ii
, min

i

I2i+1

Ii

)
.

From this follows that for the density ratio of C we have dr(C) ≥ HH(C)
GH(C) .

Theorem 37. [4, Theorem 3] If there exist Cantor sets (I1, g1) and (I2, g2) such that:

GH((I1, g1)) ·GH((I2, g2)) ≤ HH((I1, g1)) ·HH((I2, g2)); (2.8)

GH((I1, g1)) · I1 ≤ I2; (2.9)

GH((I2, g2)) · I2 ≤ I1. (2.10)

Then

(I1, g1) + (I2, g2) = I1 + I2.

We will show that our premises follow from Hlavka’s premises.

Lemma 38. Given Cantor sets (I1, g1), (I2, g2), let us write Gi for GH((Ii, gi)) and H i for
HH((Ii, gi)) If Hlavka’s premises (2.8), (2.9) and (2.10) hold, then also (2.4) and (2.5) hold,
i.e., there exists x1 and x2 smaller than or equal to the density ratios of respectively (I1, g1) and
(I2, g2) such that:

1.
∑2

i=1
xi
xi+1 ≥ 1;

2. ∀j,kIj ≥
xj
xj+1(xk + 1) maxi gk(Iki ).
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Proof. Let

x1 =

√
H1 ·G2

G1 ·H2
;

x2 =

√
H2 ·G1

G2 ·H1
.

Notice that

x1 · x2 = 1. (2.11)

Then it follows that:

• x1 ≤ dr((I1, g1)) and x2 ≤ dr((I2, g2)):

As G1 ·G2 ≤ H1 ·H2 (2.8), we know
√

G1·G2

H1·H2 ≤ 1. So:

x1 =

√
H1 ·G2

G1 ·H2
=
H1

G1
·
√
G1 ·G2

H1 ·H2
≤ H1

G1
≤ dr((I1, g1));

x2 =

√
H2 ·G1

G2 ·H1
=
H2

G2
·
√
G1 ·G2

H1 ·H2
≤ H2

G2
≤ dr((I2, g2)).

• x1
x1+1 + x2

x2+1 ≥ 1: Hence in fact

x1
x1 + 1

+
x2

x2 + 1
=
x1x2 + x1 + x1x2 + x2
x1x2 + x1 + x2 + 1

2.11
= 1.

• I2 ≥ x2
x2+1(x1 + 1) maxi g1(I1i ) and I1 ≥ x1

x1+1(x2 + 1) maxi g2(I2i ):

Since maxi g1(I1i ) ≤ G1 · I1 and maxi g2(I2i ) ≤ G2 · I2, we have:

x2
x2 + 1

(x1 + 1) max
i
g1(I1i ) ≤ x2 + x1x2

x2 + 1
G1 · I1 2.11

= G1 · I1
2.9
≤ I2,

and

x1
x1 + 1

(x2 + 1) max
i
g2(I2i ) ≤ x1 + x1x2

x1 + 1
G2 · I2 2.11

= G2 · I2
2.10
≤ I1.

• For j = 1, 2: Ij ≥ xj
xj+1(xj + 1) maxi gj(I

j
i ):

This follows directly from the definition of the density ratio of (Ij , gj) as for every i we have

Ij = Ij1 ≥ I
j
i ≥ xj · gj(I

j
i ).

Hence, Theorem 37 follows from Theorem 33.
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Theorem 39. [4, Theorem 10] If there exist Cantor sets (I1, g1), (I2, g2), . . . , (In, gn) such that for
all i, j ≤ n:

GH((Ii, gi)) +HH((Ii, gi)) ≤
∑
k

HH((Ik, gk)) (2.12)

HH((Ii, gi)) · Ij ≤ Ii; (2.13)

Then
n∑
i=1

(Ii, gi) =
n∑
i=1

Ii.

Lemma 40. Given Cantor sets (I1, g1), (I2, g2), . . . , (In, gn), let us write Gi for GH((Ii, gi)) and
H i for HH((Ii, gi)). If Hlavka’s premises (2.12) and (2.13) hold, then then also (2.4) and (2.5)
hold, i.e., there exist x1, x2, . . . , xn such that ∀i : xi ≤ dr((Ii, gi)) and:

1.
∑n

i=1
xi
xi+1 ≥ 1;

2. ∀j,kIj ≥
xj
xj+1(xk + 1) maxi gk(Iki ).

Proof. For each i, let

xi =
H i

(
∑

kH
k)−H i

.

Then for every i and j:

• xi ≤ dr((Ii, gi)):

As for each i, Gi ≤ (
∑

kH
k)−H i, we have:

xi =
H i

(
∑

kH
k)−H i

≤ H i

Gi
≤ dr((Ii, gi)).

•
∑

i
xi
xi+1 ≥ 1:

Notice that:

xi
xi + 1

=
( Hi

(
∑

kH
k)−Hi )

(
∑

kH
k

(
∑

kH
k)−Hi )

=
H i∑
kH

k
.

So: ∑
i

xi
xi + 1

=
∑
i

H i∑
kH

k
= 1.

• For all i ≤ n: Ii ≥ xi
xi+1(xj + 1) maxk gj(I

j
k):

Using maxk gj(I
j
k) ≤ Gj · Ij , and Gj ≤ (

∑
kH

k)−Hj :

xi
xi + 1

(xj + 1) max
k

gj(Ijk) ≤ H i∑
kH

k

∑
kH

k

(
∑

kH
k)−Hj

Gj · Ij

≤ H i

(
∑

kH
k)−Hj

Gj · Ij ≤ H i · Ij ≤ Ii.

Hence, Theorem 39 follows from Theorem 33 as well.
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Chapter 3

NICF5+NICF5 = R

In this chapter we are going to prove that every real number can be represented as a sum of two
nearest integer continued fractions with coefficients that have absolute value less than or equal to
five. First, recall Definition 9 with r = 5.

Definition. NICF5 is a subset of R, containing only the numbers representable by a Nearest Integer
Continued Fraction where every coefficient except possibly the first has absolute value less than or
equal to 5:

NICF5 = {x : x ∈ R | x = [a0; a1, a2, . . .] ∈ NICF and ∀i≥1|ai| ≤ 5}

We create a Cantor set, CNICF, and prove it is equal to NICF∗5 \Q, with NICF∗5 a subset of NICF5.
With the results of the previous chapter, we are able to show CNICF + CNICF ⊇ [12 ,

3
2 ], which will

lead to:

Theorem 41. NICF5 + NICF5 = R, that is, for each x ∈ R there exist a, b ∈ NICF5 such that
a+ b = x.

NICF5 has the following rules (Definition 8):
For every x = [a0; a1, a2, . . .] ∈ NICF we have x ∈ NICF5 if and only if for all i ≥ 1:

• ai ∈ {−5,−4,−3,−2, 2, 3, 4, 5};

• if ai = 2, then ai+1 ∈ {2, 3, 4, 5};

• if ai = −2, then ai+1 ∈ {−2,−3,−4,−5}.

We will look at a subset of NICF5:

Definition 42. NICF∗5 is the subset of NICF5 ∩[0, 1] containing only the numbers representable by
a Nearest Integer Continued Fraction where every coefficient except possibly the first with absolute
value 5 is not followed by a coefficient with the same sign.
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NICF∗5 has five extra rules in addition to the ones of NICF5:
For every x = [a0; a1, a2, . . .] ∈ NICF5 we have x ∈ NICF∗5 if and only if for all i ≥ 1:

• if ai = 5, then ai+1 ∈ {−2,−3,−4,−5};

• if ai = −5, then ai+1 ∈ {2, 3, 4, 5};

• a0 ∈ {0, 1};

• if a0 = 0, then a1 ∈ {2, 3, 4, 5};

• if a0 = 1, then a1 ∈ {−2,−3,−4,−5}.

It easily follows that for all z ∈ Z, and all x ∈ NICF∗5, we have z + x ∈ NICF5.
We will show that NICF∗5 \Q can be described as a Cantor Set, with density ratio greater than 1,
and an initial interval with size greater than 1

2 .

Definition 43. We define µ ∈ NICF5 as [5;−5, 5] = 5− 1
µ = 5+

√
21

2 > 4.79128.

We have −µ = −1 · [5;−5, 5] = [−5; 5,−5]. This satisfies all the rules of NICF5, and therefore
−µ ∈ NICF5.

Lemma 44. The smallest value in NICF∗5 is [0 : µ] = 5−
√
21

2 ≤ 0.20872, and the largest value in

NICF∗5 is [1 : −µ] =
√
21−5
2 > 0.79128.

Proof. Both [0 : µ] and [1 : −µ] correspond to all the rules of NICF∗5. We are going to prove
y = [0 : µ] = [y0; y1, y2, . . .] is the smallest value in NICF∗5. Let x = [x0;x1, x2, . . .] be the smallest
value in NICF∗5. Then x < 1

2 , so x0 = 0. Suppose x 6= y, let n be smallest integer such that
xn 6= yn. This leads to the following contradictions:

• If n is odd, yn = 5. If xn < 5, then

x > [x0;x1, x2, . . . , xn−1 : xn +
1

2
] ≥ [x0;x1, x2, . . . , xn−1 : 5− 1

2
] ≥ y.

If xn > 5, then x /∈ NICF∗5.

• If n is odd, yn = −5. If xn > −5, then

x ≥ [x0;x1, x2, . . . , xn−1 : xn −
1

2
] ≥ [x0;x1, x2, . . . , xn−1 : −5 +

1

2
] > y.

If xn < −5, then x /∈ NICF∗5.

The proof that [1 : −µ] is the largest value in NICF∗5 follows a similar pattern.

Definition 45. Let a0, a1, . . . , an ∈ Z,
if k ∈ {−5,−4,−3, 2, 3, 4} such that [a0; a1, . . . , an, k] ∈ NICF∗5, we define

Pk+([a0, a1, . . . , an]) := [a0; a1, . . . , an, k : µ] (∈ NICF∗5)

and if k ∈ {−4,−3,−2, 3, 4, 5} such that [a0; a1, . . . , an, k] ∈ NICF∗5, we define

Pk−([a0, a1, . . . , an]) := [a0; a1, . . . , an, k : −µ] (∈ NICF∗5).

36



With these, we can define intervals:

Definition 46. For all a0, a1, . . . , an ∈ Z and all u ∈ {−5,−4,−3, 2, 3, 4} and v ∈ {−4,−3,−2, 3, 4, 5}
such that u < v and [a0; a1, . . . , an, u], [a0; a1, . . . , an, v] ∈ NICF∗5, we define Tu,v([a0, a1, . . . an]) as
the interval with endpoints Pu+([a0, a1, . . . , an]) and Pv−([a0, a1, . . . , an]).

If n is odd, then Pu+([a0, a1, . . . , an]) < Pv−([a0, a1, . . . , an]),
while if n is even, then Pu+([a0, a1, . . . , an]) > Pv−([a0, a1, . . . , an]).

3.1 Creating a gap function

With the intervals defined in Definition 46, we are going to create a Cantor set. The initial interval
will be [[0; 5,−5], [1;−5, 5]], which we will call T0,1. Our gap function g will create remaining
intervals of the following types:

• T0,1;

• Tb,b+1([a0; a1, . . . , an]), with b ∈ {−5,−4,−3, 2, 3, 4};

• T2,5([a0; a1, . . . , an]);

• T3,5([a0; a1, . . . , an]);

• T−5,−2([a0; a1, . . . , an]);

• T−5,−3([a0; a1, . . . , an]).

For each of these types of interval we describe the function g, and will show that the remainders
again are of the described types. We will also calculate the lower bound of the ratio between the
remainders and the size of the gap. Later, we will use this to derive a lower bound for the density
ratio of the Cantor set we are creating.

3.1.1 Ratio calculation

Let [a0; a1, . . . , an : I−] and [a0; a1, . . . , an : I+] be the endpoints of an interval T , and let
[a0; a1, . . . , an : C−] and [a0; a1, . . . , an : C+] be the endpoints of the corresponding gap, such
that I− < C− < C+ < I+. With the theorem about the approximation of rationals (Theorem 7),
and with ω defined as ω = qn−1

qn
, we know that the sizes of the remainders are

|I− − C−|
q2n(I− + ω)(C− + ω)

and
|I+ − C+|

q2n(I+ + ω)(C+ + ω)
,

while the gap has size
|C− − C+|

q2n(C− + ω)(C+ + ω)
.

So the density ratio of this particular interval is the minimum of

|I− − C−|
|C− − C+|

(C+ + ω)

(I− + ω)
and

|I+ − C+|
|C− − C+|

(C− + ω)

(I+ + ω)
.

Recall that, because all endpoints are elements of NICF5 ⊂ NICF, we know that |ω| ≤
√
5−1
2

according to (1.1).
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T0,1

Our first type consists of one interval, which can not be described in the fashion of Definition 46,

but for consistency will be called T0,1. It has size [1;−5, 5]− [0; 5,−5] =
√
21−3
2 − 5−

√
21

2 =
√

21−4 >
0.58256.
The corresponding gap will be g(T0,1) = ([0; 2 : µ], [1;−2 : −µ]), which has size: 0.54725−0.45275 <
0.09451.
The remaining intervals are T2,5([0]) and T−5,−2([1]), which both have size > 0.24403.
The density ratio corresponding with our initial interval is 0.24403

0.09451 > 2.58205.

I1
T0,1

I2
T2,5([0])

I3
T−5,−2([1])

Tb,b+1([a0; a1, . . . , an]), b ∈ {−5,−4,−3, 2, 3, 4}

For Tb,b+1([a0; a1, . . . , an]), the gap g(Tb,b+1([a0; a1, . . . , an])) is defined as the open interval with
endpoints P2+([a0; a1, . . . , an, b]) and P−2−([a0; a1, . . . , an, b+ 1]). With the remaining intervals are
T2,5([a0; a1, . . . , an, b]) and T−5,−2([a0; a1, . . . , an, b+ 1]).
Here, the density ratio can be calculated using I− = [b : µ], C− = [b; 2 : µ], C+ = [b+ 1;−2 : −µ],
and I+ = [b+ 1 : −µ].
We will now calculate bounds for the corresponding density ratio, for each b:

• When b equals 2:

|T2,5([a0; a1, . . . , an, 2])|
|g(T2,3([a0; a1, . . . , an]))|

=
|[2 : µ]− [2; 2 : µ]|

|[2; 2 : µ]− [3;−2 : −µ]|
([3;−2 : −µ] + ω)

([2 : µ] + ω)
> 2.89191

and

|T−5,−2([a0; a1, . . . , an, 3])|
|g(T2,3([a0; a1, . . . , an]))|

=
|[3 : −µ]− [3;−2 : −µ]|
|[2; 2 : µ]− [3;−2 : −µ]|

([2; 2 : µ] + ω)

([3 : −µ] + ω)
> 2.18031;

• When b equals 3:

|T2,5([a0; a1, . . . , an, 3])|
|g(T3,4([a0; a1, . . . , an]))|

=
|[3 : µ]− [3; 2 : µ]|

|[3; 2 : µ]− [4;−2 : −µ]|
([4;−2 : −µ] + ω)

([3 : µ] + ω)
> 2.81108

and

|T−5,−2([a0; a1, . . . , an, 4])|
|g(T3,4([a0; a1, . . . , an]))|

=
|[4 : −µ]− [4;−2 : −µ]|
|[3; 2 : µ]− [4;−2 : −µ]|

([3; 2 : µ] + ω)

([4 : −µ] + ω)
> 2.30709;

• When b equals 4:

|T2,5([a0; a1, . . . , an, 4])|
|g(T4,5([a0; a1, . . . , an]))|

=
|[4 : µ]− [4; 2 : µ]|

|[4; 2 : µ]− [5;−2 : −µ]|
([5;−2 : −µ] + ω)

([4 : µ] + ω)
> 2.76375
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and

|T−5,−2([a0; a1, . . . , an, 5])|
|g(T4,5([a0; a1, . . . , an]))|

=
|[5 : −µ]− [5;−2 : −µ]|
|[4; 2 : µ]− [5;−2 : −µ]|

([4; 2 : µ] + ω)

([5 : −µ] + ω)
> 2.37311;

• When b equals -3:

|T2,5([a0; a1, . . . , an,−3])|
|g(T−3,−2([a0; a1, . . . , an]))|

=
|[−3 : µ]− [−3; 2 : µ]|

|[−3; 2 : µ]− [−2;−2 : −µ]|
([−2;−2 : −µ] + ω)

([−3 : µ] + ω)
> 2.18031

and

|T−5,−2([a0; a1, . . . , an,−2])|
|g(T−3,−2([a0; a1, . . . , an]))|

=
|[−2 : −µ]− [−2;−2 : −µ]|
|[−3; 2 : µ]− [−2;−2 : −µ]|

([−3; 2 : µ] + ω)

([−2 : −µ] + ω)
> 2.89191;

• When b equals -4:

|T2,5([a0; a1, . . . , an,−4])|
|g(T−4,−3([a0; a1, . . . , an]))|

=
|[−4 : µ]− [−4; 2 : µ]|

|[−4; 2 : µ]− [−3;−2 : −µ]|
([−3;−2 : −µ] + ω)

([−4 : µ] + ω)
> 2.30709

and

|T−5,−2([a0; a1, . . . , an, 4])|
|g(T3,4([a0; a1, . . . , an]))|

=
|[−3 : −µ]− [−3;−2 : −µ]|
|[−4; 2 : µ]− [−3;−2 : −µ]|

([−4; 2 : µ] + ω)

([−3 : −µ] + ω)
> 2.81108;

• When b equals -5:

|T2,5([a0; a1, . . . , an,−5])|
|g(T−5,−4([a0; a1, . . . , an]))|

=
|[−5 : µ]− [−5; 2 : µ]|

|[−5; 2 : µ]− [−4;−2 : −µ]|
([−4;−2 : −µ] + ω)

([−5 : µ] + ω)
> 2.37311

and

|T−5,−2([a0; a1, . . . , an,−4])|
|g(T−5,−4([a0; a1, . . . , an]))|

=
|[−4 : −µ]− [−4;−2 : −µ]|
|[−5; 2 : µ]− [−4;−2 : −µ]|

([−5; 2 : µ] + ω)

([−4 : −µ] + ω)
> 2.76375.

