
Bachelorscriptie wiskunde

Synchroniserende automaten

Begeleider:
Dhr. Dr. ir. H. Don
Tweede lezer:
Dhr. Dr. W. Bosma

Student:
A.R. Jansen s4583124

Juli 2019

Inhoudsopgave

1 Inleiding 2

2 Automaten 3

3 Černý’s vermoeden 6
3.1 Boven- en ondergrenzen . 6
3.2 Černý automaten . 10

4 Random input 13
4.1 Markovketens . 13
4.2 Berekening verwachte lengte van een synchroniserend woord 14
4.3 Synchronisatie Černý automaat . 16
4.4 Synchronisatie van andere automaten . 22

5 Resultaten 25
5.1 Černý automaat . 25
5.2 Slechte automaat . 25
5.3 Andere automaten . 25
5.4 Conclusie . 25

1

1 Inleiding

Het onderwerp van mijn scriptie is, zoals te lezen valt in de titel, synchroniserende automaten. De volgende
vakgebieden staan hierin centraal: combinatoriek, discrete wiskunde, kansrekening en theoretische computer
science.
Ik heb gekozen voor dit onderwerp, omdat ik in mijn derde jaar het vak talen en automaten bij de studie
Informatica gevolgd heb. Het vak sprak mij heel erg aan. Het lijkt heel erg op grafentheorie en je kan er
heel goed kansrekeningen op toepassen, zoals ik ook in mijn scriptie heb gedaan.
Het vak talen en automaten is geen vereiste om mijn scriptie te begrijpen. In de tweede sectie worden alle
benodigde definities uitgelegd.
In de derde sectie staat het vermoeden van Černý centraal. Dit vermoeden bedacht door Jan Černý, geeft ons
inzicht in de maximale lengte van het kortste synchroniserende woord voor een automaat op n toestanden.
Zoals het woord vermoeden al zegt is er tot op heden nog geen bewijs gevonden voor dit vermoeden. Wel is
er een speciale klasse van automaten bekend waarvoor de grens van het vermoeden gehaald wordt: de Černý
automaten. Deze automaat wordt uitvoerig besproken in sectie 3.2.
In sectie 4 gaan we ons meer richten op de stochastiek van automaten. Waar we in de eerste- en tweede-
sectie keken naar deterministische input richten we ons in de vierde sectie op de random input. Dit verandert
de kijk op synchronisatie. We zijn in deze sectie vooral gëınteresseerd in de verwachte lengte van een woord
tot we een synchroniserende automaat hebben gesynchroniseerd.
In de laatste sectie staan de gevonden resultaten centraal. Wat zegt de kortste lengte van een synchronise-
rend woord voor een automaat over de verwachte tijd die nodig is om die automaat te synchroniseren met
random input? Zijn de Černý automaten ook met random input het moeilijkst te synchroniseren?

2

2 Automaten

Automaattheorie is de studie van automaten en is een vakgebied dat ligt in de theoretische computer Science
en de discrete Wiskunde.
In deze sectie geven we de benodigde voorkennis over automaten. Ook leggen we in deze sectie de notatie
voor automaten vast.
Nog voordat we de definitie van een automaat geven is het van belang dat we de volgende definities hebben
[1]:

Definitie 2.1. Een alfabet Σ is een eindige verzameling van symbolen bijvoorbeeld letters, tekens of cijfers.

Voorbeeld 2.2. Een paar voorbeelden van een alfabet zijn:

• {a, b, c, ..., z}

• {1, 2, 3, 4}

• {α, β, ..., ζ}

Definitie 2.3. Een woord w is een eindige rij van symbolen uit een alfabet Σ. Σ∗ is de verzameling van alle
woorden die kunnen worden gemaakt met het alfabet Σ. We definiëren λ als het lege woord.

De automaten waar wij het over gaan hebben zijn deterministische eindige automaten.

Definitie 2.4. Een deterministische eindige automaat (DFA) A is een 3-tupel (Q,Σ, δ) met:
Q: (eindige) Verzameling van toestanden.
Σ: Het alfabet van de automaat.
δ: δ : Q× Σ −→ Q is de transitie functie, waarbij de uitkomst weer een toestand is.
δ(q, l) = q′ dat wil zeggen dat je met behulp van letter l ∈ Σ van toestand q naar toestand q′ komt.

Wij zijn gëınteresseerd in woorden. Het is dus van belang dat wij de transitie functie uitbreiden naar een
functie voor woorden. Als we de transitie functie uitbreiden krijgen we de volgende functie.

Definitie 2.5. Neem w ∈ Σ∗ met w 6= λ waarvoor geldt dat w = vl met v ∈ Σ∗, l ∈ Σ. Neem x ∈ Q
We definiëren de functie als volgt:
δ : Q× Σ∗ −→ Q
δ(x,w) = δ(δ(x, v), l)
Er geldt dat δ(x, λ) = x

q0 q1 q2

0

1

1

0

0,1

Figuur 1: Deterministische eindige automaat

Voorbeeld 2.6. In figuur 1 zien we een deterministische automaat, hiervoor geldt :
Q= {q0, q1, q2}
Σ = {0, 1}
δ(q0, 0) = q0
δ(q0, 1) = q1
δ(q1, 1) = q1
δ(q1, 0) = q2
δ(q2, 0) = q1
δ(q2, 1) = q1
δ(q0, 0110) = δ(δ(q0, 011), 0) = δ(δ(δ(q0, 01), 1), 0) = δ(δ(δ(δ(q0, 0), 1), 1), 0) = q2

3

Een definitie die ook van belang is, is die van de powerautomaat. Deze automaat wordt in het vervolg nog
veel gebruikt.

Definitie 2.7. Een powerautomaat PA van een DFA A = (Q,Σ, δ) is een 3-tupel (Q̄, Σ̄, δ̄) met:
Q̄ = P(Q)\∅
Σ̄ = Σ
δ̄(H,w) =

⋃
q∈H δ(q, w) met H ⊆ Q,H 6= ∅.

Opmerking: Een powerautomaat is zelf ook een DFA.

Voorbeeld 2.8. De powerautomaat van de automaat gegeven in figuur 1, is weergeven in figuur 2.

{q1}{q0, q1, q2} {q1, q2}

{q0}

{q0, q1} {q0, q2}

{q2}

0
1

0
1

1

0

0,1

0

1

1

0

0

1

Figuur 2: Powerautomaat

Wij zijn gëınteresseerd in synchroniserende automaten, maar wat is nu een synchroniserende automaat?

Definitie 2.9. Een automaat A = (Q,Σ, δ) heet synchroniserend als ∃w ∈ Σ∗ en een q ∈ Q bestaat zodanig
dat ∀q′ ∈ Q, δ(q′, w) = q. Het woord w wordt dan synchroniserend genoemd.

Opmerking: Niet elke automaat is synchroniserend.
Opmerking: Als een automaat synchroniserend is, dan heeft hij meerdere synchroniserende woorden.
Een manier om synchroniserende woorden te vinden is met behulp van de powerautomaat

Definitie 2.10. Een woord w ∈ Σ∗ heet synchroniserend dan en slechts dan als w een pad geeft in de
powerautomaat P(A) van Q naar een een-punt-verzameling.

Op de bovenstaande manier een synchroniserend woord maken is conceptueel erg makkelijk, maar is erg
inefficiënt omdat de powerautomaat P(A) exponentieel groter is dan A.

Voorbeeld 2.11. Zie figuur 3. Deze automaat op vier toestanden is synchroniserend. Een synchroniserend
woord dat bij deze automaat hoort is de volgende ab3ab3a, want δ(i, ab3ab3a) = 1 ∀i ∈ Q.
Een ander synchroniserend woord is bijvoorbeeld ab2abab3a.

Voorbeeld 2.12. Zie figuur 4, voor de powerautomaat, die hoort bij de automaat uit figuur 3. Dan zien we
dat ab33ab3a inderdaad een pad is van Q = {0, 1, 2, 3} naar een een-punt-verzameling.
We zien dat ab2abab3a ook een pad is van Q = {0, 1, 2, 3} naar een een-punt-verzameling, maar dit woord is
erg greedy, het wil zo snel mogelijk naar een toestand met een kleinere verzameling. Dit heeft helaas niet tot
gevolg dat het het kortste synchroniserende woord is geworden.

4

0 1

23

a,b

a

b

a

b

a

b

Figuur 3: C4

{0, 1, 2, 3} {1, 2, 3} {0, 2, 3}

{0, 1, 2} {0, 1, 3}

{1, 2} {0, 2} {1, 3}{0, 1}{1}

{0, 3} {2, 3}

{0}

{3} {2}

a

b
a

b

a

b

b

a

b

a

a
b

b
a

a

b

ba

a

b

a,b

a
b

b

a

a

b

a

b

Figuur 4: Powerautomaat van C4

5

3 Černý’s vermoeden

In deze sectie staat het vermoeden van Černý centraal. Voordat we kunnen beschrijven wat het vermoeden
is, hebben we een definitie nodig.