When n is odd:

Ii
Tb,b+1([a0; a1, . . . , an])

I2i
T2,5([a0; a1, . . . , an, b])

I2i+1

T−5,−2([a0; a1, . . . , an, b+ 1])

When n is even:

Ii
Tb,b+1([a0; a1, . . . , an])

I2i
T−5,−2([a0; a1, . . . , an, b+ 1])

I2i+1

T2,5([a0; a1, . . . , an, b])
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T2,5([a0; a1, . . . , an])

For T2,5([a0; a1, . . . , an]), the gap g(T2,5([a0; a1, . . . , an])) is defined as the open interval with end-
points P3−([a0; a1, . . . , an]) and P3+([a0; a1, . . . , an]), with the remaining intervals T2,3([a0; a1, . . . , an])
and T3,5([a0; a1, . . . , an]).
Now the density ratio can be calculated using I− = [2 : µ], C− = [3 : −µ], C+ = [3 : µ], and
I+ = [5 : −µ]

|T2,3([a0; a1, . . . , an])|
|g(T2,5([a0; a1, . . . , an]))|

=
|[2 : µ]− [3 : −µ]|
|[3 : −µ]− [3 : µ]|

([3 : µ] + ω)

([2 : µ] + ω)
> 1.88937

and

|T3,5([a0; a1, . . . , an])|
|g(T2,5([a0; a1, . . . , an]))|

=
|[5 : −µ]− [3 : µ]|
|[3 : −µ]− [3 : µ]|

([3 : −µ] + ω)

([5 : −µ] + ω)
> 1.97434

When n is odd:

Ii
T2,5([a0; a1, . . . , an])

I2i
T2,3([a0; a1, . . . , an])

I2i+1

T3,5([a0; a1, . . . , an])

When n is even:

Ii
T2,5([a0; a1, . . . , an])

I2i
T3,5([a0; a1, . . . , an])

I2i+1

T2,3([a0; a1, . . . , an])

T3,5([a0; a1, . . . , an])

For T3,5([a0; a1, . . . , an]), the gap g(T3,5([a0; a1, . . . , an])) is defined as the open interval with end-
points P4−([a0; a1, . . . , an]) and P4+([a0; a1, . . . , an]), with the remaining intervals T3,4([a0; a1, . . . , an])
and T4,5([a0; a1, . . . , an]).
In this case, the density ratio can be calculated using I− = [3 : µ], C− = [4 : −µ], C+ = [4 : µ],
and I+ = [5 : −µ]

|T3,4([a0; a1, . . . , an])|
|g(T3,5([a0; a1, . . . , an]))|

=
|[3 : µ]− [4 : −µ]|
|[4 : −µ]− [4 : µ]|

([4 : µ] + ω)

([3 : µ] + ω)
> 1.76035

and

|T4,5([a0; a1, . . . , an])|
|g(T3,5([a0; a1, . . . , an]))|

=
|[5 : −µ]− [4 : µ]|
|[4 : −µ]− [4 : µ]|

([4 : −µ] + ω)

([5 : −µ] + ω)
> 1.06122
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When n is odd:

Ii
T3,5([a0; a1, . . . , an])

I2i
T3,4([a0; a1, . . . , an])

I2i+1

T4,5([a0; a1, . . . , an])

When n is even:

Ii
T3,5([a0; a1, . . . , an])

I2i
T4,5([a0; a1, . . . , an])

I2i+1

T3,4([a0; a1, . . . , an])

T−5,−2([a0; a1, . . . , an])

For T−5,−2([a0; a1, . . . , an]), the gap g(T−5,−2([a0; a1, . . . , an])) is defined as the open interval with
endpoints P−3−([a0; a1, . . . , an]) and P−3+([a0; a1, . . . , an]).
The remaining intervals are T−5,−3([a0; a1, . . . , an]) and T−3,−2([a0; a1, . . . , an]).

|T−5,−3([a0; a1, . . . , an])|
|g(T−5,−2([a0; a1, . . . , an]))|

=
|T3,5([−a0;−a1, . . . ,−an])|
|g(T2,5([−a0;−a1, . . . ,−an]))|

> 1.97434

and

|T−3,−2([a0; a1, . . . , an])|
|g(T−5,−2([a0; a1, . . . , an]))|

=
|T2,3([−a0;−a1, . . . ,−an])|
|g(T2,5([−a0;−a1, . . . ,−an]))|

> 1.88937

When n is odd:

Ii
T−5,−2([a0; a1, . . . , an])

I2i
T−5,−3([a0; a1, . . . , an])

I2i+1

T−3,−2([a0; a1, . . . , an])

When n is even:

Ii
T−5,−2([a0; a1, . . . , an])

I2i
T−3,−2([a0; a1, . . . , an])

I2i+1

T−5,−3([a0; a1, . . . , an])
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T−5,−3([a0; a1, . . . , an])

For T−5,−3([a0; a1 . . . , an]), the gap g(T−5,−3([a0; a1, . . . , an])) is defined as the open interval with
endpoints P−4−([a0; a1, . . . , an]) and P−4+([a0; a1, . . . , an]).

The remaining intervals are T−5,−4([a0; a1, . . . , an]) and T−4,−3([a0; a1, . . . , an]).

|T−5,−4([a0; a1, . . . , an])|
|g(T−5,−3([a0; a1, . . . , an]))|

=
|T4,5([−a0;−a1, . . . ,−an])|
|g(T3,5([−a0;−a1, . . . ,−an]))|

> 1.06122

and

|T−4,−3([a0; a1, . . . , an])|
|g(T−5,−3([a0; a1, . . . , an]))|

=
|T3,4([−a0;−a1, . . . ,−an])|
|g(T3,5([−a0;−a1, . . . ,−an]))|

> 1.76035

When n is odd:

Ii
T−5,−3([a0; a1 . . . , an])

I2i
T−5,−4([a0; a1, . . . , an])

I2i+1

T−4,−3([a0; a1, . . . , an])

When n is even:

Ii
T−5,−3([a0; a1 . . . , an])

I2i
T−4,−3([a0; a1, . . . , an])

I2i+1

T−5,−4([a0; a1, . . . , an])

3.2 Construction of the Cantor Set

By describing the interval types and the corresponding gaps, we can now create a Cantor set:

Definition 47. We define the Cantor set CNICF = (T0,1, g). The size of the initial interval T0,1 is
at least 0.58256 and the density ratio is at least 1.06122.

We will prove CNICF = NICF∗5 \Q, which will take some lemmas.

Lemma 48. For the intervals Ii in the construction of CNICF, for every n ≥ 1, if [a0; a1, . . . , an] ∈
NICF∗5 with an ∈ {−5,−4,−3, 2, 3, 4}, then there exists some i ≥ 4n such that

Ii = Tan,an+1([a0; a1, . . . , an−1]).

We also have the following lemma:

Lemma 49. For the intervals Ii in the construction of CNICF, for every n ≥ 1, if [a0; a1, . . . , an] ∈
NICF∗5 with an ∈ {−4,−3,−2, 3, 4, 5}, then there exists some i ≥ 4n such that

Ii = Tan−1,an([a0; a1, . . . , an−1]).
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The proofs of Lemma 48 and Lemma 49 are intertwined. We prove them using one induction
argument and when proving the (n+ 1)-case, we use both induction hypotheses. Since they show
such similarity, this is a nice way to prove these lemmas.

Proof of Lemma 48 and Lemma 49. By induction on n.
Base case: n = 1:

I1
T0,1

I2
T2,5([0])

I4
T3,5([0])

I8
T4,5([0])

I9
T3,4([0])

I5
T2,3([0])

I3
T−5,−2([1])

I6
T−3,−2([1])

I7
T−5,−3([1])

I14
T−4,−3([1])

I15
T−5,−4([1])

If a1 ∈ {−5,−4,−3,−2} then a0 = 1 and:

• I15 = T−5,−4([1]);

• I14 = T−4,−3([1]);

• I6 = T−3,−2([1]).

If a1 ∈ {2, 3, 4, 5} then a0 = 0 and:

• I5 = T2,3([0]);

• I9 = T3,4([0]);

• I8 = T4,5([0]).

Induction Hypothesis: Given n ≥ 1, for all [a0; a1, ..., an] ∈ NICF∗5 with an ∈ {−5,−4,−3, 2, 3, 4}
there exists an i ≥ 4n such that Ii = Tan,an+1([a0; a1, ..., an−1]). And if an ∈ {−4,−3,−2, 3, 4, 5}
there exists an i ≥ 4n such that Ii = Tan−1,an([a0; a1, ..., an−1]).
Induction step, we need to prove: for all [a0; a1, ..., an, an+1] ∈ NICF∗5, if an+1 ∈ {−5,−4,−3, 2, 3, 4}
then there exists an i ≥ 4n+1 such that Ii = Tan+1,an+1+1([a0; a1, ..., an]), and if
an+1 ∈ {−4,−3,−2, 3, 4, 5} then there exists an i ≥ 4n+1 such that Ii = Tan+1−1,an+1([a0; a1, ..., an]).
Let [a0; a1, ..., an, an+1] ∈ NICF∗5, so an+1 ∈ {−5,−4,−3,−2, 2, 3, 4, 5}.
We make case distinctions whether an+1 ∈ {−5,−4,−3,−2} or an+1 ∈ {2, 3, 4, 5}, and whether n
is odd or even.
Case 1: If an+1 ∈ {−5,−4,−3,−2}, then an ∈ {−4,−3,−2, 3, 4, 5}, so with the Induction Hypoth-
esis there exists j ≥ 4n such that Ij = Tan−1,an([a0; a1, ..., an−1]).
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Case 1a: If n is even:

Ij
Tan−1,an([a0; a1, ..., an−1])

I2j
T2,5([a0; a1, ..., an − 1])

I2j+1

T−5,−2([a0; a1, ..., an])

I4j+2

T−3,−2([a0; a1, ..., an])
I4j+3

T−5,−3([a0; a1, ..., an])

I8j+6

T−4,−3([a0; a1, ..., an])
I8j+7

T−5,−4([a0; a1, ..., an])

From this we can conclude:

• I8j+7 = T−5,−4([a0; a1, ..., an]);

• I8j+6 = T−4,−3([a0; a1, ..., an]);

• I4j+2 = T−3,−2([a0; a1, ..., an]).

Case 1b: If n is odd:

Ij
Tan−1,an([a0; a1, ..., an−1])

I2j
T−5,−2([a0; a1, ..., an])

I4j
T−5,−3([a0; a1, ..., an])

I8j
T−5,−4([a0; a1, ..., an])

I8j+1

T−4,−3([a0; a1, ..., an])

I4j+1

T−3,−2([a0; a1, ..., an])

I2j+1

T2,5([a0; a1, ..., an − 1])

From this we can conclude:

• I8j = T−5,−4([a0; a1, ..., an]);

• I8j+1 = T−4,−3([a0; a1, ..., an]);

• I4j+1 = T−3,−2([a0; a1, ..., an]).

Case 2: If an+1 ∈ {2, 3, 4, 5}, then an ∈ {−5,−4,−3, 2, 3, 4}, so with the Induction Hypothesis
there exists j ≥ 4n such that Ij = Tan,an+1([a0; a1, ..., an−1]).
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Case 2a: If n is even:

Ij
Tan,an+1([a0; a1, ..., an−1])

I2j
T2,5([a0; a1, ..., an])

I4j
T3,5([a0; a1, ..., an])

I8j
T4,5([a0; a1, ..., an])

I8j+1

T3,4([a0; a1, ..., an])

I4j+1

T2,3([a0; a1, ..., an])

I2j+1

T−5,−2([a0; a1, ..., an + 1])

From this we can conclude:

• I4j+1 = T2,3([a0; a1, ..., an]);

• I8j = T3,4([a0; a1, ..., an]);

• I8j+1 = T4,5([a0; a1, ..., an]).

Case 2b: If n is odd:

Ij
Tan,an+1([a0; a1, ..., an−1])

I2j
T−5,−2([a0; a1, ..., an + 1])

I2j+1

T2,5([a0; a1, ..., an])

I4j+2

T2,3([a0; a1, ..., an])
I4j+3

T3,5([a0; a1, ..., an])

I8j+6

T3,4([a0; a1, ..., an])
I8j+7

T4,5([a0; a1, ..., an])

From this we can conclude:

• I4j+2 = T2,3([a0; a1, ..., an]);

• I8j+6 = T3,4([a0; a1, ..., an]);

• I8j+7 = T4,5([a0; a1, ..., an]).

This concludes our proof.

45



Theorem 50. NICF∗5 \Q ⊆ CNICF

Proof. For every x = [a0; a1, ...] ∈ NICF∗5 \Q we have [0 : µ] ≤ x ≤ [1 : −µ], so x ∈ T0,1.
We continue by showing that there exists no i such that x ∈ g(Ii).
Proof by contradiction: Suppose that there exists an i such that x ∈ g(Ii). Take n ≥ 2 such
that 4n > i. We know that [a0; a1, ..., an+1] ∈ NICF∗5. We make a case distinction whether
an+1 ∈ {2, 3, 4, 5} or an+1 ∈ {−5,−4,−3,−2}.
Case 1: If an+1 ∈ {2, 3, 4, 5}, then an ∈ {−5,−4,−3, 2, 3, 4}. So by Lemma 48 there exists some
j ≥ 4n > i such that Ij = Tan,an+1([a0; a1, ..., an − 1]), with x ∈ Ij . Because j > i, we have
g(Ii) ∩ Ij = ∅. Contradiction.
Case 2: If an+1 ∈ {−5,−4,−3,−2}, then an ∈ {−4,−3,−2, 3, 4, 5}. So by Lemma 49 there exists
some j ≥ 4n > i such that Ij = Tan−1,an([a0; a1, ..., an − 1]), with x ∈ Ij . Because j > i, we have
g(Ii) ∩ Ij = ∅. Contradiction.

A first step towards proving CNICF ⊆ NICF∗5 \Q (Theorem 54) is proving that for every
x /∈ NICF∗5 \Q we have x /∈ T0,1 or there exists an i such that x ∈ g(Ii).
For x /∈ NICF∗5 at least one of the following rules must be true (logical negation of x ∈ NICF∗5):

1. a0 /∈ {0, 1};

2. a0 = 0 and a1 < 0;

3. a0 = 1 and a1 > 0;

4. for some i ≥ 1, |ai| ≥ 6;

5. for some i ≥ 1, ai = 5 and ai+1 > 0;

6. for some i ≥ 1, ai = −5 and ai+1 < 0.