Definitie 3.1. Zij A een synchroniserende automaat met n toestanden, en zij w het kortste synchroniserende
woord laat dan l(A) = |w|. Definieer C(n) als C(n) = max{l(A)|A synchroniseert en heeft n toestanden}

In 1964 kwam Černý met een vermoeden over de waarde van C(n). Černý’s vermoeden zegt het volgende[2]:

C(n) = (n− 1)2 (1)

Anders gezegd: elke synchroniserende automaat met n toestanden heeft een synchroniserend woord met
lengte ≤ (n− 1)2

3.1 Boven- en ondergrenzen

Hoewel het vermoeden van Černý nog niet is bewezen, zijn er wel onder- en bovengrenzen gevonden die iets
zeggen over de waarde van C(n).
Černý kwam in 1964 zelf met de volgende ondergrens:

C(n) ≥ (n− 1)2 (2)

Deze ondergrens is gebaseerd op synchroniserende woorden in een speciale automaat: Černý’s automaat Cn.
In figuur 3 hebben we al een voorbeeld gezien van deze speciale klasse van automaten. We gaan later dieper
in op deze klasse van automaten.
Černý kwam in 1964 zelf ook met een bovengrens voor C(n) namelijk:

C(n) ≤ 2n − n− 1 (3)

Lemma 3.2. Zij n ∈ N dan C(n) ≤ 2n − n− 1.

Bewijs. Laat A een deterministische eindige automaat op n toestanden, n ∈ N, dan bekijken we de power
automaat P(A). Deze heeft 2n − 1 toestanden, de lege verzameling is weggelaten. We zijn op zoek naar de
maximale lengte van het kortste woord, we zijn dus eigenlijk opzoek naar de maximale lengte van het kortste
pad van {1,...,n} naar een een-punt-verzameling. Hiervoor moeten we door alle toestanden, behalve de een-
punt-verzamelen, ten hoogste één keer gaan. Dus de maximale lengte van zo een pad is: 2n− n− 1, want er
zijn 2n− 1 toestanden in de powerautomaat, en er zijn n toestanden die horen bij een een-punt-verzameling.
Dus de maximale lengte van het kortste synchroniserende woord is: 2n − n− 1

In 1966 verbeterde Starke deze bovengrens. De bovengrens die hij had gevonden was:

C(n) ≤ 1 +
n(n− 1)(n− 2)

2
. (4)

Lemma 3.3. Zij n ∈ N dan C(n) ≤ 1 + n(n−1)(n−2)
2 .

Bewijs. Laat A een deterministische eindige automaat op n toestanden, n ∈ N. Als we gaan kijken naar
2 toestanden p, q ∈ Q en we hebben een synchroniserend woord w ∈ Σ∗ voor deze 2 toestanden, dat wil
zeggen dat δ(p, w) = δ(q, w). Dan kunnen we w zo kiezen zodat |w| ≤

(
n
2

)
, want als we de kortste lengte

willen van w dan moet gelden dat je maximaal één keer door een toestand die hoort bij een paar gaat in de
powerautomaat. P(A). Want als we beginnen in de toestand die hoort bij het paar {p, q} dan kunnen we
nooit meer met een pad naar een toestand van een verzameling van meer dan 2 elementen, dus we gaan een
keer door alle toestanden die horen bij een paar en dan naar een een-punt-verzameling.
We kunnen op |w| ≤

(
n
2

)
manieren maximaal één keer door elke toestand, behorend bij een paar, in de

powerautomaat P(A).

6

We nemen S ⊆ Q en stel dat p, q ∈ S en er is een synchroniserend woord w ∈ Σ∗ voor p, q. Definieer dan Sw
als δ̄(S,w), dat wil zeggen dat Sw de verzameling toestanden is die we bereiken als we het woord w toepassen
op de verzameling S. Er geldt dan dat |Sw| < |S|, want p, q worden naar dezelfde toestand gestuurd in Sw
en in het slechtste geval worden alle andere toestanden naar iets anders gestuurd dan geldt in het slechtste
geval dat |Sw| = |S| − 1 .
We gaan nu itereren over S.
Neem eerst S = Q dan hebben we sowieso een woord van lengte 1 nodig om naar een lagere toestand te gaan
in de powerautomaat. Kijk nu naar S ⊂ Q dan geldt er dat |w| ≤

(
n
2

)
en dit geldt voor alle n− 2 keren dat

we dit itereren. voor |S| = 2, .., n− 1, tot je bij S = 1 bent.

Dit bij elkaar genomen geldt dat: |w| ≤ 1 +
(
n
2

)
(n− 2) = 1 + n(n−1)(n−2)

2 . Dus C(n) ≤ 1 + n(n−1)(n−2)
2

Het duurde vervolgens een paar jaar tot er een nieuwe verbeterde bovengrens werd gevonden. Deze werd
gevonden door Frankl die gebruik heeft gemaakt van de inzichten van Pin. De bovengrens die hij had
gevonden was:

C(n) ≤ n3 − n
6

. (5)

Stelling 3.4. Zij n ∈ N dan C(n) ≤ n3−n
6 .

Pin heeft dit lemma gereduceerd tot een ander probleem. Dat probleem is geformuleerd als stelling door Pin
en bewezen door Frankl. [3] [2]

Stelling 3.5. Stel A = {A1, ..., Am} is een familie van r-verzamelingen, B = {B1, ..., Bm} is een familie
van s-verzamelingen zodanig dat

• Ai ∩Bi = ∅ for i = 1, ..,m

• Ai ∩Bj 6= ∅ for i ≤ i < j ≤ m

dan

m ≤
(
r + s

s

)
.

Om deze stelling te bewijzen hebben we het volgende lemma nodig.

Lemma 3.6. Stel we hebben s ballen die we moeten verdelen over r + 1 bakken, met s, r ∈ N. Dan kan dit
op
(
r+s
s

)
manieren

Bewijs. Van lemma 3.6 We hebben hier te maken met herhalingscombinaties. Het maakt namelijk niet uit
hoeveel ballen er in een bak komen en op welke volgorde de bakken worden gevuld.
We kunnen de s ballen zien als rij van bijvoorbeeld stipjes Om deze te verdelen in r + 1 bakken,
moeten we deze rij van s stipjes opsplitsen in r + 1 groepen, want elke groep kan dan worden geplaatst in
één van de bakken.
Hoe vinden we nu die groepen? We kunnen hiervoor (r+ 1)− 1 scheidingen maken tussen de rij stipjes. Stel
zo een scheiding voor als bijvoorbeeld een streep. Als we dan de stipjes en streepjes in een rij naast elkaar
hebben staan staan er (r+ 1)− 1 + s tekens, waarvan er s stipjes moeten zijn en (r+ 1)− 1 een streep. Op
hoeveel manieren kunnen we van die (r + 1)− 1 + s tekens er s kiezen die een stip moeten zijn? Dit kan op(
(r+1)−1+s

s

)
=
(
r+s
s

)
manieren. Als de stipjes vaststaan, dan staan ook de streepjes vast. Dus we kunnen op(

r+s
s

)
de s ballen verdelen over r + 1 bakken.

Bewijs. Bewijs van stelling 3.5
Neem X =

⋃m
i=1(Ai ∪ Bi), dan is X een eindige verzameling. Immers alle A′is en B′is zijn eindig. Hieruit

mogen we aannemen dat alle punten uit X in Rr+1 liggen. Nog belangrijker de punten van X en de oorsprong
liggen in generale positie. Dat wil zeggen dat het opspansel van elke r+1 punten een hyper-vlak van dimensie
r is en en er geen andere punten tussenin bevat.
In het bijzonder voor i = 1, ...,m spannen de punten van Ai en de oorsprong een deelruimte van dimensie r
op. We noemen deze deelruimte Vi. Er geldt voor deze Vi dat Vi ∩ (X\Ai) = ∅.

7

Voor het gemak maken we geen onderscheid tussen een punt in Rr+1 en zijn vector (dat wil zeggen de vector
tussen de oorsprong en het punt in Rr+1).
Definieer ui als de normaal eenheid-vector van Vi. Dat wil zeggen dat ui orthogonaal is aan Vi en zijn punten
aan de positieve zijde van Vi. Er geldt dus dat a ∈ Vi ⇔ (a, ui) = 0.
Laat nu fa de lineaire functionaal gedefinieerd door fa(v) = (a, v), dan is de ruimte van lineaire functionalen
isomorf met Rr+1. Het isomorfisme wordt gegeven met de volgende functie.
Definieer F als de ruimte van lineaire functionalen.