Theorem 51. Given x = [a0; a1, . . . , an−1 : an + r], with 0 ≤ x ≤ 1 and |r| ≤ 1
µ . If for each

i ≤ n, |[ai; ai+1, ai+2, . . . : an + r]| ≤ µ, then: [a0; a1, . . . , an−1, an] ∈ NICF∗5 and if n ≥ 1, then
an ∈ {−4,−3,−2, 2, 3, 4}.

Proof. We will write ri (remainder) as xi− ai in the construction of NICF, so ri = 1
[ai+1;ai+2,...]

and

x = [a0; a1, . . . , ai−1 : ai + ri]. Note that for every i we have |ri| ≤ 1
2 .

Proof by contradiction: suppose that x /∈ NICF∗5. By a case distinction, it then leads to (at least)
one of the following contradictions:

1. a0 /∈ {0, 1}: either a0 ≤ −1, such that x = a0 + r0 ≤ −1
2 < 0, or a0 ≥ 2, such that

x = a0 + r0 ≥ 3
2 > 1;

2. a0 = 0 and a1 < 0: r0 < 0, so x = a0 + r0 < 0;

3. a0 = 1 and a1 > 0: r0 > 0, so x = a0 + r0 > 1;

4. ∃1≤i≤n with |ai| ≥ 6: |[ai; ai+1, . . . , an]| > |ai| − ri ≥ 6− 1
2 > µ;

5. ∃1≤i<n with ai = 5 and ai+1 > 0: ri > 0 and [ai; ai+1, . . . , an] > 5 > µ;

6. ∃1≤i<n with ai = −5 and ai+1 < 0: ri < 0 and [ai; ai+1, . . . , an] < −5 < −µ.

Furthermore, if |an| = 5, then (take i = n) |[an + r]| > 5− 1
µ = µ.
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Theorem 52. If x = [a0; a1, . . . , an] ∈ NICF∗5 with n ≥ 1 and an ∈ {−4,−3,−2, 2, 3, 4}, then for
y = [a0; a1, . . . , an−1 : an + r] with |r| < 1

µ , there exists some i such that y ∈ g(Ii).

Proof. Note that, by construction of NICF, |an + r| ≥ 2.

• If n = 1 and a1 ∈ {2, 3, 4}, then a0 = 0. Since [0 : 4 + 1
2 ] ≤ y ≤ [0; 2], we know that y ∈ I1,

and that y /∈ I3:

– a1 = 2: y > [0; 2 : µ] = P2+([0]), so y /∈ I2, thus y ∈ g(I1);

– a1 = 3: [0; 3 : µ] < y < [0; 3 : −µ], so y ∈ g(I2);

– a1 = 4: [0; 4 : µ] < y < [0; 4 : −µ], so y ∈ g(I4).

• If n = 1 and a1 ∈ {−4,−3,−2}, then a0 = 1. Since [1;−2] ≤ y ≤ [1 : −4− 1
2 ], we know that

y ∈ I1, and that y /∈ I2:

– a1 = −2: y < [1;−2 : −µ] = P−2−([1]), so y /∈ I3, thus y ∈ g(I1);

– a1 = −3: [1;−3 : µ] < y < [1;−3 : −µ], so y ∈ g(I3);

– a1 = −4: [1;−4 : µ] < y < [1;−4 : −µ], so y ∈ g(I7).

• If n > 1, n even and a1 ∈ {2, 3, 4}, then an−1 ∈ {−5,−4,−3, 2, 3, 4}, thus there exists
an i such that Ii = Tan−1,an−1+1([a0; a1, . . . , an−2]). Since [a0; a1, . . . , an−1 : 4 + 1

2 ] < y ≤
[a0; a1, . . . , an−1, 2], we know that y ∈ Ii and that y /∈ I2i+1:

– a1 = 2: [a0; a1, . . . , an−1, 2 : µ] < y < [a0; a1, . . . , an−1, 2], so y /∈ I2i, thus y ∈ g(Ii);

– a1 = 3: [a0; a1, . . . , an−1, 3 : µ] < y < [a0; a1, . . . , an−1, 3 : −µ], so y ∈ g(I2i);

– a1 = 4: [a0; a1, . . . , an−1, 4 : µ] < y < [a0; a1, . . . , an−1, 4 : −µ], so y ∈ g(I4i).

• If n > 1, n odd and a1 ∈ {2, 3, 4}, then an−1 ∈ {−5,−4,−3, 2, 3, 4}, thus there exists an i such
that Ii = Tan−1,an−1+1([a0; a1, . . . , an−2]). Since [a0; a1, . . . , an−1, 2] ≤ y < [a0; a1, . . . , an−1 :
4 + 1

2 ], we know that y ∈ Ii and that y /∈ I2i:

– a1 = 2: [a0; a1, . . . , an−1, 2] ≤ y < [a0; a1, . . . , an−1, 2 : µ], so y /∈ I2i+1, thus y ∈ g(Ii);

– a1 = 3: [a0; a1, . . . , an−1, 3 : −µ] < y < [a0; a1, . . . , an−1, 3 : µ], so y ∈ g(I2i+1);

– a1 = 4: [a0; a1, . . . , an−1, 4 : −µ] < y < [a0; a1, . . . , an−1, 4 : µ], so y ∈ g(I4i+3).

• If n > 1, n even and a1 ∈ {−4,−3,−2}, then an−1 ∈ {−4,−3,−2, 3, 4, 5}, thus there exists
an i such that Ii = Tan−1−1,an−1([a0; a1, . . . , an−2]). Since [a0; a1, . . . , an−1 : −4 − 1

2 ] < y ≤
[a0; a1, . . . , an−1,−2], we know that y ∈ Ii and that y /∈ I2i:

– a1 = −2: [a0; a1, . . . , an−1,−2 : −µ] < y ≤ [a0; a1, . . . , an−1,−2], so y /∈ I2i+1, thus
y ∈ g(Ii);

– a1 = −3: [a0; a1, . . . , an−1,−3 : µ] < y < [a0; a1, . . . , an−1,−3 : −µ], so y ∈ g(I2i+1);

– a1 = −4: [a0; a1, . . . , an−1,−4 : µ] < y < [a0; a1, . . . , an−1,−4 : −µ], so y ∈ g(I4i+3).

• If n > 1, n odd and a1 ∈ {−4,−3,−2}, then an−1 ∈ {−4,−3,−2, 3, 4, 5}, thus there ex-
ists an i such that Ii = Tan−1−1,an−1([a0; a1, . . . , an−2]). Since [a0; a1, . . . , an−1,−2] ≤ y <
[a0; a1, . . . , an−1 : −4− 1

2 ], we know that y ∈ Ii and that y /∈ I2i+1:
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– a1 = −2: [a0; a1, . . . , an−1,−2] ≤ y < [a0; a1, . . . , an−1,−2 : −µ], so y /∈ I2i, thus
y ∈ g(Ii);

– a1 = −3: [a0; a1, . . . , an−1,−3 : −µ] < y < [a0; a1, . . . , an−1,−3 : µ], so y ∈ g(I2i);

– a1 = −4: [a0; a1, . . . , an−1,−4 : −µ] < y < [a0; a1, . . . , an−1,−4 : µ], so y ∈ g(I4i).

Theorem 53. If x = [a0; a1, . . .] ∈ R \ (Q ∩ NICF∗5) then x < 0 or x > 1 or there exists an n > 0
such that |[an; an+1, an+2, . . .]| > µ.

Proof. Take x = [a0; a1, . . .] ∈ R \ (Q ∩ NICF∗5), then, because x /∈ NICF∗5, (at least) one of the
following arguments is true:

1. a0 /∈ {0, 1}: either a0 ≤ −1, such that x = a0 + r0 ≤ −1
2 < 0, or a0 ≥ 2, such that

x = a0 + r0 ≥ 3
2 > 1;

2. a0 = 0 and a1 < 0: r0 < 0, so x = a0 + r0 < 0;

3. a0 = 1 and a1 > 0: r0 > 0, so x = a0 + r0 > 1;

4. ∃1≤i≤n with |ai| ≥ 6: |[ai; ai+1, . . . , an]| > |ai| − ri ≥ 6− 1
2 > µ;

5. ∃1≤i<n with ai = 5 and ai+1 > 0: ri > 0 and [ai; ai+1, . . . , an] > 5 > µ;

6. ∃1≤i<n with ai = −5 and ai+1 < 0: ri < 0 and [ai; ai+1, . . . , an] < −5 < −µ.

Theorem 54. CNICF ⊆ NICF∗5 \Q

Proof. We will prove that for every x ∈ R, if x /∈ NICF∗5 \Q, then x /∈ I1 = T0,1 or there exists an i
such that x ∈ g(Ii).

If x < 0 or x > 1 then x /∈ I1, so let us assume 0 ≤ x ≤ 1. First we are going to show that there
exists some n such that x = [a0; a1, . . . , an−1 : an + r] and |r| < 1

µ :

• Suppose that x ∈ Q. Then there exists an n such that x = [a0; a1, . . . , an] = [a0; a1, . . . : an+r]
where r = 0.

• Suppose that x /∈ Q, say x = [a0; a1, . . .]. So x ∈ R \ (Q ∩ NICF∗5). With Theorem 53,
there exists some n > 0 such that |[an; an+1, an+2, . . .]| > µ. Let r = 1

[an;an+1,an+2,...]
, then

x = [a0; a1, . . . , an−2 : an−1 + r] and |r| < 1
µ .

We can define k as the smallest n such that x = [a0; a1, . . . , an−1 : an + rn] with |rn| < 1
µ .

Now we know that x = [a0; a1, . . . , ak−1 : ak + rk] and |rk| < 1
µ and, when we represent x as

[a0; a1, . . . , al−1 : al + rl], because |rl| ≤ 1
µ , we have [al+1; al+2, . . . , ak−1 : ak + rk] > µ.

• Suppose that k = 0: We have x = a0 + r, so x < 0 + µ or x > 1− µ, so x /∈ I1.

• Suppose that k > 0, with Theorem 51, we know that [a0; a1, . . . , ak−1, ak] ∈ NICF∗5 and
ak ∈ {−4,−3,−2, 2, 3, 4}. Then, with Theorem 52, we know that there exists an i such that
x ∈ g(Ii).
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3.3 CNICF + CNICF

Theorem 55. For every x ∈ R ∩ [ 2µ , 2−
2
µ ], there exist a, b ∈ CNICF such that a+ b = x.

Proof. CNICF is a Cantor set with initial interval [ 1µ , 1−
1
µ ], and has a density ratio bigger than 1.

We can now use Theorem 34, as x
x+1 ≥

1
2 if x ≥ 1, and I11 = I21

Theorem 56. For every x ∈ R ∩ [12 ,
3
2 ], there exist a, b ∈ NICF5 such that a+ b = x.

Proof. Because [12 ,
3
2 ] ⊂ [ 2µ , 2−

2
µ ], we can apply Theorem 55, so there exist a, b ∈ CNICF such that

a+ b = x. Because CNICF = NICF∗5 \Q and (NICF∗5 \Q) ⊂ NICF5, we have a, b ∈ NICF5.

Now we can prove our main result of this chapter:

Proof of Theorem 41. We can write x as y+n with n ∈ Z and y ∈ [12 ,
3
2 ]. We know that there exist

a, b ∈ NICF5 such that a+ b = y, so (a+ n) + b = x, with a+ n and b in NICF5.
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Chapter 4

NICF4+NICF4 6= R

In this chapter, we are going to give a counterexample to NICF4 + NICF4 = R. First, recall
Definition 9 with r = 4.

Definition. NICF4 is a subset of R, containing only the numbers representable by a Nearest Integer
Continued Fraction where every coefficient except possibly the first has absolute value less than or
equal to 4:

NICF4 = {x : x ∈ R | x = [a0; a1, a2, . . .] ∈ NICF and ∀i≥1|ai| ≤ 4}

Lemma 57. For every x, y ∈ NICF4 there exists x′ and y′ in NICF4 with integer part 0 such that
x′ + y′ ≡ x+ y mod 1.

Proof. Let x, y ∈ NICF4, set x′ = x−bxe and y′ = y−bye, then x+y = bxe+bye+x′+y′ ≡ x′+y′

mod 1. As x, y ∈ [−1
2 ,

1
2), their integer part is 0.

Definition 58. Let

NICF\Q = NICF4 ∩ [−1

2
,
1

2
) \Q

and

NICFQ = NICF4 ∩ [−1

2
,
1

2
) ∩ Q.

We will show that:

1. (NICF\Q + NICF\Q) ∩ ([−0.627705,−0.627695] ∪ [0.372295, 0.372305]) = ∅;

2. NICFQ + NICFQ is a countable set;

3. NICF\Q + NICFQ has a Lebesgue measure of 0.

Lemma 59. [0; 4, 2] is the smallest value above zero in NICF\Q, and [0; 2, 4] is the largest value

below 1
2 in NICF\Q.
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Proof. Suppose x and y are respectively the smallest value above zero and the largest value below
1
2 in NICF\Q. We know both x and y start with a zero, followed by a positive number. For
[0, a1, a2, . . .] ∈ NICF\Q with a1 > 0 we know that

1

a1 + 1
2

≤ [0, a1, a2, . . .] ≤
1

a1 − 1
2

.

Also

[0, a1, a2, . . .] =
1

a1 + [0; a2, a3, . . .]
,

so x = [0 : 4 + y] and y = [0 : 2 + x].

Definition 60. The set NICF4〈a1, . . . , an〉 is the subset of NICF\Q in which the first n+ 1 coeffi-
cients are equal to 0, a1, . . . , an:

NICF4〈a1, . . . , an〉 = {x ∈ NICF\Q |∃y, x = [0; a1, . . . , an : y]}

The infimum of NICF4〈a1, . . . , an〉 is

[0; a1, . . . , an, 4, 2] if an = 2;

[0; a1, . . . , an,−2,−4] otherwise.

The supremum of NICF4〈a1, . . . , an〉 is

[0; a1, . . . , an,−4,−2] if an = −2;

[0; a1, . . . , an, 2, 4] otherwise.

We can now fill a table with NICF4〈a1, . . . , an〉 for different values of 〈a1, . . . , an〉, see Table 4.1.
Every element of NICF\Q is included in one of these sets, and therefore lies in one of the covering
intervals.
The sum of each combination of two covering intervals does not overlap with either of the intervals
[−0.627705,−0.627695] and [0.372295, 0.372305]. We only show the combinations of intervals that
are most relevant. For each combination of intervals I, J there exists a sum I ′+J ′ in the list below
such that I ′ ≥ I and J ′ ≥ J , or I ′ ≤ I and J ′ ≤ J .
The sums closest to [−0.627705,−0.627695]:

〈−2,−4〉+ 〈4〉 = [−0.44949,−0.43827] + [0.22474, 0.28165] = [−0.22475,−0.15662]

〈−2,−2〉+ 〈−4,−2〉 = [−0.41524,−0.40824] + [−0.22685,−0.22474] = [−0.66356,−0.64278]

〈−3, 2, 4, 2〉+ 〈−4,−4, 4〉 = [−0.39208,−0.39201] + [−0.23448,−0.23425] = [−0.62656,−0.62626]

〈−3, 2, 4, 4〉+ 〈−4,−4,−4〉 = [−0.39181,−0.39170] + [−0.23621,−0.23603] = [−0.62802,−0.62773]

〈−3, 2, 4,−4〉+ 〈−4,−4,−2〉 = [−0.39086,−0.39073] + [−0.23671,−0.23658] = [−0.62757,−0.62731]

〈−3, 4,−4〉+ 〈−4, 4, 2〉 = [−0.36616,−0.36561] + [−0.26504,−0.26488] = [−0.63120,−0.63049]

〈−3, 4, 4〉+ 〈−4, 4, 4〉 = [−0.36189,−0.36147] + [−0.26573,−0.26550] = [−0.62762,−0.62697]

〈−3, 4, 2〉+ 〈−4, 4,−4〉 = [−0.36061,−0.36032] + [−0.26803,−0.26772] = [−0.62864,−0.62804]

〈−3,−4〉+ 〈−3,−4〉 = [−0.31011,−0.30472] + [−0.31011,−0.30472] = [−0.62022,−0.60944]

The sums closest to [0.372295, 0.372305]:

〈−4,−2〉+ 〈2〉 = [−0.22685,−0.22474] +[0.40824, 0.44949] = [0.18139, 0.22475]

〈4〉+ 〈4〉 = [0.22474, 0.28165] +[0.22474, 0.28165] = [0.44948, 0.56330]
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Lemma 61. NICFQ + NICFQ ∩([−0.627705,−0.627695] ∪ [0.372295, 0.372305]) = ∅
Proof. Let I be the union of intervals in the above table. NICFQ is a subset of I, and

I + I ∩ ([−0.627705,−0.627695] ∪ [0.372295, 0.372305]) = ∅.

Lemma 62. NICF\Q has Lebesgue-measure 0.

Proof. There exists an ε > 0 such that for each x, y ∈ R, with x < y, there exist x′ and y′ such
that x ≤ x′ < y′ ≤ y, [x′, y′] ∩ NICF\Q = ∅ and y′−x′

y−x ≥ ε. We also know that NICF\Q is a subset

of the interval [−1
2 ,

1
2 ]. This lets us create a sequence of sets of intervals S, such that the measure

of Si ≤ (1− ε)i and NICF\Q ⊆ Si. Let

S0 = {[−1

2
,
1

2
]},

and
Si+1 = {[x, x′], [y′, y] : [x, y] ∈ Si, x′, y′ as above}.

Remark 63. NICFQ is a countable set.

Lemma 64. The set {x+ y | x ∈ NICFQ, y ∈ NICF\Q} has Lebesgue-measure 0.

Proof. NICF\Q has Lebesgue-measure 0 and there are only a countably infinite number of elements
in NICFQ. Because of the subadditivity of Lebesgue-measure, we have

µ(NICFQ + NICF\Q) ≤ µ(
⋃

x∈NICFQ

x+ NICF\Q) ≤
∑

x∈NICFQ

µ(NICF\Q) = 0.

Lemma 65. NICFQ + NICFQ has Lebesgue-measure 0.

Proof. NICFQ + NICFQ is a subset of Q + Q = Q, which is a countable set. Every countable set
has Lebesque measure 0.

Theorem 66. NICF4 + NICF4 6= R

Proof. Proof by contraposition. Suppose for every x ∈ R there exists a, b ∈ NICF4 such that
a+ b = x. By Lemma 57, we have that for each x ∈ R, there exists a′, b′ ∈ NICF\Q ∪NICFQ such
that a′+ b′ ≡ x mod 1. Thus {a′+ b′ mod 1 | a′, b′ ∈ NICF\Q ∪NICFQ} has Lebesgue measure 1.
We will split this set in 3 parts:

• {a′ + b′ mod 1 | a′, b′ ∈ NICF\Q}:
Because NICF\Q ⊆ [−1

2 ,
1
2), and Lemma 61, we know that {a′+b′ mod 1 | a′, b′ ∈ NICF\Q}∩

[0.372295, 0.372305] = ∅, thus the Lebesgue measure of {a′ + b′ mod 1 | a′, b′ ∈ NICF\Q} is
smaller than or equal to 0.99999.

• {a′ + b′ mod 1 | a′ ∈ NICFQ, b
′ ∈ NICF\Q}:

By Lemma 64, the Lebesgue measure of {a′ + b′ mod 1 | a′ ∈ NICFQ, b
′ ∈ NICF\Q} is 0.

• {a′ + b′ mod 1 | a′, b′ ∈ NICFQ}:
By Lemma 65, {a′ + b′ mod 1 | a′, b′ ∈ NICFQ} has Lebesgue measure 0.

The union of these 3 parts has Lebesgue measure at most 0.99999. Which leads to a contradiction
with: {a′ + b′ mod 1 | a′, b′ ∈ NICF\Q ∪NICFQ} has Lebesgue measure 1.
Therefore, NICF4 + NICF4 6= R.
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fixed coeff. minimum maximum covering interval
〈−2,−4〉 [0;−2,−4] [0;−2,−4, 2, 4] [−0.44949,−0.43827]
〈−2,−3〉 [0;−2,−3,−2,−4] [0;−2,−3, 2, 4] [−0.43671,−0.41804]
〈−2,−2〉 [0;−2,−2,−2,−4] [0;−2,−2,−4] [−0.41524,−0.40824]

〈−3, 2, 4, 2〉 [0;−3, 2, 4] [0;−3, 2, 4, 2, 2, 4] [−0.39208,−0.39201]
〈−3, 2, 4, 3〉 [0;−3, 2, 4, 3,−2,−4] [0;−3, 2, 4, 3, 2, 4] [−0.39199,−0.39181]
〈−3, 2, 4, 4〉 [0;−3, 2, 4, 4,−2,−4] [0;−3, 2, 4, 4, 2, 4] [−0.39181,−0.39170]
〈−3, 2, 4,−4〉 [0;−3, 2, 4,−4,−2,−4] [0;−3, 2, 4,−4, 2, 4] [−0.39086,−0.39073]
〈−3, 2, 4,−3〉 [0;−3, 2, 4,−3,−2,−4] [0;−3, 2, 4,−3, 2, 4] [−0.39072,−0.39049]
〈−3, 2, 4,−2〉 [0;−3, 2, 4,−2,−2,−4] [0;−3, 2, 4,−2,−4] [−0.39046,−0.39036]
〈−3, 2, 3〉 [0;−3, 2, 3, 2, 4] [0;−3, 2, 3,−2,−4] [−0.39013,−0.38730]
〈−3, 2, 2〉 [0;−3, 2, 2, 2, 4] [0;−3, 2, 2, 4] [−0.38689,−0.38583]
〈−3, 3〉 [0;−3, 3,−2,−4] [0;−3, 3, 2, 4] [−0.38345,−0.36898]

〈−3, 4,−2〉 [0;−3, 4,−2,−4] [0;−3, 4,−2,−2,−4] [−0.36788,−0.36743]
〈−3, 4,−3〉 [0;−3, 4,−3, 2, 4] [0;−3, 4,−3,−2,−4] [−0.36727,−0.36623]
〈−3, 4,−4〉 [0;−3, 4,−4, 2, 4] [0;−3, 4,−4,−2,−4] [−0.36616,−0.36561]
〈−3, 4, 4〉 [0;−3, 4, 4, 2, 4] [0;−3, 4, 4,−2,−4] [−0.36189,−0.36147]
〈−3, 4, 3〉 [0;−3, 4, 3, 2, 4] [0;−3, 4, 3,−2,−4] [−0.36142,−0.36070]
〈−3, 4, 2〉 [0;−3, 4, 2, 2, 4] [0;−3, 4, 2, 4] [−0.36061,−0.36032]
〈−3,−4〉 [0;−3,−4,−2,−4] [0;−3,−4, 2, 4] [−0.31011,−0.30472]
〈−3,−3〉 [0;−3,−3,−2,−4] [0;−3,−3, 2, 4] [−0.30397,−0.29480]
〈−3,−2〉 [0;−3,−2,−2,−4] [0;−3,−2,−4] [−0.29341,−0.28989]
〈−4, 2〉 [0;−4, 2, 4] [0;−4, 2, 2, 4] [−0.28165,−0.27841]
〈−4, 3〉 [0;−4, 3,−2,−4] [0;−4, 3, 2, 4] [−0.27717,−0.26953]

〈−4, 4,−2〉 [0;−4, 4,−2,−4] [0;−4, 4,−2,−2,−4] [−0.26894,−0.26870]
〈−4, 4,−3〉 [0;−4, 4,−3, 2, 4] [0;−4, 4,−3,−2,−4] [−0.26862,−0.26806]
〈−4, 4,−4〉 [0;−4, 4,−4, 2, 4] [0;−4, 4,−4,−2,−4] [−0.26803,−0.26772]
〈−4, 4, 4〉 [0;−4, 4, 4, 2, 4] [0;−4, 4, 4,−2,−4] [−0.26573,−0.26550]
〈−4, 4, 3〉 [0;−4, 4, 3, 2, 4] [0;−4, 4, 3,−2,−4] [−0.26548,−0.26508]
〈−4, 4, 2〉 [0;−4, 4, 2, 2, 4] [0;−4, 4, 2, 4] [−0.26504,−0.26488]

〈−4,−4,−2〉 [0;−4,−4,−2,−4] [0;−4,−4,−2,−2,−4] [−0.23671,−0.23658]
〈−4,−4,−3〉 [0;−4,−4,−3, 2, 4] [0;−4,−4,−3,−2,−4] [−0.23654,−0.23623]
〈−4,−4,−4〉 [0;−4,−4,−4, 2, 4] [0;−4,−4,−4,−2,−4] [−0.23621,−0.23603]
〈−4,−4, 4〉 [0;−4,−4, 4, 2, 4] [0;−4,−4, 4,−2,−4] [−0.23448,−0.23425]
〈−4,−4, 3〉 [0;−4,−4, 3, 2, 4] [0;−4,−4, 3,−2,−4] [−0.23422,−0.23379]
〈−4,−4, 2〉 [0;−4,−4, 2, 2, 4] [0;−4,−4, 2, 4] [−0.23374,−0.23355]
〈−4,−3〉 [0;−4,−3,−2,−4] [0;−4,−3, 2, 4] [−0.23311,−0.22768]
〈−4,−2〉 [0;−4,−2,−2,−4] [0;−4,−2,−4] [−0.22685,−0.22474]

〈4〉 [0; 4, 2, 4] [0; 4,−2,−4] [0.22474, 0.28165]
〈3〉 [0; 3, 2, 4] [0; 3,−2,−4] [0.28989, 0.39208]
〈2〉 [0; 2, 2, 4] [0; 2, 4] [0.40824, 0.44949]

Table 4.1: Specific cases of NICF4〈a1, . . . , an〉 to include every element of NICF\Q
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Chapter 5

HCF√5+HCF√5 = C

In this chapter, we are going to define a simple closed curve in HCF√5, and show that it encloses

{a + bi | a, b ∈ [−1
2 ,

1
2 ] ⊂ R}. Together with the following lemma, this will enable us to show that

every element of C is the sum of two elements of HCF√5. First, recall Definition 12 with r =
√

5.

Definition. HCF√5 is a subset of C, containing only the numbers representable by a Hurwitz
complex continued fraction where every coefficient except possibly the first has absolute value less
than or equal to

√
5:

HCF√5 =
{
x : x ∈ C | x = [a0; a1, a2, . . .] ∈ HCF and ∀j≥1|aj | ≤

√
5
}

HCF√5 with first coefficient zero.
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Lemma 67. For every simple closed curve B ∈ C, Let X be the region enclosed by B, then for all
a, b ∈ X there exist c, d ∈ B such that a+ b equals c+ d.

Proof. Let X ′ be the closed region defined as X mirrored in the point a+b
2 , with boundary B′, the

simple closed curve defined by the mirror image of B in a+b
2 . We write y′ ∈ C as the image of y ∈ C

while mirrored in a+b
2 . Note that for all y ∈ C, y′+y = a+ b. Also note a′ = b ∈ X, so X ∩X ′ 6= ∅.

Case distinction:

• Case 1, X ′ = X: Then B = B′. For every c ∈ B there exists d ∈ B such that d′ = c, now
c+ d = d′ + d = a+ b.

• Case 2, X ′ 6= X:

Let B′′ be the boundary of X ∪ X ′ with B′′ ⊂ B ∪ B′. As X ∩ X ′ 6= ∅, B′′ is connected.
Because X ′ 6= X, either:

– there exists y ∈ X \X ′, then y′ ∈ X ′ \X; or

– there exists z ∈ X ′ \X, then z′ ∈ X \X ′.

We can conclude X 6⊂ X ′ and X ′ 6⊂ X, thus B′′ 6⊂ B and B′′ 6⊂ B′.
Because B′′ is connected, there exists c ∈ B ∪ B′ such that for all ε > 0, there exists δ ∈ B
and δ′ ∈ B′ such that both |δ− c| < ε and |δ′− c| < ε. By continuity of the curves B and B′,
we have c ∈ B ∩B′.
Let d = c′, with c′ ∈ B′ ∩B. Then c, d ∈ B and c+ d = c+ c′ = a+ b.

We start by defining a transition function δ√5 on the known set S, using the same names for Shapes
as before in Section 1.5. For every shape, the left picture depicts the shape in HCF, where the
first coefficient is bounded by

√
5. The right picture depicts the (pointwise) reciprocal of the left

picture.
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Square in HCF√5
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−i

−1

i

1

−i
−1

Given the coefficient aj + bj · i, the transition function δ√5 on S is defined by:
δ√5(S, aj + bj · i) =

MHCF if aj = 2 and bj = 0;

ρ(MHCF) if aj = 0 and bj = 2;

ρ2(MHCF) if aj = −2 and bj = 0;

ρ3(MHCF) if aj = 0 and bj = −2;

WHCF if aj = 1 and bj = 2,

or aj = 2 and bj = 1;

ρ(WHCF) if aj = −1 and bj = 2,

or aj = −2 and bj = 1;

ρ2(WHCF) if aj = −1 and bj = −2,

or aj = −2 and bj = −1;

ρ3(WHCF) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

JHCF if aj = 1 and bj = 1;

ρ(JHCF) if aj = −1 and bj = 1;

ρ2(JHCF) if aj = −1 and bj = −1;

ρ3(JHCF) if aj = 1 and bj = −1.
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Moonshaped in HCF√5

i
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−1

i

1
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−1

Given the coefficient aj + bj · i, the transition function δ√5 on M is defined by:
δ√5(M,aj + bj · i) =

MHCF if aj = 2 and bj = 0;

ρ(MHCF) if aj = 0 and bj = 2;

ρ3(MHCF) if aj = 0 and bj = −2;

WHCF if aj = 1 and bj = 2,

or aj = 2 and bj = 1;

ρ3(WHCF) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

JHCF if aj = 1 and bj = 1;

ρ3(JHCF) if aj = 1 and bj = −1.

Without-a-corner in HCF√5

Given the coefficient aj + bj · i, the transition function δ√5 on W is defined by:
δ√5(W,aj + bj · i) =

MHCF if aj = 2 and bj = 0;

ρ(MHCF) if aj = 0 and bj = 2;

or aj = −1 and bj = 2;

ρ2(MHCF) if aj = −2 and bj = 0;

or aj = −2 and bj = 1;

ρ3(MHCF) if aj = 0 and bj = −2;

WHCF if aj = 1 and bj = 2,
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or aj = 2 and bj = 1;

ρ2(WHCF) if aj = −1 and bj = −2,

or aj = −2 and bj = −1;

ρ3(WHCF) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

JHCF if aj = 1 and bj = 1;

ρ2(JHCF) if aj = −1 and bj = −1;

ρ3(JHCF) if aj = 1 and bj = −1.

Just-a-corner in HCF√5

i

1

−i

−1

i

1

−i
−1
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Given the coefficient aj + bj · i, the transition function δ√5 on J is defined by:
δ√5(J, aj + bj · i) =

MHCF if aj = 2 and bj = 0;

ρ3(MHCF) if aj = 0 and bj = −2;

ρ3(WHCF) if aj = 1 and bj = −2,

or aj = 2 and bj = −1;

ρ3(JHCF) if aj = 1 and bj = −1.

Just like for HCF, we define

δ√5(ρ(X, a+ bi) = (ρ3 ◦ δ√5)(X, ρ(a+ bi)).

For all other values, let δ√5(X, a+ bi) be the empty shape. In particular for all a+ bi ∈ Z[i]:

δ√5(EHCF, a+ bi) = EHCF.

We can now define a function Shape√5 which gives the shape corresponding to a sequence of
Gaussian integers.

Definition 68. Let Shape√5 : Z[i]∗ → S be inductively defined by:

Shape√5(λ) = SHCF

and
Shape√5(a1 . . . an) = δ√5(Shape√5(a0a1 . . . an−1), an).