φ : Rr+1 −→ F : a 7→ fa (6)

De inverse wordt de volgende functie:

φ−1 : F −→ Rr+1 : fa 7→ a (7)

Hieruit volgt dat:
φ(φ−1(fa) = φ(a) = fa dus wordt de identiteit functie op F
φ−1(φ(a)) = φ−1(fa) = a dus wordt de identiteit functie op Rr+1

Definieer nu W1, ...,Ws als de s disjuncte kopieën van F .
Het tensorproduct van W1, ...,Ws is de vectorruimte van multi-lineaire functies. Dat wil zeggen dat de func-
tie lineair is in elk van zijn variabelen, f(v1, .., vs), vi ∈ Rr+1.

f(v1, .., vs) =
∏

1≤i≤s

fi(vi). (8)

De dimensie van deze vectorruimte is gelijk aan (r+ 1)s. Omdat de functies f lineair zijn kunnen we kijken
naar een basis van Rr+1 B = (e1, ..., er+1). Het is dan voldoende om te weten waar f(ẽ1, ..., ẽr+1) naar toe
wordt gestuurd ∀ẽi,∀i ∈ 1, .., s. Er zijn s plaatsen op te vullen en voor elke plaats hebben we voor de ẽi
keuze uit r+ 1 basiselementen. Dus de totale mogelijkheden worden dan (r+ 1)s. Dus de dimensie van deze
vectorruimte wordt (r + 1)s.

Een multi-lineaire functie heet symmetrisch als de waarde invariant is onder permutatie van zijn variabelen.
Dat wil zeggen dat als ρ(i), i ∈ 1, .., s een willekeurige permutatie is van {1, .., s}, dan geldt dat f(vi, .., vs) =
f(vρ(1), ..., vρ(s)). Wat is dan de dimensie van vectorruimte van symmetrische multi-lineaire functies?
Omdat de functies symmetrisch zijn maakt het niet meer uit in welke volgorde de variabele zijn, want immers
de waarde van f was invariant onder het nemen van permutaties. Omdat we nu weer werken met multi-
lineaire functies, is het weer genoeg om te kijken naar een basis van Rr+1 B = (e1, ..., er+1) en f(ẽ1, ..., ẽr+1).
Maar omdat nu de volgorde ook niet meer uitmaakt hoeven we alleen nog maar te kijken hoe vaak een ei ∈ B
voorkomt tussen onze variabelen in f(ẽ1, ..., ẽr+1).
Er zijn r + 1 mogelijke e′is en we willen kijken hoe vaak elke ei wordt gebruikt. We kunnen het probleem
dan reduceren tot het volgende probleem:
We hebben r + 1 bakken en s ballen, op hoeveel manieren kunnen we deze s ballen verdelen over de r + 1
bakken?
Met lemma 3.6 kan dit op

(
r+s
s

)
manieren.

De dimensie van deze deelruimte is dus gelijk aan
(
r+s
s

)
∀Bj = {bj1, ..., bjs} definiëren we een symmetrische multi-lineaire functie:

fBj = fBj (v1, .., vs) =
1

s!

∑
ρ∈Ss

∏
1≤i≤s

fbρ(i)(v) (9)

Dit zijn m symmetrische multi-lineaire functies in een ruimte van
(
r+s
s

)
dus als we bewijzen dat deze f ′Bjs

lineair onafhankelijk zijn dan geldt er dat m ≤
(
r+s
s

)
, dan hebben we het gevraagde bewezen.

Dus we willen bewijzen dat deze f ′Bjs lineair onafhankelijk zijn. Dit gaan we doen met behulp van tegen-
spraak.
Stel ze zijn niet lineair onafhankelijk. Als ze niet lineair onafhankelijk zijn betekent dat dat er cj ∈ R bestaan
zodanig dat f =

∑
j cjfBj is de nul-functionaal voor cj 6= 0,∀i ∈ {1, ..,m}.

8

Laat t de eerste j zijn zodanig dat cj 6= 0, dan willen we bepalen wat de waarde is van f(ut, .., ut). We
kunnen uit (9) zien dat

fBj (ut, .., ut) =
∏

1≤i≤s

(bji , ut) (10)

want we kijken alleen maar naar ut en er is maar een permutatie mogelijk, namelijk de permutatie die niks
doet. dus 1

s! = 1 en bij de som wordt alleen maar 1 term bekeken. Wat we dan overhouden is wat we
hierboven zagen.
Voor t < j ≤ m geldt met de aannames uit de stelling dat Bj ∩ At 6= ∅. Dan geldt dat (bji , ut) = 0 voor de

bijbehorende bji vanwege het feit dat ut de eenheid-normaal vector is op Vt. Omdat nu een van de termen in
het product gelijk is aan 0, geldt dat (10) gelijk is aan 0.
Als cj = 0 voor 1 ≤ j < t hebben we laten zien dat

cjfBj(ut, .., ut) = 0 j 6= t (11)

Met de andere aanname uit de stelling weten we dat At ∩Bt = ∅. Ook liggen de punten in generale positie.
Daarmee zien we dat Bt ∩ Vt = ∅. en omdat nu alle punten bji ∈ Bj zeker niet in Vj liggen, geldt dat

(bji , ut) 6= 0 Dit zorgt er voor dat
ctfBt(ut, .., ut) 6= 0. (12)

Als we dit samen nemen zien we dat

f(ut, ..., ut) =
∑
j

cjfBj(ut, .., ut) 6= 0. (13)

Want een van de termen in de som is niet 0. Nu hebben we een tegenspraak met wat we hebben aangenomen.
Dus alle fBj zijn lineair onafhankelijk, dus geldt er dat m ≤

(
r+s
s

)
en daarmee is het gevraagde bewezen.

Bewijs. Bewijs van Stelling 3.4
[2] Voor dit bewijs hebben we het volgende algoritme nodig:
Algoritme
Input: A =< Q,Σ, δ > (Een DFA)
Initialisatie: w ← λ (het lege woord)
P ← Q
while(|P | > 1)

Vind een woord v ∈ Σ∗ van minimale lengte zodanig dat |δ(P, v)| < |P |
if zo een v niet bestaat return FALSE

w ← wv
P ← δ(P, v)
return w
Dit is een algoritme om een synchroniserend woord w voor de automaat A te vinden. In voorbeeld 2.12
zien we dat het algoritme niet een kortst synchroniserend woord maakt, want het algoritme is erg greedy
en probeert zo snel mogelijk naar een kleinere verzameling te gaan, dit zorgt er echter niet voor dat het
gevonden synchroniserende woord w ook het kortst is.
Als er geen woord kan worden gemaakt wordt er FALSE gereturned.

We willen bewijzen dat geldt dat |w| ≤ n3−n
6 .

Als |Q| = n dan wordt het algoritme maximaal n− 1 keer uitgevoerd.
Om de lengte van w te berekenen gaan we schatten wat de lengte van het woord v wordt dat geproduceerd
wordt door het algoritme.
Beschouw een algemene stap in het algoritme waarvoor geldt dat |P | = k > 1. Laat v = a1a2....al met
ai ∈ Σ∗, dan willen we dus l gaan afschatten, omdat we dan een schatting voor de lengte van v als |P | = k > 1
hebben.
Als we hierna

∑n
k=2 l berekenen hebben we de lengte van het synchroniserende woord w, dat wordt gepro-

duceerd door het algoritme.
Maar eerst gaan we de waarde van l in de stap |P | = k > 1 schatten.
We hebben |P | = k > 1 en v = a1a2 . . . al met ai ∈ Σ∗ dan geldt dat:

9

P1 = P, P2 = δ(P1, a1), . . . , Pl = δ(Pl−1, al−1) en |Pi| = k voor i = 1, . . . , l.
Dit is omdat v = a1a2 . . . al synchroniserend is, als het woord korter is dan dit dan is het nog niet synchro-
niserend en dus worden nog geen twee toestanden naar dezelfde toestand gestuurd door δ. Stel dat er voor
een van de p′is geldt dat |Pi| < k dan is er dus een korter woord ṽ met de eigenschap |δ(p, ṽ)| < |P |, maar
dat was niet het geval omdat v de kortste was.
We hebben dus en rij P1, . . . , Pl met |Pi| = k voor i = 1, ..., l
Omdat v een minimaal synchroniserend woord is geldt dat |δ(P, v)| < |P |. Dat wil zeggen dat er minstens
twee toestanden ql, q

′
l ∈ Pl zijn zodanig dat δ(ql, al) = δ(q′l, al).

We definiëren nu een twee-element verzameling Ri = {qi, q′i}, i = 1, . . . , l met de eigenschappen dat

• δ(qi, ai) = qi+1

• δ(q′i, ai) = q′i+1

Voor deze verzameling geldt het volgende:
Ri ⊆ Pi en Ri * Pj als j < i, want v is een woord van minimale lengte met |δ(P, v)| < |P |.
We definiëren nu het volgende P̃i = Q\Pi, dan |P̃i| = n − k voor i = 1, ..., l en P̃i ∩ Ri = ∅ en P̃j ∩ Ri 6= ∅
voor i > j . Neem nu twee families van verzamelingen: A = {P̃1, ..., P̃l} familie van (n−k)-verzamelingen en
B = {R1, .., Rl} familie van 2-verzamelingen. Deze twee verzamelingen voldoen aan de eisen van de stelling
van Frankl. Dus geldt er dat

l ≤
(
n− k + 2

2

)
Als we nu de som nemen over k = 2, . . . , n.

n∑
k=2

(
n− k + 2

2

)
=
n3 − n

6
.