We have for all a0, a1, . . . , an ∈ Z[i]:

Shape√5(a1 . . . an) 6= EHCF ⇐⇒ [a0; a1, . . . , an−1] ∈ HCF√5 .

And for all infinite sequences a0, a1, . . . ∈ Z[i]:

[a0; a1, . . .] ∈ HCF√5 ⇐⇒ ∀n[a0; a1, . . . , an] ∈ HCF√5 .

5.1 Initial segments

In this section, we are going to look at initial segments of HCF.

Definition 69. Given [x0;x1, . . .] ∈ HCF, we define x � n to be the initial segment of length n+ 1:

[x0;x1, . . .] � n := [x0;x1, . . . , xn].

With this, we can define partial bounds on HCF.

Definition 70. We call [x0;x1, . . .] ∈ HCF n-bounded if [x0;x1, . . .] � n ∈ HCF√5.

Trivially, if x is n-bounded, then for all m < n we have that x is m-bounded. Also, x ∈ HCF√5 if
and only if x is n-bounded for every n.
We can also define equivalence relations between points in HCF.
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Definition 71. We call x = [x0;x1, . . .] and y = [y0; y1, . . .] ∈ HCF n-equal if and only if x � n =
y � n, i.e., when

[x0;x1, . . . , xn] = [y0; y1, . . . , yn].

We will write this as
x ≡�n y.

With these definitions we are going to create rules for our simple closed curves.

Definition 72. A curve (in C) is a continuous function from [0, 1] to C.

Definition 73. A curve f is a simple closed curve if f(0) = f(1) and f is injective on [0, 1).

Definition 74. We call a curve f n-bounded if for every t ∈ [0, 1] we have that f(t) is n-bounded,
when seen as an element of HCF = C.

We will start by defining transition points.

Definition 75. A point x ∈ HCF√5 is called an n-transition point if for each ε there exists y ∈ C
with |y| < ε such that

x+ y 6≡�n x.

As we can see, n-transition points lie on the edge of the range of two different initial segments.
But as with every point in C, n-transition points have a value that has only one representation in
HCF. We therefore would like a non unique representation for these transition points so we can
define them to be n-equal to both adjacent constant intervals.

Definition 76. Given a0, a1, a2, . . . ∈ Z[i], such that for each n, [a0; a1, . . . , an] ∈ HCF we write
ba0; a1, a2, . . .e with

ba0; a1, a2, . . .e := a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

As intended, this representation has many similarities with continued fractions. Instead of having
a construction from a complex number to a sequence of Gaussian integers, we accept limit points
of finite HCF representations. Just like with continued fractions, we will also define a shorthand
version.

Definition 77. For all n and every x = ba0; a1, . . .e, if y = ban+1; an+2, . . .e

ba0; a1, a2, . . . , an : ye := x = a0 +
1

a1 +
1

a2 +
1

. . . +

...

an +
1

y

Of course, we have that

if x = [a0; a1, . . .] ∈ HCF, then ba0; a1, . . .e = x.
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5.2 Transition points in HCF√5

We are going to create transition points in HCF√5. We start by defining four edge points, these
are on the boundary of the range.

EL =
2−
√

7

2
− 1

2
i =[0;−1 + i : 1− 2i+ ED]

=[0;−1 + i, 1− 2i,−1 + i,−2 + i];

ED = −1

2
+

2−
√

7

2
i =[0;−1 + i : −2 + i+ EL]

=[0;−1 + i,−2 + i,−1 + i, 1− 2i];

ER =

√
7− 2

2
− 1

2
i =[0; 1 + i : −2i+ ED]

=[0; 1 + i,−2i,−1 + i,−2 + i,−1 + i, 1− 2i];

EU = −1

2
+

√
7− 2

2
i =[0;−1− i : −2 + EL]

=[0;−1− i,−2,−1 + i, 1− 2i,−1 + i,−2 + i].

To remove the need for quotation marks, we will write a‖b for the concatenation of the Gaussian
integers a and b.

Remark 78. We ignored edges in our Shape√5 function. So for the first coefficients of EL we
have:

Shape√5(−1 + i‖1− 2i)

= δ√5(Shape√5(−1 + i), 1− 2i)

= δ√5(ρ(JHCF), 1− 2i)

= (ρ ◦ δ√5)(JHCF,−2− i)
=E.

The reason for this is that all the numbers whose HCF√5-presentation start with [0;−1 + i, 1− 2i]

are on the line −1
2 + bi, which has an empty internal part.

When rotating these edge points, we find four more points. Here, we notice that the HCF√5
representation doesn’t start with a zero, but can be described as a limit of points represented in
HCF√5 starting with a zero. Therefore, we call these points limit points:

LL =
2−
√

7

2
+

1

2
i = i+ EL = [i;−1 + i : 1− 2i+ ED];

LD =
1

2
+

2−
√

7

2
i = 1 + ED = [1;−1 + i : −2 + i+ EL];

LR =

√
7− 2

2
+

1

2
i = i+ ER = [i; 1 + i : −2i+ ED];

LU =
1

2
+

√
7− 2

2
i = 1 + EU = [1;−1− i : −2 + EL].
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For these points, we have the following rotations:

ρ(EL) = LD ρ(ER) = LU

ρ(LD) = LR ρ(LU ) = LL

ρ(LR) = EU ρ(LL) = ED

ρ(EU ) = EL ρ(ED) = ER

These rotations also show other ways to describe the limit points, in our extended non-unique way.
This is done by rotating per coefficient.

LL = b0;−1− i, 2i, 1− i, 2− i, 1− i,−1 + 2ie;
LD = b0; 1 + i, 2, 1− i,−1 + 2i, 1− i, 2− ie;
LR = b0; 1− i,−1 + 2i, 1− i, 2− ie;
LU = b0; 1− i, 2− i, 1− i,−1 + 2ie.

and we can also describe the edge points in the same way:

EL = b−i;−1− i, 2i, 1− i, 2− i, 1− i,−1 + 2ie;
ED = b−1; 1 + i, 2, 1− i,−1 + 2i, 1− i, 2− ie;
ER = b−i; 1− i,−1 + 2i, 1− i, 2− ie;
EU = b−1; 1− i, 2− i, 1− i,−1 + 2ie.
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With these edge-points, we can define 16 Circle points:

C1 = [0 : 2 + ER] =[0 : 2− i+ LR] =ρ(C13);

C2 = [0 : 2− i+ ED] =[0 : 1− i+ LD] =ρ(C14);

C3 = [0 : 1− i+ ER] =[0 : 1− 2i+ LR] =ρ(C15);

C4 = [0 : 1− 2i+ ED] =[0 : −2i+ LD] =ρ(C16);

C5 = [0 : −2i+ ED] =[0 : −1− 2i+ LD] =ρ(C1);

C6 = [0 : −1− i+ EL] =[0 : −1− 2i+ LL] =ρ(C2);

C7 = [0 : −1− i+ ED] =[0 : −2− i+ LD] =ρ(C3);

C8 = [0 : −2 + EL] =[0 : −2− i+ LL] =ρ(C4);

C9 = [0 : −2 + i+ EL] =[0 : −2 + LL] =ρ(C5);

C10 = [0 : −1 + i+ EU ] =[0 : −2 + i+ LU ] =ρ(C6);

C11 = [0 : −1 + 2i+ EL] =[0 : −1 + i+ LL] =ρ(C7);

C12 = [0 : 2i+ EU ] =[0 : −1 + 2i+ LD] =ρ(C8);

C13 = [0 : 1 + 2i+ EU ] =[0 : 2i+ LU ] =ρ(C9);

C14 = [0 : 1 + 2i+ ER] =[0 : 1 + i+ LL] =ρ(C10);

C15 = [0 : 2 + i+ EU ] =[0 : 1 + i+ LU ] =ρ(C11);

C16 = [0 : 2 + i+ ER] =[0 : 2 + LR] =ρ(C12).

We will make use of the fact that the following points lie in the interior of the corresponding shapes:

• C1, . . . , C16 ∈ S;

• C1, C2, C15, and C16 ∈M ;

• C1, . . . , C6, C15, and C16 ∈W ;

64



• C1, . . . , C4 ∈ J.

With these, we can describe the edge points in terms of circle points:

EL = [0 : −1 + i+ C4] ER = [0 : 1 + i+ C5]

EU = [0 : −1− i+ C8] ED = [0 : −1 + i+ C9]

We can use the rotation rules to describe the limit points in terms of circle points.

LL = b0 : −1− i+ C13e LR = b0 : 1− i+ C12e
LU = b0 : 1− i+ C1e LD = b0 : 1 + i+ C16e

Example 79. We start with [c0; c1, . . . , cn] ∈ HCF√5 with Shape√5(c0c1 . . . cn) = ρ(MHCF).
We know C5 lies in ρ(MHCF), for C1 lies in MHCF, and ρ(C1) = C5.
We therefore have two ways to describe this point, as an edge point starting with [c0; c1, . . . , cn,−2i]
or as a limit point starting with [c0; c1, . . . , cn,−1 − 2i]. Both will have one way to describe them
as limit of finite sequences in HCF√5, as they lie on the edge.

[c0; c1, . . . : cn + C5] ∈ HCF√5

with Shape√5(c1 . . . cn) = ρ(MHCF)

=[c0; c1, . . . , cn : −2i+ ED]

with Shape√5(c1 . . . cn‖ − 2i) = ρ3(MHCF)

=[c0; c1, . . . , cn,−2i : −1 + i+ C9]

with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i) = ρ(JHCF)

=[c0; c1, . . . , cn,−2i,−1 + i : −2 + i+ EL]

=[c0; c1, . . . , cn,−2i,−1 + i : −2 + LL]

with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2) = ρ2(MHCF)

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i : −1− i+ C13e
with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i) = ρ2(JHCF)

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i : 1 + 2i+ EUe
=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i : 2i+ LUe

with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i‖2i) = ρ(MHCF)

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i, 2i : 1− i+ C1e
with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i‖2i‖1− i) = ρ3(JHCF)

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i, 2i, 1− i : 2 + ERe
with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i‖2i‖1− i‖2) = MHCF

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i, 2i, 1− i, 2 : 1 + i+ C5e

65



with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i‖2i‖1− i‖2‖1 + i) = JHCF

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i, 2i, 1− i, 2, 1 + i : −2i+ EDe
with Shape√5(c1 . . . cn‖ − 2i‖ − 1 + i‖ − 2‖ − 1− i‖2i‖1− i‖2‖1 + i‖ − 2i) = ρ3(MHCF)

=bc0; c1, . . . , cn,−2i,−1 + i,−2 + i,−1− i, 2i, 1− i, 2, 1 + ie

and:

[c0; c1, . . . : cn + C5] ∈ HCF√5

with Shape√5(c1 . . . cn) = ρ(MHCF)

=[c0; c1, . . . , cn : −1− 2i+ LD]

with Shape√5(c1 . . . cn‖ − 1− 2i) = ρ2(WHCF)

=bc0; c1, . . . , cn,−1− 2i : 1 + i+ C16e
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i) = JHCF

=bc0; c1, . . . , cn,−1− 2i, 1 + i : 2 + i+ ERe
=bc0; c1, . . . , cn,−1− 2i, 1 + i : 2 + LRe

with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2) = MHCF

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2 : 1− i+ C12e
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i) = ρ3(JHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i : 2i+ EUe
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i) = ρ(MHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i : −1− i+ C8e
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i‖ − 1− i) = ρ2(JHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i : −2 + ELe
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i‖ − 1− i‖ − 2) = ρ2(MHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i,−2 : −1 + i+ C4e
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i‖ − 1− i‖ − 2‖ − 1 + i) = ρ(JHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i,−2,−1 + i : 1− 2i+ EDe
=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i,−2,−1 + i : −2i+ LDe

with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i‖ − 1− i‖ − 2‖ − 1 + i‖ − 2i) = ρ3(MHCF)

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i,−2,−1 + i,−2i : 1 + i+ C16e
with Shape√5(c1 . . . cn‖ − 1− 2i‖1 + i‖2‖1− i‖2i‖ − 1− i‖ − 2‖ − 1 + i‖ − 2i‖1 + i) = JHCF

=bc0; c1, . . . , cn,−1− 2i, 1 + i, 2, 1− i, 2i,−1− i,−2,−1 + i,−2ie

66



5.3 Construction of building blocks

Definition 80. We call a quadruple of

• a base [c0; c1, c2, . . . , cn] ∈ HCF∩Q;

• an interval [p, q] with p, q ∈ R;

• a starting point Tp ∈ C;

• an endpoint Tq ∈ C,

with bc0; c1, c2, . . . , cn−1 : cn + Tpe and bc0; c1, c2, . . . , cn−1 : cn + Tqe n-transition points,
a building block, written as 〈[c0; c1, c2, . . . , cn], [p, q], Tp, Tq〉.

Definition 81. The type of a building block 〈[c0; c1, c2, . . . , cn], [p, q], Tp, Tq〉 is:

� Shape√5(c0c1 . . . cn), Tp, Tq �

We will describe six types of building blocks, These types can be rotated and reversed, for a total
of 48 subtypes.

• �MHCF, LR, ER �;

• �WHCF, EU , ER �;

• � JHCF, LR, LU �;

• � JHCF, C5, C16 �;

• � JHCF, C5, LU �;

• � JHCF, LR, C16 �.

The aforementioned rotations and reversion are defined as follows.

Definition 82. The reverse of a building block type � X,Tp, Tq � is defined as:

� X,Tp, Tq �−1=� X,Tq, Tp � .

Definition 83. The rotation of a building block type � X,Tp, Tq � is defined as:

ρ(� X,Tp, Tq �) =� ρ(X), ρ(Tq), ρ(Tp)� .

It is easy to see that

• (� X,Tp, Tq �−1)−1 =� X,Tp, Tq �;

• ρ4(� X,Tp, Tq �) =� X,Tp, Tq �;

• (ρ(� X,Tp, Tq �))−1 = ρ(� X,Tp, Tq �−1).
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Definition 84. We call a sequence of building blocks [X0, X1, . . . , Xm] (where each Xg is of the
form 〈[cg0; cg1, . . . , c

g
ng ], [pg, qg], T gp , T

g
q ) a chain of depth n if:

1. for all g ≤ m: ng = n;

2. for all g, h ≥ m: if g 6= h, then [cg0; cg1, . . . , c
g
ng ] 6= [ch0 ; ch1 , . . . : ch

nh ];

3. for all g < m: qg = pg+1;

4. for all g < m: bcg0; cg1, . . . : cgng + T gq e = bcg+1
0 ; cg+1

1 , . . . : cg+1
ng+1 + T g+1

p e.

Definition 85. We define the function curve from a building block to a function (p, q)→ C as

curve(〈[c0; c1, c2, . . . , cn], [p, q], Tp, Tq〉)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

Tp +
t− p
q − p

Tq)].

Definition 86. There exists a function mesh from a building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉
of a described type to a finite sequence of building blocks [Y0, . . . , Ym] (with each Yg of the form
〈[cg0; cg1, . . . , c

g
ng ], [pg, qg], T gp , T

g
q 〉) such that

• [Y0, . . . , Ym] is a chain of depth n+ 1;

• For each g ≤ m and k ≤ n we have cgk = cg;

• p0 = p and qm = q;

• For each g < m there exists c ∈ {1, . . . , 16} such that

[c0; c1, . . . , cn : Cc] = bc0; c1, . . . , cn : cgn+1 + T gq e(= bc0; c1, . . . , cn : cg+1
n+1 + T g+1

p e),

where Cc is one of the Circle points.

• bc0; c1, . . . , cn : c0n+1 + T 0
p e = bc0; c1, . . . : cn + Tpe;

• bc0; c1, . . . , cn : cmn+1 + Tmq e = bc0; c1, . . . : cn + Tqe.

For each of the types of building blocks, we will show curve is well defined, and give the definition
for the function mesh for that specific type.
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First type: �MHCF, LR, ER �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type �MHCF, LR, ER �,
then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

LR +
t− p
q − p

ER)].

LR

ER

i

1

−i

−1

i

1

−i
−1

By definition bc0; c1, . . . : cn + LRe and bc0; c1, . . . : cn + ERe are transition points. Notice that

bc0; c1, . . . : cn + LRe = bc0; c1, . . . , cn : 1− i+ C12e

and
bc0; c1, . . . : cn + ERe = bc0; c1, . . . , cn : 1 + i+ C5e.

As C2, C1, C16 and C15 are elements of MHCF, the following points are (n+ 1)-transition points:

[c0; c1, . . . : cn + C2] = [c0; c1, . . . , cn : 1− i+ LD] =[c0; c1, . . . , cn : 2− i+ ED]

[c0; c1, . . . : cn + C1] = [c0; c1, . . . , cn : 2− i+ LR] =[c0; c1, . . . , cn : 2 + ER]

[c0; c1, . . . : cn + C16] = [c0; c1, . . . , cn : 2 + LR] =[c0; c1, . . . , cn : 2 + i+ ER]

[c0; c1, . . . : cn + C15] = [c0; c1, . . . , cn : 2 + i+ EU ] =[c0; c1, . . . , cn : 1 + i+ LU ]

Let us define mesh(B) when B has type �MHCF, LR, ER � as

[〈[c0; c1, . . . , cn, 1− i], [p,
4p+ q

5
], C12, LD〉,

〈[c0; c1, . . . , cn, 2− i], [
4p+ q

5
,
3p+ 2q

5
], ED, LR〉,

〈[c0; c1, . . . , cn, 2], [
3p+ 2q

5
,
2p+ 3q

5
], ER, LR〉,
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〈[c0; c1, . . . , cn, 2 + i], [
2p+ 3q

5
,
p+ 4q

5
], ER, EU 〉,

〈[c0; c1, . . . , cn, 1 + i], [
p+ 4q

5
, q], LU , C5〉].

With the types:

[ρ3(� JHCF, LR, C16 �)−1,

ρ3(�WHCF, EU , ER �)−1,

�MHCF, LR, ER �−1,

�WHCF, EU , ER �−1,

� JHCF, C5, LU �−1].

i

1

−i

−1

i

1

−i

−1

Second type: � WHCF, EU , ER �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type �WHCF, EU , ER �,

then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

EU +
t− p
q − p

ER)].

By definition bc0; c1, . . . : cn + EUe and bc0; c1, . . . : cn + ERe are transition points. Notice that

bc0; c1, . . . : cn + LRe = bc0; c1, . . . , cn : −1− i+ C8e

and

bc0; c1, . . . : cn + ERe = bc0; c1, . . . , cn : 1 + i+ C5e.
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EU

ER

i

1

−i

−1

i

1

−i
−1

As C6, C5, C4, C3, C2, C1, C16 and C15 are elements of WHCF, the following points are (n + 1)-
transition points:

[c0; c1, . . . : cn + C6] = [c0; c1, . . . , cn : −1− i+ EL] = [c0; c1, . . . , cn : −1− 2i+ LL]

[c0; c1, . . . : cn + C5] = [c0; c1, . . . , cn : −1− 2i+ LD] = [c0; c1, . . . , cn : −2i+ ED]

[c0; c1, . . . : cn + C4] = [c0; c1, . . . , cn : −2i+ LD] = [c0; c1, . . . , cn : 1− 2i+ ED]

[c0; c1, . . . : cn + C3] = [c0; c1, . . . , cn : 1− 2i+ LR] = [c0; c1, . . . , cn : 1− i+ ER]

[c0; c1, . . . : cn + C2] = [c0; c1, . . . , cn : 1− i+ LD] = [c0; c1, . . . , cn : 2− i+ ED]

[c0; c1, . . . : cn + C1] = [c0; c1, . . . , cn : 2− i+ LR] = [c0; c1, . . . , cn : 2 + ER]

[c0; c1, . . . : cn + C16] = [c0; c1, . . . , cn : 2 + LR] = [c0; c1, . . . , cn : 2 + i+ ER]

[c0; c1, . . . : cn + C15] = [c0; c1, . . . , cn : 2 + i+ EU ] = [c0; c1, . . . , cn : 1 + i+ LU ]

Let us define mesh(B) when B has type �WHCF, EU , ER � as

[〈[c0; c1, . . . , cn,−1− i], [p, 8p+ q

9
], C8, EL〉,

〈[c0; c1, . . . , cn, 1− 2i], [
8p+ q

9
,
7p+ 2q

9
], LL, LD〉,

〈[c0; c1, . . . , cn,−2i], [
7p+ 2q

9
,
6p+ 3q

9
], ED, LD〉,

〈[c0; c1, . . . , cn, 1− 2i], [
6p+ 3q

9
,
5p+ 4q

9
], ED, LR〉,

〈[c0; c1, . . . , cn, 1− i], [
5p+ 4q

9
,
4p+ 5q

9
], ER, LD〉,

〈[c0; c1, . . . , cn, 2− i], [
4p+ 5q

9
,
3p+ 6q

9
], ED, LR〉,

〈[c0; c1, . . . , cn, 2], [
3p+ 6q

9
,
2p+ 7q

9
], ER, LR〉,
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〈[c0; c1, . . . , cn, 2 + i], [
2p+ 7q

9
,
p+ 8q

9
], ER, EU 〉,

〈[c0; c1, . . . , cn, 1 + i], [
p+ 8q

9
, q]LU , C5〉].

With the types:
[ρ2(� JHCF, LR, C16 �)−1,

ρ2(�WHCF, EU , ER �)−1,

ρ3(�MHCF, LR, ER �)−1,

ρ3(�WHCF, EU , ER �)−1,

ρ3(� JHCF, LR, LU �)−1,

ρ3(�WHCF, EU , ER �)−1,

�MHCF, LR, ER �−1,

�WHCF, EU , ER �−1,

� JHCF, C5, LU �−1].

i

1

−i
−1

i

1

−i

−1
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Third type: � JHCF, LR, LU �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type � JHCF, LR, LU �,
then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

LR +
t− p
q − p

LU )].

LR

LU

i

1

−i

−1

i

1

−i
−1

By definition bc0; c1, . . . : cn + LRe and bc0; c1, . . . : cn + LUe are transition points. Notice that

bc0; c1, . . . : cn + LRe = bc0; c1, . . . , cn : 1− i+ C12e

and
bc0; c1, . . . : cn + LUe = bc0; c1, . . . , cn : 1 + i+ C1e.

Let us define mesh(B) when B has type � JHCF, LR, LU � as

[〈[c0; c1, . . . , cn, 1− i], [p, q], C12, C1〉]

With the type:

[ρ3(� JHCF, C5, C16 �)−1]
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i

1

−i
−1

i

1

−i

−1

Fourth type: � JHCF, C5, C16 �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type � JHCF, C5, C16 �,

then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

C5 +
t− p
q − p

C16)].

C5

C16

i

1

−i

−1

i

1

−i
−1

By definition bc0; c1, . . . : cn + C5e and bc0; c1, . . . : cn + C16e are transition points. Notice that

bc0; c1, . . . : cn + C5e = bc0; c1, . . . , cn : −2i+ EDe

and

bc0; c1, . . . : cn + C16e = bc0; c1, . . . , cn : 2 + LRe.
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As C4, C3, C2 and C1 are elements of JHCF, the following points are (n+ 1)-transition points:

[c0; c1, . . . : cn + C4] = [c0; c1, . . . , cn : −2i+ LD] = [c0; c1, . . . , cn : 1− 2i+ ED]

[c0; c1, . . . : cn + C3] = [c0; c1, . . . , cn : 1− 2i+ LR] = [c0; c1, . . . , cn : 1− i+ ER]

[c0; c1, . . . : cn + C2] = [c0; c1, . . . , cn : 1− i+ LD] = [c0; c1, . . . , cn : 2− i+ ED]

[c0; c1, . . . : cn + C1] = [c0; c1, . . . , cn : 2− i+ LR] = [c0; c1, . . . , cn : 2 + ER]

Let us define mesh(B) when B has type � JHCF, C5, C16 � as

[〈[c0; c1, . . . , cn,−2i], [p,
4p+ q

5
], ED, LD〉,

〈[c0; c1, . . . , cn, 1− 2i], [
4p+ q

5
,
3p+ 2q

5
], ED, LR〉,

〈[c0; c1, . . . , cn, 1− i], [
3p+ 2q

5
,
2p+ 3q

5
], ER, LD〉,

〈[c0; c1, . . . , cn, 2− i], [
2p+ 3q

5
,
p+ 4q

5
], ED, LR〉,

〈[c0; c1, . . . , cn, 2], [
p+ 4q

5
, q], ER, LR〉].

With the types:

[ρ3(�MHCF, LR, ER �)−1,

ρ3(�WHCF, EU , ER �)−1,

ρ3(� JHCF, LR, LU �)−1,

ρ3(�WHCF, EU , ER �)−1,

�MHCF, LR, ER �−1].
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i

1

−i
−1

i

1

−i

−1

Fifth type: � JHCF, C5, LU �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type � JHCF, C5, LU �,

then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

C5 +
t− p
q − p

LU )].

C5 LU

i

1

−i

−1

i

1

−i
−1

By definition bc0; c1, . . . : cn + C5e and bc0; c1, . . . : cn + LUe are transition points. Notice that

bc0; c1, . . . : cn + C5e = bc0; c1, . . . , cn : −2i+ EDe

and

bc0; c1, . . . : cn + LUe = bc0; c1, . . . , cn : 1− i+ C1e.
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As C4 and C3 are elements of JHCF, the following points are (n+ 1)-transition points:

[c0; c1, . . . : cn + C4] = [c0; c1, . . . , cn : −2i+ LD] = [c0; c1, . . . , cn : 1− 2i+ ED]

[c0; c1, . . . : cn + C3] = [c0; c1, . . . , cn : 1− 2i+ LR] = [c0; c1, . . . , cn : 1− i+ ER]

Let us define mesh(B) when B has type � JHCF, C5, LU � as

[〈[c0; c1, . . . , cn,−2i], [p,
2p+ q

3
], ED, LD〉,

〈[c0; c1, . . . , cn, 1− 2i], [
2p+ q

3
,
p+ 2q

3
], ED, LR〉,

〈[c0; c1, . . . , cn, 1− i], [
p+ 2q

3
, q], ER, C1〉]

With the types:

[ρ3(�MHCF, LR, ER �)−1,

ρ3(�WHCF, EU , ER �)−1,

ρ3(� JHCF, C5, LU �)−1]

i

1

−i
−1

i

1

−i

−1
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Sixth type: � JHCF, LR, C16 �

Given building block B = 〈[c0; c1, c2, . . . , cn], [p, q], LR, ER〉 of the type � JHCF, LR, C16 �,
then curve(B) is defined as

curve(B)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

LR +
t− p
q − p

C16)].

LR

C16

i

1

−i

−1

i

1

−i
−1

By definition bc0; c1, . . . : cn + LRe and bc0; c1, . . . : cn + C16e are transition points. Notice that

bc0; c1, . . . : cn + LRe = bc0; c1, . . . , cn : 1− i+ C12e

and
bc0; c1, . . . : cn + C16e = bc0; c1, . . . , cn : 2 + LRe.

As C2 and C1 are elements of JHCF, the following points are (n+ 1)-transition points:

[c0; c1, . . . : cn + C2] = [c0; c1, . . . , cn : 1− i+ LD] = [c0; c1, . . . , cn : 2− i+ ED]

[c0; c1, . . . : cn + C1] = [c0; c1, . . . , cn : 2− i+ LR] = [c0; c1, . . . , cn : 2 + ER]

Let us define mesh(B) when B has type � JHCF, LRC16 � as

[〈[c0; c1, . . . , cn, 1− i], [p,
2p+ q

3
], C12, LD〉,

〈[c0; c1, . . . , cn, 2− i], [
2p+ q

3
,
p+ 2q

3
], ED, LR〉,

〈[c0; c1, . . . , cn, 2], [
p+ 2q

3
, q], ER, LR〉].

With the types:
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[ρ3(� JHCF, LR, C16 �)−1,

ρ3(�WHCF, EU , ER �)−1,

�MHCF, LR, ER �−1].

i

1

−i
−1

i

1

−i

−1

5.3.1 Rotating

We are going to extend the rotation function ρ to building blocks:

Definition 87. Given a building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, of type � S, Tp, Tq � we
define the rotation of X depending on n.

ρ(X) =

{
〈ρ3([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉 if n is odd;

〈ρ([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉 if n is even.

When n is odd, we have

ρ([c0; c1, . . . , cn]) = [ρ(c0); ρ
3(c1), ρ(c2), . . . , ρ

3(cn)]

and by Lemma 17:

Shape√5 (ρ3(c1)ρ(c2)ρ
3(c3) . . . ρ

3(cn)) = ρ3(Shape√5 (c1c2c3 . . . cn)) = ρ3(S).

When n is even, we have

ρ([c0; c1, . . . , cn]) = [ρ(c0); ρ
3(c1), ρ(c2), . . . , ρ(cn)]

and by Lemma 17:

Shape√5 (ρ3(c1)ρ(c2)ρ
3(c3) . . . ρ(cn)) = ρ(Shape√5 (c1c2c3 . . . cn)) = ρ(S).

In both cases the type of ρ(X) is � ρ(S), ρ(Tp), ρ(Tq)�= ρ(� S, Tp, Tq �).
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Lemma 88. Let X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, when n is odd we have:

curve(ρ(X)) = (ρ3 ◦ curve)(X),

and when n is even:
curve(ρ(X)) = (ρ ◦ curve)(X).

Proof. When n is odd, we have:

curve(ρ(〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉)) = curve(〈ρ3([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉 =

t→
[
ρ3(c0); ρ(c1), . . . : ρ(cn) +

q − t
q − p

ρ(Tp) +
t− p
q − p

ρ(Tq)

]
=

t→
[
ρ3(c0); ρ(c1), . . . : ρ(cn) + ρ

(
q − t
q − p

Tp

)
+ ρ

(
t− p
q − p

Tq

)]
=

t→
[
ρ3(c0); ρ(c1), . . . : ρ

(
cn +

q − t
q − p

Tp +
t− p
q − p

Tq

)]
=

t→ ρ3
([
c0; c1, . . . : cn +

q − t
q − p

Tp +
t− p
q − p

Tq

])
=

t→ ρ3(curve(X)).

When n is even, we have:

curve(ρ(〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉)) = curve(〈ρ([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉 =

t→
[
ρ(c0); ρ

3(c1), . . . : ρ(cn) +
q − t
q − p

ρ(Tp) +
t− p
q − p

ρ(Tq)

]
=

t→
[
ρ(c0); ρ

3(c1), . . . : ρ(cn) + ρ

(
q − t
q − p

Tp

)]
+ ρ

(
t− p
q − p

Tq

)
=

t→
[
ρ(c0); ρ

3(c1), . . . : ρ

(
cn +

q − t
q − p

Tp +
t− p
q − p

Tq

)]
=

t→ ρ

([
c0; c1, . . . : cn +

q − t
q − p

Tp +
t− p
q − p

Tq

])
=

t→ ρ(curve(X)).

Definition 89. We extend the definition of the rotation ρ to chains. Let [X0, X1, . . . , Xm] be a
chain of depth n, then:

ρ([X0, X1, . . . , Xm]) = [ρ(X0), ρ(X1), . . . , ρ(Xm)]

Lemma 90. Let [X0, X1, . . . , Xm] be a chain of depth n, then ρ([X0, X1, . . . , Xm]) is a chain of
depth n.

Proof. Let Xg = 〈[cg0; cg1, . . . , c
g
ng ], [pg, qg], T gp , T

g
q 〉. Because for all g: n = ng, we have that ρ(Xg)

equals
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•
〈ρ3([cg0; cg1, c

g
2, . . . , c

g
n]), [pg, qg], ρ(T gp ), ρ(T gq )〉

where
ρ3([cg0; cg1, c

g
2, . . . , c

g
n]) = [ρ3(cg0); ρ(cg1), ρ3(cg2), . . . , ρ(cgn)]

when n is odd.

•
〈ρ([cg0; cg1, c

g
2, . . . , c

g
n]), [pg, qg], ρ(T gp ), ρ(T gq )〉

where
ρ([cg0; cg1, c

g
2, . . . , c

g
n]) = [ρ(cg0); ρ3(cg1), ρ(cg2), . . . , ρ(cgn)]

when n is even.