Hiermee is het gevraagde bewezen.

3.2 Černý automaten

Het is dus tot op de dag van vandaag nog niet gelukt om het vermoeden van Černý te bewijzen. Černý
kwam in 1964 met een constructie van de automaat weergeven in figuur 5. We noemen deze automaten
Černý automaten, Cn.
Definieer si als de ie toestand, met i = 0, .., n− 1 dan wordt de transitie functie als volgt gedefinieerd:

δ : Q× Σ −→ Q :
δ(si, a) = si voor 1 ≤ i ≤ n− 1
δ(si, b) = si+1 voor 1 ≤ i ≤ n− 1
δ(s0, a) = s1
δ(s0, b) = s1

(14)

Hij bewees dat deze automaat synchroniserend was en het kortste synchroniserende woord dat hij vond was
(abn−1)n−2a. De lengte van dit woord is gelijk aan (1 + (n − 1))(n − 2) + 1 = (n − 1)2. We zien dus dat
deze speciale klasse van synchroniserende automaten de grens van het Černý vermoeden bereikt. Het bewijs
hiervoor gaat als volgt .

10

1

0

n− 2 2

n− 1

.

a, b

a

b

a

b

a

b

a

Figuur 5: Černý automaat Cn

Stelling 3.7. Voor Cn, n ∈ N, geldt dat de lengte van het kortste synchroniserende woord gelijk is aan (n−1)2

Bewijs. [4] Bekijk de transitie functie van Cn met n ∈ N toestanden, gegeven in vergelijking (14). We de-
finiëren w als een woord, dan is wi de prefix van w van lengte i.
We definiëren l(i) als de lengte van het kortste interval die alle toestanden van δ(Q,wi) bevat. Waar
Q = {s0, .., sn−1}.
We definiëren t(j) als de kleinste i zodanig dat l(i) ≤ j.

Als we bewijzen dat ∀j < n − 1 geldt dat t(j) ≥ t(j + 1) + n. Dat wil zeggen dat we om het interval
de volgende stap korter te maken, we minimaal n stapjes (letters) nodig hebben.
Als we het bovenstaande hebben bewezen zijn we klaar, want het interval moet n−2 korter worden gemaakt.
Als elk van hen n letters kost om het interval 1 kleiner te maken, hebben we al n(n− 2) letters nodig. We
hebben ook nog een letter nodig om de l(t) te reduceren van n naar n − 1. We hebben dan dus minimaal
n(n− 2) + 1 = (n− 1)2 letters nodig, en daarmee is het gevraagde bewezen.
We gaan bewijzen dat ∀j < n− 1 geldt dat t(j) ≥ t(j + 1) + n. Als j 6= 1 en δ(S,wi) ⊂ [Sj , Sk] dan zijn er
twee gevallen:

• De ie letter was een a dan weten we dat δ(S,wi−1) ⊂ [sj , sk]

• De ie letter was een b dan weten we dat δ(S,wi−1) ⊂ [sj−1, sk−1]

We kunnen hieruit zien dat de lengte van het interval niet verandert. Daar kunnen we het volgende weer uit
concluderen, δ(S,wi−j+1) ⊂ I waar |I| = k − j + 1. Dit kunnen we bewijzen met inductie.

Inductie naar j − 1 We mogen aannemen dat δ(S,wi) ⊂ [Sj , Sk].
Stel j = 2 dan moeten we bewijzen dat δ(S,wi−1) ⊂ I met |I| = k − j + 1. Dit klopt, want als de ie letter
een a is dan was δ(S,wi−1) ⊂ [sj , sk] en dat is inderdaad ook een interval van lengte k − j + 1.
Als de ie letter een b was, dan moest gelden dat δ(S,wi−1) ⊂ [sj−1, sk−1]. De lengte van dit interval is ook
k − j + 1, dus het klopt voor j = 2.
Stel nu dat het klopt voor j − 1, dan willen we bewijzen dat het klopt voor j. Met de inductie aanname
weten we dat δ(S,wi−j+2) ⊂ I met |I| = k − j + 1. We willen bewijzen dat δ(S,wi−j+2) ⊂ I. Als we
dan als (i − j + 2)e letter een a deden dan was het interval het zelfde bij δ(S,wi−j+1) ⊂ I. Dus ook hier
|I| = k − j + 1. En als we als (i− j + 2)e letter een b hadden gekozen, dan was het interval verschoven met
een stapje naar rechts. Maar dan blijft de grootte van het interval gelijk aan |I| = k − j + 1. Dus het klopt
ook voor j. Dus het gevraagde is bewezen.

We merken nu op dat als de ie input letter een b is dan geldt er l(i) = l(i − 1), want we kunnen de
lengte van het interval nog niet inkorten.
Dus ∀j op de t(j)e positie moet een a worden gedaan, want dan wordt het interval ingekort en dat is wat
we willen, want we willen dat het interval zodanig korter wordt gemaakt dat we lengte 1 krijgen, omdat we
dan een synchroniserend woord hebben.
Ook moet er gelden dat δ(S,wt(j)−1) ⊂ [sn, sj], want stel het is niet zo en we doen de als inputletter de

11

letter a, dan wordt het interval alsnog niet ingekort.
Met de bewezen inductie geldt er dat δ(S,wt(j)−n) ⊂ [sn, sj] (i = t(j)− 1, k = j, j = n). De lengte van het
interval wordt dan j + 1. We houden de volgende vergelijkingen over:
Er moest sowieso met de definities gelden dat:
|δ(S,wt(j)−1)| > j
|δ(S,wt(j))| ≤ j

Met wat we hierboven hebben verkregen geldt er dat:
|δ(S,wt(j)−1)| = j + 1
|δ(S,wt(j))| = j

Alles samen genomen geldt er nu dat:
t(j)− 1− t(j + 1) ≤ n− 1
⇒ t(j) ≥ t(j + 1) + n

Dit blijkt tevens het slechtst bekende geval te zijn. Dus we hebben nog geen automaat op n toestanden
gevonden die een langst kortste woord heeft. En die voldoet aan het Černý vermoeden.
Met dit bewijs is ook de ondergrens voor C(n) bewezen want we hebben een automaat gevonden op n
toestanden met een langst bekend kortst synchroniserend woord. Het maximum kan dus niet kleiner zijn
dan (n− 1)2.

12

4 Random input

In dit hoofdstuk zijn we nog steeds gëınteresseerd in de lengte van synchroniserende woorden, maar er is een
verschil in de input van de DFA’s. Waar we in de vorige hoofdstukken keken naar automaten waar de input
vast stond, gaan we nu kijken naar de zelfde soort automaten, alleen maken we de input random. Dat wil
zeggen dat nog niet vast staat of we de letter a toepassen of juist de letter b. Met kans p passen we letter a
toe en met kans 1− p passen we de letter b toe.
De synchroniserende woorden die voorheen werkten, werken nu nog steeds alleen kan het veel langer duren
voordat een automaat wordt gesynchroniseerd. We hebben namelijk geen invloed op de keuze van de letter
die wordt genomen.
Wat wordt dan de verwachte lengte van een woord tot we een automaat gesynchroniseerd hebben? We zijn
benieuwd naar de verwachte lengte van de synchroniserende woorden van deze ”nieuwe”soort automaten.
Voor het gemak bekijken wij de automaten waarbij |Σ| = 2, dus bijvoorbeeld Σ = {a, b} en we zeggen dat
P(a) = 1

2 = P(b). Bijvoorbeeld als we kijken naar de volgende automaat, de kans op elke pijl is 1
2 .

0

12

a, 12

b, 12

a, 12

b, 12
a, 12

b, 12

Figuur 6: Automaat met random input

Bij deze random automaat hoort de volgende powerautomaat met kansen.

{0, 1, 2} {1, 2} {0, 2} {0, 1} {1}

{2}{0}

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figuur 7: Powerautomaat van random automaat uit figuur 6

4.1 Markovketens

Als we kijken naar de powerautomaten van random automaten, in bijvoorbeeld 7, dan herkennen we er een
markov keten in. Om te definiëren wat een markovketen is hebben we eerst een aantal definities nodig [5]:

Definitie 4.1. We zeggen dat λ = (λi : i ∈ S) een maat is op S als 0 ≤ λi ≤ ∞∀i ∈ S.
Als er geldt dat

∑
i∈S λi = 1 dan heet λ een verdeling.

Stel we nemen aan dat λi = P(X = i) met X een random variabele met waardes in S. Dan definieert λ een
verdeling, de verdeling van X

Definitie 4.2. Laat P = (pij : i, j ∈ S) een matrix, dan heet P stochastisch als elke rij van (pij : j ∈ S) een
verdeling is.

13

We zullen de regels voor een markov keten definiëren aan de hand van de corresponderende matrix P die
hierboven is gedefinieerd.