We will check each property of a chain:

1. The number of coefficients does not change with rotations.

2. For all g, h ≥ m with g 6= h and s ∈ {1, 3}, we have ρs([cg0; cg1, c
g
2, . . . , c

g
n]) 6= ρs([ch0 ; ch1 , c

h
2 , . . . , c

h
n]),

because ρ4−s(ρs([cg0; cg1, c
g
2, . . . , c

g
n])) 6= ρ4−s(ρs([ch0 ; cg1, c

h
2 , . . . , c

h
n])).

3. For each g < m we have qg = pg+1, so ρ(qg) = ρ(pg+1).

4. For each g < m,

• When n is odd, we have:

bρ3(cg0); ρ(cg1), ρ3(cg2), . . . : ρ(cgng) + ρ(T gq )e
=bρ3(cg0); ρ(cg1), ρ3(cg2), . . . : ρ(cgng + T gq )e
=ρ3(bcg0; cg1, c

g
2, . . . : cgng + T gq e)

=ρ3(bcg+1
0 ; cg+1

1 , cg+1
2 , . . . : cg+1

ng+1 + T g+1
p e)

=bρ3(cg+1
0 ); ρ(cg+1

1 ), ρ3(cg+1
2 ), . . . : ρ(cg+1

ng+1 + T g+1
p )e

=bρ3(cg+1
0 ); ρ(cg+1

1 ), ρ3(cg+1
2 ), . . . : ρ(cg+1

ng+1) + ρ(T g+1
p )e

• When n is even, we have:

bρ(cg0); ρ3(cg1), ρ(cg2), . . . : ρ(cgng) + ρ(T gq )e
=bρ(cg0); ρ3(cg1), ρ(cg2), . . . : ρ(cgng + T gq )e
=ρ(bcg0; cg1, c

g
2, . . . : cgng + T gq e)

=ρ(bcg+1
0 ; cg+1

1 , cg+1
2 , . . . : cg+1

ng+1 + T g+1
p e)

=bρ(cg+1
0 ); ρ3(cg+1

1 ), ρ(cg+1
2 ), . . . : ρ(cg+1

ng+1 + T g+1
p )e

=bρ(cg+1
0 ); ρ3(cg+1

1 ), ρ(cg+1
2 ), . . . : ρ(cg+1

ng+1) + ρ(T g+1
p )e

Definition 91. Let X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, with type XT =� X,Tp, Tq �. We define:

mesh(ρ(X)) = ρ3(mesh(X)).
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We will prove this definition is sound, by checking the properties of mesh:
Let mesh(X) = [Y0, Y1, . . . , Ym] where Yg = 〈[cg0; cg1, . . . , c

g
n, c

g
n+1], [p

g, qg], T gp , T
g
q 〉.

By the properties of mesh (Definition 86) we know:

1. [Y0, Y1, . . . , Ym] is a chain of depth n+ 1;

2. For each g ≤ m and k ≤ n, cgk = ck;

3. p0 = p and qm = q;

4. For each g < m there exists an s ∈ {1, . . . , 16} such that

Cs = b0 : cgn+1 + T gq e(= b0 : cg+1
n+1 + T g+1

p e);

5. • bc00; c01, . . . , c0n : c0n+1 + T 0
p e = bc0; c1, . . . : cn + Tpe, so Tp = b0 : c0n+1 + T 0

p e,
• bcm0 ; cm1 , . . . , c

m
n : cmn+1 + Tmq e = bc0; c1, . . . : cn + Tqe, so Tq = b0 : cmn+1 + Tmq e,

and by definition

ρ3([Y0, Y1, . . . , Ym]) = [ρ3(Y0), ρ
3(Y1), . . . , ρ

3(Ym)].

We will distinguish between whether n is odd or n is even.

• When n is odd, we have

ρ(X) = 〈ρ3([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉

with

ρ3([c0; c1, . . . , cn]) = [ρ3(c0); ρ(c1), . . . , ρ(cn)].

And

ρ3(Yg) = 〈ρ3([cg0; cg1, . . . , c
g
n, c

g
n+1]), [p

g, qg], ρ3(T gp ), ρ3(T gq )〉

with

ρ3([cg0; cg1, . . . , c
g
n+1]) = [ρ3(cg0); ρ(cg1), . . . , ρ(cgn), ρ3(cgn+1)].

We check the properties of mesh

1. By Lemma 90, ρ3([Y0, Y1, . . . , Ym]) is a chain of depth n+ 1.

2. For each g ≤ m and k ≤ n we have

– when k is odd: ρ(cgk) = ρ(ck);

– when k is even: ρ3(cgk) = ρ3(ck).

3. p0 = p and qm = q.

4. For each g < m we have that there exists Cs such that

Cs = b0 : cgn+1 + T gq e.

There exists an s′ such that Cs′ = ρ(Cs), then

Cs′ = ρ(Cs) = ρ(b0 : cgn+1 + T gq e) = b0 : ρ3(cgn+1 + T gq )e = b0 : ρ3(cgn+1) + ρ3(T gq )e.
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5. – Because Tp = b0 : c0n+1 + T 0
p e we have ρ(Tp) = b0 : ρ3(c0n+1 + T 0

p )e. So

bρ3(c00); ρ(c01), . . . , ρ(c0n) : ρ3(c0n+1) + ρ3(T 0
p )e =

bρ3(c00); ρ(c01), . . . , ρ(c0n) : ρ3(c0n+1 + T 0
p )e =

bρ3(c0); ρ(c1), . . . , ρ(cn) : ρ3(c0n+1 + T 0
p )e =

bρ3(c0); ρ(c1), . . . : ρ(cn) + ρ(Tp)e.

– Because Tq = b0 : cmn+1 + Tmq e we have ρ(Tq) = b0 : ρ3(cmn+1 + Tmq )e. So

bρ3(cm0 ); ρ(cm1 ), . . . , ρ(cmn ) : ρ3(cmn+1) + ρ3(Tmq )e =

bρ3(cm0 ); ρ(cm1 ), . . . , ρ(cmn ) : ρ3(cmn+1 + Tmq )e =

bρ3(c0); ρ(c1), . . . , ρ(cn) : ρ3(cmn+1 + Tmq )e =

bρ3(c0); ρ(c1), . . . : ρ(cn) + ρ(Tq)e.

• When n is even, we have

ρ(X) = 〈ρ([c0; c1, . . . , cn]), [p, q], ρ(Tp), ρ(Tq)〉

with

ρ([c0; c1, . . . , cn]) = [ρ(c0); ρ
3(c1), . . . , ρ(cn)].

And

ρ3(Yg) = 〈ρ9([cg0; cg1, . . . , c
g
n, c

g
n+1]), [p

g, qg], ρ3(T gp ), ρ3(T gq )〉

with

ρ9([cg0; cg1, . . . , c
g
n+1]) = ρ([cg0; cg1, . . . , c

g
n+1]) = [ρ(cg0); ρ3(cg1), . . . , ρ(cgn), ρ3(cgn+1)].

We check the properties of mesh

1. By Lemma 90, ρ3([Y0, Y1, . . . , Ym]) is a chain of depth n+ 1.

2. For each g ≤ m and k ≤ n we have

– when k is odd: ρ3(cgk) = ρ3(ck);

– when k is even: ρ(cgk) = ρ(ck).

3. p0 = p and qm = q.

4. For each g < m we have that there exists Cs such that

Cs = b0 : cgn+1 + T gq e.

There exists an s′ such that Cs′ = ρ(Cs), then

Cs′ = ρ(Cs) = ρ(b0 : cgn+1 + T gq e) = b0 : ρ3(cgn+1 + T gq )e = b0 : ρ3(cgn+1) + ρ3(T gq )e.
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5. – Because Tp = b0 : c0n+1 + T 0
p e we have ρ(Tp) = b0 : ρ3(c0n+1 + T 0

p )e. So

bρ(c00); ρ
3(c01), . . . , ρ(c0n) : ρ3(c0n+1) + ρ3(T 0

p )e =

bρ(c00); ρ
3(c01), . . . , ρ(c0n) : ρ3(c0n+1 + T 0

p )e =

bρ(c0); ρ
3(c1), . . . , ρ(cn) : ρ3(c0n+1 + T 0

p )e =

bρ(c0); ρ
3(c1), . . . : ρ(cn) + ρ(Tp)e.

– Because Tq = b0 : cmn+1 + Tmq e we have ρ(Tq) = b0 : ρ3(cmn+1 + Tmq )e. So

bρ(cm0 ); ρ3(cm1 ), . . . , ρ(cmn ) : ρ3(cmn+1) + ρ3(Tmq )e =

bρ(cm0 ); ρ3(cm1 ), . . . , ρ(cmn ) : ρ3(cmn+1 + Tmq )e =

bρ(c0); ρ
3(c1), . . . , ρ(cn) : ρ3(cmn+1 + Tmq )e =

bρ(c0); ρ
3(c1), . . . : ρ(cn) + ρ(Tq)e.

So the definition is sound.

5.3.2 Reversing

Lemma 92. Let X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, we have

curve(X−1)(t) = curve(X)(q + p− t)

Proof. We know X−1 = 〈[c0; c1, . . . , cn], [p, q], Tq, Tp〉, so

curve(X−1)(t) =

[
c0; c1, . . . : cn +

q − t
q − p

Tq +
t− p
q − p

Tp

]
=[

c0; c1, . . . : cn +
q + p− t− p

q − p
Tq +

q − q − p+ t

q − p
Tp

]
=[

c0; c1, . . . : cn +
(q + p− t)− p

q − p
Tq +

q − (q + p− t)
q − p

Tp

]
=

curve(X)(q + p− t).

Definition 93. We extend the definition of reversed to chains: Let [Y0, Y1, . . . , Ym] be a chain,
then

[Y0, Y1, . . . , Ym]−1 = [Y −1m , Y −1m−1, . . . , Y
−1
0 ].

Lemma 94. If [X0, X1, . . . , Xm] is a chain of depth n, where Xg = 〈[cg0; cg1, . . . , c
g
n], [pg, qg], T gp , T

g
q 〉

of type � Sg, T gp , T
g
q �. Let

Yg = 〈[cm−g0 ; cm−g1 , . . . , cm−gn ], [pg, qg], Tm−gq , Tm−gp 〉.

which has type � Sm−g, Tm−gq , Tm−gp �=� Sm−g, Tm−gp , Tm−gq �−1. Then [X0, X1, . . . , Xm]−1 =
[Y0, Y1, . . . , Ym] is a chain of depth n.
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Proof. We will show that the properties of a chain (Definition 84) hold.

1. For each g ≤ m, Yg has a base with the same number of coefficients as Xm−g.

2. For all g, h ≤ m, if g 6= h, we have m− g 6= m− h. Because [X0, X1, . . . , Xm] is a chain there
exists a k ≤ n such that cm−gk 6= cm−hk . So the base of Yg is not equal to the base of Yh.

3. For all g ≤ m, the interval of Yg equals the interval of Yh.

4. We know for all h < m that we have

bch0 ; ch1 , . . . : chn + T hq e = bch+1
0 ; ch+1

1 , . . . : ch+1
n + T h+1

p e.

Substituting g = m− h+ 1, we get what we need: For all g < m =

bcm−g0 ; cm−g1 , . . . : cm−gn + Tm−gp e = bcm−(g+1)
0 ; c

m−(g+1)
1 , . . . : cm−(g+1)

n + Tm−(g+1)
q e.

Definition 95. Let X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, with type XT =� X,Tp, Tq �. We define:

mesh(X−1) = (mesh(X))−1.

We will prove that this definition is sound, by checking the properties of mesh:
Let mesh(X) = [Y0, Y1, . . . , Ym] where Yg = 〈[cg0; cg1, . . . , c

g
n, c

g
n+1], [p

g, qg], T gp , T
g
q 〉.

By the properties of mesh we know:

1. [Y0, Y1, . . . , Ym] is a chain of depth n+ 1.

2. For each g ≤ m and k ≤ n, cgk = ck.

3. p0 = p and qm = q

4. For each g < m there exists s ∈ {1, . . . , 16} such that

Cs = b0 : cgn+1 + T gq e(= b0 : cg+1
n+1 + T g+1

p e).

5. • bc00; c01, . . . , c0n : c0n+1 + T 0
p e = bc0; c1, . . . : cn + Tpe, so Tp = b0 : c0n+1 + T 0

p e.
• bcm0 ; cm1 , . . . , c

m
n : cmn+1 + Tmq e = bc0; c1, . . . : cn + Tqe, so Tq = b0 : cmn+1 + Tmq e.

Recall that
X−1 = 〈[c0; c1, . . . , cn], [p, q], Tq, Tp〉.

and [Y0, Y1, . . . , Ym]−1 = [Z0, Z1, . . . , Zm] with

Zg = 〈[cm−g0 ; cm−g1 , . . . , cm−gn+1 ], [pg, qg], Tm−gq , Tm−gp 〉.

We check the properties of mesh

1. By Lemma 93, [Y0, Y1, . . . , Ym]−1 is a chain of depth n+ 1.

2. For each h ≤ m and k ≤ n we have, by substituting m− h = g, that cm−gk = chk = ck.

3. qm−0 = q and pm−m = p.
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4. For each g < m, we have m− (g + 1) < m, so there exists an s such that

Cs = b0 : c
m−(g+1)+1
n+1 + Tm−(g+1)+1

p e = b0 : cm−gn+1 + Tm−gp e

5. • Because Tq = b0 : cmn+1 + Tmq e, we have

bcm−00 ; cm−01 , . . . , cm−0n : cm−0n+1 + Tm−0q e =

bcm−00 ; cm−01 , . . . : cm−0n + Tqe =

bc0; c1, . . . : cn + Tqe

• Because Tp = b0 : c0n+1 + T 0
p e, we have

bcm−m0 ; cm−m1 , . . . , cm−mn : cm−mn+1 + Tm−mp e =

bcm−m0 ; cm−m1 , . . . : cm−mn + Tpe =

bc0; c1, . . . : cn + Tpe

So the definition is sound.

5.3.3 Chaining mesh functions

Lemma 96. Let [X0, X1, . . . , Xm] be a chain of depth n, and let mesh(Xg) = [Y g
0 , Y

g
1 , . . . , Y

g
mg ].

Then [Y 0
0 , Y

0
1 , . . . , Y

0
m0 , Y

1
0 , Y

1
1 , . . . , Y

1
m1 , Y

2
0 , . . . , Y

m
mm ] is a chain of depth n+ 1.

Proof. Let Let g, h ≤ m and k ≤ mg, l ≤ mh. We will write

Xg = 〈[cg0; cg1, . . . , c
g
n], [pg, qg], T gp , T

g
q 〉

and

Xh = 〈[ch0 ; ch1 , . . . , c
h
n], [ph, qh], T hp , T

h
q 〉.

With Y g
k ∈ mesh(Xg) and Y h

l ∈ mesh(Xh), which we will write as:

Y g
k = 〈[cu0 ; cu1 , . . . , c

u
n+1], [p

u, qu], T up , T
u
q 〉

and

Y h
l = 〈[cw0 ; cw1 , . . . , c

w
n+1], [p

w, qw], Twp , T
w
q 〉.

We will prove all the properties of a chain:

1. As [X0, X1, . . . , Xm] is a chain of depth n, for each g, we have that mesh(Xg) is a chain of
depth n+ 1, and so every building block Y has a base that has quotients up to n+ 1.

2. We want to prove that if g 6= h or k 6= l, then the base of [cu0 ; cu1 , . . . , c
u
n+1] 6= [cw0 ; cw1 , . . . , c

w
n+1].

• Let g = h. Then we have that Y g
k and Y h

l are an element of mesh(Xg). Because mesh(Xg)
is a chain, we know that when k 6= l, we have [cu0 ; cu1 , . . . , c

u
n+1] 6= [cw0 ; cw1 , . . . , c

w
n+1].
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• Let g 6= h. [X0, X1, . . . , Xm] is a chain, so we have that [cg0; cg1, . . . , c
g
n] 6= [ch0 ; ch1 , . . . , c

h
n].

Thus, there exists an r ≤ n such that cgr 6= chr . From the properties of mesh, we know
cur = cgr 6= chr = cwr . So [cu0 ; cu1 , . . . , c

u
n+1] 6= [cw0 ; cw1 , . . . , c

w
n+1].