Definitie 4.3. Een stochastisch proces {Xn|n ≥ 0, n ∈ S} met toestand-ruimte S heet een markov keten met
begin verdeling λ en transitie matrix P als:

1. X0 heeft verdeling λ

2. voor n ≥ 0 conditioneel op Xn = i,Xn=1 heeft verdeling (pij |j ∈ S) en is onafhankelijk van X0, ..., Xn−1

Wat explicieter geldt dat

1. P(X0 = i0) = λi0

2. P(Xn+1 = in+1 = X0 = i0, .., Xn = in) = pinin+1

waarbij λi = P(X = i)
We zeggen dat (Xn)n≥0 is Markov(λ, P)

Een voorbeeld van een markov keten is het volgende:

Voorbeeld 4.4.

(
1− α α
β 1− β

)
Met bijbehorende markov keten

0 1

α

1− α

β

1− β

Figuur 8: Markov keten

4.2 Berekening verwachte lengte van een synchroniserend woord

Voor deze sectie hebben we nieuwe definities nodig:

Definitie 4.5. We definiëren de verzameling A als A = {S ⊂ Q||S| = 1}. A is de verzameling van de
een-punt-verzamelingen uit P(Q).

Definitie 4.6. KA
S = E(aantal letters tot je bij A bent beginnend in S)

We willen graag weten wat de verwachte lengte van een synchroniserend woord voor een automaat A is.
Kort gezegd we willen berekenen wat KA

Q is, want dit geeft precies de verwachte lengte van Q naar een
een-punt-verzameling in een powerautomaat. In de tweede sectie hebben we gezien dat een synchroniserend
woord voor automaat A een pad is van Q naar een een-punt-verzameling in de powerautomaat van automaat
A. Als we dus de KA

Q berekenen weten we de verwachte lengte van zo een pad en hebben we precies de
verwachte lengte van een synchroniserend woord voor de automaat A. Omdat de power-automaten in het
geval van random input markovketens worden kunnen we met behulp van het volgende stelsel KA

Q berekenen.

Stelling 4.7. [5] De vector van gemiddelde raaktijden kA = (kAi : i ∈ S) is de minimale niet-negatieve
oplossing van het systeem van lineaire vergelijkingen.{

KA
i = 0 als i ∈ A

KA
i = 1 +

∑
j /∈A pijK

A
j als i /∈ A (15)

14

Voorbeeld 4.8. Als we kijken naar de automaat in figuur 7 dan kunnen we KA
Q als volgt uitrekenen met

behulp van het stelsel in vergelijking (15):
KA
{0,1,2} = 1 + 1

2K
A
{0,1,2} + 1

2K
A
{1,2}

KA
{1,2} = 1 + 1

2K
A
{1,2} + 1

2K
A
{0,2}

KA
{0,2} = 1 + 1

2K
A
{1,2} + 1

2K
A
{0,1}

KA
{0,1} = 1 + 1

2K
A
{1,2} + 1

2K
A
{1}

Dit resulteert in:
⇒ KA

{0,1} = 1 + 1
2K

A
{1,2}

⇒ KA
{0,2} = 3

2 + 3
4K

A
{1,2}

⇒ KA
{1,2} = 14

⇒ KA
{0,1,2} = 16

Er is nog een manier om uit te rekenen wat de verwachte lengte van een synchroniserend woord voor automaat
A is. Hier hebben we nog een extra definitie voor nodig.

Definitie 4.9. Laat mij het verwachte aantal keer dat we van toestand i naar toestand j gaan. Laat pij de
kans om van toestand i naar toestand j te gaan.

We gaan KA
S berekenen met behulp van het verwachte aantal keer dat een pijl van de ene naar de andere

toestand gebruikt wordt. We gaan een stelsel opstellen aan de hand van de volgende regels:
Regel 1: Het verwachte aantal keer dat we de pijl van een toestand buiten A naar een toestand binnen A
gebruiken is 1.
Regel 2: Het verwachte aantal keer dat een pijl van toestand i naar toestand j en k wordt gebruikt is afhan-
kelijk van de kans dat een pijl wordt gebruikt. Er geldt dat pijmik = pikmij

Regel3: De som van het aantal verwachte keren dat een pijl in een toestand gaat is gelijk aan het aantal
verwachte keren dat een pijl uit dezelfde toestand gaat. Mits voor toestand i geldt dat i 6= S, i /∈ A
Regel 4: Als je gëınteresseerd bent in de verwachte lengte van een woord om te synchroniseren, dan is de som
van het verwachte aantal keer dat uit de toestand behorend bij S gaat één meer dan het aantal verwachte
keren dat men in die toestand komt.

Als we deze regels op de juiste manier toepassen kunnen we het verwachte aantal keer dat een pijl ge-
bruikt wordt berekenen.

Deze regels vertalen we naar het volgende stelsel.
Er geldt het volgende stelsel voor i, j ∈ P(Q):

∑
imiA = 1 voor i /∈ A

pikmij = pijmik voor vaste i∑
imij =

∑
imji als j 6= Q

1 +
∑
imij =

∑
imji als j = Q

mij = 0 voor i, j ∈ A

(16)

Er geldt dat

KA
Q =

∑
i,j

mij (17)

Want mij staat voor het aantal verwachte aantal keren dat de pijl van toestand i naar toestand j wordt
gebruikt. Als we dan al deze verwachtingen bij elkaar optellen dan hebben we het verwachte aantal keer dat
we de pijlen van de hele powerautomaat gebruiken en hiermee hebben we het verwachte aantal letters die
we nodig hebben om van Q naar A te komen. We hebben dus twee manieren om de verwachting KA

Q uit te
rekenen.

Voorbeeld 4.10. We gaan weer kijken naar de automaat gegeven in figuur 7. Nu passen we het stelsel van
vergelijking (16) toe. Voor het gemak schrijven we de toestanden als volgt: {0, 1, 2} = a, {1, 2} = b, {0, 2} =

15

c, {0, 1} = d, {1} = e.
Als we stelsel 2 toepassen krijgen we de volgende vergelijkingen:

mde = 1
1
2mde = 1

2mdb

mcd = mdb +mde
1
2mcd = 1

2mcb

mbc = mcd +mcb
1
2mbc = 1

2mbb

mab +mcb +mdb +mbb = mbb +mbc

1 +maa = maa +mab
1
2maa = 1

2mab

Dit resulteert in :
mde = 1 = mdb

mcd = 2 = mcb

mbc = 4 = mbb

mab = 1 = maa

Dan KA
Q = 1 + 1 + 2 + 2 + 4 + 4 + 1 + 1 = 16

We zien dat deze stelsel inderdaad dezelfde uitkomst hebben. Ook zien we dat op het eerste gezicht het
stelsel in vergelijking (15) makkelijker lijkt dan het stelsel in vergelijking (16) . Maar in de praktijk is het
stelsel in vergelijking (16) veel makkelijker en sneller uit te rekenen.

4.3 Synchronisatie Černý automaat

In deze deel-sectie kijken we naar een speciale klasse van automaten, namelijk de Černý automaten Cn met n
toestanden. Deze klasse van automaten kennen we al uit de vorige sectie. In het geval met deterministische
input is de Černý automaat het slechts bekende geval, wat wil zeggen de automaat op n toestanden met het
langste kortste synchroniserende woord. Doet deze automaat er ook het langst over in het geval van random
input? Wat is de KA

Q van deze klasse van automaten?
De verwachte lengtes van het kortste synchroniserende woord voor Cn met n = 2, 3, 4 staan weergeven in de
onderstaande tabel. Deze zijn berekend met de eerste en tweede methode. We zien dat de lengte relatief
snel om hoog gaat.

n 2 3 4
KA
Q 2 16 50

We zijn nu gëınteresseerd in een afschatting die ons iets vertelt over de verwachte lengte van het kortste
synchroniserende woord.
Stel we bekijken de eerder genoemde automaten Cn, met n ∈ N en we gooien een munt op, daarbij doen
we de letter a als er kop tevoorschijn komt en nemen we de letter b als er munt te voorschijn komt. Beide
routes worden dus met evenveel kans genomen. We zijn nu benieuwd naar de verwachte lengte van een
synchroniserend woord.
Om hier een goede afschatting voor te maken, gaan we eerst kijken naar de verwachte lengte van een woord
om een willekeurig paar uit Cn te synchroniseren.
Als eerste maken we de parenautomaat, deze heeft de volgende definitie.

Definitie 4.11. Een parenautomaat van een automaat A = (Q,Σ, δ) is een 3-tupel (Q̃, Σ̃, δ̃) zodanig dat:
Q̃ = {{p, q}|p, q ∈ Q, p 6= q}
Σ̃: Σ, het alfabet van de automaat A.
δ̃ : De transitie functie δ̃ : Q2 × Σ∗ −→ Q
δ({q1, q2}, w) = {δ(q1, w), δ(q2, w)} met w ∈ Σ∗, q1, q2 ∈ Q en δ de transitie functie van A

Opmerking: Wij zijn gëınteresseerd in synchronisatie dus we moeten een paar uiteindelijk naar een een-
punt-verzameling brengen. In de parenautomaat maken we daarom een toestand A gedefinieerd in definitie
4.5. Deze toestand representeert alle een-punt-verzamelingen.