3. We have three possibilities:

• g = m and k = mm. We don’t have to prove anything in this situation.

• g < m and k = mg. Let h = g + 1 and l = 0, then Y g
k is followed by Y h

0 . We will have
to prove qu = pw.

Because [X0, X1, . . . , Xm] is a chain, we know qg = ph. Combined with the properties of
the mesh function, we have qu = qg = ph = pw.

• g < m and k < mg. Let h = g and l = k + 1, then Y g
k is followed by Y g

l . Because
mesh(Xg) is a chain, we have qu = pw.

4. We have three possibilities:

• g = m and k = mm. We don’t have to prove anything in this situation.

• g < m and k = mg. Let h = g + 1 and l = 0, then Y g
k is followed by Y h

0 . We will have
to prove bcu0 ; cu1 , . . . : cun+1 + T uq e = bcw0 ; cw1 , . . . : cwn+1 + Twp e.
Because [X0, X1, . . . , Xm] is a chain, we know bcg0; cg1, . . . : cgn+T gq e = bch0 ; ch1 , . . . : chn+T hq e.
Combined with the properties of the mesh function, we have bcu0 ; cu1 , . . . : cun+1 + T uq e =

bcg0; cg1, . . . : cgn + T gq e = bch0 ; ch1 , . . . : chn + T hq e = bcw0 ; cw1 , . . . : cwn+1 + Twp e.
• g < m and k < mg. Let h = g and l = k + 1, then Y g

k is followed by Y g
l . Because

mesh(Xg) is a chain, we have bcu0 ; cu1 , . . . : cun+1 + T uq e = bcw0 ; cw1 , . . . : cwn+1 + Twp e.

Lemma 97. For each building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, we have:

lim
t↓p

curve(X)(t) = bc0; c1, . . . : cn + Tpe

and
lim
t↑q

curve(X)(t) = bc0; c1, . . . : cn + Tqe.

Proof. For each t ∈ (p, q),

curve(X)(t) = [c0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

Tp +
t− p
q − p

Tq)]

= bc0; c1, c2, . . . , cn−1 : cn + (
q − t
q − p

Tp +
t− p
q − p

Tq)e.

Because

lim
t↓p

(
q − t
q − p

Tp +
t− p
q − p

Tq) = Tp,

we have
lim
t↓p

curve(X)(t) = bc0; c1, . . . : cn + Tpe.

And because

lim
t↑q

(
q − t
q − p

Tp +
t− p
q − p

Tq) = Tq,
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we have
lim
t↑q

curve(X)(t) = bc0; c1, . . . : cn + Tqe.

Definition 98. Let curve be the function from a building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉
to a function from [p, q] to C, defined by:

curve(X)(t) =


bc0; c1, . . . : cn + Tpe if t = p

curve(X)(t) if t ∈ (p, q)

bc0; c1, . . . : cn + Tqe if t = q

By Lemma 97, for every building block X of our described types, curve(X) is a continuous function
on [p, q].

Definition 99. We extend the function curve to chains. Let [X0, X1, . . . , Xm] be a chain with
Xg = 〈[cg0; cg1, . . . , c

g
n], [pg, qg], T gp , T

g
q 〉. Let

curve([X0, X1, . . . , Xm])(t) = curve(Xg)(t) if t ∈ [pg, qg].

We will show curve([X0, X1, . . . , Xm]) is a well defined function on the interval [p0, qm].
Note that we can create the list T ([X0, X1, . . . , Xm]) which contains all the endpoints of the building
blocks, by T ([X0, X1, . . . , Xm]) = [p0, p1, . . . , pm, qm], and it is equal to [p0, q0, . . . , qm−1, qm].
Because T ([X0, X1, . . . , Xm]) is strictly increasing, we have that for each t ∈ [p0, qm], either
t ∈ T ([X0, X1, . . . , Xm]), or there exists exactly one m such that t ∈ (pm, qm).

• Let t ∈ T ([X0, X1, . . . , Xm]). We have either t = p0 or t = qm which are defined uniquely, or
there exists a g such that t = pg+1 = qg. Because [X0, X1, . . . , Xm] is a chain,
bcg0; cg1, . . . : cgn + T gq e = bcg+1

0 ; cg+1
1 , . . . : cg+1

n + T g+1
p e.

• Let t /∈ T ([X0, X1, . . . , Xm]). There exists a unique g such that t ∈ (pg, qg), and

curve([X0, X1, . . . , Xm])(t) = curve(Xg)(t).

Lemma 100. For every n, for every building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉, for every
t ∈ (p, q) we have:

curve(X)(t) ≡�n−1 [c0; c1, . . . , cn]

Proof. By definition (85)

curve(X)(t) = [c0; c1, . . . , cn−1 : cn +
q − t
q − p

Tp +
t− p
q − p

Tq] ≡�n−1 [c0; c1, . . . , cn−1].

Lemma 101. For every n, for every building block X = 〈[c0; c1, . . . , cn], [p, q], Tp, Tq〉,

curve(X) ≡�n−1 curve(mesh(X))

Proof. Let mesh(X) = [Y0, Y1, . . . , Ym] with Yg = 〈[cg0; cg1, . . . , c
g
n+1], [p

g, qg], T gp , T
g
q 〉.

Let T ([Y0, Y1, . . . , Ym]) = [p0, p1, . . . , pm, qm]. We will prove, for every t ∈ [p, q] that

curve(X)(t) ≡�n−1 curve(mesh(X))(t).
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• When t /∈ T ([Y0, Y1, . . . , Ym]), there exists exactly one g such that t ∈ (pg, qg).

Let t ∈ (pg, qp), because (pg, qp) ⊆ (p, q), we have using Lemma 100 and Definition 98:

curve(mesh(X))(t)

=curve(Yg)(t)

= curve(Yg)(t)

≡�n[cg0; cg1, . . . , c
g
n]

=[c0; c1, . . . , cn]

≡�n−1[c0; c1, . . . , cn−1]

≡�n−1 curve(X)(t)

≡�n−1curve(X)(t)

• When t = p, we have

curve(X)(p)

=bc0; c1, . . . : cn + Tpe
=bc0; c1, . . . , cn : c0n+1 + T 0

p e
=curve(mesh(Y0))(p)

=curve(mesh(X))(p)

• When t = q, we have

curve(X)(q)

=bc0; c1, . . . : cn + Tqe
=bc0; c1, . . . , cn : cmn+1 + Tmq e
=curve(mesh(Ym))(q)

=curve(mesh(X))(q)

• When t ∈ T ([Y0, Y1, . . . , Ym]), t 6= p and t 6= q, there exists a g < m such that t = qg(= pg+1).
By definition of the mesh function, there exists an s such that Cs = b0 : cgn+1 + T gq e, thus for
every g < m there exists an s:

curve(mesh(X))(qg)

=curve(mesh(Yg))(q
g)

=bc0; c1, . . . , cn : cgn+1 + T gq e
=bc0; c1, . . . : cn + Cse
=[c0; c1, . . . : cn + Cs]

≡�n−1[c0; c1, . . . , cn−1]

≡�n−1curve(X)(qg)

Lemma 102. For each chain [X0, X1, . . . , Xm] of depth n

curve([X0, X1, . . . , Xm]) ≡�n−1 curve(mesh([X0, X1, . . . , Xm]))
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Proof. Let Xg = 〈[cg0; cg1, . . . , c
g
n], [pg, qg], T gp , T

g
q 〉, we are going to show that for each t ∈ [p0, qm]

curve([X0, X1, . . . , Xm])(t) ≡�n−1 curve(mesh([X0, X1, . . . , Xm]))(t).

For every t there exists a g such that t ∈ [pm, qm]. With Lemma 101 we have:

curve([X0, X1, . . . , Xm])(t)

=curve(Xg)(t)

≡�n−1curve(mesh(X))(t)

=curve(mesh([X0, X1, . . . , Xm]))(t)

5.4 The construction of chains

We are going to describe an infinite sequence of chains of depth g, Chaing. We start by describing
Chain1 explicit.

Definition 103. Let Chain1 be

[〈[0; 2− i], [0, 1

16
], LR, ED〉, 〈[0; 1− i], [ 1

16
,

2

16
], LD, ER〉,

〈[0; 1− 2i], [
2

16
,

3

16
], LR, ED〉, 〈[0;−2i], [

3

16
,

4

16
], LD, ED〉,

〈[0;−1− 2i], [
4

16
,

5

16
], LD, LL〉, 〈[0;−1− i], [ 5

16
,

6

16
], EL, ED〉,

〈[0;−2− i], [ 6

16
,

7

16
], LD, LL〉, 〈[0;−2], [

7

16
,

8

16
], EL, LL〉,

〈[0;−2 + i], [
8

16
,

9

16
], EL, LU 〉, 〈[0;−1 + i], [

9

16
,
10

16
], EU , LL〉,

〈[0;−1 + 2i], [
10

16
,
11

16
], EL, LU 〉, 〈[0; 2i], [

11

16
,
12

16
], EU , LU 〉,

〈[0; 1 + 2i], [
12

16
,
13

16
], EU , ER〉, 〈[0; 1 + i], [

13

16
,
14

16
], LR, LU 〉,

〈[0; 2 + i], [
14

16
,
15

16
], EU , ER〉, 〈[0; 2], [

15

16
, 1], LR, ER〉]

Let us write Chain1 as [X0, . . . X15] with Xh = 〈[0; ch], [ h16 ,
h+1
16 ], T hp , T

h
q 〉. Then

b0 : ch + T hq e = Ch+1 = b0 : ch+1 + T h+1
p e.

The types of the elements of Chain1 are:

[� ρ3(WHCF), LR, ED �= ρ3(�WHCF, EU , ER �),

� ρ3(JHCF), LD, ER �= ρ3(� JHCF, LR, LU �),

� ρ3(WHCF), LR, ED �= ρ3(�WHCF, EU , ER �),

� ρ3(MHCF), LD, ED �= ρ3(�MHCF, LR, ER �),

� ρ2(WHCF), LD, LL �= ρ3(�WHCF, EU , ER �),

90



� ρ2(JHCF), EL, ED �= ρ3(� JHCF, LR, LU �),

� ρ2(WHCF), LD, LL �= ρ3(�WHCF, EU , ER �),

� ρ2(MHCF), EL, LL �= ρ3(�MHCF, LR, ER �),

� ρ(WHCF), EL, LU �= ρ3(�WHCF, EU , ER �),

� ρ(JHCF), EU , LL �= ρ3(� JHCF, LR, LU �),

� ρ(WHCF), EL, LU �= ρ3(�WHCF, EU , ER �),

� ρ(MHCF), EU , LU �= ρ3(�MHCF, LR, ER �),

�WHCF, EU , ER �,
� JHCF, LR, LU �,
�WHCF, EU , ER �,
�MHCF, LR, ER �]

Definition 104. For all g ≥ 1 we define Chaing inductively by:

Chaing+1 = mesh(Chaing).

By Lemma 96, we can prove by induction that for every g, Chaing is a chain of depth g.
With these chains, we can describe closed curves:

Definition 105. For every g ≥ 1 we define

curveg = curve(Chaing).

Theorem 106. [3, Theorem 2] For the Hurwitz Complex Continued Fraction, we have∣∣∣∣qn+2

qn

∣∣∣∣ ≥ 3

2
.

Lemma 107. There exists a simple closed curve in HCF√5 which surrounds the square with the

corners ±1
4 ±

1
4 i.

Proof. This will only be a concept of the proof. As a result of Lemma 97, Definition 86 and the
fact that for every g, curveg(0) = curveg(1), we have that for every g, curveg is a closed curve.
By Theorems 106 and 7 we have that for every x, y ∈ C with x ≡�n y, we have:

|x− y| ≤
√

2

3
2
bn2 c(3−

√
8)
.

With the use of induction and Lemma 102, we can see that for all g, h ∈ N,

curveg ≡�min(g,h)−1 curveh .

So, the sequence (curveg)g∈N+ is a Cauchy sequence, and we can define curve∞ as

curve∞ = lim
g→∞

curveg .
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First, we are going to show that for every k ∈ N ,

curvek+1 ≡�k curve∞ .

While we know that for all k′ > k

curvek ≡�k−1 curvek′ ,

this does not follow immediately. So we have quite some work to do:

Let Xg = 〈[cg0; cg1, . . . , c
g
k], [p

g, qg], T gp , T
g
q 〉 be a building block in Chaink, let Y be the set of all points

y ∈ HCF such that y ≡�k−1 [cg0; cg1, . . . , c
g
k]. We will use pictures to show that for every k′ ≥ k + 1,

for every t in (pg, qg), curvek′(t) is not near the edge of Y . We can formulate this as:

∃ε∀t∈(pg ,qg)∀δ : |δ| < min(t− pg, qg − t) · ε =⇒ curvek′(t) + δ ≡�k−1 [cg0; cg1, . . . , c
g
k].

For every type of building block bX,Tp, Tqe, we show the confinements of curve(meshn(〈[0], [0, 1], Tp, Tq〉))
while pretending Shape√5() = X. A bigger value of n is represented by a darker gray.

�MHCF, LR, ER � �WHCF, EU , ER � � JHCF, LR, LU �

� JHCF, C5, C16 � � JHCF, C5, LU � � JHCF, LR, C16 �

We continue with properties of curve∞.
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For every h, curveh+1 is h-bounded as the base of every building block is an element of HCF√5,
and we have Lemma 100. Let us assume curve∞(t) = [c0; c1, . . .] /∈ HCF√5, so there exists a k such

that |ck| >
√

5. For every k′ > k, curvek′(t) is k-bounded and

curvek′(t) ≡�k curve∞(t).

Contradiction, thus for every t

curve∞(t) ∈ HCF√5 .

Our mesh splits the interval of building blocks in at least three parts of the same size, except when
the type is (a rotation or reverse of) � JHCF, LR, LU �. In that case, the result is a chain of
one building block, of type ρ3(� JHCF, C5, C16 �)−1. After performing two mesh functions, the
individual intervals are at least divided in three pieces. From this follows that for each building
block Xg = 〈[cg0; cg1, . . . , c

g
k], [p

g, qg], T gp , T
g
q 〉 in Chaink we have:

|qg − pg| <
(

1√
3

)k
.

We use this to prove that curve∞ is injective on [0, 1).

Suppose x, y ∈ [0, 1) with

x 6= y and curve∞(x) = curve∞(y).

Let g be chosen such that (
1√
3

)g
< |x− y|.

Let 〈[ck0; ck1, . . . , c
k
g ], [p

k, qk], T kp , T
k
q 〉 and 〈[cl0; cl1, . . . , clg], [pl, ql], T lp, T lq〉 in curveg such that x ∈ [pk, qk]

and y ∈ [pl, ql]. Because of our choice of g, we know that x /∈ [pl, ql] and y /∈ [pk, qk]. By the
definition of a Chain, we know there exists a h ≤ g such that ckh 6= clh. Thus for each g′ > g we have

curveg′ x ≡�g curveg+1 x 6≡�g curveg+1 y ≡�g curveg′ y.

This results to

curve∞ x 6≡�g curve∞ y,

which leads to a contradiction. We conclude that curve∞ is injective on [0, 1).

Because the sequence curveg converged uniformly, curve∞ is continuous, and curve∞(0) = curve∞(1),
from which we can conclude curve∞ is a simple closed curve.

We use a picture to show that curve∞ surrounds the square with corners ±1
4 ±

1
4 i.

93



Theorem 108. For every x = a+ bi ∈ C, there exist c, d ∈ HCF√5 such that c+ d = x

Proof. Let a′ = bae and b′ = bbe, then a′ + b′i ∈ Z[i]. Let x′ = x− (a′ + b′i), then x′

2 lies inside the
square with corners ±1

4 ±
1
4 i and thus inside curve∞ by Lemma 107.

By Lemma 67, there exist tc, td ∈ [0, 1] such that

curve∞(tc) + curve∞(td) = x′.

Because for every t ∈ [0, 1], curve∞(t) ∈ HCF√5, we let

c = a′ + b′i+ curve∞(tc) ∈ HCF√5

and
d = curve∞(td) ∈ HCF√5 .

Then c+ d = a′ + b′i+ x′ = x concludes our proof.
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