16

Stelling 4.12. De verwachte lengte van een synchroniserend woord voor het paar {1, k + 1} in de Černý
automaat is gelijk aan: {

n3 − 3
2n

2 + 1
2 als n = 2k + 1, k ∈ N

n3 + 5
6n

2 − 4
3n+ 2 als n = 2k, k ∈ N (18)

Figuur 9: Parenautomaat met verwachte aantal transities

Bewijs. [6] Als eerst maken we de parenautomaat, zie figuur 9 , Nu zijn we gëınteresseerd in hoeveel letters
we verwachten nodig te hebben om van de toestand {1, k+ 1} naar A te komen, want dan is dit paar gesyn-
chroniseerd.
Om dit te kunnen berekenen moeten we weten hoe vaak we verwachten dat we de pijl van de ene toestand
naar de andere toestand gaan gebruiken. Om dit te berekenen maken gebruik van de volgende regels:
Regel 1: Het verwachte aantal keer dat we de pijl van {0, 1} naar A gebruiken is 1.
Regel 2: Het verwachte aantal keer dat een pijl wordt gebruikt, is voor beide pijlen uit een toestand gelijk,
immers de kans op de letter a is even groot als de kans op de letter b.
Regel3: De som van het aantal verwachte keren dat een pijl in een toestand gaat is gelijk aan het aantal
verwachte keren dat een pijl uit dezelfde toestand gaat, mits je niet in die toestand begint.
Regel 4: Als je gëınteresseerd bent in de verwachte lengte van een woord om het paar {u, v} te synchronise-
ren, dan is de som van het verwachte aantal keer dat uit de toestand behorend bij het paar {u, v} gaat één
meer dan het aantal verwachte keren dat je in die toestand komt.

Als we deze regels op de juiste manier toepassen kunnen we het verwachten aantal keer dat een pijl ge-
bruikt wordt berekenen.
Elke keer dat we een pijl verwachten te gebruiken hebben we een letter nodig. Dus als we de som van alle
verwachte aantallen dat een pijl gebruikt wordt bij elkaar optellen, dan hebben we het verwachte aantal let-
ters dat we nodig hebben om het paar {1,k+1} te synchroniseren. Op deze manier hebben we de verwachte
lengte van het synchroniserende woord voor dat paar.
Om de som van alle verwachte aantallen per pijl bij elkaar op te tellen, delen we de parenautomaat op in

17

vier gebieden. In elk van deze gebieden is het berekenen van de som relatief gemakkelijk en als we dan later
de gebieden weer bij elkaar optellen hebben we het totaal.
Opmerking: We maken gebruik van het feit dat n oneven of even is. Dat wil zeggen dat wenkunnen
schrijven als n = 2k + 1 of n = 2k .
We beginnen in het geval dat n oneven is en er geldt dat: n = 2k + 1

gebied 1:
1 · 6 + 3 · 10 + · · ·+ (2(k − 1)− 1) · (4k + 2)

=
∑k−1
i=1 (2i− 1)(4i+ 2)

=
∑k−1
i=1 8i2 − 2

= 8
∑k−1
i=1 i

2 − 2(k − 1)
= 8

3k
3 − 4k2 − 2

3k + 2
= 1

3n
3 − 2n2 + 8

3n+ 1

gebied 2:
(2n− 4) · 4 + (2n− 6) · 8 + · · ·+ (2n− 2(k + 1)) · 4k
=
∑k
i=1 4i(2n− 2− 2i)

=
∑k
i=1 8ni− 8i− 8i2

= 8n
∑k
i=1 i− 8

∑k
i=1−8

∑k
i=1 i

2

= 8
3n(k2 + k)− 4(k2 + k)

= 2
3n

3 − n2 − 2
3n+ 1

gebied 3:
6 + 10 + · · ·+ 4k − 2

=
∑k−1
i=1 2 + 4i

= 2(k − 1) + 4
∑k−1
i=1 i

= 2k2 − 2
= 1

2 (n2 − 2n− 3)

gebied 4:
2(1 + 2 + · · ·+ 2k)

=
∑2k
i=1 2i̇

= 2
∑2k
i=1 i

= 2 (2k+1)(2k)
2

= (2k + 1)(2k)
= n(n− 1)
= n2 − n
Totaal
= n3 − 3

2n
2 + 1

2
Het geval dat n is even, n = 2k, gaat analoog.

Totaal
= n3 + 5

6n
2 − 4

3n+ 2

Definitie 4.13. Definieer de onderlinge afstand voor de toestanden p, q als volgt.
Stel q > p dan
dist(p, q) = min{q − p, p− q + n}

Lemma 4.14. Het paar {1, k + 1} heeft de maximale verwachte lengte van het synchroniserende woord.

Bewijs. Het paar {1, k + 1} heeft de maximale onderlinge afstand, namelijk k. We moeten de onderlinge
afstand met k verkleinen om het paar te synchroniseren.
Er is in de rij met toestanden met onderlinge afstand k een paar waarbij we in één stap de onderlinge afstand
met 1 kunnen verlagen. Dat is de toestand behorend bij het paar {0, k}; het paar {1, k + 1} doet er het
langst over om naar het paar {0, k} te komen. Daarom is dit het paar dat de maximale verwachte lengte
heeft.

We zijn niet alleen gëınteresseerd in paar dat er het langst over doet om te synchroniseren we willen ook van

18

een willekeurige afstand m− 1 < k + 1 weten wat de verwachte lengte van het woord is om het paar {1,m}
te synchroniseren.

Stelling 4.15. De verwachte lengte voor het synchroniserende woord voor het paar {1,m} in de Černý
automaat is gelijk aan:{

4(m− 1)n2 − 4m(m− 1)n+m(2m− 1) + 2 als n = 2k + 1, k ∈ N
4(m− 1)n2 − 4(m2 − 2m+ 1)n+ 2(m2 − 4m)− 6 als n = 2k, k ∈ N (19)

Figuur 10: Paren automaat

Bewijs. [6] Dit bewijs gaat met behulp van figuur 10 analoog aan het bewijs van stelling 4.12.
n = 2k + 1

Gebied 1:∑m−2
i=1 (2i− 1)(4i+ 2)

=
∑m−2
i=1 8i2 − 2

= 8
∑m−2
i=1 i2 − 2(m− 2)

= 8
3m

3 − 12m2 + 46
3 m− 4

19

Gebied 2∑m−1
i=1 4i(2n− 2− 2i)

=
∑m−1
i=1 8ni− 8i− 8i2

= 8n
∑m−1
i=1 i− 8

∑m−1
i=1 i−

∑m−1
i=1 i2

= 4nm2 − 4nm− 8
3m

3 + 8
3m

Gebied 3:∑m−2
i=1 2 + 4i

= 2(m− 2) + 4
∑m−2
i=1 i

= 2m2 − 4m

Gebied 4:
2(1 + 2 + · · ·+ 2m− 2)
= 2

∑
i=1 2m− 2i

= 2 (2m−2)(2m−1)
2

= 4m2 − 6m+ 2

Gebied 5 kunnen we weer opdelen in 2 stukken, namelijk de stukken van 2m− 2 en die van 4m− 4:
2m-2:
4 ∗ (k −m+ 1)(2m− 2)
= −8m2 + 4mn+ 12m− 4n− 4

4m-4
(k −m+ 1)(2n− 4)(4m− 4)
= −8m2n+ 16m2 + 4mn2 + 4mn− 24m− 4n2 + 4n+ 8

Totaal:
= 4(m− 1)n2 − 4m(m− 1)n+m(2m− 1) + 2

n = 2k Het geval dat n is even gaat analoog aan het geval dat n oneven is.
Totaal:
= 4(m− 1)n2 − 4(m2 − 2m+ 1)n+ 2(m2 − 4m)− 6

Lemma 4.16. Voor alle paren met onderlinge afstand m− 1 heeft het paar {1,m} de maximale verwachte
lengte van het synchroniserende woord.

Bewijs. Dit kunnen we eenvoudig laten zien als we kijken naar de parenautomaat in figuur 10, want als we
kijken naar de rij waarbij de onderlinge afstand steeds m− 1 is, dan kunnen we bij het paar {0,m− 1} naar
het paar {1,m− 1} met onderlinge afstand m− 2 of we kunnen naar het paar {1,m} met onderlinge afstand
m− 1.
De enige manier om de onderlinge afstand te verkleinen is via het paar {0,m−1}. Bij elk ander paar in deze
rij kom je of in een paar met grotere onderlinge afstand, of een gelijke onderlinge afstand en het paar dat er
het langst over doet om weer naar {0,m− 1} te komen is het paar {1,m}. Dit paar heeft dus de maximale
verwachte lengte van het synchroniserende woord.

Stelling 4.17. Zij rn de verwachte lengte van het synchroniserende woord voor Cn dan geldt er ∀n ∈ N dat

n3 − 3

2
n2 +

1

2
≤ rn ≤ 4n3 log(n) +O(n3) (20)

Bewijs. n3 − 3
2n

2 + 1
2 ≤ rn

Om de hele automaat A te synchroniseren moet elk paar dat gemaakt kan worden met behulp van de toe-
standen uit A worden gesynchroniseerd. Ook het slechtste paar. Uit lemma 4.14 weten we dat {1, k + 1} er
het langst over doet om te synchroniseren. Uit stelling 4.12 weten we dat de verwachte lengte van het syn-
chroniserende woord voor het paar {1, k+1} gelijk is aan n3− 3

2n
2 + 1

2 voor n is oneven, en n3 + 5
6n

2− 4
3n+2

als n even. Omdat we sowieso dit paar moeten synchroniseren, verwachten we dat:
n3 − 3

2n
2 + 1

2 ≤ rn als n = 2k + 1, k ∈ N
n3 + 5

6n
2 − 4

3n+ 2 ≤ rn als n = 2k, k ∈ N
En er geldt dat:
n3 + 5

6n
2 − 4

3n+ 2 ≥ n3 − 3
2n

2 + 1
2

20

Dus n3 + 5
6n

2 − 4
3n+ 2 ≤ rn.

rn ≤ 4n3 log(n) +O(n3)
We willen Q synchroniseren met behulp van een synchroniserend woord w, met |Q| = n.
Definieer een verzameling S ⊆ Q met |S| = α dan definiëren we Sw = δ̄(S,w). Dat wil zeggen dat Sw de
verzameling toestanden is die we bereiken als we het woord w toepassen op de verzameling S.
Als |Sw| = 1 dan is de verzameling S, |S| > 1 gesynchroniseerd met behulp van het woord w, want alle
toestanden in S worden naar dezelfde toestand gebracht met het woord w.
We gaan gebruik maken van het feit dat we weten hoelang het maximaal duurt om een paar met onderlinge
afstand m− 1 te synchroniseren, zie lemma 4.16 en stelling 4.15.
Omdat we opzoek zijn naar een bovengrens voor rn nemen we steeds de slechtst mogelijk S. Dat wil zeggen
een S ⊆ Q zodanig dat alle elementen zover mogelijk uit elkaar liggen, want dan duurt het het langst om
de verzameling S te synchroniseren. De elementen liggen het verst uit elkaar als ze onderlinge afstand n

α
hebben, dit omdat op deze manier alle onderlinge afstanden gelijk zijn. Ze hebben zo de groots mogelijk
onderlinge afstand, want stel de afstand tussen u, v ∈ S maken we eentje groter dan ∃w ∈ S zodanig dat
de onderlinge afstand van u,w of v, w kleiner is geworden. Omdat we alleen maar gehele afstanden kunnen
hebben moeten we het naar boven of beneden afronden. Er is altijd een paar dat het snelst synchroniseert
namelijk het paar dat het dichts bij elkaar ligt en er is altijd een of meerdere paar dat het dichts bij elkaar
ligt, namelijk met afstand bnαc.
Om heel Q te synchroniseren moeten we elk paar synchroniseren. We definiëren nu het volgende algoritme
om een synchroniserend woord te vinden voor Q.

Algoritme:
S = Q
α = n
w = λ
While(α > 1)

Bepaal p, q met dist(p, q) minimaal.
Benereer random input tot p,q gesynchroniseerd zijn.
Bereken Sv
S = Sv
w = wv
α−−

if(α = 1)
Print w

Wat dit algoritme eigenlijk doet is dat hij de verzameling S = Q neemt, het paar dat het snelst synchroniseert
zoekt en deze synchroniseert met behulp van een woord v. Dan is de verzameling S met 1 afgenomen, waarna
hij alle gevonden v′s achter elkaar plakt. Zo gaat het verder tot de verzameling S nog maar uit 1 element
bestaat en zo dus de hele verzameling is gesynchroniseerd met behulp van het woord w.
Om de verwachte lengte van het woord w te vinden moeten we de verwachte lengtes van de woorden v
vinden.
Met Stelling 4.15 en Lemma 4.16, weten we wat de maximale verwachte lengte van het synchroniserende
paar is met onderlinge afstand m− 1. We weten dus dat de verwachte lengte van het woord v maximaal is.
Voor elke α = 1, ..., n moet een woord worden gevonden De onderlinge afstand m−1 is afhankelijk van de α,
want we hebben gezien dat voor de slechtste S geldt dat de beste onderlinge afstand gelijk is aan m−1 = bnαc
en dus m = dnαe+ 1 < n

α+1 .
Dus de verwachte lengte van het woord w is gelijk aan:
Als n = 2k + 1∑n

α=1 4n
3

α − 4(n
2

α2 − n2

α) + 2(n
2

α − 2nα) + 2
< 4n3 log(n) + 4n2log(n)− 4n log(n) + 2n

Als n = 2k∑n
α=1 4n

3

α − 4(n
3

α2 − 2n
2

α − n) + 2(n
2

α2 − 4nα)− 6
< 4n3log(n) + 4n2log(n) + 4n2 − 4nlog(n)− 6n

dus voor n ∈ Z geldt dat:

21

rn ≤ 4n3log(n) +O(n3)

4.4 Synchronisatie van andere automaten

In deze deel-sectie zijn we gëınteresseerd in de verwachte lengte van synchroniserende woorden van algemene
synchroniserende automaten.
We werken in deze deel-sectie toe naar een stelling die de maximale verwachte lengte van een woord tot
synchronisatie van boven en onder begrensd.
Hiervoor hebben we de volgende definitie nodig:

Definitie 4.18. Zij r(A) = E(tijd tot synchronisatie van A).
Dan definiëren we R(n) als R(n) = max{r(A|Asynchroniserend}

Stel we nemen een automaat A waarvan we weten dat als we kijken naar het deterministische geval het
woord w synchroniserend is, dan weten we dat dit woord w ook in het geval van random input zou gaan
werken. We zijn nu gëınteresseerd in de verwachte aantal letters die we nodig hebben tot we het woord w
hebben toegepast. Want als we woord w hebben toegepast dan is de automaat gesynchroniseerd.
De stelling hieronder verteld ons iets over de verwachte wachttijd tot het woord w verschijnt.

Stelling 4.19. Zij w ∈ {a, b}∗ en zij x1, x2, . . . random onafhankelijke letters met kans P(xi = a) = P(xi =
b) = 1

2 .

Zij Tw = min{k|w komt voor in x1x2...xk} dan geldt dat E(Tw) = 2|w| + E(Tu).
Met u 6= w het langste sub-woord dat zowel prefix als suffix van w is.

Voorbeeld 4.20. We willen weten wat E(Tw) is met w = abb, dan is het λ zowel de prefix als de suffix van
het woord w, dus u = λ en er geldt dus dat:
E(Tw) = 2|w| + E(Tu) = 23 + 0 = 8

Voorbeeld 4.21. We willen nu weten wat E(Tw) met w = abba het langst mogelijk subwoord dat zowel de
prefix en suffix van w is gelijk aan u = a. Dus er geldt:
E(Tw) = 2|w| + E(Tu) = 24 + 21 + E(Tλ) = 10

Voorbeeld 4.22. We willen nu weten wat E(Tw) met w = bbbb het langste mogelijk subwoord dat zowel de
prefix als suffix is van w is gelijk aan u = bbb.

E(Tw)
= 24 + E(Tbbb)
= 24 + 23 + E(Tbb)
= 24 + 23 + 22 + E(Tb)
= 24 + 23 + 22 + 21 + E(Tλ)
= 24 + 23 + 22 + 21 + 0
= 16 + 8 + 4 + 2
= 30

Met behulp van stelling 4.19 kunnen we het volgende zeggen over over de verwachte aantal letters die we
nodig hebben tot we woord w tegen komen.

Lemma 4.23. E(tijd tot synchronisatie) ≤ 2
n3−n

6 +1 − 2

Opmerking: Als w een kortst synchroniserend woord is dan geldt er dat E(Tw) ≥ E(tijd tot synchronisatie).

Bewijs. Uit stelling 4.19, zien we wat de verwachting is tot we w tegenkomen. In het slechtste geval wachten
we op een woord met alleen maar de zelfde letter, zoals we zagen in voorbeeld 4.22.

Als dat het geval is dan geldt dat: E(Tw) =
∑|w|
k=1 2k = 2|w|+1−2. In stelling 3.4 zagen we dat C(n) ≤ n3−n

6

en dus geldt |w| ≤ n3−n
6 als we dit invullen krijgen we:

E(tijd tot synchronisatie) ≤ 2
n3−n

6 +1 − 2.
Hiermee is het gevraagde bewezen.

22

Opmerking: Er geldt niet dat E(Tw) ≥ 2|w|, want stel we hebben twee synchroniserende woorden w1 en
w2 zodanig dat |w1| ≤ |w2| dan geldt er dat E(Tw1 ≥ E(Tw1ofTw2).

We kunnen de bovengrens die we gevonden hebben in lemma 4.23 nog scherper maken. Er geldt name-
lijk het volgende.

Stelling 4.24. E(tijd tot synchronisatie) ≤ (n− 1)(2(n2)+1 − 2) = 2
1
2n

2+o(n)

Bewijs. [6] Zoals we ook in het bewijs voor lemma 3.3 zagen geldt het volgende: ∀q1, q2 ∈ Q∃w met |w| ≤
(
n
2

)
zodanig dat δ(q1, w) = δ(q2, w). Neem nu S ⊆ Q, |S| = k. Ook definiëren we weer weer Sw = {r ∈
Q|δ(r′, w) = r, r′ ∈ S}. We weten dat er voor elk paar dat we vinden in S er een woord w bestaat zodanig
dat |w| ≤

(
n
2

)
. We weten ook dat voor deze w dan het volgende geldt: |Sw| < |S|, want er is minstens een

paar dat synchroniseert dus we weten ook dat |Sw| ≤ |S| − 1. Dit gaan we gebruiken om de lengte van een
synchroniserend woord af te schatten.
We beginnen met S = Q. Dan weten we dat we een synchroniserend woord w kunnen vinden voor een paar
in S zodanig dat |w| ≤

(
n
2

)
. Daarna bekijken we Sw waarvan we weten dat deze verzameling minstens een

kleiner is dan S. Vervolgens nemen we S = Sw, dan kunnen we weer een woord w vinden met |w| ≤
(
n
2

)
zodat een paar in de verzameling S wordt gesynchroniseerd. Vervolgens nemen we weer S = Sw′ Dit principe
herhalen we totdat |S| = 1. We willen een synchroniserend woord v voor de verzameling Q vinden Als we
nu v nemen als het woord dat alle gevonden w′s achter elkaar toepast, dan hebben we een synchroniserend
woord voor de verzameling Q. Maar hoelang is het woord v dan? Voor elke gevonden woord w om een paar
te synchroniseren gold dat |w| ≤

(
n
2

)
. We moeten n − 1 keer een paar synchroniseren om bij |S| = 1 uit

te komen. Volgens stelling 4.19 verwachten 2|w|+1 − 2 stappen tot we woord w gezien hebben (zie bewijs
Lemma 4.23 voor de uitleg). We moeten nu n−1 keer wachten op een woord van lengte |w| ≤

(
n
2

)
, dus geldt

er dat: E(tijd tot synchronisatie) ≤ (n− 1)(2(n2)+1 − 2).

Nu we een bovengrens hebben gevonden voor de maximale verwachte lengte tot we het synchroniserende
woord tegen komen, zijn we natuurlijk ook gëınteresseerd in een ondergrens. Maar zoals je ziet in de
opmerking is dat nog niet zo gemakkelijk, omdat er altijd nog een synchroniserend woord te vinden is voor
de synchroniserende automaat en die misschien eerder verschijnt. Om een ondergrens te vinden moeten we
een automaat zien te vinden, met een synchroniserend woord dat er heel lang over doet om met random
input te krijgen. Zoals we eerder hebben gezien, in voorbeeld 4.22, is dit een woord die alleen maar de zelfde
letter heeft. We gaan dus opzoek naar een automaat die er zo lang mogelijk over doet om te synchroniseren,
met een woord w die er lang over doet om te verkrijgen in het geval van random input.

Voorbeeld 4.25. De transitie functie voor de automaat met een synchroniserende woord die een ondergrens
vormt voor het maximum van E(tijd tot synchronisatie) is:

δ : Q× Σ −→ Q :
δ(x, a) = x+ 1 voor 0 ≤ x ≤ n− 2
δ(n− 1, a) = n− 1
δ(x, b) = 0 als x = 2k, k ∈ N
δ(x, b) = 1 als x = 2k + 1, k ∈ N

(21)

Het synchroniserende woord dat hoort bij deze automaat is: w = an−1.
In figuur 11 staat een voorbeeld voor deze automaat met n = 5. Zoals we zagen in het bewijs van Lemma

4.23 is de verwachte tijd tot we woord w tegenkomen is gelijk aan:
∑|w|
k=1 2k = 2|w|+1 − 2. Als we nu de

lengte van het gevonden woord w invullen krijgen we: 2n − 2.

23

0 1 2 3 4

b

a

b

a

b

a

b

a

b

a

Figuur 11: Slechte automaat

Dit voorbeeld leidt tot een ondergrens voor E(tijd tot synchronisatie. We hebben hier namelijk een automaat
die er lang over doet om te synchroniseren en een woord w waarop we lang moeten wachten tot we verwachten
hem zien. Dus er geldt dat:

2n − 2 ≤ E(tijd tot synchronisatie) (22)

Alles samen genomen kunnen we nu de volgende stelling opstellen over R(n) voor alle automaten.

Stelling 4.26. 2n − 2 ≤ R(n) ≤ 2
1
2n

2+o(n)

Bewijs. Het bewijs volgt uit stelling 4.24 en voorbeeld 4.25. Want stelling 4.24 zegt dat E(tijd tot synchronisatie) ≤
2

1
2n

2+o(n), dan moet ook gelden dat het maximum kleiner gelijk zijn dan 2
1
2n

2+o(n). En met voorbeeld 4.25
hebben we een automaat gevonden waarvoor geldt dat 2n − 2 ≤ E(tijd tot synchronisatie) en dan moet het
maximum ook groter of gelijk aan 2n − 2.

24

5 Resultaten

In de afgelopen secties hebben we het gehad over twee verschillende gevallen. Als eerste het deterministische
geval, zie sectie 2 en 3, en als tweede over het geval van random input, zie sectie 4.
We kunnen met behulp van deze twee gevallen interessante conclusies trekken.

5.1 Černý automaat

Laten we beginnen met de Černý automaat Cn, zoals we in sectie 3.2 zagen voldoet de Černý automaat aan
het Černý vermoeden. In het deterministische geval is de lengte van het kortste synchroniserende woord w
voor de automaat met n toestanden gelijk aan |w| = (n− 1)2.
Als we kijken naar het geval van random input, dan geldt dat:
rn ≤ 4n3log(n) +O(n3)

5.2 Slechte automaat

We kijken in deze deel-sectie naar de automaat gegeven door de transitie functie die gegeven is in (21).
Als eerste kijken we naar het deterministische geval. We zien hier uit voorbeeld 4.25 dat de lengte van het
kortste synchroniserende woord w voor de automaat met n toestanden gelijk is aan |w| = n− 1.
Nu kijken we naar het geval van random input. Dan zien we in voorbeeld 4.25 dat
E(tijd tot synchronisatie) = 2n − 2.

5.3 Andere automaten

In deze deel-sectie kijken we niet specifiek naar een bepaald soort automaat, maar naar alle andere automaten
in het algemeen. We kijken weer eerst naar het deterministische geval. In sectie 3.1 hebben we gezien dat

(n− 1)2 ≤ C(n) ≤ n3−1
6 .

Als we nu kijken naar het geval van random input dan geldt er dat:
2n − 2 ≤ R(n) ≤ 2

1
2n

2+o(n).

5.4 Conclusie

Wat opvalt is dat de lengte van het synchroniserende woord in het deterministische weinig zegt de verwach-
ting tot we de automaat hebben gesynchroniseerd in het geval van random input. Kijk maar naar de Černý
automaat en de automaat die hoort bij de transitie functie gegeven in (21). De lengte van het synchro-
niserende woord is bij de Černý automaat kwadratisch groter, maar de verwachting tot we de automaat
synchroniseren in het geval van random input is bij de Černý automaat weer veel kleiner dan dat van de
slechte automaat.

Referenties

[1] Jurriaan Rot. Talen en Automaten. url: http://cs.ru.nl/~jrot/TnA2017/.

[2] M.V. Volkov.
”
Synchronizing Automata and the Cerny Conjecture”. In: Springer-Verlag Berling Hei-

delberg (2008), p. 11–27. doi: http://www.math.uni.wroc.pl/~kisiel/auto/volkov-surv.pdf.

[3] P.Frankl.
”
An Extremal Problem for two Families Of Sets”. In: Europ. J. Combinatorics 3.3 (1982),

p. 125–127. doi: https://www.sciencedirect.com/science/article/pii/S0195669882800255.

[4] David Eppstein.
”
Reset Sequences for Monotonic Automata”. In: (1990), p. 5. doi: https://www.ics.

uci.edu/~eppstein/pubs/Epp-SJC-90.pdf.

[5] J.R. Norris. Markov Chains. Cambrigde Series in Statistical and Probabilistic Mathematics. 1997, p. 12–
18.

[6] Dhr. Dr. Ir. H. Don.

25

